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GEOMETRY OF SAMPLE SETS IN DERIVATIVE-FREE

OPTIMIZATION: POLYNOMIAL REGRESSION AND

UNDERDETERMINED INTERPOLATION

ANDREW R. CONN∗, KATYA SCHEINBERG† , AND LUı́S N. VICENTE‡

Abstract. In recent years, there has been a considerable amount of work on the development
of numerical methods for derivative-free optimization problems. Some of this work relies on the
management of the geometry of sets of sampling points for function evaluation and model building.

In this paper, we continue the work developed in [8] for complete or determined interpolation
models (when the number of interpolation points equals the number of basis elements), considering
now the cases where the number of points is higher (regression models) and lower (underdetermined
models) than the number of basis components.

We show that regression and underdetermined models essentially have similar properties to the
interpolation model in that the mechanisms and concepts which control the quality of the sample
sets, and hence of the approximation error bounds, of the interpolation models can be extended to
the over- and underdetermined cases. We also discuss the trade-offs between using a fully determined
interpolation model and the over- or underdetermined ones.

1. Introduction. A class of nonlinear optimization methods called derivative-
free methods has been extensively developed in the past decade. These methods
do not rely on derivative information of the objective function or constraints, but
rather sample the functions considered. Some of these methods use the information
directly extracted from sampling the functions, without attempting to form models or
to approximate derivatives. These methods are called direct-search methods and we
do not consider them here. Another popular approach (see [8] and references therein)
is to use polynomial interpolation to build a model of the objective function (or
constraints). There have been a number of practical algorithms, as well as supporting
theory, based on this idea.

It is natural to consider an extension of this approach: if the number of sample
points is more than the number of degrees of freedom of an approximating polynomial
of a given degree then the interpolation is overdetermined. It might be beneficial to
use polynomial regression on a larger set of sample points instead of using interpola-
tion on a subset of these points. Such a situation may arise when function evaluations
are not too expensive (so having more sample points than the number of degrees of
freedom is not prohibitive) but are computed with noise (hence regression models
might have a desirable smoothing affect). The most recent implementation of implicit
filtering methods [2, 3] makes use of regression simplex gradients and diagonal simplex
Hessians. Simplex gradients based on regression are also used in [11, 12]. But despite
the usefulness of the idea there has been little other work employing regression for
derivative-free optimization. One of the reasons, in our opinion, is the lack of sup-
porting theory. In this paper we extend the properties of polynomial interpolation
described in [8] to the case of least-squares regression. These properties provide the
foundation for using least-squares regression models in an algorithmic framework with
global convergence properties (see [6, 7, 10]).
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Another extension of the interpolation models considered in [8] is the case when
the number of sample points is smaller than the number of degrees of freedom of the
interpolation polynomial. The interpolation is underdetermined in this case. Instead
of lowering the degree of the interpolant, it is often beneficial to use all the available
sample points to try to extract as much information for the higher order interpolation
as possible. Such situations often arise when the function evaluations are expensive
and it is prohibitive to sample enough points to provide a fully quadratic interpolation
model at each iteration, yet using only first-order information is inefficient. In fact,
underdetermined interpolation models have been extensively used in practical im-
plementations of derivative-free methods based on second-order approximation. The
DFO code described in [1] uses minimum-norm underdetermined interpolation models
in a trust-region like method, at the early iterations when not enough points are avail-
able for complete interpolation. The approach in [17] intentionally uses incomplete or
underdetermined interpolation throughout the course of the optimization algorithm.
There, the degrees of freedom in the underdetermined interpolation systems are used
to construct models that minimize the Frobenius norm of the change of the second
derivative of the quadratic models.

Although the underdetermined case appears to be very similar to the fully deter-
mined one, the theory in [8] does not immediately extend. As in the overdetermined
case (or regression) we want to show that the underdetermined models (if used prop-
erly) can be used in a globally convergent algorithm.

Essentially, as in [8], in order to use polynomial models in a globally convergent
algorithmic framework the models have to satisfy Taylor-like error bounds. That is,
at each iteration of the algorithm, the linear (quadratic) model which is used has to
approximate the true function in a given neighborhood around the current iterate
at least as well (up to a uniformly bounded constant) as the first (second) order
Taylor expansion at that iterate. In [10] it is shown that a derivative-free trust-region
algorithm, based on models that satisfy the above property, is globally convergent.
In [8] we have shown that polynomial interpolation models indeed satisfy the desired
property. Moreover, algorithms for constructing such models are presented in [8]. In
particular, in that paper, we introduced the concept of Λ–poisedness as a condition on
the set of sample points, say Y , based on which the interpolation model is constructed.
This condition is equivalent to imposing a bound on the maximum sum of the absolute
values of the Lagrange polynomials associated with Y , also known as the Lebesgue
constant of Y . There are Taylor-like error bounds based on the Lebesgue constant
of Y in the approximation theory literature. Many of them are difficult to interpret
in terms suitable for optimization and it is unclear how one can generate or maintain
sample sets with bounded Lebesgue constants. In [8] we show how this can be done
algorithmically by maintaining lower bounds on pivots during a factorization of a
certain Vandermonde matrix. We also show that the size of the pivots is related to
the size of the Lebesgue constant by using the concept of Λ–poisedness.

Lagrange polynomials and Lebesgue constants can be defined for overdetermined
and underdetermined interpolation [4]. Approximation theory definitions in their
original form are ill-suited for an optimization audience. We simplify these definitions
and also derive a convenient interpretation via the Λ–poisedness condition, where Λ
is the bound of the maximum ℓ2-norm of the values of the Lagrange polynomials. We
use this interpretation to connect Lebesgue constants (or their modified version, Λ) of
Y for regression, underdetermined interpolation, and full interpolation. Specifically,
given an overdetermined interpolation problem one can select a subset of sample
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points that defines a unique interpolating polynomial of a given degree. For exam-
ple, one can select the subset which has the best Lebesgue constant. We show how
this Lebesgue constant relates to the Lebesgue constant of the whole sample set with
respect to regression. We also discuss (and show with the help of some basic com-
putational examples) that regression based on the whole sample set often provides
a more accurate model than the interpolation model based on the subset with the
smallest Lebesgue constant. To fully show the benefit of regression models, however,
a separate computational study would be required.

In the case of underdetermined interpolation one might restrict the space of poly-
nomials to a subspace of an appropriate dimension and construct a uniquely defined
interpolating polynomial in that subspace. The subspace can be selected to minimize
the appropriate Lebesgue constant. We compare such interpolation to the minimum-
norm solution for the underdetermined problem. We show how the Lebesgue constant
with respect to interpolation in the ‘best’ subspace relates to the Lebesgue constant
with respect to minimum-norm interpolation. As in the case of regression, we argue,
and support by simple computational evidence, that minimum-norm interpolation
is often better than other alternatives. The minimum-norm interpolation case does
not require additional computational evidence, however, since it has shown its good
performance in, for example, [1] and [17].

Finally, as in [8] we connect Λ–poisedness, and thus, the Lebesgue constants, to
the size of the pivots of the appropriate Vandermonde matrices to which the algorithms
of [8] can be applied. We also provide the Taylor error bounds in a simple form for
the case of overdetermined interpolation that can be readily used in the convergence
theory of optimization algorithms (see, for example, [10]).

The paper is organized as follows. In Section 2, we present the building blocks
for polynomial regression, introducing Lagrange polynomials, the Lebesgue constant
and Λ–poisedness and showing all the corresponding algebraic and geometrical prop-
erties, analogously to the case of fully determined interpolation. The error bounds
for regression are stated in Section 3. A few issues concerning the usefulness of re-
gression models and their relation to interpolation models are addressed in Section 4.
Section 5 covers the underdetermined case. We end the paper in Section 6 stating
some concluding remarks and the perspectives that are opened by our results.

1.1. Basic facts and notation. Here we introduce some notation and also state
some facts from linear algebra that will be used in the paper.

By ‖·‖k, with k ≥ 1, we denote the standard ℓk vector norm or the corresponding
matrix norm. By ‖·‖ (without the subscript) we denote the ℓ2-norm. We use B(∆) =
{x ∈ IRm : ‖x‖ ≤ ∆} to denote the closed ball in IRm of radius ∆ > 0 centered at the
origin (where m is inferred from the particular context). We use several properties of
norms. In particular, given a m× n matrix A, we use the facts

‖A‖2 ≤ m
1

2 ‖A‖∞, ‖A‖F ≤ n
1

2 ‖A‖2, ‖A‖2 = ‖A⊤‖2.

We will use the standard ‘big-O’ notation written as O(·) to say, for instance,
that if for two scalar or vector functions β(x) and α(x) one has β(x) = O(α(x)) then
there exists a constant C > 0 such that ‖β(x)‖ ≤ C‖α(x)‖ for all x in its domain.

By the natural basis of the space of polynomials of degree at most d in IRn, we
will mean the following basis of monomial functions

{1, x1, x2, . . . , xn, x
2
1/2, x1x2, . . . , x

d−1
n−1xn/(d− 1)!, xdn/d!}.
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Given a matrix M ∈ IRℓ×k, such that ℓ > k, we will use M = UΣV ⊤ to denote the
reduced singular value decomposition, where Σ is a diagonal k × k matrix formed by
the singular values. The columns of the matrix U ∈ IRℓ×k are orthonormal and form
the left singular vectors of M . The matrix V ∈ IRk×k is orthogonal and its columns
are the right singular vectors of M . If M has full column rank then Σ is invertible.
Analogously, if k > ℓ then the reduced singular value decomposition M = UΣV ⊤ is
such that Σ is a diagonal ℓ × ℓ matrix, U is an ℓ × ℓ orthogonal matrix, and V is a
k × ℓ matrix with orthonormal columns.

We present here a lemma that will be useful later in the paper.

