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Abstract

The main purpose of this paper is to investigate the curvature behavior of four-
dimensional shrinking gradient Ricci solitons. For such a soliton M with bounded scalar
curvature S, it is shown that the curvature operator Rm of M satisfies the estimate
|Rm| 6 cS for some constant c. Moreover, the curvature operator Rm is asymptotically
nonnegative at infinity and admits a lower bound Rm > −c(ln(r + 1))−1/4, where r is
the distance function to a fixed point in M . As an application, we prove that if the
scalar curvature converges to zero at infinity, then the soliton must be asymptotically
conical. As a separate issue, a diameter upper bound for compact shrinking gradient
Ricci solitons of arbitrary dimension is derived in terms of the injectivity radius.

1. Introduction

This paper primarily concerns the geometry of the so-called shrinking gradient Ricci solitons.
Recall that a complete manifold (M, g) is a gradient Ricci soliton if the equation

Ric + Hess(f) = λg

holds for some function f and scalar λ. Here, Ric is the Ricci curvature of (M, g) and Hess(f)
is the Hessian of f . Note that if the potential function f is constant or the soliton is trivial,
then the soliton equation simply says the Ricci curvature is constant. So Ricci solitons are
natural generalizations of Einstein manifolds. A soliton is called shrinking, steady and expanding,
accordingly, if λ > 0, λ = 0 and λ < 0. By scaling the metric g, one customarily assumes
λ ∈ {−1/2, 0, 1/2}. Solitons may be regarded as self-similar solutions to the Ricci flows. As such,
they are important in the singularity analysis of Ricci flows. Indeed, according to [EMT11], the
blow-ups around a type-I singularity point always converge to nontrivial gradient shrinking Ricci
solitons. It is thus a central issue in the study of Ricci flows to understand and classify gradient
Ricci solitons.

Aside from the Einstein manifolds, the Euclidean space Rn together with the potential
function f(x) = (λ/2)|x|2 gives another important example of gradient Ricci solitons. For
dimension n = 2, these are the only examples of gradient shrinking Ricci solitons [CK04].
For dimension n = 3, Perelman made the breakthrough in [Per02] and showed that a three-
dimensional noncollapsing shrinking gradient Ricci soliton with bounded curvature must be a
quotient of the sphere S3, or of R3 or S2 × R. His result played a crucial role in the affirmative
resolution of the Poincaré conjecture. The extra conditions were later removed through the efforts
of Naber [Nab10], Ni and Wallach [NW08] and Cao et al. [CCZ08]. We refer the readers to [Bre13]
for the classification of steady gradient Ricci solitons.
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One salient feature of three-dimensional shrinking Ricci solitons is that their curvature
operator must be nonnegative [Ham95]. This has been of great utility in Perelman’s argument.
Unfortunately, for dimension four or higher this is no longer true, as demonstrated by the example
constructed in [FIK03]. Also, the existence of examples (see [Cao10] for a list) other than those
already mentioned complicates the classification outlook.

The main purpose here is to investigate the curvature behavior of four-dimensional shrinking
gradient Ricci solitons. Our first result concerns the control of the curvature operator. Note that
for dimension three, the curvature operator, being nonnegative, is obviously bounded by the
scalar curvature. For dimension four, while the curvature operator no longer has a fixed sign,
we show that such a conclusion still holds. In particular, it implies that the curvature operator
must be bounded if the scalar curvature is bounded.

Theorem 1.1. Let (M, g, f) be a four-dimensional shrinking gradient Ricci soliton with bounded
scalar curvature S. Then there exists a constant c > 0 such that

|Rm| 6 cS on M.

Our second result provides a lower bound for the curvature operator of a four-dimensional
shrinking Ricci soliton with bounded scalar curvature. It shows that the curvature operator
becomes asymptotically nonnegative at infinity. The result may be viewed as an extension of
the Hamilton and Ivey curvature pinching estimate for the three-dimensional case. Note that
Naber [Nab10] has classified all four-dimensional shrinking Ricci solitons with nonnegative
and bounded curvature operator. In passing, we would also like to point out that Cao and
Chen [CC13] have obtained some interesting classification results by imposing assumptions of a
different nature on the curvature tensor.

Theorem 1.2. Let (M, g, f) be a four-dimensional shrinking gradient Ricci soliton with bounded
scalar curvature. Then its curvature operator is bounded below by

Rm > −
(

c

ln(r + 1)

)1/4

,

where r is the distance function to a fixed point in M .

In both Theorems 1.1 and 1.2, the constant c > 0 depends only on the upper bound A of
the scalar curvature on M and the geometry of the geodesic ball Bp(r0), where p is a minimum
point of f and r0 is determined by A.

We should point out that these conclusions are only effective for nontrivial solitons. In fact,
the potential function f of the soliton is exploited in an essential way in our proofs by working
on the level sets of f . Note that the level set is of three dimensions. So its curvature tensor is
determined by its Ricci curvature. This fact is crucial to our argument. It enables us to control
the curvature tensor of the ambient manifold by its Ricci curvature, which leads to an estimate
of the Ricci curvature by the scalar curvature. The fact that the Ricci curvature controls the
growth of the full curvature tensor is already known from the work of the first named author
and Wang [MW11b]. However, the argument and estimate there are global in nature, whereas
the estimate here is valid in the pointwise sense and hence is stronger.

The fact that the curvature operator of four-dimensional shrinking gradient Ricci solitons
enjoys control similar to that in the dimension three case seems to provide a glimpse of hope for
a possible classification of the solitons. In fact, under the assumption that the scalar curvature
converges to zero at infinity, we are able to prove a sharp decay estimate for the Riemann
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curvature tensor and consequently conclude that such a soliton must in fact be smoothly
asymptotic to a cone at infinity. Here, by a cone we mean a manifold [0,∞)× Σ endowed with
Riemannian metric gc = dr2 + r2gΣ, where (Σ, gΣ) is a closed (n − 1)-dimensional Riemannian
manifold. Define ER = (R,∞) × Σ for R > 0 and define the dilation by λ to be the map
ρλ : E0 → E0 given by ρλ(r, σ) = (λr, σ). Then a Riemannian manifold (M, g) is said to be Ck

asymptotic to the cone (E0, gc) if, for some R > 0, there is a diffeomorphism Φ : ER → M\Ω
such that λ−2ρ∗λΦ∗g → gc as λ →∞ in Ckloc(E0, gc), where Ω is a compact subset of M .

We have the following result.

Theorem 1.3. Let (M, g, f) be a complete four-dimensional shrinking gradient Ricci soliton
with scalar curvature converging to zero at infinity. Then there exists a cone E0 such that (M, g)
is Ck asymptotic to E0 for all k.

A recent result due to Kotschwar and Wang [KW15] states that two shrinking gradient Ricci
solitons must be isometric if they are C2 asymptotic to the same cone. Together with our result,
this implies that the classification problem for four-dimensional shrinking Ricci solitons with
scalar curvature going to zero at infinity is reduced to a classification problem for the limiting
cones.

As a separate issue, we have also attempted to address the question whether the limit of
compact shrinking gradient Ricci solitons remains compact. This question may be rephrased
into one of obtaining a uniform upper bound for the diameter of such solitons. Note that in the
opposite direction, Futaki and Sano [FS13], see also an improvement in [FLL13], have already
established a universal diameter lower bound for (nontrivial) compact shrinking gradient Ricci
solitons. It remains to be seen whether a universal diameter upper bound is available without
any extra assumptions.

Theorem 1.4. Let (M, g, f) be a compact gradient shrinking Ricci soliton of dimension n. Then
the diameter of (M, g) has an upper bound of the form

diam(M) 6 c(n, inj(M)),

where inj(M) is the injectivity radius of (M, g).

