
VOLUME 77, NUMBER 14 P H Y S I C A L R E V I E W L E T T E R S 30 SEPTEMBER1996

ed on
al and
tions

uantum
. We
which
ions to
-2]
Geometry of Quantum Statistical Inference

Dorje C. Brody1,* and Lane P. Hughston2,†

1Blackett Laboratory, Imperial College, South Kensington, London SW7 2BZ, United Kingdom
2Merrill Lynch International, 25 Ropemaker Street, London EC2Y 9LY, United Kingdom

and King’s College London, The Strand, London WC2R 2LS, United Kingdom
(Received 13 May 1996)

An efficient geometric formulation of the problem of parameter estimation is developed, bas
Hilbert space geometry. This theory, which allows for a transparent transition between classic
quantum statistical inference, is then applied to the analysis of exponential families of distribu
(of relevance to statistical mechanics) and quantum mechanical evolutions. The extension to q
theory is achieved by the introduction of a complex structure on the given real Hilbert space
find a set of higher order corrections to the parameter estimation variance lower bound,
are potentially important in quantum mechanics, where these corrections appear as modificat
Heisenberg uncertainty relations for the determination of the parameter. [S0031-9007(96)01153
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A number of investigations [1] have shown that a use
approach to the study of statistical inference is to reg
a parametric statistical model as a differentiable manif
equipped with a metric structure. This idea has also b
applied to the study of quantum systems [2]. Howev
the mathematical languages used by statisticians
physicists differ, and as a consequence a clear pic
of the geometrical structure of the space of probabil
distributions and its relation to quantum physics have
yet been fully revealed.

For example, in parametric statistics it is often conv
nient to deal with the log-likelihood functionl ­ ln p
instead of the density functionp itself. On the other
hand, in quantum mechanics we often work with a wa
function, which, loosely speaking, can be thought of a
square root

p
p of the probability density function. Thus

if we formulate a theory of statistical inference based up
the square-root likelihood function, the transition fro
classical to quantum probability should become more
parent. In particular, in the case of the square-root lik
lihood function, the associated natural Hilbert space no
induces a spherical geometry; that is, the “sum”

P
spp d2

is equal to unity [3]. If the density function is param
etrized by a set of parametersui si ­ 1, . . . , rd then for
each value ofui we have a corresponding point on th
unit sphereS in a real Hilbert spaceH . Then, by choos-
ing a suitable basis inH we can associate a unit vecto
jasui d with this point. In this way, a statistical model ca
be characterized by a submanifoldM in S , and the prob-
lems of statistical inference can be framed in terms of
geometry ofM in S .

In this Letter first we reformulate some aspects of cla
sical parametric inference, using a geometric framewo
Special attention is drawn to families of exponential d
tributions, due to their importance in various fields
physics, especially statistical mechanics. Our main c
cern is the estimation problem, and especially the va
0031-9007y96y77(14)y2851(4)$10.00
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ance lower bound for an estimator. As is well know
the exponential distributions saturate this bound; ho
ever, for other distributions the variance exceeds the lo
bound. We are thus led to establish higher-order c
rections, leading to what might appropriately be call
generalized Bhattacharyya bounds, which have a nat
geometrical characterization. These general statistica
sults are then specialized to the case of quantum mec
ics, by means of the introduction of a complex structu
on the underlying real Hilbert space. We note that
Schrödinger evolution does not generate an expone
family of distributions in the parameteru. This result is
remarkable in demonstrating that in a problem of qu
tum estimation, the Heisenberg-type lower bound can
be achieved. Thus, our results on higher-order correct
become important.

First, consider a real Hilbert spaceH , equipped with
a symmetric inner product denotedgab . Our idea is to
represent various standard statistical operations in te
of the geometry of this space. Quantum mechanical
tions will be brought in only at a later stage, with th
introduction of a complex structure onH . For conve-
nience, we adopt a standard “abstract index” notation
Hilbert space operations [4], and writeja for a typical
vector in H . Now suppose we consider the space
all probability density functions on a given configuratio
space. By taking their square roots we can map each
density function to a point on the unit sphereS in H ,
given bygabjajb ­ 1. A typical “observable” (random
variable) in H is then represented by a symmetric b
linear form Xab, with expectation given byXabjajb in
the stateja. In terms of the conventional statistical no
tation, one can associateja with the square-root densit
psxd1y2, Xab with xdsx 2 yd, and henceXabjajb with
the integral

R
x

R
y xdsx 2 ydpsxd1y2psyd1y2 dx dy. Thus,

for example,XabXb
c jajc is the expectation of the squar

of the random variableXab, and for the variance ofXab
© 1996 The American Physical Society 2851
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in the stateja we haveX̃abX̃b
c jajc whereX̃ab ­ DX ­

Xab 2 gabXcdjcjd represents the deviation ofXab from
its mean in the stateja.