Lemma 1.1. Consider a set Z = {z1, . . . , zm} ⊂ IRn, with m > n. Let I ⊂
{1, . . . ,m} be a subset of indices with |I| = n. It is possible to choose I so that for
any x ∈ IRn such that

x =

m
∑

i=1

λiz
i, |λi| ≤ Λ,

for some Λ > 0, we can write

x =
∑

i∈I

γiz
i, |γi| ≤ (m− n+ 1)Λ.

Proof. Consider an n × n matrix A whose columns are the vectors zi, i ∈ I.
Among all possible sets I, choose the one that corresponds to the matrix A with
the largest absolute value of the determinant. We will show that this I satisfies the
statement of the lemma.

Let Ī = {1, . . . ,m}\I and let ZĪ be the subset of Z containing those points whose
indices are in Ī. First, we will show that for any zj , j ∈ Ī,

zj =
∑

i∈I

αji z
i, |αji | ≤ 1.

By Cramer’s rule αji = det(Azj ,i)/det(A), where Azj ,i corresponds to the matrix A
with its i-th column replaced by the vector zj . Since by the selection of I, |det(A)| ≥
|det(Azj ,i)| for any j ∈ Ī, |αji | ≤ 1.

Now consider any x such that

x =

m
∑

i=1

λiz
i, |λi| ≤ Λ.

We have

x =
∑

i∈I

λiz
i +

∑

j∈Ī

λj(
∑

i∈I

αji z
i) =

∑

i∈I

γiz
i, |γi| ≤ (m− n+ 1)Λ, i ∈ I.

2. Polynomial least-squares regression and poisedness. Let us consider P,
the space of polynomials of degree ≤ d in IRn. Let q1 = q + 1 be the dimension of
this space (e.g., for d = 1, q1 = n + 1 and for d = 2, q1 = (n + 1)(n + 2)/2)
and let φ = {φ0(x), φ1(x), . . . , φq(x)} be a basis for P. This means that φ is a
set of q1 polynomials of degree ≤ d that span P. Given a polynomial basis φ, let
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φ(x) = [φ0(x), φ1(x), . . . , φq(x)]
⊤ be a vector in IRq1 whose entries are the values of

the elements of the polynomial basis at x (one can view φ(x) as a mapping from IRn

to IRq1).
Assume we are given a set Y = {y0, y1, . . . , yp} ⊂ IRn of p1 = p+1 sample points.

Let m(x) denote the polynomial of degree ≤ d that approximates a given function
f(x) at the points in Y via least-squares regression. We assume that the number of
points satisfies p1 > q1 (in other words that p > q). Since φ is a basis in P, m(x) =
∑q
k=0 αkφk(x), where the αk’s are the unknown coefficients. By determining the

coefficients α = [α0, . . . , αq]
⊤ we determine the polynomial m(x). The coefficients α

can be determined from the least-squares regression conditions

m(yi) =

q
∑

k=0

αkφk(y
i)
ℓ.s.
= f(yi), i = 0, . . . , p.

This problem is a linear least-squares problem in terms of α. The above system has
a unique solution in the least-squares sense if the matrix of the system

M(φ, Y ) =











φ0(y
0) φ1(y

0) · · · φq(y
0)

φ0(y
1) φ1(y

1) · · · φq(y
1)

...
...

...
...

φ0(y
p) φ1(y

p) · · · φq(y
p)











(2.1)

has full column rank.
It is easy to see that if M(φ, Y ) is square and nonsingular, then the above problem

becomes an interpolation problem. In that case, the set Y is said to be poised (or
d-unisolvent [4]). Just as for interpolation, if M(φ, Y ) has full column rank for some
choice of φ then this is the case for any basis of P. Hence, we will call a set Y poised
with respect to polynomial least-squares regression if the appropriate M(φ, Y ) has
full column rank for some choice of the basis φ.

We now show that in the full column rank case the least-squares regression poly-
nomial does not depend on the choice of the basis φ. Since the set is poised, it is
obvious that the least-squares regression polynomial m(x) exists and is unique for
a given choice of basis. Consider now two different bases ψ(x) and φ(x) related by
ψ(x) = P⊤φ(x), where P is q1 × q1 and nonsingular. Then, M(ψ, Y ) = M(φ, Y )P .
Let αφ (resp. αψ) be the vector of coefficients of the least-squares regression poly-
nomial for the basis φ(x) (resp. ψ(x)). Since αφ is the least-squares solution to the
system M(φ, Y )αφ = fY then

αφ = [M(φ, Y )⊤M(φ, Y )]−1M(φ, Y )⊤fY

= [P−⊤M(ψ, Y )⊤M(ψ, Y )P−1]−1P−⊤M(ψ, Y )⊤fY

= P [M(ψ, Y )⊤M(ψ, Y )]−1M(ψ, Y )⊤fY = Pαψ.

The last equality follows from the fact that αψ is the least-squares solution to the
system M(ψ, Y )αψ = fY . Then, for any x,

α⊤
ψψ(x) = α⊤

ψP
⊤φ(x) = α⊤

φ φ(x).

We have shown that if Y is poised, then the least-squares regression polynomial is
unique and independent of the choice of φ.
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The condition of poisedness and the existence of the regression polynomial is not
sufficient in practical algorithms or in the derivation of error bounds. One needs a
condition of ‘sufficient’ poisedness, which we will refer to as ‘well poisedness’, charac-
terized by a constant. This constant should be an indicator of how well the regression
polynomial approximates the true function. In [8], we considered such constants for
the case of polynomial interpolation. In this paper, we will extend the concepts and
the results to the case of least-squares regression.

Since the column linear independence of M(φ, Y ) reflects the poisedness of the
set Y , it is natural to consider some condition number related toM(φ, Y ) as a constant
characterizing the well poisedness of Y . However, the singular values of M(φ, Y )
depend on the choice of φ and, moreover, for any given poised interpolation set Y ,
one can choose the basis φ so that the ratio of the largest over the smallest singular
values of M(φ, Y ) can equal anything between 1 and ∞.

The most commonly used measure of poisedness in the multivariate polynomial
interpolation literature is the Lebesgue constant and is related to the basis of Lagrange
polynomials. We begin by briefly describing the concept and its use in polynomial
interpolation.

Definition 2.1. Given a set of interpolation points Y = {0, y1, . . . , yp}, with
p = q, where q + 1 is the dimension of the space of polynomials of degree ≤ d, a
basis of p1 = p+ 1 polynomials Lj(x), j = 0, . . . , p, of degree ≤ d, is called a basis of
Lagrange polynomials if

Lj(yi) = δij =

{

1 if i = j,
0 if i 6= j.

For any poised set Y there exists a unique basis of Lagrange polynomials. A
measure of poisedness of Y is given by an upper bound on the absolute value of the
Lagrange polynomials in the region of interest. In [4, Theorem 1], it is shown that for
any x in the convex hull of Y

‖Dkm(x) −Dkf(x)‖ ≤ 1

(d+ 1)!
G

p
∑

i=0

‖yi − x‖d+1‖DkLi(x)‖,(2.2)

where Dk denotes the k-th derivative of a function and G is an upper bound on
Dd+1f(x). This inequality is an equivalent of the Taylor bound for multivariate
polynomial interpolation. The Lebesgue constant of Y is defined as

ΛY = max
x∈BY (∆)

p
∑

i=0

|Li(x)|,

where BY (∆) is, for instance, a ball of radius ∆ containing Y . The Taylor bound for
function value approximation can be simplified as (k = 0):

|m(x) − f(x)| ≤ 1

(d+ 1)!
GΛY ∆d+1.(2.3)

See [15] for a simple derivation of this bound. For further discussion see also [8].
We will present the extension of the definition of Lagrange polynomials to the

cases of polynomial least-squares regression (in this section) and to the case of mini-
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mum-norm underdetermined interpolation (in Section 5). As we have already men-
tioned in the introduction, generalized definitions of Lagrange polynomials exist and
are used in approximation theory literature (see [4] and references therein for the
multivariate case and [13] for the univariate case). However, these definitions involve
concepts and structures which are used primarily in approximation theory and it is
nontrivial to adapt these definitions to the optimization context. Here we present def-
initions in simple terms and provide straightforward proofs that support the validity
of these extended definitions.

One of the most notable properties of Lagrange polynomials in the case of in-
terpolation is that the interpolating polynomial m(x) has a simple representation in
terms of them, given by

m(x) =

p
∑

i=0

f(yi)Li(x),

where f(yi), i = 0, . . . , p, are the values that are interpolated. We will see that the
same is true in the regression case.

2.1. Lagrange polynomials for regression. Let Y = {y0, y1, . . . , yp} be the
interpolation set, and φ = {φ0(x), φ1(x), . . . , φq(x)} be the basis of polynomials of a
given degree. We are considering the case where p > q (i.e., more points than basis
polynomials).

Definition 2.2. Given a set of sample points Y = {y0, y1, . . . , yp}, with p > q,
where q + 1 is the dimension of the space of polynomials of degree ≤ d, a set of
p1 = p+ 1 polynomials Lj(x), j = 0, . . . , p, of degree ≤ d, is called a set of Lagrange
regression polynomials if

Lj(yi) ℓ.s.
= δij =

{

1 if i = j,
0 if i 6= j.

Clearly these polynomials are no longer linearly independent, since there are
too many of them. However, as we show below, many other properties of Lagrange
interpolation polynomials are preserved.

Assume that the set Y is poised. We can write the j-th Lagrange polynomial as

Lj(x) = φ(x)⊤Θj
φ,

where Θj
φ is a vector with q1 components. Consequently the Lagrange interpolation

conditions (in the least-squares sense) can be written as

M(φ, Y )Θj
φ
ℓ.s.
= ej+1, j = 0, . . . , p,

where ej+1 is the (j + 1)-th column of the identity matrix of order p1. In matrix
notation, we have that

M(φ, Y )Θφ
ℓ.s.
= I,

where Θ is the matrix whose columns are Θj
φ, j = 0, . . . , p. This is essentially an

immediate consequence of Definition 2.2.
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The set of Lagrange regression polynomials exists and is unique if the matrix
M(φ, Y ) has full column rank. As we have shown above for any least-squares regres-
sion polynomial when Y is poised, the polynomials Lj(x), j = 0, . . . , p, do not depend
on the choice of φ.