If one assumes in addition that the Ricci curvature of the soliton is nonnegative, then the
conclusion follows from [FMZ08]. We also remark that the assumption on the injectivity radius
seems to be natural in view of the noncollapsing result for Ricci flows proved by Perelman [Per02].
Combined with [CZ10], our result implies an upper bound for the volume, depending on the
injectivity radius alone.

The paper is organized as follows. In § 2, after some preliminary estimates, we show that
four-dimensional shrinking Ricci solitons with bounded scalar curvature must have bounded
Riemann curvature tensor. The techniques and results are further developed in § 3 to prove
Theorem 1.1. These estimates are then applied in § 4 to establish the curvature pinching estimate
(Theorem 1.2). In §§ 5 and 6, we prove the conical structure result (Theorem 1.3) and the diameter
upper bound (Theorem 1.4), respectively.

2. Curvature estimates

In this section, we show that the curvature operator of a four-dimensional shrinking gradient
Ricci soliton must be bounded if its scalar curvature is bounded. We first recall some general
facts concerning shrinking gradient Ricci solitons which will be used throughout the paper.
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For (Mn, g, f) a shrinking gradient Ricci soliton, it is known [Ham95] that S + |∇f |2 − f is
constant on M , where S is the scalar curvature of M . So, by adding a constant to f if necessary,
we may normalize the soliton such that

S + |∇f |2 = f. (2.1)

By a result of Chen [Che09, Cao10], the scalar curvature S > 0 unless M is flat, so in the
following, we assume without loss of generality that S > 0. Tracing the soliton equation we get
∆f + S = n/2. Combined with (2.1), this implies that

∆f (f) =
n

2
− f. (2.2)

Here, ∆f = ∆ − 〈∇f,∇〉 is the weighted Laplacian on M , which is self adjoint on the space of
square integrable functions with respect to the weighted measure e−fdv.

Concerning the potential function f , Cao and Zhou [CZ10] have proved that

(1
2r(x)− c1)2 6 f(x) 6 (1

2r(x) + c1)2 (2.3)

for all r(x) > c2. Here r(x) := d(p, x) is the distance of x from p, a minimum point of f on M ,
which always exists. Constants c1 and c2 can be chosen to depend only on dimension n.

Throughout the paper, we use the definitions

D(t) = {x ∈M : f(x) 6 t}
Σ(t) = ∂D(t) = {x ∈M : f(x) = t}.

By (2.3), these are compact subsets of M .
We recall the following equations for curvatures. For proofs, one may consult [PW10].

∆fS = S − 2|Ric|2

∆fRij = Rij − 2RikjlRkl

∆fRm = Rm + Rm ∗ Rm

∇kRjk = Rjkfk = 1
2∇jS

∇lRijkl = Rijklfl = ∇jRik −∇iRjk.

(2.4)

In this section we assume

S 6 A on M (2.5)

for some constant A > 0. Obviously, there exists r0 > 0, depending only on A, such that

|∇f | > 1
2

√
f > 1 on M\D(r0).

Our argument is based on the following important observation.

Proposition 2.1. Let (M, g, f) be a four-dimensional shrinking gradient Ricci soliton. Then for
a universal constant c > 0,

|Rm| 6 c

(
|∇Ric|√

f
+
|Ric|2 + 1

f
+ |Ric|

)
(2.6)

on M\D(r0).

2276

https://doi.org/10.1112/S0010437X15007496 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X15007496


Geometry of shrinking Ricci solitons

Proof. We work on Σ := Σ(t), t > r0. By the Gauss curvature equation, for an orthonormal
frame {e1, e2, e3} tangent to Σ, the intrinsic Riemann curvature tensor RΣ

abcd of Σ is given by

RΣ
abcd = Rabcd + hachbd − hadhbc, (2.7)

where Rabcd = Rm(ea, eb, ec, ed) is the Riemann curvature tensor of M and hab the second
fundamental form of Σ. In what follows, the indices a, b, c, d ∈ {1, 2, 3} and i, j, k, l ∈ {1, 2, 3, 4}.
Since Σ = {f = t}, we have

hab =
fab
|∇f |

.

Using the fact that |∇f | > 1
2

√
f on M\D(r0) and Ric(ea, eb) + fab = 1

2δab, we have

|hab| 6
c√
f

(|Ric|+ 1). (2.8)

Since Σ is a three-dimensional manifold, its Riemann curvature is determined by its Ricci
curvature RicΣ:

RΣ
abcd = (RΣ

acgbd −RΣ
adgbc +RΣ

bdgac −RΣ
bcgad)−

SΣ

2
(gacgbd − gadgbc), (2.9)

where SΣ is the scalar curvature of Σ and RΣ
ab := RicΣ(ea, eb).

By tracing (2.7) we get

RΣ
ac = Rac −Ra4c4 +Hhac − habhbc, (2.10)

where Ra4c4 = Rm(ea, ν, ec, ν), with ν = ∇f/|∇f | being the normal vector of Σ. Tracing this
one more time, we have

SΣ = S − 2R44 +H2 − |h|2.

Hence, by (2.8) and S 6 2|Ric|, we see that

|SΣ| 6 c

(
|Ric|2 + 1

f
+ |Ric|

)
for some constant c. We now observe that by (2.4) we have an estimate

|Rijk4| =
1

|∇f |
|Rijklfl| 6 4

|∇Ric|√
f

. (2.11)

Using this in (2.10) implies that

|RΣ
ac| 6 c

(
|∇Ric|√

f
+
|Ric|2 + 1

f
+ |Ric|

)
.

Hence, we conclude from (2.9) and (2.7) that

|Rabcd| 6 c

(
|∇Ric|√

f
+
|Ric|2 + 1

f
+ |Ric|

)
.

Together with (2.11), this proves the proposition. 2

We now establish the following lemma. It is inspired by Hamilton’s work in [Ham82].
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Lemma 2.2. Let (M, g, f) be a four-dimensional shrinking gradient Ricci soliton with bounded
scalar curvature. Then, for any 0 < a < 1, the function u := |Ric|2S−a satisfies the differential
inequality

∆fu >

(
2a− c

1− a
S

f

)
u2Sa−1 − cu3/2Sa/2 − cu

on M\D(r0), for some universal constant c > 0.

Proof. Note that by Proposition 2.1 and (2.4),

∆f |Ric|2 > 2|∇Ric|2 − c|Rm||Ric|2

> 2|∇Ric|2 − c√
f
|∇Ric||Ric|2

− c

f
|Ric|4 − c|Ric|3 − c

f
|Ric|2. (2.12)

For 1 > a > 0, direct computation gives

∆f (|Ric|2S−a) = S−a∆f (|Ric|2) + |Ric|2∆f (S−a) + 2〈∇S−a,∇|Ric|2〉
= S−a∆f (|Ric|2) + 2〈∇S−a,∇|Ric|2〉

+ |Ric|2(−aS−a + 2a|Ric|2S−a−1 + a(a+ 1)|∇S|2S−a−2). (2.13)

We can estimate

2〈∇S−a,∇|Ric|2〉>−4a|∇Ric||∇S|S−a−1|Ric|
>−a(a+ 1)|∇S|2S−a−2|Ric|2

− 4a

a+ 1
|∇Ric|2S−a.

Plugging this into (2.13) and combining with (2.12), we obtain

∆f (|Ric|2S−a) > 2(1− a)

1 + a
|∇Ric|2S−a − c√

f
|∇Ric||Ric|2S−a − c

f
|Ric|4S−a

− c|Ric|3S−a − c

f
|Ric|2S−a − a|Ric|2S−a + 2a|Ric|4S−a−1

>

(
2a− c

1− a
S

f

)
|Ric|4S−a−1 − c|Ric|3S−a − c|Ric|2S−a.

