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An efficient geometric formulation of the problem of parameter estimation is developed, based on
Hilbert space geometry. This theory, which allows for a transparent transition between classical and
guantum statistical inference, is then applied to the analysis of exponential families of distributions
(of relevance to statistical mechanics) and quantum mechanical evolutions. The extension to quantum
theory is achieved by the introduction of a complex structure on the given real Hilbert space. We
find a set of higher order corrections to the parameter estimation variance lower bound, which
are potentially important in quantum mechanics, where these corrections appear as modifications to
Heisenberg uncertainty relations for the determination of the parameter. [S0031-9007(96)01153-2]

PACS numbers: 02.40.Ky, 02.40.Ft, 02.50.—-r, 03.65.—w

A number of investigations [1] have shown that a usefulance lower bound for an estimator. As is well known,
approach to the study of statistical inference is to regartdhe exponential distributions saturate this bound; how-
a parametric statistical model as a differentiable manifolcever, for other distributions the variance exceeds the lower
equipped with a metric structure. This idea has also beebound. We are thus led to establish higher-order cor-
applied to the study of quantum systems [2]. Howeveryections, leading to what might appropriately be called
the mathematical languages used by statisticians argeneralized Bhattacharyya bounds, which have a natural
physicists differ, and as a consequence a clear picturgeometrical characterization. These general statistical re-
of the geometrical structure of the space of probabilitysults are then specialized to the case of quantum mechan-
distributions and its relation to quantum physics have noics, by means of the introduction of a complex structure
yet been fully revealed. on the underlying real Hilbert space. We note that the

For example, in parametric statistics it is often conve-Schrédinger evolution does not generate an exponential
nient to deal with the log-likelihood functioh = Inp  family of distributions in the parameté. This result is
instead of the density functiop itself. On the other remarkable in demonstrating that in a problem of quan-
hand, in quantum mechanics we often work with a wavadum estimation, the Heisenberg-type lower bound cannot
function, which, loosely speaking, can be thought of as de achieved. Thus, our results on higher-order corrections
square root/p of the probability density function. Thus, become important.
if we formulate a theory of statistical inference based upon First, consider a real Hilbert spacH , equipped with
the square-root likelihood function, the transition froma symmetric inner product denoted,. Our idea is to
classical to quantum probability should become more aprepresent various standard statistical operations in terms
parent. In particular, in the case of the square-root likeof the geometry of this space. Quantum mechanical no-
lihood function, the associated natural Hilbert space norntions will be brought in only at a later stage, with the
induces a spherical geometry; that is, the “suk(}/p)*  introduction of a complex structure oftf . For conve-
is equal to unity [3]. If the density function is param- nience, we adopt a standard “abstract index” notation for
etrized by a set of paramete#$ (i = 1,...,r) then for  Hilbert space operations [4], and writg for a typical
each value ofd’ we have a corresponding point on the vector in 2{. Now suppose we consider the space of
unit sphereS in a real Hilbert spacé{ . Then, by choos- all probability density functions on a given configuration
ing a suitable basis idH we can associate a unit vector space. By taking their square roots we can map each such
£9(0") with this point. In this way, a statistical model can density function to a point on the unit sphefein #,
be characterized by a submanifdM in S, and the prob- given byg., ¢ = 1. A typical “observable” (random
lems of statistical inference can be framed in terms of thevariable) in #{ is then represented by a symmetric bi-
geometry of M in S. linear form X,;,, with expectation given by,,£9£% in

In this Letter first we reformulate some aspects of clasthe stateé“. In terms of the conventional statistical no-
sical parametric inference, using a geometric frameworktation, one can associat with the square-root density
Special attention is drawn to families of exponential dis-p(x)'/2, X,, with x8(x — y), and henceX,,£*£? with
tributions, due to their importance in various fields inthe integralf, [, x6(x — Wp()2p(y)Y/2 dx dy. Thus,
phyS|cs especially statistical mechanics. Our main confor example,Xabng &¢ is the expectation of the square
cern is the estimation problem, and especially the variof the random variabl&,,, and for the variance aX,,