Let M(φ, Y ) = UφΣφV
⊤
φ be the reduced singular value decomposition, defined in

Section 1.1. We omit the dependence on Y , since we keep Y fixed in the discussion
below. Thus α = VφΣ

−1
φ U⊤

φ or αj = VφΣ
−1
φ U⊤

φ ej+1, for j = 0, . . . , p.
We will now show that the regression polynomial m(x) can also be written as a

linear combination of the Lagrange polynomials.

Lemma 2.3. Let Y = {y0, y1, . . . , yp} be a poised set of sample points for the
function f(x) and let m(x) be a polynomial of degree ≤ d that approximates f(x) via
least-squares regression on the points in Y . Let {Lj(x), j = 0, . . . , p} be the set of
Lagrange regression polynomials of degree ≤ d given by Definition 2.2. Then

m(x) =

p
∑

i=0

f(yi)Li(x).

Proof. It is true that m(x) can always be expressed as

m(x) =

p
∑

i=0

γiLi(x).

Since L has more elements than a basis, the solution γ is not unique. But all we need
to show is that γi = f(yi), i = 0, . . . , p, is one such solution.

We also know that VφΣ
−1
φ U⊤

φ fY is the vector of coefficients that expresses m(x)
in terms of the basis φ. Thus,

m(x) =
(

VφΣ
−1
φ U⊤

φ fY

)⊤

φ(x) = f⊤Y

(

VφΣ
−1
φ U⊤

φ

)⊤

φ(x) = f⊤Y L(x)

and we have proved what we wanted.

Remark 2.1. It is interesting to note that the extension of Lagrange polynomials
does not apply to the case of ℓ1-norm and ℓ∞-norm regressions. The reason why the
properties of the Lagrange polynomials extend to the case of least-squares regression is
because any least-squares regression polynomial is a linear function of the right hand
side fY . This situation is no longer the case when ℓ1-norm and ℓ∞-norm regressions
are considered.

In Section 3 an error bound similar to (2.2) is extended to the regression case.
The Lebesgue constant maxx∈BY (∆)

∑p
i=0 |Li(x)|, where Li(x), i = 0, . . . , p, are the

Lagrange polynomials defined for regression, is the constant that controls the quality
of the error bound. To be able to use regression models in a derivative-free opti-
mization algorithm we need to be able to control the Lebesgue constant of the sample
set Y . As in [8] we find the following interpretation of Lagrange regression polynomials
convenient for understanding the behavior of the Lebesgue constant.

2.2. Geometric interpretations of Lagrange regression polynomials. Gi-
ven a poised set Y = {y0, y1, . . . , yp} ⊂ B(1) ⊂ IRn, with p > q and x ∈ B(1), we can
express the vector φ(x) in terms of the vectors φ(yi), i = 0, . . . , p, as

p
∑

i=0

λi(x)φ(yi) = φ(x),(2.4)
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or, equivalently,

M(φ, Y )⊤λ(x) = φ(x), where λ(x) = [λ0(x), . . . , λp(x)]
⊤.

This system is a simple extension of a similar system introduced in [8] for the
case of polynomial interpolation. Unlike the system in [8], this new system is under-
determined, hence it has multiple solutions. In order to establish uniqueness, we will
consider the minimum ℓ2-norm solution.

Lemma 2.4. Given a poised set Y , the functions λi(x), i = 0, . . . , p, defined as the
minimum ℓ2-norm solution of (2.4), form the set of Lagrange regression polynomials
for Y given by Definition 2.2.

Proof. We want to show that L(x) = λ(x), where λ(x) is the minimum ℓ2-norm
solution to (2.4). We know that λ(x) satisfies

M(φ, Y )⊤λ(x) = φ(x),

where M(φ, Y ) is defined by (2.1), and, in particular, that λ(x) is the minimum ℓ2-
norm solution to this system. Hence, given the reduced singular value decomposition
of M(φ, Y )⊤ = VφΣφU

⊤
φ , we have

λ(x) = UφΣ
−1
φ V ⊤

φ φ(x) = L(x).

Note that we have proved this result independently of the choice of φ.

A simple corollary of this result is that λ(x) = [λ0(x), . . . , λp(x)]
⊤ does not de-

pend on the choice of φ. In [8], the well-poisedness condition for interpolation was
introduced via a bound on λ(x) and was referred to as Λ–poisedness.

Definition 2.5. Let Λ > 0 be given. Let φ = {φ0(x), φ1(x), . . . , φp(x)} be a
basis in P.

A set Y = {y0, y1, . . . , yp}, with p = q, is said to be Λ–poised in B(1) (in an
interpolation sense) if and only if for any x ∈ B(1) there exists a λ(x) ∈ IRp1 such
that

p
∑

i=0

λi(x)φ(yi) = φ(x) with ‖λ(x)‖ ≤ Λ.

Clearly this definition is equivalent to having all Lagrange polynomials bounded
by Λ in B(1) in the ℓ2-norm. We now introduce the analogous definition for a well-
poised regression set.

Definition 2.6. Let Λ > 0 be given. Let φ = {φ0(x), φ1(x), . . . , φq(x)} be a basis
in P.

A set Y = {y0, y1, . . . , yp}, with p > q, is said to be Λ–poised in B(1) in a
regression sense if and only if for any x ∈ B(1) there exists a λ(x) ∈ IRp1 such that

p
∑

i=0

λi(x)φ(yi) = φ(x) with ‖λ(x)‖ ≤ Λ.
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Note that the difference between the two definitions is that, in the regression
case, λ(x) may not be unique for every x. In fact, we are interested in the minimum-
norm solution for λ(x) and the bound on its norm. It is sufficient to say that ‖λ(x)‖ ≤
Λ for some solution λ(x), because then, clearly, the same is true for the minimum-
norm solution.

One can relate Λ–poisedness in the regression sense to Λ–poisedness in the inter-
polation sense, as it is shown in the next theorem.

Theorem 2.7. Given a set Y = {y0, y1, . . . , yp}, with p > q, which is Λ–poised in
the regression sense, there is a subset of q1 = q+1 points in Y which is (p−q+1)

√
q1Λ–

poised in the interpolation sense.

Conversely, if any subset of q1 points in Y is Λ–poised in the interpolation sense,
then the set Y = {y0, y1, . . . , yp}, is Λ–poised in the regression sense.

Proof. The first implication follows from the Definitions 2.5 and 2.6 for Λ–
poisedness in the interpolation and regression senses and from Lemma 1.1, with
m = p1 and n = q1. The second implication is immediate from the same defini-
tions.

Notice that, by definition, Λ is an upper bound on poisedness; that is, if Y is
Λ̄–poised, then it is also Λ–poised, for all Λ ≥ Λ̄, in other words, Y is at least Λ̄–
poised. Since Λ is an upper bound on the ℓ2-norm of the vector of values of Lagrange
polynomials and the Lebesgue constant is the maximum ℓ1-norm of that vector, then
clearly one can express the upper bound on the Lebesgue constant through Λ and vice
versa. We will use the Lebesgue constant and Λ to mean the same thing, whenever
possible, even though usually they do not have the same value.

Notice also that φ(x) is in the definition of Λ–poisedness, yet, clearly, Λ–poisedness
does not depend on the choice of φ(x), since the λi(x) are simply the Lagrange
polynomials. One can view it as a definition defect, but we find it useful, since it
enables us to substitute any choice of φ(x) in (2.4) and use this expression together
with the properties of the chosen φ(x) and the bound on λ(x). This is precisely
what we do in the next subsection to show the relation between Λ–poisedness and the
condition number of M(φ, Y ) when φ(x) is the natural basis.

2.3. Λ–poisedness and the condition number of M(φ, Y ). In [8] we pro-
vide algorithms for checking and improving the poisedness (or Lebesgue) constant of
a sample set. This is done by factorizing the matrix M(φ, Y ) with φ being the nat-
ural basis, and bounding the absolute value of the pivots away from zero during the
process. The same algorithm can be applied in the regression case with the exception
that the matrix that is factorized has more rows than columns. We will now show
that the condition number of M(φ, Y ), for the natural basis φ is proportional to the
Lebesgue constant of Y . Hence any algorithm that maintains and improves this con-
dition number will also maintain and decrease Λ–poisedness of Y . In particular the
algorithms in [8] can serve that purpose. However, other algorithms that maintain
the condition number of M(φ, Y ) by looking at all of its rows might be better suited
for the use of regression models.

For the remainder of the paper we will assume that the smallest enclosing ball
containing Y is centered at the origin. This assumption can be made without loss of
generality, since it can always be satisfied by a shift of coordinates. Furthermore, we
will consider the sample set Y scaled in such a way that the smallest ball enclosing Y
has radius 1. Recall that we denote such a ball by B(1). Hence, we assume that one
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of the elements of Y has norm 1. At the end of this subsection we will show how to
incorporate the scaling into our results.

We will now show how Λ–poisedness in the regression sense relates to the condition
number of the following matrix

M̄ =











1 y
0
1 · · · y

0
n

1
2
(y0

1)2 y
0
1y

0
2 · · ·

1
(d−1)!

(y0
n−1)

d−1
y
0
n

1
d!

(y0
n)d

1 y
1
1 · · · y

1
n

1
2
(y1

1)2 y
1
1y

1
2 · · ·

1
(d−1)!

(y1
n−1)

d−1
y
1
n

1
d!

(y1
n)d

...
...

...
...

...
...

...

1 y
p
1 · · · y

p
n

1
2
(yp

1)2 y
p
1y

p
2 · · ·

1
(d−1)!