In the last line, we have used that

c√
f
|∇Ric||Ric|2S−a 6 2(1− a)

1 + a
|∇Ric|2S−a +

1 + a

8(1− a)

c2

f
|Ric|4S−a.

It follows that

∆fu >

(
2a− c

1− a
S

f

)
u2Sa−1 − cu3/2Sa/2 − cu.

This proves the result. 2

Proposition 2.3. Let (M, g, f) be a four-dimensional shrinking gradient Ricci soliton with
bounded scalar curvature S 6 A. Then there exist r1 and C depending only on A such that

|Ric|2 6 C on M\D(r1).
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Proof. We use Lemma 2.2 with a := 1
2 and obtain on M\D(r0)

∆fu >

(
1− c

f

)
u2S−1/2 − cu3/2 − cu,

where u := |Ric|2S−1/2 and c > 0 depends only on A. Obviously, there exists r1 > 0, depending
only on A, so that 1− (c/f) > 1

2 and

∆fu > 1
2u

2S−1/2 − cu3/2 − cu on M\D(r1).

For R > 2r1, let φ be a smooth nonnegative function defined on the real line so that φ(t) = 1 for
R 6 t 6 2R and φ(t) = 0 for t 6 R/2 and for t > 3R. We may choose φ so that

t2(|φ′|2(t) + |φ′′|(t)) 6 c.

We use φ(f(x)) as a cutoff function with support in D(3R)\D(R/2). Note that

|∇φ|6 c√
R

|∆fφ|6 c

for a universal constant c > 0. For the second inequality we have used (2.2), i.e. ∆f (f) = 2− f .
A direct computation shows that the function G := uφ2 satisfies

φ2∆fG= φ2∆f (uφ2)

= φ4(∆fu) + φ2u(∆fφ
2) + 2φ2〈∇u,∇φ2〉

> 1
2u

2S−1/2φ4 − cu3/2φ3 − cuφ2 + 2〈∇(uφ2),∇φ2〉
> 1

2G
2S−1/2 − cG3/2 − cG+ 2〈∇G,∇φ2〉.

The maximum principle implies that G 6 c, where the constant c depends only on A. Hence, on
D(2R)\D(R),

|Ric|2 = GS1/2 6 c.

This proves the proposition. 2

We now prove that the curvature of four-dimensional shrinking gradient Ricci solitons with
bounded scalar curvature is bounded as well.

Theorem 2.4. Let (M, g, f) be a four-dimensional shrinking Ricci soliton with bounded scalar
curvature S 6 A. Then the Riemann curvature tensor and its covariant derivatives are bounded.
More precisely, there exists r1 > 0 depending only on A so that for any k > 1,

sup
M\D(r1)

(|Rm|+ |∇kRm|) 6 Ck,

where Ck > 0 is a constant depending only on A and k.

Proof. We first show that
|Rm| 6 c on M\D(r1). (2.14)

Using (2.4) and the Kato inequality, one sees that

∆f |Rm| > −c|Rm|2
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for a universal constant c. Rewrite this into

∆f |Rm| > |Rm|2 − (c+ 1)|Rm|2. (2.15)

By Propositions 2.3 and 2.1, we have

|Rm|2 6 c

(
1

f
|∇Ric|2 + 1

)
on M\D(r1), where c > 0 depends only on A. Plugging into (2.15), we conclude

∆f |Rm| > |Rm|2 − c

f
|∇Ric|2 − c. (2.16)

On the other hand, we know from (2.12) that

∆f |Ric|2 > |∇Ric|2 − c. (2.17)

Therefore, combining (2.16) and (2.17), we obtain

∆f (|Rm|+ |Ric|2) > |Rm|2 − c
> 1

2(|Rm|+ |Ric|2)2 − c.
In other words, the function

v := |Rm|+ |Ric|2

satisfies the differential inequality
∆fv > 1

2v
2 − c

on M\D(r1) for some constant c depending only on A. Arguing as in Proposition 2.3, we conclude
that v 6 c on M\D(r1) for a constant c depending only on A. This implies (2.14).

Now we use Shi’s derivative estimates [Shi89] to prove that

|∇Rm| 6 c on M\D(r1) (2.18)

for some constant c > 0 depending only on A. Note that

∆f |∇Rm|2 > 2|∇2Rm|2 − c|∇Rm|2|Rm|
> 2|∇|∇Rm||2 − c|∇Rm|2,

where in the last line we have used (2.14). This implies

∆f |∇Rm| > −c|∇Rm| on M\D(r1).

We also know from (2.4) that

∆f |Rm|2 > 2|∇Rm|2 − c|Rm|3

> 2|∇Rm|2 − c.
Therefore, there exists a constant c > 0, depending only on A, so that on M\D(r1),

∆f (|∇Rm|+ |Rm|2) > (|∇Rm|+ |Rm|2)2 − c.
Now a maximum principle argument as in Proposition 2.3 shows that |∇Rm|+ |Rm|2 is bounded
on M\D(r1) by a constant depending only on A. So (2.18) follows. A similar argument can be
used to obtain estimates for higher order derivatives. For details, see e.g. [CLN06]. 2

Theorem 2.4 may be applied to recover and strengthen a compactness result for four-
dimensional shrinking Ricci solitons due to Haslhofer and Müller [HM11, HM14]. Namely, a
sequence of such solitons with uniformly bounded entropy, Euler characteristic number and
scalar curvature must have a subsequence converging in the Cheeger–Gromov sense to an orbifold
shrinking Ricci soliton. Moreover, all possible orbifold points of the limit must lie inside a fixed
compact set.
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3. Improved curvature estimates

Our goal in this section is to prove Theorem 1.1. We begin with an improved estimate for Ricci
curvature. From now on, r0 > 0 denotes a radius depending only on A, the upper bound of S
on M . Unless otherwise specified, c > 0 is a constant depending only on A and the geometry of
D(r0). These constants may change from line to line.

Proposition 3.1. Let (M, g, f) be a four-dimensional shrinking gradient Ricci soliton with
bounded scalar curvature S 6 A. Then there exists c > 0 such that

sup
M

|Ric|2

S
6 c.

Proof. We use Lemma 2.2, that

∆fu >

(
2a− c

1− a
S

f

)
u2Sa−1 − cu3/2Sa/2 − cu

on M\D(r0), where u := |Ric|2S−a and 0 < a < 1.
For R > 2r0, let φ be a smooth nonnegative function defined on the real line so that φ(t) = 1

for R 6 t 6 2R and φ(t) = 0 for t 6 R/2 and for t > 3R. We may choose φ so that

t2(|φ′|2(t) + |φ′′|(t)) 6 c.

We use φ(f(x)) as a cutoff function with support in D(3R)\D(R/2). Note that |∇φ| 6 c/
√
R

and |∆fφ| 6 c, for a universal constant c > 0. Direct computation gives

φ2∆f (uφ2) = φ4(∆fu) + φ2u(∆fφ
2) + 2φ2〈∇u,∇φ2〉

>

(
2a− c

1− a
S

f

)
u2Sa−1φ4 − cu3/2Sa/2φ3

− cuφ2 + 2〈∇(uφ2),∇φ2〉.

Since φ has support in D(3R)\D(R/2), we know that f > 1
2R on the support of φ. Hence, we

may choose a := 1− (C/R) with a sufficiently large constant C > 0 so that

2a− c

1− a
S

f
> 1

on the support of φ. As a result, the function G := uφ2 satisfies

φ2∆fG > Sa−1G2 − cG3/2 − cG+ 2〈∇G,∇φ2〉.