0031-900796/77(14)/2851(4)$10.00 © 1996 The American Physical Society 2851



VOLUME 77, NUMBER 14 PHYSICAL REVIEW LETTERS 30 BPTEMBER1996

in the state£® we ;avef(abf(ff“g“ whereX,, = AX =  unknown functionr(6) if
Xap — garXcaECE? represents the deviation &f,;, from a b
its meaé;] in thg sgtatear.) Tap§°(0)€°(6) = 7(6). (3)
Conversely, given the operatof,, and the state€“,  For convenience, we define a mean-adjusted estimator
the density functiorp(x) can be recovered by taking the T,, = T., — 784 SO T, ¢%é” = 0. The variance of
Fourier transform of the characteristic functignA) = 7T is then given by VaiT] = abT”f £¢, which is
£a¢, exdiAX?], whence positive since Vai[T] = gu»n* Wherem, = T &°.
1 ° , , GivenT,,£°¢Y = 7, we have2Ta;,§ &b = 7, and there-
px) = ﬁf £'&p exdidX, — x8,)]dA. (1) fore (n,£")? = #2/4. By use of the Cauchy-Schwartz
o inequality (n9n,) (£9¢,) = (1.£9)?, we thus obtain the

Alternatively, we can think ofp(x) as the expectation following expression of th€ramer-RadCR) inequality:

Ay E°£P of the projection operatod,;, associated with N

the measurement outcomedefined by Var[T] = 45. g _ 4)
1 ” ] C C ‘ a
Aap (X, x) = (\/2’# ffm expliA(X; — x5;)] d/\)gbc' It is clear that the CR lower bound is attained only if

&% = ¢n® for some constant, which we set tol/2
without loss of generality. Thus, for any cung ()
achieving the lower bound, we obtain the differential
equation

Now consider a submanifoldM of the unit sphere
S in H, given parametrically by“(8"), whered’ are
local coordinates. Then the Fisher informatign on M,
induced byg,;, is given by the Riemannian metric

sa _ Ll5a
Gij = 48a»3:1£°0;£", 2) ¢ =3¢, (5)
whered; = 9/06'. This can be seen by noticing that the the solution to which is given by aexponential familyof
squared distance between the end points of two vectogstributions, namely,

&9 andn® in H is given byg., (¢4 — %) (£° — n?). exd20T¢1q"
If both end points lie on the submanifoltM, and 7“ §0) = ————. (6)
\/eXF[HTb]q qa

is obtained by infinitesimally displacing® in M, so

ne = £ + 9;£%d0', then it follows that the separation where g% = £4(0) is a prescribed initial distribution.

ds between the two pomts odM is given byds?> =  The density function for the exponential family is then

46,,d0 d6’/. The factor of— arises in connection with the given byp(x |0) = g(x)exgx® — W(0)], whereg(x) =

conventional definition of the Fisher information in terms A, g% is the initial (¢ = 0) “background” density, and

of the log-likelihood function/(x | ) = In p(x | ), given  the “free energy'W(6) is defined by

by Gij = [, p(x160)3;1(x16)d;l(x|6)dx. The signifi- o

cance of the metriog;; is that it enables us to study  W(4) = Inf e q(x)dx = In(exd 0T q») .

the geometry of the parameter spadé¢. We note, for -

example, that the components of the standard metric corFhe mean oft is given byW and the variance byy.

nection arising fromgG are l“jk = %Q“alg“ajakfa, Expression (6) leads us to an interesting geometrical

from which the Riemann tensor can be calculated. Ap<haracterization of the exponential family. We have

plications of this general “information geometry” to sta- the unit sphereS in J, with the standard spherical

tistical physics can be found, e.g., in [5]. metric geometry induced on it by,,. Let 7(£9) =
Suppose we are told the result of the measuremerft,,£°£%/£¢&. be a quadratic form defined dh ThenS

of an observableX,,. We are interested in a situation is foliated by hypersurfaces of constant The canonical

where we have a one-parameter famgl(#) of possible exponential family of distributionsé4(#), with initial

states characterizing the distribution of the outcome of thelistribution ¢, is given by the unique curve through the

measurement. In the case of a one-parameter family gfoint ¢¢ that is everywhere orthogonal to the family of

distributions, the Fisher information i§ = 4g.,£9¢%,  foliating = surfaces as indicated in Fig. 1. The variance

where the dot denote/ 9. The parametef determines Varg[7] at the point¢® is one quarter of the squared

the unknown state of nature, and we wish to estimat¢nagnitude of the gradient vectdf, =, which is normal