(yp
n−1)

d−1
y

p
n

1
d!

(yp
n)d











.(2.5)

This is the same as M̄ = M(φ̄, Y ), where

φ̄ =
{

1, x1, x2, . . . , xn, x
2
1/2, x1x2, . . . , x

d−1
n−1xn/(d− 1)!, xdn/d!

}

(2.6)

is what we are referring to as the natural basis of monomials. Substituting φ̄ in the
definition of Λ–poisedness we can write

M̄⊤λ(x) = φ̄(x) with ‖λ(x)‖ ≤ Λ.(2.7)

Also, since x ∈ B(1) and since at least one of the yi’s has norm 1 (recall that B(1)
is the smallest enclosing ball centered at the origin), then the norm of this matrix is
always bounded by

1 ≤ ‖M̄‖ ≤ p1
1

2 q1.(2.8)

Let us consider the reduced SVD of M̄ = UΣV ⊤, and let σ1 (resp. σq1) denote the
absolute value of the largest (resp. smallest) singular value of M̄ . We omit the depen-
dence of U , Σ, and V on Y for simplicity of the presentation. Then ‖M̄‖ = ‖Σ‖ = σ1

and ‖Σ−1‖ = 1/σq1 . The condition number of M̄ is denoted by κ(M̄) = σ1/σq1 . To
bound κ(M̄) in terms of Λ it is, then, sufficient to bound ‖Σ−1‖. Conversely, to bound
Λ is terms of κ(M̄) it is sufficient to bound it in terms of ‖Σ−1‖.

In [8] we showed that the well-poisedness constant Λ from Definition 2.5 and the
condition number of M̄ (which is a square matrix in the case of interpolation) differ
by a constant factor. The following theorem is an analog of Theorem 3.3 in [8].

Theorem 2.8. If Σ is nonsingular and ‖Σ−1‖ ≤ Λ, then the set Y is
√
q1Λ–

poised (according to Definition 2.6) in the unit ball B(1) centered at 0. Conversely,
if the set Y is Λ–poised, according to Definition 2.6, in the unit ball B(1) centered at
0, then Σ is nonsingular and satisfies

‖Σ−1‖ ≤ θΛ,(2.9)

where θ > 0 is dependent on n and d but independent of Y and Λ.

Proof. The proof is very similar to the proof in [8, Theorem 3.3], but there are a
few extra steps. We include the proof for the sake of completeness.

If Σ is nonsingular and ‖Σ−1‖ ≤ Λ then the minimum-norm solution satisfies

‖λ(x)‖ ≤ ‖UΣ−1V ⊤‖‖φ(x)‖ ≤ q
1

2

1 ‖Σ−1‖‖φ(x)‖∞ ≤ q
1

2

1 Λ

(we used the facts that ‖φ(x)‖ ≤ √
q1‖φ(x)‖∞ and maxx∈B(1) ‖φ(x)‖∞ ≤ 1).
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Proving the other relation is more complicated. First let us show by contradiction
that the matrix Σ is nonsingular. Let us assume it is singular. By the definition of
Λ–poisedness, for any x ∈ B(1), φ̄(x) lies in the range space of M̄⊤. This means that
there exists a vector v 6= 0 in the null space of M̄ such that for any x ∈ B(1) we get
φ̄(x)⊤v = 0. Hence, φ̄(x)⊤v is a polynomial in x which is identically zero on a unit
ball, which implies that all coefficients of this polynomial are zero, i.e., v = 0. We
have arrived at a contradiction.

Now we want to show that there exists a constant θ > 0, independent of Y and
of Λ, such that ‖Σ−1‖ ≤ θΛ. From the definition of the matrix norm, and from the
fact that V has orthonormal columns

‖Σ−1‖ = ‖Σ−1V ⊤‖ = max
‖v‖=1

‖Σ−1V ⊤v‖,(2.10)

and we can consider a vector v̄ at which the maximum is attained

‖Σ−1V ⊤‖ = ‖Σ−1V ⊤v̄‖, ‖v̄‖ = 1.(2.11)

Let us assume first that there exists an x ∈ B(1) such that φ̄(x) = v̄. Then from
the fact that Y is Λ–poised we have that

‖Σ−1V ⊤v̄‖ = ‖UΣ−1V ⊤φ̄(x)‖ ≤ Λ,

and from (2.10) and (2.11) the statement of the theorem holds with θ = 1.
Notice that v̄ does not necessarily belong to the image of φ̄(x), which means

that there might not be any x ∈ B(1) such that φ̄(x) = v̄, and hence we have that
‖Σ−1V ⊤v̄‖ 6= ‖Σ−1V ⊤φ̄(x)‖. However, we will show that there exists a constant
θ > 0 such that for any v̄ which satisfies (2.11) there exists an x ∈ B(1), such that

‖Σ−1V ⊤v̄‖
‖Σ−1V ⊤φ̄(x)‖ ≤ θ.(2.12)

Once we have shown that such constant θ exists the result of the lemma follows from
the definition of v̄.

To show that (2.12) holds, we first show that there exists γ > 0 such that for
any v̄ with ‖v̄‖ = 1, there exists an x̄ ∈ B(1) such that |v̄⊤φ̄(x̄)| ≥ γ. Consider

ψ(v) = max
x∈B(1)

|v⊤φ̄(x)|.

It is easy to show that ψ(v) is a norm in the space of vectors v. Since the ratio of
any two norms in finite dimensional spaces can be uniformly bounded by a constant,
there exists a (maximal) γ > 0 such that ψ(v̄) ≥ γ‖v̄‖ = γ. Hence, there exists an
x̄ ∈ B(1) such that |v̄⊤φ̄(x̄)| ≥ γ.

Let v̄⊥ be the orthogonal projection of φ̄(x̄) onto the subspace orthogonal to v̄.
Now, notice that from the definition (2.11) of v̄, it follows that v̄ is the right singular
vector corresponding to the largest singular value of Σ−1V ⊤, i.e., v̄ is equal to one
of the columns of V . Then Σ−1V ⊤v̄ and Σ−1V ⊤v⊥ are orthogonal vectors (since
Σ−1V ⊤v̄ is a multiple of a column of an identity matrix and Σ−1V ⊤v̄⊥ is a vector
orthogonal to that column of the identity). Since ‖v̄‖ = 1, φ̄(x̄) = v̄⊥ + (v̄⊤φ̄(x̄))v̄.
Also, from the orthogonality of Σ−1V ⊤v̄⊥ and Σ−1V ⊤v̄

‖Σ−1V ⊤φ̄(x̄)‖ = ‖Σ−1V ⊤v̄⊥‖ + |v̄⊤φ̄(x̄)|‖Σ−1V ⊤v̄‖.
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Hence ‖Σ−1V ⊤φ̄(x̄)‖ ≥ |v̄⊤φ̄(x̄)| ‖Σ−1V ⊤v̄‖. It follows from |v̄⊤φ̄(x̄)| ≥ γ that

‖Σ−1V ⊤φ̄(x̄)‖ ≥ γ‖Σ−1V ⊤v̄‖,

Assigning θ = 1/γ shows (2.12), concluding the proof of the bound on the norm
of Σ−1.

The constant θ can be estimated for specific values of d. As we have pointed out
in [8], we have θ ≤ 1 when d = 1. For d = 2 the following lemma holds.

Lemma 2.9. Let v̄⊤φ̄(x) be a quadratic polynomial with φ̄(x) defined by (2.6) and
‖v̄‖∞ = 1, and let B(1) be a (closed) ball of radius 1 centered at the origin. Then

max
x∈B(1)

|v̄⊤φ̄(x)| ≥ 1

4
.

For the proof of the lemma and further discussion see [8, Lemma 3.4].
We can replace the constant θ of Theorem 2.8 by an upper bound, which is easily

derived for the quadratic case. Recall that θ = 1/γ, where

γ = min
‖v̄‖=1

max
x∈B(1)

|v̄⊤φ̄(x)|.

Given any v̄ such that ‖v̄‖ = 1, we can scale v̄ by at most
√
q1 to v̂ = αv̄, 0 < α ≤ √

q1,
such that ‖v̂‖∞ = 1. Then

γ = min
‖v̄‖=1

max
x∈B(1)

|v̄⊤φ̄(x)| ≥ 1

q1
1

2

min
‖v̂‖∞=1

max
x∈B(1)

|v̂⊤φ̄(x)| ≥ 1

4q1
1

2

.

The last inequality is due to Lemma 2.9 applied to the polynomials of the form v̂⊤φ̄(x).
Hence we have

θ ≤ 4q
1

2

1 .(2.13)

Specifying the bound on θ for polynomials of degree higher than two is also possi-
ble. This bound will grow rapidly (most likely, exponentially) with the degree of the
polynomial and its usefulness for higher degree interpolation and regression is un-
clear. But in our context we are motivated by optimization frameworks that rarely
use polynomials of degree higher than 2.

We will now consider the set Y with arbitrary scaling. An attractive property of
Lagrange polynomials is that they remain invariant under the scaling of the set Y . A
simple proof can be derived from our interpretation of Lagrange polynomials given in
the definition of Λ–poisedness.

Lemma 2.10. Let Y = {y0, y1, . . . , yp} be an interpolation set and {λi(x),
i = 0, . . . , p} be the set of Lagrange polynomials associated with Y . Then {λi(∆x), i =
0, . . . , p} is the set of Lagrange polynomials associated with Ŷ , where
Ŷ = {∆ y0,∆ y1, . . . ,∆ yp−1} for any ∆ > 0.

Proof. From Lemma 2.4 we know that λi(x), i = 0, . . . , p, satisfy

p
∑

i=0

φ̄(yi)λi(x) = φ̄(x),
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where φ̄ is the basis of monomials. If we scale each yi and x by ∆, this corresponds
to scaling the above equations by different scalars (1, ∆, ∆2, etc.). Clearly, λ(∆x)
satisfies the scaled system of equations. That implies, again due to Lemma 2.4, that
λi(∆x), i = 0, . . . , p, is the set of Lagrange polynomials associated with the scaled
set.