Since a < 1 and Sa−1 > Aa−1, the maximum principle implies that there exists c > 0 such that
G 6 c on D(2R)\D(R).

Hence, on D(2R)\D(R),
|Ric|2

S
= GSa−1 6 cSa−1.

Let us recall a result in [CLY11], that there exists a constant c > 0 such that Sf > c on M . In
our context, this constant has the dependency as stated in the conclusion of the proposition.

Since a − 1 = −C/R and S > c/R on D(2R), it follows that Sa−1 6 c on D(2R)\D(R).
Therefore,

|Ric|2

S
6 c

on D(2R)\D(R). But R is arbitrary. This proves the result. 2

2281

https://doi.org/10.1112/S0010437X15007496 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X15007496


O. Munteanu and J. Wang

We now extend this result to the full curvature tensor.

Proposition 3.2. Let (M, g, f) be a four-dimensional shrinking gradient Ricci soliton with
bounded scalar curvature S 6 A. Then there exists c > 0 such that

sup
M

|Rm|2

S
6 c.

Proof. According to Proposition 2.1,

|Rm|2 6 c

(
|∇Ric|2

f
+

c

f2
+ |Ric|2

)
6 c

(
1

f
+ S

)
6 cS. (3.1)

In the second and third lines above we have used Proposition 3.1, Theorem 2.4 and the fact that
1/f 6 cS from [CLY11]. This proves the proposition. 2

We continue with a similar estimate for the covariant derivative of curvature.

Proposition 3.3. Let (M, g, f) be a four-dimensional shrinking gradient Ricci soliton with
bounded scalar curvature. Then there exists a constant c > 0 such that

sup
M

|∇Rm|2

S
6 c.

Proof. Let us first prove the inequality

∆f |∇Rm|2 > 2|∇2Rm|2 + 3|∇Rm|2 − c|Rm||∇Rm|2. (3.2)

In fact,
∆f |∇Rm|2 = 2|∇2Rm|2 + 2〈∆f (∇Rm),∇Rm〉.

However,

∆f (∇qRm) =∇p∇p∇qRijkl −∇p(∇qRijkl)fp
=∇p∇q∇pRijkl −∇q(∇pRijkl)fp + Rm ∗ ∇Rm

=∇q∇p∇pRijkl −∇q(∇pRijklfp) + fpq(∇pRijkl) + Rm ∗ ∇Rm

=∇q(∆fRijkl) + 1
2∇qRijkl + Rm ∗ ∇Rm

= 3
2∇qRijkl + Rm ∗ ∇Rm,

where we have used the Ricci identities and the formulas Rijklfl = ∇jRik−∇iRjk and ∆fRm =
Rm + Rm ∗ Rm from (2.4). Hence, (3.2) is proved.

Using (3.2) we get

∆f (|∇Rm|2S−1) > S−1(2|∇2Rm|2 + 3|∇Rm|2 − c|Rm||∇Rm|2)

+ |∇Rm|2(−S−1 + 2|Ric|2S−2 + 2|∇S|2S−3)

− 4|∇S||∇2Rm|S−2|∇Rm|
> 2|∇Rm|2S−1 − c|Rm||∇Rm|2S−1. (3.3)

In deriving the last line of (3.3) we have used that

2|〈∇|∇Rm|2,∇S−1〉|6 4|∇2Rm||∇Rm|S−2|∇S|
6 2|∇2Rm|2S−1 + 2|∇S|2S−3|∇Rm|2.
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Using Proposition 3.2 and (2.18) we can bound

c|Rm||∇Rm|2S−1 6 c|∇Rm|S−1/2

6 |∇Rm|2S−1 + c.

Therefore, the function
w := |∇Rm|2S−1 − c

satisfies
∆fw > w. (3.4)

Our goal is to show that w must be bounded above. We use the maximum principle again.
Let ψ(t) = (R− t)/R on [0, R] and ψ = 0 for t > R. Then ψ(f) as a cutoff function on M

satisfies

|∇ψ|= |∇f |
R

∆fψ =
1

R
(f − 2). (3.5)

Therefore, for G := ψ2w, using (3.4), we have

∆fG >

(
1 + ψ−1 2

R
(f − 2)− 6ψ−2|∇ψ|2

)
G+ 4ψ−1〈∇G,∇ψ〉. (3.6)

Suppose that G(q) > 0 at the maximum point q of G. Then (3.6) implies that

2

R
(f − 2)ψ 6 6|∇ψ|2 6 6

1

R2
f. (3.7)

If q ∈ D(r0), then

sup
D(R/2)

(|∇Rm|2S−1) 6 c+ 4 sup
D(R/2)

G

6 c+ 4 sup
D(r0)

G

6 c.

On the other hand, if q ∈ M\D(r0), then f(q) − 2 > 1
2f(q). By (3.7), ψ(q)R 6 6. This shows

that f(q) > R− 6. Therefore,

1

4
sup

D(R/2)
(|∇Rm|2S−1 − c) 6 sup

D(R/2)
G

6G(q)

6
36

R2
sup
D(R)

(|∇Rm|2S−1)

6
c

R
,

where in the last line we have used (2.18) and that Sf > c > 0, by [CLY11].
In conclusion, we have proved that if G(q) > 0, then

sup
D(R/2)

(|∇Rm|2S−1) 6 c.
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On the other hand, if at the maximum point q of G we have G(q) 6 0, then w is nonpositive on
D(R), which again implies

sup
D(R/2)

(|∇Rm|2S−1) 6 c.

This proves the proposition. 2

We now wish to establish a gradient estimate for the scalar curvature. This will be improved
later.

Lemma 3.4. Let (M, g, f) be a four-dimensional shrinking gradient Ricci soliton with bounded
scalar curvature S 6 A. Then there exists a constant c > 0 such that

|∇ lnS|2 6 c ln(f + 2) on M.

Proof. We adopt an argument in [MW11a]. Let h := (1/ε)Sε with ε > 0 small, to be determined
later. Then a direct computation gives

∆fh = εh− 2ε|Ric|2S−1h+ (ε− 1)Sε−2|∇S|2.

Let us define σ := |∇h|2 = S2ε−2|∇S|2. The Bochner formula asserts that

1
2∆fσ = |Hess(h)|2 + 〈∇h,∇(∆fh)〉+ Ricf (∇h,∇h)

> 〈∇h,∇(∆fh)〉
> (ε− 1)〈∇h,∇(Sε−2|∇S|2)〉 − 2ε〈∇h,∇(|Ric|2S−1h)〉.

Note that

〈∇h,∇(Sε−2|∇S|2)〉= 〈∇h,∇(S−εσ)〉
=−ε〈∇h,∇S〉S−ε−1σ + S−ε〈∇h,∇σ〉
=−ε|∇h|2S−2εσ + S−ε〈∇h,∇σ〉.

Furthermore, we have

−ε〈∇h,∇(|Ric|2S−1h)〉>−2ε|∇Ric||Ric|h|∇h|S−1 − ε|Ric|2S−1|∇h|2

>−cεh|∇h| − cεσ
>−c− cσ,

where in the second line we used Propositions 3.1 and 3.3 to bound |∇Ric||Ric|S−1 6 c, and in
the last line we used εh = Sε 6 c.

Consequently,

1
2∆fσ > ε(1− ε)S−2εσ2 + (ε− 1)S−ε〈∇h,∇σ〉 − cσ − c. (3.8)

Let φ be a smooth nonnegative function defined on the real line so that φ(t) = 1 for 0 6 t 6 R
and φ(t) = 0 for t > 2R. We may choose φ so that

t2(|φ′|2(t) + |φ′′|(t)) 6 c.