Conversely, given the operatorXab and the stateja,
the density functionpsxd can be recovered by taking th
Fourier transform of the characteristic functionfsld ­
jajb expfilXb

a g, whence

psxd ­
1

p
2p

Z `

2`

jajb expfilsXb
a 2 xdb

a dg dl . (1)

Alternatively, we can think ofpsxd as the expectation
Dabjajb of the projection operatorDab associated with
the measurement outcomex, defined by

DabsX, xd ­

√
1

p
2p

Z `

2`

exp
£
ilsXc

a 2 xdc
ad

§
dl

!
gbc .

Now consider a submanifoldM of the unit sphere
S in H , given parametrically byjasuid, whereui are
local coordinates. Then the Fisher informationGij onM ,
induced bygab , is given by the Riemannian metric

Gij ­ 4gab≠ij
a≠jjb , (2)

where≠i ­ ≠y≠ui. This can be seen by noticing that th
squared distance between the end points of two vec
ja and ha in H is given bygabsja 2 had sjb 2 hbd.
If both end points lie on the submanifoldM , and ha

is obtained by infinitesimally displacingja in M , so
ha ­ ja 1 ≠ij

adui , then it follows that the separatio
ds between the two points onM is given by ds2 ­
1
4Gijduiduj . The factor of14 arises in connection with the
conventional definition of the Fisher information in term
of the log-likelihood functionlsx j ud ­ ln psx j ud, given
by Gij ­

R
x psx j ud≠i lsx j ud≠jlsx j ud dx. The signifi-

cance of the metricGij is that it enables us to stud
the geometry of the parameter spaceM . We note, for
example, that the components of the standard metric c
nection arising fromG are G

i
jk ­ 2

1
2G il≠lj

a≠j≠kja,
from which the Riemann tensor can be calculated. A
plications of this general “information geometry” to sta
tistical physics can be found, e.g., in [5].

Suppose we are told the result of the measurem
of an observableXab. We are interested in a situatio
where we have a one-parameter familyjasud of possible
states characterizing the distribution of the outcome of
measurement. In the case of a one-parameter family
distributions, the Fisher information isG ­ 4gab

Ùja Ùjb ,
where the dot denotes≠y≠u. The parameteru determines
the unknown state of nature, and we wish to estim
u with the given data. For such an estimation proble
a lower bound can be established for the variance w
which the estimate deviates from the true parameter va
Comparing the variance of our estimate to the low
bound, we can then enquire to what extent the estima
is optimal. A simple geometrical derivation of this boun
is as follows. Given a curvejasud in S , we say that
a random variableTab is an unbiased estimatorfor an
2852
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unknown functiontsud if

Tabjasudjbsud ­ tsud . (3)

For convenience, we define a mean-adjusted estima
T̃ab ; Tab 2 tgab so T̃abjajb ­ 0. The variance of
T is then given by VarjfTg ­ T̃abT̃ b

c jajc, which is
positive since VarjfT g ­ gabhahb , wherehb ­ T̃abja.
GivenTabjajb ­ t, we have2T̃abja Ùjb ­ Ùt, and there-
fore shb

Ùjbd2 ­ Ùt2y4. By use of the Cauchy-Schwartz
inequality shahad s Ùja Ùjad $ sha

Ùjad2, we thus obtain the
following expression of theCramer-Rao(CR) inequality:

VarjfT g $
Ùt2

4 Ùja Ùja

. (4)

It is clear that the CR lower bound is attained only i
Ùja ­ cha for some constantc, which we set to1y2
without loss of generality. Thus, for any curvejasud
achieving the lower bound, we obtain the differentia
equation

Ùja ­
1
2 T̃a

b jb , (5)

the solution to which is given by anexponential familyof
distributions, namely,

jasud ­
expf 1

2 uTa
b gqbp

expfuTa
b gqbqa

, (6)

where qa ­ jas0d is a prescribed initial distribution.
The density function for the exponential family is then
given bypsx j ud ­ qsxd expfxu 2 W sudg, whereqsxd ­
Dabqaqb is the initial su ­ 0d “background” density, and
the “free energy”Wsud is defined by

W sud ­ ln
Z `

2`

exuqsxd dx ­ ln
°
expfuTb

a gqaqb

¢
.

The mean ofx is given by ÙW and the variance bÿW .
Expression (6) leads us to an interesting geometric

characterization of the exponential family. We hav
the unit sphereS in H , with the standard spherical
metric geometry induced on it bygab . Let tsjad ­
Tabjajbyjcjc be a quadratic form defined onS . ThenS

is foliated by hypersurfaces of constantt. The canonical
exponential family of distributionsjasud, with initial
distributionqa, is given by the unique curve through the
point qa that is everywhere orthogonal to the family o
foliating t surfaces as indicated in Fig. 1. The varianc
VarjfTg at the pointja is one quarter of the squared
magnitude of the gradient vector=at, which is normal
to the constantt surface at the pointja. The Fisher
information, on the other hand, is 4 times the square
magnitude of the tangent vector to the curve atja. Since
the inner product of the tangent vectorÙja and the normal
vector=at is the derivativeÙt, it follows that VarjfT g $
Ùt2yG , the CR inequality.