On the contrary, the norm of the inverse of M̄ and therefore the condition number
σ(M̄) depends on the scaling of the interpolation set. When we multiply the set Y
by ∆, the columns of M̄ get multiplied by different scalars (1, ∆, ∆2, etc.). So, the
scaled matrix, say M̂ , is such that ‖M̂−1‖, κ(M̂) → ∞ when ∆ → 0. To eliminate
this effect we will scale a given set Y ⊂ B(∆) by 1/∆ to obtain Ȳ ⊂ B(1). The
condition number of the corresponding matrix M̄ is then suitable as a measure of well
poisedness of Y , since it is within a constant factor of the well-poisedness constant Λ
(which is scaling independent), as we have shown in Theorem 2.8.

In [8] two examples of algorithms that guarantee Λ–poisedness of the interpolation
sets are proposed. Each algorithm either verifies that the current interpolation set
is Λ–poised for some given value of Λ, or if it is not, replaces the ‘bad’ points with
new points to maintain a Λ–poised interpolation set. It is shown that as long as Λ
is reasonably large, this procedure will always be successful. The same algorithms
can be applied to the regression case, since as we will point out in the next section,
Λ–poisedness of a set Y of q1 points implies Λ–poisedness, in the regression sense, of
any larger superset of Y .

It would be interesting to investigate algorithms that target the maintenance of
the regression set directly, rather than maintaining a good subset that is well poised
in the interpolation sense. The properties of Lagrange polynomials for regression that
we have described above provide a good foundation for such a schemes. A formal,
theoretically supported method for interpolation sets based on Lagrange polynomials
is described in [9] and can be extended to the regression case.

3. Error bounds for least-squares regression. In this section we present
Taylor-like bounds for linear and quadratic least-squares regression in terms of the
poisedness constant Λ. These bounds are extensions of the bounds on polynomial
interpolation in [8]. We will present the bounds here without proofs, since they are
straightforward adaptations of the proofs in [8].

As in [8], we will make an additional assumption, for the remainder of the section,
that y0 = 0 — that is, one of the interpolation points is at the center of the region
of interest, which, by an earlier assumption, is a ball of radius ∆ around the origin.
This assumption is very natural in a derivative-free optimization setting, since the
center of the region of interest is typically the current best iterate, which is usually
an interpolation point. (Note that if this assumption is not satisfied, it can always
be made so by shifting the coordinates so that y0 = 0. Since all the points of Y are
in B(∆), then, after the shift, the points of the shifted interpolation set are all in
B(2∆).)

We will also assume that ∆ has the smallest possible value that satisfies Y ⊂ B(∆)
and y0 = 0. Under the assumption y0 = 0, the matrix M̄ can be written now as

M̄ =











1 0 · · · 0 0 0 · · · 0 0
1 y1

1 · · · y1
n

1
2 (y1

1)2 y1
1y

1
2 · · · 1

(d−1)! (y
1
n−1)

d−1y1
n

1
d! (y

1
n)
d

...
...

...
...

...
...

...
1 yp1 · · · ypn

1
2 (yp1)2 yp1y

p
2 · · · 1

(d−1)! (y
p
n−1)

d−1ypn
1
d! (y

p
n)
d











.(3.1)
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We first consider regression of a function f(x) by a linear polynomial m(x):

m(x) = c+ g⊤x = c+

n
∑

k=1

gkxk.(3.2)

The sample set satisfies Y = {0, y1, . . . , yp} ⊂ B(∆), where B(∆) is a ball of radius ∆
centered at the origin.

Theorem 3.1. Let Y = {0, y1, . . . , yp} be a Λ–poised set of p + 1 regression
points (p > n) contained in a (closed) ball B(∆) centered at 0. Assume that f is
continuously differentiable in an open domain Ω containing B(∆) and that ∇f is
Lipschitz continuous in Ω with constant γL > 0.

Then, for all points x in B(∆), we have that
• the error between the gradient of the linear regression model and the gradient

of the function satisfies

‖eg(x)‖ ≤ (5p
1

2

1 γLΛ/2) ∆,(3.3)

• the error between the linear regression model and the function satisfies

|ef (x)| ≤ (5p
1

2

1 γLΛ/2 + γL/2) ∆2.

In the quadratic case we assume that we have a poised set Y = {0, y1, . . . , yp} of
p1 > (n+ 1)(n+ 2)/2 sample points (p1 = p+ 1) in a ball B(∆) of radius ∆ centered
at the origin. In addition we will assume that f is twice continuously differentiable
in an open domain Ω containing this ball and that ∇2f is Lipschitz continuous in Ω
with constant γQ > 0.

It is possible to build the quadratic regression model

m(x) = c+ g⊤x+
1

2
x⊤Hx = c+

∑

1≤k≤n

gkxk +
1

2

∑

1≤k,ℓ≤n

hkℓxkxℓ,(3.4)

where H is a symmetric matrix of order n.
As one might expect, the error estimates in the quadratic case are linear in ∆ for

the second derivatives, quadratic in ∆ for the first derivatives, and cubic in ∆ for the
function values, where ∆ is the radius of the smallest ball containing Y .

Theorem 3.2. Let Y = {0, y1, . . . , yp}, with p1 > (n + 1)(n + 2)/2 and p1 =
p + 1, be a Λ–poised set of interpolation points contained in a (closed) ball B(∆)
centered at 0. Assume that f is twice continuously differentiable in an open domain
Ω containing B(∆) and that ∇2f is Lipschitz continuous in Ω with constant γQ > 0.

Then, for all points x in B(∆), we have that
• the error between the Hessian of the quadratic regression model and the Hes-

sian of the function satisfies

‖EH(x)‖ ≤ (αHQ
√
p1q1γQΛ) ∆,

• the error between the gradient of the quadratic regression model and the gra-
dient of the function satisfies

‖eg(x)‖ ≤ (αgQ
√
p1q1γQΛ) ∆2,
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• the error between the quadratic regression model and the function satisfies

|ef (x)| ≤ (αfQγQ
√
p1q1Λ + βfQγQ) ∆3,

where αHQ , αgQ, αfQ, and βfQ are small positive constants dependent on d = 2 and
independent of n and Y :

αHQ = 6
√

2, αgQ = 6(1 +
√

2), αfQ = 6 + 9
√

2, βfQ =
1

6
.

The above error bounds can be extended to the case of polynomials of higher
degrees. However, as we have mentioned, in the context of derivative-free methods, on
which we are focusing, the linear and the quadratic cases are normally sufficient. These
error bounds can be used to show global convergence of various optimization methods
based on least-squares regression models as long as the sample sets for regression
remain Λ–poised, with Λ uniformly bounded, throughout the progress of the methods.

4. Regression versus interpolation. Given p1 > q1 sample points, where q1
is the number of points required for unique interpolation, one can select the ‘best’
subset of q1 sample points and use those points to interpolate the given function
f . One natural question arises: will such interpolation provide consistently worse or
better models than the models based on regression using all the p1 points? Given our
theory, the answer to this question seems to be ‘neither’. On the one hand, it is clear
that the poisedness constant Λ, as defined by Definition 2.6, reduces (or remains the
same) as the number of sample points increases. On the other hand, the error bounds
depend on p1, hence when p1 increases, so does its contribution to the error bounds.

To better understand the quality of both models, we conducted the simple exper-
iments described below for the following functions:

f1(x, y) = 107 sin(4x)5 + 101x3 + y2 + 5xy + x+ y,

f2(x, y) = (10x5)/((8.021 + y)3) + y4,

f3(x, y) = 107x5 + 101x3 + y2 + x+ y + 5xy.

We only report results for the first function, since the results for the others seem to
follow the same pattern as for the first.

We generated a set of p random points, (xi, yi) ∈ IR2, i = 1, . . . , p, in the unit-
radius square centered at the origin ({x ∈ IR2 : ‖x‖∞ ≤ 1}). Together with the origin
(0, 0), this gives us p1 = p+ 1 points in IR2.

In the linear case (q = 2), we considered all possible pairs of points (xi, yi), (xj , yj),
i, j = 1, . . . , p, i 6= j, and selected the pair with the best condition number for the
matrix M̄ . (In practice, we worked with the p × q submatrix of M̄ obtained by
removing its first row and column.) Then, we built a linear interpolation model of
the true function for this sample set. We call this model the best subset model.

In the quadratic case (q = 5), we considered all possible sets of 5 points and
selected the set with the best condition number for the matrix M̄ . (We worked also
with the p × q submatrix of M̄ obtained by removing its first row and column.) We
built a quadratic interpolation model of the true function for this sample set (called
also the best subset model).

For each case (linear and quadratic), we compared the least-squares regression
(LSR) model to the best subset (BS) model. The error between each model and the
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#points BS error LSR error BS worse LSR worse

7 852770 794550 101 79

9 478160 392980 118 60

11 305470 236630 121 48

13 310080 209930 136 34

15 271000 193760 135 31

17 271890 189620 143 17

19 233790 174270 138 24

21 213590 160570 138 28

23 226930 158040 149 22

25 209190 156920 135 20

31 197770 149400 141 18

Fig. 4.1. Results comparing the errors between the function f1 and the corresponding best
subset (BS) and least-squares regression (LSR) models, over 200 random runs.

true function was evaluated on a 0.1 step lattice of the unit radius square. We con-
sidered two types of error: (E1) maximum absolute error for all points in the lattice;
(E2) error summed for all lattice points in the ℓ2 sense. We repeated the experiment
200 times and counted the number of times when each model was significantly better
(> 0.001) than the other in both errors. When one of the errors was within 0.001 for
both models no win was declared.

We report the results corresponding to the quadratic case in Figure 4.1 for p1 =
7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 31 randomly generated points. We only report the
error summed for all lattice points in the ℓ2 sense. The error is reported in a cumulative
way for all 200 runs.