We use φ(f(x)) as a cutoff function with support in D(2R). Note that we have |∇φ| 6 c/
√
R

and |∆fφ| 6 c for a universal constant c > 0.
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Let G := φ2σ. From (3.8), we find that

1
2φ

2∆fG = 1
2φ

4(∆fσ) + 1
2G(∆fφ

2) + φ2〈∇φ2,∇σ〉
> ε(1− ε)S−2ε G2 + (ε− 1)S−ε〈∇h,∇G〉φ2 − (ε− 1)S−ε〈∇h,∇φ2〉G
− cG− c+ 〈∇φ2,∇G〉.

At the maximum point of G we have

εG2 6 cG3/2|∇φ|Sε + cG+ c

6
c√
R
G3/2 + cG+ c. (3.9)

We now choose ε := (lnR)−1. It is easy to see that (3.9) implies

sup
M

G 6
c

ε
= c lnR.

This proves that
sup
D(R)

(S2ε|∇ lnS|2) 6 c lnR.

Using the bound in [CLY11] that S > c/R on D(R), one easily concludes that S2ε > c > 0. Thus,

sup
Σ(R)
|∇ lnS|2 6 c ln(f + 2)

and the result follows. 2

To prove Theorem 1.1 in the introduction, we need to improve the Ricci curvature estimate
from Proposition 3.1. Let us first establish a parallel version of Lemma 2.2.

Lemma 3.5. Let (M, g, f) be a four-dimensional shrinking gradient Ricci soliton with bounded
scalar curvature S 6 A. Then the function u := |Ric|2S−2 satisfies the differential inequality

∆Fu > 3u2S − cuS,

where F := f − 2 lnS.

Proof. Note that by Propositions 2.1 and 3.3 we have

|Rm|6 c

(
|∇Ric|√

f
+
|Ric|2 + 1

f
+ |Ric|

)
6 c

(√
S√
f

+
1

f
+ |Ric|

)
6 c(S + |Ric|).

In the last line we have used the fact that S > c/f on M . Since S 6 2|Ric|, we conclude that

|Rm| 6 c|Ric|. (3.10)

By (2.4) we have

∆f |Ric|2 > 2|∇Ric|2 + 2|Ric|2 − c|Rm||Ric|2

> 2|∇Ric|2 + 2|Ric|2 − c|Ric|3.
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Hence,

∆f (|Ric|2S−2) = S−2∆f (|Ric|2) + |Ric|2∆f (S−2) + 2〈∇S−2,∇|Ric|2〉
> 2|∇Ric|2S−2 + 2|Ric|2S−2 − c|Ric|3S−2 + 2〈∇S−2,∇|Ric|2〉

+ |Ric|2(−2S−2 + 4|Ric|2S−3 + 6|∇S|2S−4). (3.11)

We can estimate

2〈∇S−2,∇|Ric|2〉= S2〈∇S−2,∇(|Ric|2S−2)〉
− 〈∇S−2,∇S−2〉|Ric|2S2 + 〈∇S−2,∇|Ric|2〉

>− 2〈∇ lnS,∇(|Ric|2S−2)〉 − 4|∇S|2S−4|Ric|2

− 4|∇Ric||∇S|S−3|Ric|
>− 2〈∇ lnS,∇(|Ric|2S−2)〉 − 6|∇S|2S−4|Ric|2

− 2|∇Ric|2S−2.

Plugging this into (3.11) we get

∆F (|Ric|2S−2) > 4|Ric|4S−3 − c|Ric|3S−2

> 3|Ric|4S−3 − c|Ric|2S−1, (3.12)

where we have used the Cauchy–Schwarz inequality

c|Ric|3S−2 6 |Ric|4S−3 + c|Ric|2S−1

in the last line. This proves the result. 2

We are ready to prove the following result which was stated as Theorem 1.1 in the
introduction.

Theorem 3.6. Let (M, g, f) be a four-dimensional shrinking gradient Ricci soliton with bounded
scalar curvature S 6 A. There exists a constant c > 0 such that

sup
M

|Rm|
S

6 c. (3.13)

Proof. By (3.10) it suffices to show that

sup
M

|Ric|
S

6 c. (3.14)

By Lemma 3.5, the function u := |Ric|2S−2 satisfies the differential inequality

∆Fu > 3u2S − cuS. (3.15)

Let ψ(t) = (R− t)/R on [0, R] and let ψ = 0 for t > R. Using ψ(f) as a cutoff function on
M , we have

|∇ψ|= 1

R
|∇f |

∆fψ =
1

R
(f − 2). (3.16)

By Lemma 3.4,

2286

https://doi.org/10.1112/S0010437X15007496 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X15007496


Geometry of shrinking Ricci solitons

∆Fψ = ∆fψ + 2〈∇ lnS,∇ψ〉

>
1

R
(f − 2)− 2

R
|∇ lnS||∇f |

>
1

R
(f − 2)− c

R

√
f ln(f + 2).

The constant c > 0 in the above estimate depends on A and D(r0). Therefore, there exists t0 > 0,
depending on A and D(r0), such that

∆Fψ > 0 on D(R)\D(t0). (3.17)

Using (3.15) and (3.17), for the function G := ψ2u we have that on M\D(t0),

ψ2∆FG> 3G2S − cGS +G∆Fψ
2 + 2〈∇u,∇ψ2〉ψ2

> 3G2S − cGS + 2〈∇(Gψ−2),∇ψ2〉ψ2

= 3G2S − cGS + 2〈∇G,∇ψ2〉 − 8|∇ψ|2G. (3.18)

By (3.16) and the estimate Sf > c > 0 we have

|∇ψ|2G6
1

R
G

6
1

c
SG.

Therefore, (3.18) becomes

ψ2∆FG > (3G2 − cG)S + 2〈∇G,∇ψ2〉.

Now the maximum principle implies that G must be bounded on M\D(t0). Moreover, by
Theorem 2.4, there exists c > 0 such that |Rm| 6 c on D(t0)\D(r0). Since S > c/f > c/t0
on D(t0)\D(r0), this proves (3.14) and hence the theorem. 2

We can now improve the covariant derivative estimate in Proposition 3.3 as well.

Theorem 3.7. Let (M, g, f) be a four-dimensional shrinking gradient Ricci soliton with bounded
scalar curvature S 6 A. Then there exists c > 0 such that

|∇Rm| 6 cS on M.

In particular,
sup
M
|∇ lnS| 6 c.

Proof. Using (3.2) we get

∆f (|∇Rm|2S−2) > S−2(2|∇2Rm|2 + 3|∇Rm|2 − c|Rm||∇Rm|2)

+ |∇Rm|2(−2S−2 + 4|Ric|2S−3 + 6|∇S|2S−4)

+ 2〈∇|∇Rm|2,∇S−2〉. (3.19)

Observe that

2〈∇|∇Rm|2,∇S−2〉= 〈∇(|∇Rm|2S−2)S2,∇S−2〉+ 〈∇|∇Rm|2,∇S−2〉
> 〈∇(|∇Rm|2S−2),∇S−2〉S2 + |∇Rm|2S−2〈∇S2,∇S−2〉
− 4|∇2Rm||∇S||∇Rm|S−3

>−2〈∇(|∇Rm|2S−2),∇ lnS〉 − 6|∇Rm|2|∇S|2S−4

− 2|∇2Rm|2S−2.
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It now follows from (3.19) and Theorem 3.6 that the function w := |∇Rm|2S−2 satisfies the
inequality

∆Fw > w − c|Rm|w
> w(1− cS), (3.20)

where F := f − 2 lnS. We now show that a function w > 0 satisfying (3.20) must be bounded.
Let ψ(t) = (R− t)/R on [0, R] and ψ = 0 for t > R. We view ψ(f) as a cutoff function on D(R).