We have observed in the foregoing that the exponent
family is the only class of curves achieving the varianc
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FIG. 1. Exponential families: The unit sphereS in H is
foliated by a family of constantt surfaces. For an exponentia
family, the curve generated from any given initial pointq cuts
the t surfaces transversely. For other families, the tang
vector Ùja and the normal vector=at are not parallel.

lower bound, providing we choose the right functio
of the parameter to estimate. For other families
distributions, the variance necessarily exceeds the lo
bound. Hence to obtain a sharper bound we now cons
the possibility of establishing higher-order correctio
to the CR lower bound. Our approach closely follow
that of Bhattacharyya [6]. Let us writej

srd
a ­ ≠rjay

≠ur , therth derivative ofja with respect tou, and write
ĵ

srd
a for the projection ofj

srd
a orthogonal toja and to all the

lower order derivatives, sôj
srd
a ja ­ 0 and ĵ

srd
a jssda ­ 0

for r fi s. Then, if Tab is an estimator for the unknown
function tsud, so isRab ­ Tab 1

P
r lrjsaĵ

srd
bd for arbi-

trary constantslr , sinceRabjajb ­ Tabjajb . We only
consider values ofr such that̂j

srd
a fi 0. A straightforward

calculation leads us to the values oflr minimizing the vari-
ance ofR, and we obtain minsVarjfRgd ­ VarjfT g 2P

rsTabjaĵsrdbd2ysgab ĵsrdaĵsrdbd. Since VarjfRg is
non-negative, we deduce the following generaliz
Bhattacharyya boundsfor the variance of the estimator:

VarjfTg $
X

r

sTabjaĵsrdbd2

gab ĵsrdaĵsrdb
. (7)

Clearly for r ­ 1 we recover the CR inequality. Not
though that unlike the “classical” Bhattacharyya boun
the generalized bounds given by (7) normally depend up
features of the estimator. In our applications to quant
mechanics later, however, we shall indicate an import
instance of a higher-order bound that is independent of
specific choice of estimator.

As an example, we consider now the second-or
correction to the CR inequality, withr ­ 1, 2. After
some algebra we obtain

VarjfT g $
s Ùja=atd2

4 Ùja Ùja

1
sAa=atd2

4AaAa
, (8)

whereAa ; ĵ
s2d
a ­ j̈a 2 Ùjas Ùjbj̈bdy Ùjc Ùjc 2 jasjbj̈bd is
l
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the “acceleration” vector. Note thatAaAa ­ G2g2y16,
where g2 is the intrinsic curvatureof the curvejasud
in S . Since the second term in (8) is always no
negative, while the first term is just the CR lower boun
this is clearly an improvement. Furthermore, we imm
diately gain a geometric interpretation. As mention
above, we have VarjfT g ­

1
4 gab=at=bt, where t ­

Tabjajbyjcjc. The improved CR inequality (8) state
that the length of the vector=at is greater than the length
of its orthogonal projection onto the plane spanned by
locity and acceleration vectorsÙja andAa, as illustrated in
Fig. 2.

For the exponential families given by (6), the curvatu
can be calculated asg2 ­ kT̃4lykT̃2l2 2 kT̃3l2ykT̃2l3 2

1, where T̃ ­ DT as defined above. Here, the firs
term on the right-hand side is thekurtosis (measure of
sharpness) of the distribution, while the second term
theskewness(measure of asymmetry).

We now wish to extend the estimation problem to t
quantum mechanical regime. In the preceding analy
we have formulated parametric statistics in terms of
trinsic Hilbert space geometry. In order to study quantu
mechanical systems based on areal Hilbert spaceH ,
we need to introduce acomplex structureon H com-
patible with the given Hilbert space geometry. Th
complex structure is given by a tensorJa

b satisfying
Ja

b Jb
c ­ 2da

c . A symmetric operatorXab is Hermitian if
XabJa

c Jb
d ­ Xcd . We require that the complex structur

be compatible with the Hilbert space structure by insisti
that the metricgab is Hermitian. Then, as a consequenc
in the conventional Dirac notation we find that ifja and
ha are two real Hilbert space vectors, their quantu
mechanical product is given bykh j jl ­

1
2 hasgab 2

iVabdjb , where the symplectic formVab ; gacJc
b is

automatically antisymmetric and invertible. The quantu
mechanical norm agrees with the real Hilbert space no
with kj j jl ­

1
2 gabjajb . Note that a real Hilbert space

elementja can be decomposed into positive and negat
frequency parts, with respect to the given compl
structure, by writing ja ­ ja

1 1 ja
2, where ja

6 ;
1
2 sja 7 iJa

b jbd. Thus we can writekh j jl ­ ha
2gabjb

1.