6 with the given data. For such an estimation problenmto the constantr surface at the point“. The Fisher

a lower bound can be established for the variance witlinformation, on the other hand, is 4 times the squared

which the estimate deviates from the true parameter valuenagnitude of the tangent vector to the curvgat Since

Comparing the variance of our estimate to the lowerthe inner product of the tangent veci®t and the normal

bound, we can then enquire to what extent the estimatorectorV,r is the derivativer, it follows that Vag[7T] =

is optimal. A simple geometrical derivation of this bound 72/G, the CR inequality.

is as follows. Given a curvg“(#) in S, we say that We have observed in the foregoing that the exponential

a random variablel,,;, is an unbiased estimatofor an  family is the only class of curves achieving the variance
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e ™ the “acceleration” vector. Note that“A, = G2y?/16,
where y? is the intrinsic curvature of the curve£4(6)
S in S. Since the second term in (8) is always non-
negative, while the first term is just the CR lower bound,
this is clearly an improvement. Furthermore, we imme-
9 diately gain a geometric interpretation. As mentioned
o n above, we have VafT]= 1g*V,7V,r, where r =
T2 TnE9€P /€. The improved CR inequality (8) states
s that the length of the vectdF, 7 is greater than the length
s of its orthogonal projection onto the plane spanned by ve-
locity and acceleration vectogs' andA¢, as illustrated in
Fig. 2.
\ exponential family / For the exponentialzfamil[es given by (6), the curvature
can be calculated ag? = (T*)/(T?)? — (T3)*/(T?)® —
FIG. 1. Exponential families: The unit sphefein H is 1, where T = AT as defined above. Here, the first
foliated by a family of constant surfaces. For an exponential term on the right-hand side is tHaurtosis (measure of
family, the curve generated from any given initial pointuts  sharpness) of the distribution, while the second term is
the 7 surfaces transversely. For other families, the tange“fheskewnesgneasure of asymmetry).
vector¢£® and the normal vectd?, 7 are not parallel. We now wish to extend the estimation problem to the

lower bound, providing we choose the right function quantum mechanical regime. n th(_e prec_edlng analy_S|s,
we have formulated parametric statistics in terms of in-

of the parameter to estimate. For other families of .~ .~ '~

e . : trinsic Hilbert space geometry. In order to study quantum

distributions, the variance necessarily exceeds the lower . )

. . Tnechanical systems based orreal Hilbert spacedd,

bound. Hence to obtain a sharper bound we now ConS'd%\r/e need 1o introduce aomplex structuren H. com
the possibility of establishing higher-order corrections P

to the CR lower bound. Our approach closely foIIowsIoatible with the given Hilbert space geometry. The
' complex structure is given by a tensdf satisfying

P () R
that of Bhattacharyya [6]. Let us writ€a = "¢/ jajb — _5a A symmetric operatoK,, is Hermitianif

‘?2; the rth dejriva'ltive 0{5“ with respect tof, and write XangJf} = X.qs. We require that the complex structure
&a ' for the projection ot Ao(r'ghogonal tof, ji(rl)d toallthe  pe compatible with the Hilbert space structure by insisting
lower order derivatives, s &* = 0 and&a ¢ = 0 that the metrigg,, is Hermitian. Then, as a consequence,
for r # 5. Then, if T, is an estimator for the unknown in the conventional Dirac notation we find thatéf and
function 7(0), sO ISRy, = Tup + 2., A,g(agl(f)) for arbi- n¢ are .two real HiIb_ert space vectors, Eheir guantum
trary constants\,, SinCeR,, &0 = T,,£9¢%. We only mecharbwlcal product is given byn | &) = 3m* (g —

A . H — c
consider values of such thagl’ # 0. A straightforward  €a)¢”, where the symplectic formfdy, = gucJh is
calculation leads us to the valuespfminimizing the vari- automat.lcally antisymmetric and mvernb[e. The quantum
ance ofR, and we obtain mirfVar,[R]) = Var,[T] — mechanical norm agrees with the real Hilbert space norm
S (Tap&980)2 (g, EraEWP) Since Vag[R] is with (¢ | &) = %ga,,gafb. Note that a real Hilbert space
non-negative, we deduce the following generalizecelements® can be decomposed into positive and negative
Bhattacharyya bound®r the variance of the estimator: ~ frequency parts, with respect to the given complex

(T, £9200P)2 structure, by writing £ = £ + &4, where ¢4 =

b 1 — . .
Varg[T] = zm (7)) 5(£* 7 iJp£P). Thus we can writdn | €) = 7% g 5.