For G := ψ2w we have that

∆FG > G(1− cS) + 2ψ−1(∆Fψ)G− 6ψ−2|∇ψ|2G+ 2ψ−2〈∇G,∇ψ2〉. (3.21)

Let q ∈ D(R) be the maximum point of G. If S(q) > 1/c, where c > 0 is the constant in (3.21),
then from the definition of w and Theorem 2.4 one sees that G 6 G(q) 6 C on D(R). This
proves that w is bounded on D(R/2). So we may assume in (3.21) that 1− cS(q) > 0. Now the
maximum principle implies that at q we have

0 > ψ−1(∆Fψ)− 3ψ−2|∇ψ|2. (3.22)

We estimate

∆Fψ =− 1

R
∆f (f) +

2

R
〈∇ lnS,∇f〉

>
f − 2

R
− 2

R
|∇ lnS|

√
f

>
f − c

√
f ln(f + 2)− 2

R
,

By Lemma 3.4, there exists t0 depending on A and D(r0) such that ∆Fψ > f/(2R) on M\D(t0).
If q ∈ D(t0), then it follows as in the proof of Theorem 3.6 that w 6 c on D(R/2). So without
loss of generality we may assume q ∈ D(R)\D(t0), and hence

∆Fψ >
f

2R
at q.

Therefore, (3.22) implies that at q,

f

R
ψ 6 6|∇ψ|2 6 6

1

R2
f.

This means f(q) > R− 6 and

1

4
sup

D(R/2)
(|∇Rm|2S−2) 6 sup

D(R/2)
G

6G(q)

6
36

R2
sup
D(R)

(|∇Rm|2S−2)

6
c

R
,

where in the last line we have used Proposition 3.3 and Sf > c > 0. This again proves that
|∇Rm|2S−2 is bounded. In conclusion, we have proved that

sup
D(R/2)

(|∇Rm|S−1) 6 c.

Since R is arbitrary, this proves the theorem. 2
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4. Curvature lower bound

In this section we prove Theorem 1.2. The argument relies on the results from the previous
sections and uses ideas of Hamilton and Ivey on the curvature pinching estimate for three-
dimensional Ricci flows. We first establish the following result, which improves Proposition 2.1.

Lemma 4.1. Let (M, g, f) be a four-dimensional shrinking gradient Ricci soliton with bounded
scalar curvature. Then

Rabcd = (Racgbd −Radgbc +Rbdgac −Rbcgad)

− S
2

(gacgbd − gadgbc) +O(Sf−1/2).

Proof. Following the proof of Proposition 2.1 we have that

Rabcd = RΣ
abcd − hachbd + hadhbc

= (RΣ
acgbd −RΣ

adgbc +RΣ
bdgac −RΣ

bcgad)

− 1
2S

Σ(gacgbd − gadgbc)
−hachbd + hadhbc (4.1)

Recall also that

RΣ
ac = Rac −Ra4c4 +Hhac − habhbc
SΣ = S − 2R44 +H2 − |h|2.

Using Theorem 3.7 we can estimate

|Rijk4| 6 c
|∇Ric|√

f
6 cSf−1/2. (4.2)

Hence, (4.1) implies

Rabcd = (Racgbd −Radgbc +Rbdgac −Rbcgad)

− S
2

(gacgbd − gadgbc) + E +O(Sf−1/2), (4.3)

where

E = (Hhac − haehec)gbd − (Hhad − haehed)gbc
+ (Hhbd − hbehed)gac − (Hhbc − hbehec)gad
− 1

2(H2 − |h|2)(gacgbd − gadgbc)
−hachbd + hadhbc. (4.4)

Note also that by Theorem 3.6,

hab =
fab
|∇f |

=
1

2
gabf

−1/2 +O(Sf−1/2). (4.5)

Plugging (4.5) into (4.4) and simplifying, we immediately obtain

|E| 6 O(Sf−1).

By (4.3), this proves the lemma. 2
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We are now in position to prove Theorem 1.2. For convenience, we restate it here.

Theorem 4.2. Let (M, g, f) be a four-dimensional shrinking gradient Ricci soliton with bounded
scalar curvature S 6 A. Then the curvature operator is bounded below by

Rm > −
(

c

ln(r + 1)

)1/4

, (4.6)

for a constant c > 0 depending only on A and D(r0), where r0 depends only on A.

Proof. By (4.2), to establish (4.6) for the curvature operator of M , it is enough to do so for its
restriction to the subspace ∧2(TΣ). Restrict the Ricci curvature of M to Σ and let λ1 6 λ2 6 λ3

be the eigenvalues of the resulting operator. Our goal is to show that

ν > −
(

c

ln f

)1/4

, (4.7)

where
ν := λ1 + λ2 − λ3.

In view of Lemma 4.1, it is clear that (4.7) implies (4.6).
We also define

λ := λ1 + λ3 − λ2

µ := λ2 + λ3 − λ1. (4.8)

Note that ν 6 λ 6 µ.
We now prove (4.7). Using Lemma 4.1 it follows that

∆fRac = Rac − 2RaicjRij

= Rac − 2RabcdRbd +O(Sf−1)

= Rac − 3S̄Rac + S̄2gac + 4RadRdc − 2|Rcd|2gac +O(Sf−1/2), (4.9)

where
S̄ = gacRac = λ1 + λ2 + λ3 = ν + λ+ µ.

Observe that by (4.2), |S − S̄| 6 cSf−1/2. Also, note that (4.9) implies

∆f S̄ = S̄ − 2|Rac|2 +O(Sf−1/2). (4.10)

We use (4.9) to obtain, in the sense of barrier,

∆fλ3 > λ3 − 3S̄λ3 + S̄2 + 4λ2
3 − 2|Rab|2 − cSf−1/2.

Since ν = S̄ − 2λ3, it follows that

∆fν 6 ν + 6S̄λ3 − 2S̄2 − 8λ2
3 + 2|Rab|2 + cSf−1/2. (4.11)

Using (4.8), we can express the right side of (4.11) as

6S̄λ3 − 2S̄2 − 8λ2
3 + 2|Rab|2 = 3(λ+ µ+ ν)(λ+ µ)

− 2(λ+ µ+ ν)2 − 2(λ+ µ)2

+ (λ2 + µ2 + ν2 + λµ+ µν + νλ)

= −ν2 − λµ.
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Hence, (4.11) becomes
∆fν 6 ν − ν2 − λµ+ cSf−1/2. (4.12)

Modulo the error term Sf−1/2, this is the inequality one gets for three-dimensional shrinking
gradient Ricci solitons.

Let
F := f − 2 lnS.

We have

∆F (νS−1) = (∆fν)S−1 + ν(∆fS
−1) + 2〈∇ν,∇S−1〉+ 2〈∇ lnS,∇(νS−1)〉

6 (ν − ν2 − λµ+ cSf−1/2)S−1 + 2〈∇ lnS,∇(νS−1)〉
+ ν(−S−1 + 2|Ric|2S−2 + 2|∇S|2S−3)

+ 2〈∇(νS−1),∇S−1〉S + 2〈∇S,∇S−1〉(νS−1)

=−S−2((ν2 + λµ)S − 2|Ric|2ν) + cf−1/2.

It is easy to see that

(ν2 + λµ)S − 2|Ric|2ν = (ν2 + λµ)(ν + λ+ µ)

− (λ2 + µ2 + ν2 + λµ+ µν + νλ)ν +O(S2f−1/2)

= λ2(µ− ν) + µ2(λ− ν) +O(S2f−1/2).

So the function
u :=

ν

S

satisfies, in the sense of barrier, the inequality

∆Fu 6 −S−2(λ2(µ− ν) + µ2(λ− ν)) + cf−1/2. (4.13)

We remark that a function similar to u was used to classify locally conformally flat shrinking
Ricci solitons of arbitrary dimension in [ELM08]. This function also appears in the Hamilton–Ivey
curvature pinching estimate for three-dimensional ancient solutions [CLN06].