For both models (LSR and BS), the error decreased (the approximation improved)
as the number of points increased. The BS model becomes progressively worse com-
pared with the LSR model — although this effect seemed to tail off once we had
enough points. In any case, no model was consistently better than the other. For
example, when using 21 points, of the 200 runs, the BS model was worse 138 times
and LSR model was worse 28 times. (Note that the cumulative sum of the errors is
as high as it is because the region is relatively large given the irregularities of the
function. For example, again with 21 points, the error summed for all lattice points
in the ℓ2 sense, over the 200 runs, was 0.1011 when the radius of the square was scaled
to 0.01.)

One possible advantage of using least-squares regression models is when there is
noise in the evaluation of the true function f(x). It is easy to show that if the noise
is random and independently and identically distributed with mean zero, then the
least-squares regression of the noisy function and the least-squares regression of the
true function (based on the same sequence of sample sets) converge to each other
(pointwise) as the number of sample points tends to infinity (see [9]).

Another possible advantage of using regression is when the function is not very
smooth and occasional spikes make the interpolation unstable. In this case, when
there are enough sample points available, it might be beneficial to use all of them
to smooth out the effect of the spikes, although this statement has not been verified
experimentally.
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5. Underdetermined interpolation. We will now consider the case when p <
q, that is the number of interpolation points in Y is smaller than the number of
elements in the polynomial basis φ. Then the matrix M(φ, Y ) has more columns than
rows. The interpolation polynomials defined by

m(yi) =

q
∑

k=0

αkφk(y
i) = f(yi), i = 0, . . . , p(5.1)

are no longer unique.

5.1. The choice of an underdetermined model. The simplest approach to
restrict the system so that it has a unique solution is to remove the last q−p columns
of M(φ, Y ). This causes the last q− p elements of the solution α to be zero. Such an
approach approximates some elements of α, while it sets others to zero solely based on
the order of the elements in the basis φ. Clearly this approach is not very desirable,
without any knowledge of, for instance, the sparsity structure of the gradient and
the Hessian of the function f . There is also a more fundamental drawback: the first
p1 columns of M(φ, Y ) may be linearly dependent. A natural conclusion would be
that our sample points are not poised (in some sense) and we have to change them.
However, if we had selected a different subset of p columns of M(φ, Y ), it might have
been well poised. From now on, we will use a notion of sub-basis of the basis φ to mean
a subset of p1 elements of the basis φ. Selecting p1 columns of M(φ, Y ), therefore,
corresponds to selecting the appropriate sub-basis φ̃. Let us consider the following
example.

Example 5.1. φ = {1, x1, x2,
1
2x

2
1, x1x2,

1
2x

2
2}, Y = {y0, y1, y2, y3}, y0 = [0, 0]⊤,

y1 = [0, 1]⊤, y2 = [0,−1]⊤, y3 = [1, 0]⊤. The matrix M = M(φ, Y ) is given by

M =









1 0 0 0 0 0
1 0 1 0 0 0.5
1 0 −1 0 0 0.5
1 1 0 0.5 0 0









.

If we select the first four columns of M then the system is still not well defined, since
the matrix is singular. Hence the set Y is not poised with respect to the sub-basis
φ̃ = {1, x1, x2,

1
2x

2
1}, and a new set of sample points is needed. Notice now that if

another sub-basis was selected, for instance, φ̃ = {1, x1, x2,
1
2x

2
2}, then the set Y is

well poised and the matrix consisting of the first, the second, the third and the sixth
columns of M is well-conditioned and a unique solution exists. If the Hessian of f
happens to look like

[

0 0

0 ∂2f
∂x2

2

(x)

]

then the reduced system actually produces the full quadratic model of f .

If the sparsity structure of the derivatives of f is known in advance then this
advantage can be exploited trivially by deleting appropriate columns from the sys-
tem (5.1). A more sophisticated version of this idea is exploited in [5] for group partial
separable functions. If no such structure is known, then there is no reason to select
one set of columns over another except for geometry considerations. Hence it makes
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sense to select those columns that produce the best geometry. The following definition
of well poisedness is consistent with this approach.

Definition 5.1. Let Λ > 0 be given.
A set Y = {y0, y1, . . . , yp} ⊂ B(1), with p < q, where q + 1 is the dimension of

the space of polynomials of degree ≤ d, is said to be Λ–poised in B(1) (in the sub-basis
sense) if and only if there exists a sub-basis φ̃(x) of p1 elements such that for any
x ∈ B(1) the solution λ(x) of

p
∑

i=0

λi(x)φ̃(yi) = φ̃(x)(5.2)

satisfies ‖λ(x)‖ ≤ Λ.

It is easy to show (as it is done for the complete interpolation case in [8]) that
the functions λi(x) are, in fact, the Lagrange polynomials L̃i(x) = (γi)⊤φ̃(x) for the
sub-basis φ̃(x), satisfying

Li(yj) = δij , i, j = 0, . . . , p.

The approach to select a unique solution to (5.1) could then be the following.
Given the sample set Y , select the sub-basis φ̃(x) so that the poisedness constant Λ
is minimized. Then consider the system with the appropriate columns of M(φ, Y )
and find the unique solution to the system. The following example shows the possible
disadvantages of this approach.

Example 5.2. Let us consider the purely linear case in IR3 for simplicity. An
example for a quadratic case can be constructed in a similar manner. Consider φ =
{1, x1, x2, x3} and Y = {y0, y1, y2}, where, as always, y0 = [0, 0, 0]⊤, and where
y1 = [1, 0, 0]⊤ and y2 = [0, 1, 1 − ǫ]⊤. Assume fY = [0, b1, b2]

⊤. The system (5.1)
then becomes





1 0 0 0
1 1 0 0
1 0 1 1 − ǫ



α =





0
b1
b2



 .

The best sub-basis for Y is then φ̃ = {1, x1, x2}. If we select the appropriate columns
of M(φ, Y ) and solve the reduced system, we obtain the following solution for the
coefficients of m(x)

α =









0
b1
b2
0









.

Now, if we consider y2 = [0, 1 − ǫ, 1]⊤, then the best sub-basis is φ̃ = {1, x1, x3} and
the solution that we will find with this approach is

α =









0
b1
0
b2









.
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Notice that the two possible solutions are very different from each other, yet as ǫ goes
to zero the two sets of points converge pointwise to each other. Hence, we see that the
sub-basis approach suffers from a lack of robustness with respect to small perturbations
in the sample set. We also notice that in the first (second) case the fourth (third)
element of the coefficient vector is set to zero and the third (fourth) element is set
to b2. Hence, each solution is biased towards one of the basis components (x2 or
x3) without using any actual information about the structure of f . A more suitable
approach would be to treat all such components equally in some sense. This can be
achieved by the minimum-norm solution of (5.1).

For this example, the minimum-norm solution in the first case is

αmn = M(φ, Y )⊤(M(φ, Y )M(φ, Y )⊤)−1fY =











0
b1
b2

2−2ǫ+ǫ2

(1−ǫ)b2
2−2ǫ+ǫ2











and in the second case is

αmn =











0
b1

(1−ǫ)b2
2−2ǫ+ǫ2

b2
2−2ǫ+ǫ2











.

These two solutions converge to [0, b1, b2/2, b2/2]⊤ as ǫ converges to zero. Hence, not
only is the minimum-norm solution robust with respect to small perturbations of the
data, but it also distributes evenly the elements of the gradient over the x2 and x3

basis components.

For the reasons described above it is beneficial to consider the minimum-norm
solution of the system (5.1). The minimum-norm solution is expressed as

M(φ, Y )⊤[M(φ, Y )M(φ, Y )⊤]−1fY .

It is well know that a minimum-norm solution of an underdetermined system of linear
equation is not invariant under linear transformations. In our case, this fact means
that the minimum-norm solution depends on the choice of φ. It is easy to show
that the resulting interpolation polynomial also depends on the choice of φ in the
system (5.1).

This implies that depending on the choice of φ we can obtain a better or a worse
approximation to f by computing the minimum-norm interpolating polynomials. Ide-
ally, we would like, for each set Y , to identify the ‘best’ basis φ, which would generate
the ‘best’ minimum-norm interpolating polynomial. However, it is a nontrivial task to
define such a basis. First of all, one should define the best interpolating polynomial.
The natural choice is the polynomial that has the smallest approximation error with
respect to the function f . However, the definition of the best basis (and hence of the
best polynomial) should only depend on Y .

In the next subsection, we will consider minimum-norm underdetermined inter-
polation for the specific choice of the natural basis φ̄. We will argue at the end of the
next subsection that φ̄ is a reasonable choice for the basis.
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5.2. Lagrange polynomials and Λ–poisedness for underdetermined in-

terpolation. We will consider the natural basis φ̄ defined by (2.6) and the corre-
sponding matrix M̄ = M(φ̄, Y ) defined by (2.5). We omit the dependence on Y , since
we keep Y fixed in the discussion below.

We will start by introducing the definition of the set of Lagrange polynomials for
underdetermined interpolation.

Definition 5.2. Given a set of interpolation points Y = {y0, y1, . . . , yp}, with
p < q, where q + 1 is the dimension of the space of polynomials of degree ≤ d, a set
of p1 = p + 1 polynomials Lj(x) =

∑q
i=0(αj)iφ̄i(x), j = 0, . . . , p, is called a set of

Lagrange minimum-norm polynomials for the basis φ̄ if it is a minimum-norm solution
of

Lj(yi) m.n.
= δij =

{

1 if i = j,
0 if i 6= j.

The Lagrange minimum-norm polynomials are thus given by the minimum-norm
solution of

M̄αj
m.n.
= ej+1, j = 0, . . . , p.

This set of polynomials is an extension of the traditional Lagrange polynomials to the
case when p < q. Clearly these polynomials no longer compose a basis, since there
are not enough of them. However, as in the regression case, many other properties of
Lagrange interpolation polynomials are preserved.