Clearly for r = 1 we recover the CR inequality. Note
though that unlike the “classical’ Bhattacharyya bounds,
the generalized bounds given by (7) normally depend upon
features of the estimator. In our applications to quantum
mechanics later, however, we shall indicate an important
instance of a higher-order bound that is independent of the
specific choice of estimator.

As an example, we consider now the second-order
correction to the CR inequality, withr = 1,2. After
some algebra we obtain

(é“VaT)Z (AV ,7)? FIG. 2. Variance bounds: The gradient vectyr can be
Var[T] = ra dACA (8) projected orthogonally into the plane spanned &% and
4¢9¢a, L A“. The length of this projected vector is necessarily shorter

whered, = &7 = &, — £,(£28)/E¢, — £.(£PE)is  thanV,r.
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See, e.g., [7] for further details on geometry of quanwe find B, = €, — &.,(£,E%/¢.£9)ba. Thus, after
tum states. some algebra we obtain

The Schrddinger equation can also be represented 1 (H* — 3(H2)2)?
neatly in purely real terms. Suppose the Hamiltonian  (T?)(H?) = Z(l T T = 2)- (11)
is represented by the quadratic fori#,,, assumed (HE)(H?) — (HY)

Hermitian; then the Schrodinger equation can be written NiS correction is strictly non-negative. Moreover, it only
as depends upon the given family of probability distributions

ba _ pafrb gc determined byé“(t), and is manifestly independent of
& =JH ¢S, 9) o : ) .
. ; the specific choice of estimator for the time parameter.
where the parametef is now regarded as the time

arameter. Here the usual phase freedom in quantu The numerator in the correction is the square of the
P ' P q YMourth cumulant of the distribution, usually denotesd.

Irgsciag;: S+'S iSanOT]P\(/)\;:ttZ?(em otgi(;vr;(;ilgii ';?}\Téltogr'; nThe distributions for whichy, > 0 are called leptokurtic,
a a T $%:- P 9 P and y, < 0 platykurtic. If the distribution is mesokurtic

of Eq. (9), and setp = 0, we recover the conventional (y2 = 0), then this correction vanishes, and an example

. , —rra

form of the Schrodinger equaﬂ'guﬂ = FiH£L. of such a distribution is the Gaussian. For applications
Now, suppose we .Sﬁf.la so¢ f‘? N 1_and fix the phase in guantum mechanics, however, we normally expect a

factor ¢ so as to minimize the Fisher information. Ehen’distribution forH that is not Gaussian.

by the Schrodinger equation, we f.'mj = ~Hap g.ag ' Our approach here has been to view statistical inference

and thgs for the Flsher information we obta@ — . in terms of Hilbert space geometry, a view that allows

4<(.AH) )- Therefpre, it we letTy, b‘? anaurgblased us to make a firm bridge between classical and quantum

estimator for the time parameter [8], with, €67 = 1, statistical estimation, by introducing a complex structure.

then from Eq. (4) we~f2|nd~2 | The variance lower bound obtained above is independent

(T5YH") = 7. (10)  of the choice of estimator, and hence serves as a sharp-

This is formally the same as the Heisenberg uncertaintgned Heisenberg relation. This can be improved further

relation. However, we have observed that the conditiorby the incorporation of various additional higher-order

for achieving the lower bound is for the statéto satisfy  terms. Although we have illustrated here the principles

the differential equation of the form (5) above, whéfg involved in the case of energy-time uncertainties, analo-

is symmetric. On the other hand, the quadratic form de-gous results hold for other conjugate variables, such as

fined byJj H? in the Schrédinger Eq. (9) iantiasymmet-  position and momentum.

ric, due to the Hermitian condition on the Hamiltonian.

Therefore, we conclude that the Schrédinger equation can-

not generate an exponential family of distributions in the . . ) .

variable. A consequence of this result is that the quantum Tiéllzittrr?)wii Z?j?jrriiss'_ ?a'?,reogfgtr,pdgr;}:féicﬁqlJK
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