We want to prove a lower bound for the function u based on (4.13). For this, let R > r0 be
large enough so that

R1 := lnR > r0.

According to Theorem 3.6, there exists a constant c0 > 0 such that

u > −c0 on M. (4.14)

Consider the function
w := u+ kf−ε + εS−1,

where

ε=
1√
R1

=
1√
lnR

k = c0(R1)ε. (4.15)

The constant c0 > 0 in (4.15) is the same as that in (4.14). The choice of k guarantees that

w > 0 on ∂D(R1). (4.16)
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On M\D(R1),

∆F f
−ε =−ε(∆f (f))f−ε−1 + ε(ε+ 1)|∇f |2f−ε−2 − 2ε〈∇ lnS,∇f〉f−ε−1

6 ε(f − 2)f−ε−1 + ε(ε+ 1)f−ε−1 + 2ε|∇ lnS|f−ε−1/2

6 2εf−ε,

where in the last line we have used Theorem 3.7.
Next, we have that

∆FS
−1 = ∆fS

−1 + 2〈∇ lnS,∇S−1〉
=−(∆fS)S−2 + 2|∇S|2S−3 − 2|∇S|2S−3

=−S−1 + 2|Ric|2S−2

6−S−1 + c,

where in the last line we have used Theorem 3.6.
Hence, on M\D(R1),

∆Fw 6 −S−2(λ2(µ− ν) + µ2(λ− ν)) + 2εkf−ε − εS−1 + cε, (4.17)

where we have used the fact that cf−1/2 6 c(R1)−1/2 = cε on M\D(R1).
Let φ(t) = (R− t)/R on [0, R] and consider the cutoff function φ(f) on D(R). On

D(R)\D(R1) we have

|∇φ|= |∇f |
R

6
1√
R

∆Fφ= ∆fφ+ 2〈∇ lnS,∇φ〉

>
1

R
(f − 2)− c

R

√
f

>
1

2R
f. (4.18)

In the second line above we have used Theorem 3.7.
Now define the function G := φ2w on M\D(R1), which is positive on ∂D(R1) by (4.16)

and zero on M\D(R). Let us first assume that G is negative somewhere in D(R)\D(R1). Then
there exists an interior point q of D(R)\D(R1) at which G achieves its minimum. In particular,
G(q) < 0 and ν(q) < 0.

Using (4.17) and (4.18) it follows that at q,

0 6 φ2∆FG

= φ4∆Fw +G∆Fφ
2 + 2〈∇w,∇φ2〉φ2

6−S−2(λ2(µ− ν) + µ2(λ− ν))φ4 + (2kεf−ε − εS−1 + cε )φ4

+

(
φ
f

R
− 6|∇φ|2

)
G, (4.19)

where we have used

2φ(∆Fφ)G 6
1

R
φfG at q.

We now discuss two cases.
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Case 1. Suppose first that at q we have(
φ
f

R
− 6|∇φ|2

)
G 6 0.

Then, we see from (4.19) that

S−2(λ2(µ− ν) + µ2(λ− ν)) 6 2kεf−ε − εS−1 + cε. (4.20)

In particular, (4.20) implies that

εS−1 6 2kεf−ε + cε

6 2kε(R1)−ε + cε

= (2c0 + c)ε.

Here we have used the definition of k in (4.15). This shows that there exists a constant c1 :=
2c0 + c > 0 such that S(q) > 1/c1 > 0. Now (4.20) implies that

λ2(µ− ν) + µ2(λ− ν) 6 c(2kεf−ε + cε)

6 cε.

Hence,

λ2(µ− ν) 6 cε

µ2(λ− ν) 6 cε. (4.21)

In addition, we know that S̄(q) = µ + λ + ν > 1/(2c1) > 0, which implies that µ > 1/(4c1).
Therefore, one concludes from the first inequality in (4.21) (recall ν(q) < 0) that |λ| 6 c2

√
ε.

Using this in the second inequality of (4.21), we obtain

−ν − c2

√
ε6 λ− ν
6
cε

µ2

6 cε.

This proves that −ν(q) 6 c
√
ε and

G(q) > −c
√
ε

as S(q) > 1/c1 > 0. In conclusion,

inf
D(R/2)\D(R1)

w > 4G(q) > −c
√
ε. (4.22)

Case 2. Suppose now that at q we have(
φ
f

R
− 6|∇φ|2

)
G > 0.

Since G(q) < 0, we conclude that

R− f
R

f

R
6 6|∇φ|2

6
6

R2
f.

Hence, f(q) > R− 6 and φ(q) 6 6/R. We now conclude that

inf
D(R/2)\D(R1)

G>G(q)

= w(q)φ2(q)

>− c

R2
,
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where the last line follows from w > u > −c0. In particular,

inf
D(R/2)\D(R1)

w > − c

R2
. (4.23)

By (4.22) and (4.23) we conclude that if G is negative somewhere in D(R)\D(R1), then on
D(R/2)\D(R1),

ν

S
> − k

f ε
− ε

S
− c
√
ε. (4.24)

Certainly, the same conclusion holds true if G is nonnegative on D(R)\D(R1). Therefore,
from (4.15) and (4.24) we see that on D(R/2)\D(R1),

ν > −c
(
R1

f

)ε
− c
√
ε, (4.25)

Recall that ε = 1/
√

lnR. So on Σ(R/2) = ∂D(R/2), we get from (4.25) that

ν > −
(

c

lnR

)1/4

.

The constant c depends only on A and D(r0). Since R is arbitrary, this proves the result. 2

5. Conical structure

Our goal in this section is to prove the following theorem.

Theorem 5.1. Let (M, g, f) be a complete four-dimensional shrinking gradient Ricci soliton
with scalar curvature converging to zero at infinity. Then there exists a cone E0 such that (M, g)
is Ck asymptotic to E0 for all k.

Proof. We first prove that there exist constants c, C > 0 such that

c 6 Sf 6 C on M. (5.1)

The lower bound was established in [CLY11]. We now establish the upper bound.
By Theorem 3.6 we see that there exists a constant c0 > 0 for which

∆fS = S − 2|Ric|2

> S − c0S
2. (5.2)

Using that ∆f (f) = 2− f , we obtain

∆f (f−1) =−∆f (f)f−2 + 2|∇f |2f−3

6 (f − 2)f−2 + 2f−2

= f−1.

Choose r0 > 1 large enough so that on M\D(r0)

S <
1

4c0
(5.3)

for c0 > 0 the constant in (5.2) and also so that 6|∇f |2 > 4f . Then,

∆f (f−2) = 2(f − 2)f−3 + 6|∇f |2f−4

> 2f−2.
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Define the function
u := S − af−1 + c0a

2f−2, (5.4)

where
a :=

r0

2c0
.

By the choice of a and (5.3) it follows that

u < 0 on ∂D(r0). (5.5)

Indeed, on ∂D(r0) we have that

S − af−1 + 2c0a
2f−2 <

1

4c0
− 1

2c0
+

1

4c0
= 0.

Now note that

∆fu> S − c0S
2 − af−1 + 2c0a

2f−2

= u− c0S
2 + c0a

2f−2

= u− c0(S − af−1)(S + af−1)

> u− c0u(S + af−1).