The set of minimum-norm Lagrange polynomials exists and is unique if the ma-
trix M̄ has full row rank. In this case, we will say that Y is poised. We again note
that here the Lagrange polynomials generally depend on the choice of the basis φ, but
it is easy to see that the poisedness of Y does not.

Just as in the case of standard Lagrange polynomials, the minimum-norm inter-
polating polynomial m(x) in the underdetermined case has a simple representation in
terms of the minimum-norm Lagrange polynomials.

Lemma 5.3. Let Y = {y0, y1, . . . , yp} be a set of poised sample points for the
function f(x) and let m(x) be the minimum-norm interpolating polynomial (in terms
of the basis φ̄) of f(x) at the points in Y . Let {Li(x), i = 0, . . . , p} be the set of the
minimum-norm Lagrange polynomials given in Definition 5.2. Then

m(x) =

p
∑

i=0

f(yi)Li(x).

Proof. The proof is similar to the proof of Lemma 2.3.

Let M̄ = UΣV ⊤ be a reduced singular value decomposition of M̄ , defined in
Section 1.1.

We will now show that, as in the case of polynomial interpolation [8] and regres-
sion, the geometric interpretations of the Lagrange polynomials can be easily derived.
Thus, we will also have an analogous definition of Λ–poisedness.

Given a poised set Y = {y0, y1, . . . , yp} ⊂ B(1) ⊂ IRn and x ∈ B(1) we attempt to
express the vector φ̄(x) in terms of the vectors φ̄(yi), i = 0, . . . , p. Since the dimension
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of the vector φ̄(x) is q1 > p1, it may no longer be possible to express it in terms of p1

vectors φ̄(yi), i = 0, . . . , p. Hence, we will be looking for the least-squares solution to
the following system

p
∑

i=0

λi(x)φ̄(yi)
ℓ.s.
= φ̄(x).(5.3)

This system is an extension of the similar systems introduced in [8] and of system (2.4)
in Section 2.2. We have a kind of duality in that in the system (2.4) the minimum
ℓ2-norm solution λ(x) to the system corresponded to the least-squares regression La-
grange polynomials, while in this case the least-squares solution λ(x) corresponds to
the minimum ℓ2-norm Lagrange polynomials.

Lemma 5.4. Given a poised set Y , the functions λi(x), i = 0, . . . , p, defined by the
least-squares solution of (5.3), form the set of minimum-norm Lagrange polynomials
for Y given in Definition 5.2.

Proof. The proof is similar to the proof of Lemma 2.4.

The following definition of well poisedness is analogous to Definitions 2.5 and 2.6.

Definition 5.5. Let Λ > 0 be given. Let φ̄ be the natural basis of monomials.
A set Y = {y0, y1, . . . , yp}, with p < q, where q + 1 is the dimension of the space

of polynomials of degree ≤ d, is said to be Λ–poised in B(1) (in the minimum-norm
sense) if and only if for any x ∈ B(1) there exists a unique λ(x) ∈ IRp1 such that

p
∑

i=0

λi(x)φ̄(yi)
ℓ.s.
= φ̄(x), with ‖λ(x)‖ ≤ Λ.

This definition is equivalent to having all the Lagrange polynomials bounded by Λ
on B(1).

The following theorem states that if a set is well poised in the minimum-norm
sense then it is well poised in the sub-basis sense and vice versa.

Theorem 5.6. There exists a constant θ independent of Λ and Y such that if
a set Y is Λ–poised in the sub-basis sense, then it is

√
p1q1θΛ–poised in the sense of

Definition 5.5.
Conversely, if a set Y = {y0, y1, . . . , yp} ⊂ B(1) is Λ–poised by Definition 5.5,

then the set is (q − p+ 1)
√
p1q1θΛ–poised in the sub-basis sense.

Proof. Assume that Y is Λ–poised in the sub-basis sense, and that φ̃ is the sub-
basis. Let L̃i(x) = (γi)⊤φ̃(x), i = 0, . . . , p, be the Lagrange polynomials for the
sub-basis φ̃ (see Definition 5.1 and the paragraph following). Then

max
0≤i≤p

max
x∈B(1)

L̃i(x) ≤ Λ.

As it is shown in the proof of Theorem 2.8, there exists a constant σ, independent of
Y and Λ, such that maxx∈B(1)(γ

i)⊤φ̃(x) ≥ σ‖γi‖ for each i. Hence, θΛ ≥ ‖γi‖, for
each i and θ = 1/σ.

Now let us consider the minimum-norm Lagrange polynomials for Y , given by
Li(x) = (αi)⊤φ̄(x), i = 0, . . . , p. The vector αi is the minimum-norm solution of

M̄αi = ei+1.
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Hence, ‖αi‖ ≤ ‖γi‖. Since φ̄j(x) ≤ 1, for all j = 0, . . . , q and all x ∈ B(1), then

max
x∈B(1)

(αi)⊤φ̄(x) ≤ ‖αi‖1 ≤ √
q1‖αi‖ ≤ √

q1‖γi‖ ≤ √
q1θΛ.

We have shown that Y is
√
p1q1θΛ–poised in the minimum-norm sense.

Now assume that Y is Λ–poised in the minimum-norm sense. We can apply
Lemma 1.1, with m = q1 and n = p1, to the columns of M̄ and conclude that
we can select a subset of p1 columns such that the corresponding submatrix M̄p1 is
nonsingular and

M̄p1γ
i = ei+1, |γij | ≤ (q − p+ 1)|αij |, j = 0, . . . , p.

The selected columns determine a sub-basis φ̃ and the vector of coefficients γi deter-
mines the i-th Lagrange polynomial L̃i(x) = (γi)⊤φ̃(x). As before, we know that there
exists a constant σ, independent of Y and Λ, such that maxx∈B(1)(α

i)⊤φ̄(x) ≥ σ‖αi‖
for each i. Hence, θΛ ≥ ‖αi‖, for each i and θ = 1/σ. On the other hand,

max
x∈B(1)

(γi)⊤φ̄(x) ≤ ‖γi‖1 ≤ √
q1‖γi‖ ≤ (q − p+ 1)

√
q1‖αi‖ ≤ (q − p+ 1)

√
q1θΛ.

We have established, that Y is (q−p+1)
√
p1q1θΛ–poised in the sub-basis sense. (The

values of θ for the specific cases of linear and quadratic interpolations are discussed
after the proof of Theorem 2.8.)

Remark 5.1. It is easy to see that the results of this subsection hold for any
given basis φ, as long as it remains fixed throughout the discussion. (Note that the
constants in Theorem 5.6 vary with the choice of φ.) Hence, the minimum-norm
Lagrange polynomials can be defined for any basis. The definition of Λ–poisedness
also can be introduced for any basis. However, for any given set Y , one can create
different bases, which, when used in Definition 5.5, will result in different constants for
Λ–poisedness of Y . Moreover, by varying the basis φ, one can make the constant Λ
as large or as close to 1 as desired. Clearly for the definition of Λ–poisedness to
make sense, the Λ constant should be related to the quality of the geometry Y and the
resulting interpolation. Hence, we consider only one basis (the basis φ̄).

We choose φ̄ as the basis because: (i) it appears naturally in Taylor bounds and
their derivations; (ii) it is the obvious choice in algorithmic implementations; (iii)
it is well scaled; (iv) Λ–poisedness of a set Y in terms of φ̄ implies O(Λ)–poisedness
of Y in terms of any other basis ψ, such that φ̄ = Pψ and ‖P‖‖P−1‖ = O(1) (the last
statement is easy to show from the definition of Λ–poisedness and from Theorem 5.7
of the next section).

In the next section, we will use the properties of φ̄ to show the relation between
the poisedness constant Λ and the condition number of M̄ .

Remark 5.2. As we pointed out in the introduction of this paper, minimum-norm
models for underdetermined interpolation have been developed in [17], by minimizing
the Frobenius norm of the change of the second derivative of the models from one
iteration of the optimization algorithm to the next.

Related to the need of updating such models, the author in [17] also proposed a
definition of Lagrange polynomials for underdetermined interpolation. In the notation
of our paper, the definition in [17] can be described as a modified Definition 5.2 where
the norm being minimized is applied only to the components of the second-order terms
of the Lagrange polynomials (see [9]).
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To ensure the existence and uniqueness of the Lagrange polynomials, the definition
in [17] requires not only that M̄ has full row rank but also that Y contains a subset
of n + 1 points that are poised in the linear interpolation sense. We impose this
requirement directly on Y when we derive the first-order error bound.

In the spirit of [15, 17], one can use the minimum-norm Lagrange polynomials
to maintain ‘good’ sample sets for minimum-norm interpolation. The advantages and
disadvantages of such a scheme are similar to those for the regression case which were
discussed in the last paragraph of Section 2.3.

5.3. Λ–poisedness and the condition number of M(φ̄, Y ). We will again
connect Λ–poisedness with the condition number of M(φ̄, Y ). As in the regression
case we will scale Y in such a way that the smallest ball containing Y is B(1).

Recall that under this scaling 1 ≤ ‖M̄‖ ≤ p
1/2
1 q1. Hence to bound the condition

number of M̄ in terms of Λ (and vice versa) all we need to do is to bound ‖M̄−1‖ in
terms of Λ (and vice versa). We will now present the analogue for the underdetermined
case of Theorem 2.8 of this paper and Theorem 3.3 of [8]. Recall the reduced singular
value decomposition of M̄ = UΣV ⊤.

Theorem 5.7. If Σ is nonsingular and ‖Σ−1‖ ≤ Λ, then the set Y is
√
q1Λ–

poised (according to Definition 5.5) in the unit ball B(1) centered at 0. Conversely, if
the set Y is Λ–poised, according to Definition 5.5, in the unit ball B(1) centered at 0,
then Σ is nonsingular and

‖Σ−1‖ ≤ θΛ,(5.4)

where θ > 0 is dependent on n and d but independent of Y and Λ.