FIG. 2. Variance bounds: The gradient vector=at can be
projected orthogonally into the plane spanned byÙja and
Aa. The length of this projected vector is necessarily shor
than=at.
2853
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See, e.g., [7] for further details on geometry of quan-
tum states.

The Schrödinger equation can also be represente
neatly in purely real terms. Suppose the Hamiltonian
is represented by the quadratic formHab, assumed
Hermitian; then the Schrödinger equation can be written
as

Ùja ­ Ja
b H̃b

c jc, (9)
where the parameteru is now regarded as the time
parametert. Here the usual phase freedom in quantum
mechanics is incorporated in the modified Hamiltonian
H̃b

a ­ Hb
a 1 wdb

a . If we take positive and negative parts
of Eq. (9), and setw ­ 0, we recover the conventional
form of the Schrödinger equationÙja

6 ­ 7iHa
b jb

6.
Now, suppose we setja sojaja ­ 1 and fix the phase

factor w so as to minimize the Fisher information. Then,
by the Schrödinger equation, we findw ­ 2Habjajb ,
and thus for the Fisher information we obtainG ­
4ksDHd2l. Therefore, if we let Tab be an unbiased
estimator for the time parameter [8], withTabjajb ­ t,
then from Eq. (4) we find

kT̃ 2l kH̃2l $
1
4 . (10)

This is formally the same as the Heisenberg uncertaint
relation. However, we have observed that the condition
for achieving the lower bound is for the stateja to satisfy
the differential equation of the form (5) above, whereT̃ab

is symmetric. On the other hand, the quadratic form de-
fined byJa

b H̃b
c in the Schrödinger Eq. (9) isantiasymmet-

ric, due to the Hermitian condition on the Hamiltonian.
Therefore, we conclude that the Schrödinger equation can
not generate an exponential family of distributions in thet
variable. A consequence of this result is that the quantum
extension of the classical CR inequality does not quite
provide the Heisenberg uncertainty relations. In particu
lar, in the case of a parametric estimation for a quantum
mechanical scale, the Heisenberg-type uncertainty lowe
bound is unattainable. For an experimentalist, the infor
mation concerning the higher-order corrections is thus in
deed important in various estimation procedures.

In the case of the Schrödinger trajectories (9), we
find that, in contrast to exponential families, the skew-
ness terms drop out and the curvature isg2 ­ skH̃4ly
kH̃2l2d 2 1. Hence, the second-order correction is given
by g22sTab

Ùja Ùjb 2 tkH̃2ld2, which by virtue of the
Schrödinger equation (9) and the commutation relation
ifH, T g ­ 1, can be reduced to an expression of the
form kg22, wherek is a non-negative constant given by
the covariance of the estimatorT with H̃2 in the initial
state of the system. We seek, however, a bound on th
variance that isindependent of the specific choice of
estimator fort. Remarkably, just such a term arises when
we go to the third-order Bhattacharrya-style correction
which is given bysBa=atd2y4BaBa whereBa ; ĵ

s3d
a is

the component of
...
j a orthogonal toja, Ùja, andj̈a. Since

all the odd moment terms vanish for quantum trajectories
2854
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we find Ba ­
...
j a 2 Ùjas

...
j b

Ùjby Ùjc
Ùjcdba. Thus, after

some algebra we obtain

kT̃ 2l kH̃2l $
1
4

√
1 1

skH̃4l 2 3kH̃2l2d2

kH̃6l kH̃2l 2 kH̃4l2

!
. (11)

This correction is strictly non-negative. Moreover, it on
depends upon the given family of probability distribution
determined byjastd, and is manifestly independent o
the specific choice of estimator for the time paramet
The numerator in the correction is the square of t
fourth cumulant of the distribution, usually denotedg2.
The distributions for whichg2 . 0 are called leptokurtic,
andg2 , 0 platykurtic. If the distribution is mesokurtic
sg2 ­ 0d, then this correction vanishes, and an exam
of such a distribution is the Gaussian. For applicatio
in quantum mechanics, however, we normally expec
distribution forH that is not Gaussian.

Our approach here has been to view statistical infere
in terms of Hilbert space geometry, a view that allow
us to make a firm bridge between classical and quant
statistical estimation, by introducing a complex structu
The variance lower bound obtained above is independ
of the choice of estimator, and hence serves as a sh
ened Heisenberg relation. This can be improved furth
by the incorporation of various additional higher-ord
terms. Although we have illustrated here the principl
involved in the case of energy-time uncertainties, ana
gous results hold for other conjugate variables, such
position and momentum.
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