Therefore, on M\D(r0),
∆fu > u(1− c0S − c0af

−1). (5.6)

We now claim that
u 6 cf−2 on M\D(r0). (5.7)

To prove this claim, let ψ(t) = (R− t)/R on [0, R] and let ψ = 0 for t > R. Define G := ψ2u and
compute

∆fG= ψ2∆fu+ u∆fψ
2 + 2〈∇u,∇ψ2〉

>G(1− c0S − c0af
−1)

+ 2ψ−1(∆fψ)G− 6ψ−2|∇ψ|2G+ 2ψ−2〈∇G,∇ψ2〉. (5.8)

Let q be the maximum point of G on D(R)\D(r0). If G(q) 6 0, then u 6 0 and the claim (5.7)
is true. So we may assume G(q) > 0. In this case, (5.5) implies that q is an interior point of
D(R)\D(r0). At q, by the maximum principle and (5.8), we have

0 > 1− c0S − c0af
−1 + 2ψ−1(∆fψ)− 6ψ−2|∇ψ|2

> 2ψ−1(∆fψ)− 6ψ−2|∇ψ|2. (5.9)

Since

∆fψ =
f − 2

R
>

f

2R
,

it follows from (5.9) that
f

R
ψ 6 6|∇ψ|2 6 6

1

R2
f.

This means that ψ(q) 6 6/R. Hence,

G(q) = u(q)ψ2(q)

6
c

R2
.
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Therefore,

1

4
sup

D(R/2)\D(r0)
u6 sup

D(R/2)\D(r0)
G

6G(q)

6
c

R2
.

Since R is arbitrary, this again proves the claim (5.7).
In conclusion, on M\D(r0),

S − af−1 + c0a
2f−2 6 cf−2

or Sf 6 a+ c. This proves (5.1).
Note that the preceding upper bound of S together with Theorem 1.1 implies that the

curvature of M decays quadratically. As indicated in [KW15], this fact alone suffices to show that
M must be asymptotically conical. We omit the details here and refer the reader to [KW15]. 2

6. Diameter estimate

In this section, we work with compact shrinking gradient Ricci solitons of arbitrary dimension and
establish a diameter estimate from above. We are partially motivated by the work in [FMZ08],
which implies that a complete gradient shrinking Ricci soliton with nonnegative Ricci curvature
and injectivity radius bounded away from zero must have finite topological type. Indeed, under
these assumptions, a second variation argument shows that all critical points of f must be
contained in a compact set of M , whose size depends only on the injectivity radius bound.

A more careful examination of this technique allows us to establish the following theorem.

Theorem 6.1. Let (M, g, f) be a compact gradient shrinking Ricci soliton of dimension n.
Assume the injectivity radius of (M, g) is bounded below by inj(M) > δ > 0. Then the diameter
of (M, g) has an upper bound of the form

diam(M) 6 c(n)

(
1 +

1

δ

)
.

Proof. Since M is compact, the potential f assumes a maximum and a minimum value. Let us
fix

f(p) = min
M

f

f(q) = max
M

f.

We continue to normalize f so that

S + |∇f |2 − f = 0, (6.1)

where S is the scalar curvature. Recall again that

f(x) 6 (1
2d(p, x) + c1)2 for all x ∈M

f(x) > 1
4d

2(p, x)− c1d(p, x) for all x ∈M\Bp(c2). (6.2)

Here both c1 and c2 depend only on the dimension n. Since S > 0, we see that (6.2) provides a
uniform upper bound estimate for |∇f | as well. Indeed, |∇f |2 6 f .
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Consider now a minimizing normal geodesic σ joining p and q, parametrized so that σ(0) = p
and σ(R) = q. We apply the second variation formula of arc length to σ(s), 0 6 s 6 R, and
obtain ∫ R

0
Ric(σ′(s), σ′(s))φ2(s) ds 6 (n− 1)

∫ R

0
(φ′(s))2 ds

for any Lipschitz function φ with compact support in [0, R]. Using the fact that

Ric(σ′(s), σ′(s)) + f ′′(s) = 1
2

and integrating by parts, we obtain

1

2

∫ R

0
φ2(s) ds 6 (n− 1)

∫ R

0
(φ′(s))2 ds− 2

∫ R

0
f ′(s)φ(s)φ′(s) ds, (6.3)

where

f(s) := f(σ(s)).

For any R− 1
2δ 6 t 6 R− 1

4δ, let us take

φ(s) :=


s for 0 6 s 6 1,

1 for 1 6 s 6 t,
R− s
R− t

for t 6 s 6 R.

Then we get from (6.3) that

1

2
(t− 1) 6

1

2

∫ R

0
φ2(s) ds

6 (n− 1)

∫ R

0
(φ′(s))2 ds− 2

∫ R

0
f ′(s)φ(s)φ′(s) ds

= (n− 1)

(
1 +

1

R− t

)
− 2

∫ 1

0
f ′(s)s ds+

2

(R− t)2

∫ R

t
f ′(s)(R− s) ds.

By (6.2) and the subsequent comments, it is easy to see that

sup
Bp(1)

|∇f | 6 c(n).

This implies that ∫ R

t
f ′(s)(R− s) ds > δ2

64

(
R− c(n)

(
1 +

1

δ

))
.

Integration by parts then yields

−(R− t)f(t) +

∫ R

t
f(s) ds >

δ2

64

(
R− c(n)

(
1 +

1

δ

))
.

Since f(s) 6 f(R) = max f and 1
4δ 6 R− t 6 1

2δ, we see that

−(R− t)f(t) +

∫ R

t
f(s) ds6 (R− t)(f(R)− f(t))
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6
1

2
δ(f(R)− f(t)).

Thus,

f(R)− f(t) >
δ

32

(
R− c(n)

(
1 +

1

δ

))
, (6.4)

for all R− 1
2δ 6 t 6 R− 1

4δ.
Now the assumption that inj(M) > δ implies that the geodesic σ(s), R − 1

2δ 6 s 6 R, can
be extended into a minimizing normal geodesic over R− 1

2δ 6 s 6 R+ 1
2δ.

We consider the cutoff function ψ on [R− 1
2δ,R+ 1

2δ] defined by

ψ(t) :=

{
t− (R− 1

2δ) for R− 1
2δ 6 t 6 R,

(R+ 1
2δ)− t for R 6 t 6 R+ 1

2δ.

Applying the second variation formula to σ(t) for R− 1
2δ 6 t 6 R+ 1

2δ, we have that (see (6.3))

1

2

∫ R+(1/2)δ

R−(1/2)δ
ψ2(t) dt 6 (n− 1)

∫ R+(1/2)δ

R−(1/2)δ
(ψ′(t))2 dt− 2

∫ R+(1/2)δ

R−(1/2)δ
f ′(t)ψ(t)ψ′(t) dt.

This implies ∫ R

R−(1/2)δ
f ′(t)ψ(t) dt−

∫ R+(1/2)δ

R
f ′(t)ψ(t) dt 6 c(n)δ.

After integrating by parts, this can be rewritten as

δf(R) 6
∫ R+(1/2)δ

R−(1/2)δ
f(t) dt+ c(n)δ. (6.5)

Note that f(R) = f(q) = max f . So∫ R+(1/2)δ

R−(1/2)δ
f(t) dt 6

∫ R−(1/4)δ

R−(1/2)δ
f(t) dt+

3

4
δf(R).

By (6.5), this implies

1

4
δf(R) 6

∫ R−(1/4)δ

R−(1/2)δ
f(t) dt+ c(n)δ. (6.6)

Using (6.4), we conclude d(p, q) = R 6 c(n)(1 + (1/δ)). Therefore, by (6.2),

max
M

f 6 c(n)

(
1 +

1

δ

)2

.

Now the lower bound of f from (6.2) implies d(p, x) 6 c(n)(1 + (1/δ)), for all x ∈ M . By the
triangle inequality, one immediately sees that

diam(M) 6 c(n)

(
1 +

1

δ

)
.

This proves the theorem. 2
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