Proof. As in the proof of Theorem 2.8, it is trivial to show that if Σ is nonsingular
and ‖Σ−1‖ ≤ Λ then the least-squares solution

‖λ(x)‖ ≤ ‖UΣ−1V ⊤‖ ‖φ̄(x)‖ ≤ q1
1

2 ‖Σ−1‖ ‖φ̄(x)‖∞ ≤ q1
1

2 Λ,

since maxx∈B(1) ‖φ̄(x)‖∞ ≤ 1.
To prove the other relation we note, first, that the matrix Σ is nonsingular by the

definition of Λ–poisedness. To prove that there exists a constant θ > 0, independent
of Y and of Λ, such that ‖Σ−1‖ ≤ θΛ, we would proceed exactly as in the proof of
Theorem 2.8.

To obtain the specific values of θ in the linear and quadratic cases we can apply
the results presented imediatly after Theorem 2.8. To relax the assumption that the
radius of the ball enclosing Y is 1, we can use the same arguments as at the end of
Subsection 2.3.

5.4. Error bounds for underdetermined interpolation. We study the qual-
ity of the quadratic minimum-norm interpolation model in the general case. Recall
that q1 = q + 1 = (n + 1)(n + 2)/2. We will again assume that ∆ has the smallest
possible value that satisfies Y ⊂ B(∆) and y0 = 0. The derivation of the general
error bound follows exactly the derivation in [8] for complete quadratic polynomial
interpolation. We need to consider the submatrix M̄p×q of M̄ obtained by removing
its first row and its first column. Consider the reduced SVD of the scaled version of
M̄p×q

M̂p×q = M̄p×q

[

D−1
∆ 0
0 D−1

∆2

]

= Up×pΛp×pV
⊤
q×p,
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where D∆ is a diagonal matrix of dimension n with ∆ in the diagonal entries and
D∆2 is a diagonal matrix of dimension q − n with ∆2 in the diagonal entries. The
scaled matrix corresponds to using the scaled interpolation set {0, y1/∆, . . . , yp/∆}
at the outset.

We will make use of the following notation: given a symmetric matrix H, svec(H)

is a vector in IRn(n+1)/2 that stores the upper triangular part of H row by row, con-
secutively. The following theorem exhibits the error bound on the underdetermined
quadratic interpolation model.

Theorem 5.8. Let Y = {0, y1, . . . , yp}, with p1 < (n+1)(n+2)/2 and p1 = p+1,
be a Λ–poised set of points (in the minimum-norm sense) contained in a (closed) ball
B(∆) centered at 0. Assume that f is twice continuously differentiable in an open
domain Ω containing B(∆) and that ∇2f is Lipschitz continuous in Ω with constant
γQ > 0.

Then, for all points x in B(∆), we have that the error between the gradient of the
quadratic minimum-norm model and the gradient of the function

eg(x) = ∇m(x) −∇f(x)

and the error between the Hessian of the quadratic minimum-norm model and the
Hessian of the function

EH(x) = ∇2m(x) −∇2f(x)

satisfy
∥

∥

∥

∥

V ⊤
q×p

[

D∆t(x)
D∆2eH(x)

]∥

∥

∥

∥

≤ (6(p1q1)
1

2 γQΛ) ∆3,

where t(x) = eg(x) − EH(x)x and eH(x) = svec(EH(x)).

Proof. We apply the same algebraic manipulations and Taylor expansions to the
interpolating conditions (5.1) as we did in [8]. We omit them here for the sake of
brevity. As in [8], we obtain the following system

M̄p×q

[

D−1
∆ 0
0 D−1

∆2

] [

D∆t(x)
D∆2eH(x)

]

= O(∆3).(5.5)

The right-hand-side of this system is bounded in norm by 3
√
pγQ∆3/2. Since

‖Σ−1
p×p‖ ≤ ‖Σ−1‖ ≤ θΛ ≤ 4

√
q1Λ, we obtain from the Λ–poisedness assumption

that
∥

∥

∥

∥

V ⊤
q×p

[

D∆t(x)
D∆2eH(x)

]
∥

∥

∥

∥

≤ 3

2
p

1

2 γQ‖Σ−1
p×p‖∆3 ≤ 6(p1q1)

1

2 γQΛ ∆3.

In the derivative-free optimization context, one is particularly interested in the
error of the gradient and Hessian approximation at the center of the trust region.
Hence, if we set x = 0, which means that we are evaluating the error at x = y0 = 0,
we obtain

∥

∥

∥

∥

V ⊤
q×p

[

D∆ [g −∇f(x)]
D∆2

[

svec(H −∇2f(x))
]

]∥

∥

∥

∥

≤ 6(p1q1)
1

2 γQΛ ∆3,

25



where m(x) = c+ g⊤x+ 1
2x

⊤Hx, ∇m(x) = Hx+ g, and ∇2m(x) = H.

The presence of V ⊤
q×p in the general error bound tells us that we can only measure

the orthogonal projection of the error onto the p-dimensional linear subspace spanned
by the rows of the matrix M̄p×q, which seems reasonable since we do not have enough
information to do better.

It is easy to see that if p = q, then Vq×p is orthonormal and hence can be removed.
In this case, one recovers the bound on full quadratic interpolation (see [8]).

It is also possible to show that if ∇f and ∇2f have a specific sparsity structure
that corresponds to a certain sub-basis for which Y is Λ–poised, then a similar error
bound can be established for the quadratic interpolation based on the sub-basis. We
do not include the result and the proof here, because it is nothing more than repetition
of the corresponding error bound result in [8].

In [9] we investigate the quality of a minimum-norm Frobenius interpolation model
when the interpolation set Y contains a subset of n+ 1 points that are Λ–poised for
linear interpolation.

5.5. Numerical results for the underdetermined case. As for the overde-
termined case, we generated the same set of simple two-dimensional numerical exam-
ples. We report here the results for the function f1(x, y) = 107 sin(4x)5 + 101x3 +
y2 + 5xy + x+ y.

We considered, for the quadratic case, the underdetermined situations where the
number of points is p1 = 5, 4, 3 (including the origin). We built the minimum-norm
(MN) model for each case.

Then we considered all possible sub-bases of cardinality p1 of the basis φ̄ for the
quadratic case, which has cardinality 6, and selected the resulting p1 × p1 sub-matrix
of M̄ with the best condition number. We, then, built an interpolation model of the
true function for this sub-basis. We call this model also the best basis (BB) model.
(Here we again worked with the p× q submatrix of M̄ obtained by removing its first
row and column.)

We compared the minimum-norm (MN) model to the best basis (BB) model. The
error between each model and the true function was evaluated on a 0.1 step lattice
of the unit radius square. We considered two types of error (E1 and E2) as in the
overdetermined numerical tests. We repeated the experiment 200 times and counted
the number of times when each model was better than the other in both errors. When
one of the errors was within 0.001 for both models no win was declared. The errors
reported are cumulative for the 200 runs and computed using E2. The BB model was
worse than the MN model, and moreover one should recall the lack of continuity in
this solution, illustrated at the beginning of this section.

The results for the unit square in Figure 5.1 are followed by the results for a scaled
square (scaled to have a radius of 0.01) in Figure 5.2. Again, as for the overdetermined
case, the sum of the residuals is high in the unit square because the region is relatively
large given the irregularities of the function. In the scaled square, the MN model
behaved even better when compared to the BB model, since it was consistently better.

6. Conclusions. We have shown that many theoretical properties of fully de-
termined polynomial interpolation models studied in [8] can be extended to the cases
of polynomial least-squares regression and underdetermined interpolation. Underde-
termined interpolation is extensively used in modern implementations of model-based
derivative-free optimization methods, see for example [18]. Our very limited compu-
tational examples were included to give the reader an idea as to why using minimum-
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#points BB error MN error BB Worse MN Worse

5 81950 653000 133 28

4 594320 323480 175 9

3 594750 368640 163 16

Fig. 5.1. Results comparing the errors between the function f1 and the corresponding best basis
(BB) and minimum-norm (MN) models, over 200 random runs.

#points BB error MN error BB worse MN worse

5 19.7096 0.4839 58 0

4 324.4571 0.9466 193 0

3 88.7755 2.1193 118 0

Fig. 5.2. Results comparing the errors between the function f1 and the corresponding best basis
(BB) and minimum-norm (MN) models, over 200 random runs, in the case where the square has a
radius of 0.01.

norm incomplete interpolation can be beneficial. However, until recently no complete
convergence theory had been developed. In the upcoming book [9], we develop a
unifying theory for model-based methods and show, for example, that a modified ver-
sion of the algorithm in [16] (which uses minimum-norm Frobenius interpolation) is
globally convergent.

As we mention in the introduction, there has been only very limited use of regres-
sion models in derivative-free optimization. Perhaps, the main advantage of using the
regression models and overdetermined sample sets is to reduce the effect of noise in
the function values. The first attempt to adapt model-based derivative-free optimiza-
tion to noisy problems was proposed in [14], where an interpolation-based trust-region
algorithm used in [16] is applied to noisy functions by sampling the objective func-
tion at the sample points repeatedly. With the theory in [8] one can claim that the
resulting interpolation models can be made sufficiently accurate since they are based
on well-poised interpolation sets. However, with the theory provided in this paper, as
well as in the book [9], it is now possible to have regression models based on sampling
the objective function at, for instance, randomly selected sample points, as long as a
well-poised sample set is generated. This approach may be advantageous, especially
when sampling a noisy function at the same point repeatedly does not significantly
reduce the level of noise.

In the book [9], algorithms for constructing Λ–poised sample sets for regression
and minimum Frobenius norm interpolation are given. One can incorporate these
algorithms into a model-based derivative-free method of choice and make use of the
theory in this paper to provide theoretical convergence guarantees for the resulting
optimization method.
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