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Abstract. In previous discussions of the Gass-Saaty algorithm, the possibility of 
cycling is avoided by making strong nondegeneracy assumptions or by incorporating 
a lexicographic decision rule. By analyzing the geometric ideas on which the 
algorithm is based, it is shown here that even without any "lexicography," cycling 
is impossible unless the two objective functions are related in a very special way to 
each other or to the constraints defining the feasible region P. In particular, the 
avoidance of cycling does not require any restriction on the facial structure of P or 
on the algebraic relationships among the linear equalities and inequalities by means 
of which P is defined. 

Introduction 

The Gass -Saa ty  algori thm [6], [7] is concerned  with the maximizat ion  of  l inear  
objective funct ions  on a feasible region P defined by l inear inequal i ty  constraints  
in nonnega t ive  real variables.  In  addi t ion to two dist inct  objective funct ions  f 
and  g, it involves affine combina t ions  of  f and  g - - f u n c t i o n s  of  the form f~, = 
( 1 - / ~ ) f +  tzg. The computa t ion  starts from a basic feasible solut ion (bfs) so that 
maximizes f on P, and  then  uses the pivots of  the simplex method  to produce a 
sequence so, s ~ , . . . ,  Sk of  bfs and  a subdivis ion of  the uni t  inverval  

O= cr_t < O-o<. • .__ crk = 1 (1) 
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such that the following conditions are satisfied: 

(a) for 1-< i---k, si is obtained from si-i by means of a single pivot; 
(b) for 0 -  < i < k ,  si provides a P-maximum o f f ,  for all /~[cr i_ l ,  tri]; 
(c) Sk either provides a P-maximum of g or makes it easy to recognize that 

sup{g(p): p e P} = oo. 

The first part of (c) applies when P is bounded, and the inequalities in (1) are 
strict when P and its representation are "nondegenerate." 

The Gass-Saaty algorithm is useful when b o t h f  and g provide plausible ways 
of measuring the "value" of a point of P. If, as often happens, f and g cannot 
be maximized simultaneously, it may be desirable to inspect each of the bfs So, 
sl . . . .  , Sk and then choose among them by means of supplementary criteria. Also, 
when So is known from a previously solved problem that required maximization 
of f,  the parametric procedure is useful for maximizing an objective function g 
that results from a slight perturbation of f. Finally, when the sole aim is to 
maximize g, every choice of f and So (actually, as we shall see, a l m o s t  every 
choice) provides a pivot rule that determines the progression from one bfs to 
another until a g-maximizing bfs is reached (if one exists). 

In studying the algorithm from the last-mentioned viewpoint. Murty [10] shows 
that its worst-case behavior is exponential, while Borgwardt [2]-[4] and 
Haimovich [9] show that under reasonable assumptions on the distribution of 
input data, the average-case behavior is polynomially bounded. The sharp 
average-case results of  Adler et  al. [ 1 ] are also based on the parametric procedure 
of Gass and Saaty [6], [7]. All of  these authors make strong nondegeneracy 
assumptions to avoid the possibility of cycling (also, in some cases, for deeper 
reasons) and thus assure that the algorithm does indeed progress from the given 
f-maximizing bfs to a g-maximizing bfs. As shown by Murty [11], cycling can 
also be avoided by the use of a suitable lexicographic decision rule. 

In [ 11] Murty describes an example of Gana [5] which shows that unless some 
precautions (such as a lexicographic rule) are taken, cycling can occur in the 
"parametric right-hand-side simplex algorithm." This is dual to the "parametric 
cost simplex algorithm" (which we have called the Gass-Saaty algorithm), and 
Murty remarks that cycling can occur in the latter as well. When Gana's cycling 
example is converted into an example of cycling in the Gass-Saaty algorithm, it 
is seen that each of the two objective functions f and g is a negative multiple of 
the other. Our geometric analysis shows that this is in a sense typical. Cycling 
in the Gass-Saaty algorithm cannot arise from special geometric properties of 
the feasible region or from special algebraic relationships among the constraints 
defining the region. It can arise only from degeneracy in the relationship of the 
two objective functions to each other or to the constraints. 

In the absence of degeneracy, the geometry of the Gass-Saaty algorithm is 
very simple, and it has already been discussed in some of the papers mentioned 
above. The degenerate case is also not very complicated, but it does require a 
clear geometric understanding of the basic pivot process. In order to explain the 
geometry of the Gass-Saaty algorithm as clearly as possible, the first two sections 
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below provide a purely geometric formulation with no computational details. 
Computational aspects are treated in the third section, and the fourth section 
discusses the example of  Gana [5]. Some of  the proofs have been left to the reader. 

Our section headings are as follows: 1. Pointed polyhedra and their support 
systems; 2. Line crossing a system of polyhedral cones; 3. Computational aspects; 
4. An example of cycling. 

1. Pointed Polyhedra and Their Support Systems 

The Gass-Saaty algorithm is of course an algebraic procedure, but the aspect 
that we want to discuss is best understood in geometric terms. To prepare for 
the geometric analysis in Section 2, the present section collects the relevant 
properties of  pointed polyhedra and their support systems. Since the properties 
are all well known, they are stated here without proof. Some detailed arguments 
can be found in the books of  Griinbaum [8], Murty [10], and Schrijver [12]. 

Prefixes indicate dimension, and real d-space is denoted by R u. A polyhedron 
is a subset P of  ~d that is the intersection of  a finite family of  closed halfspaces. 
A set is said to be polyhedral if it is a polyhedron. A face of a polyhedron P is 
P itself, the empty set •, or P's intersection with a supporting hyperplane. The 
0-, 1-, and (d-1) -d imens iona l  faces of a d-polyhedron P are respectively its 
vertices (or extreme points), edges, and facets. The number of  faces is finite, and 
P's  faces (aside from P and perhaps Q) are precisely the intersections of  facets. 

A polyhedron is pointed if it has at least one vertex or, equivalently, is nonempty 
and contains no line. The unbounded edges of a pointed polyhedron P are its 
extreme rays, and it is known that P is the convex hull of the union of its extreme 
rays and extreme points. A set that is a nonempty union of rays issuing from the 
origin is called a cone. As is well known, a set is a pointed polyhedral cone if 
and only if it contains a ray but no line and is the intersection of  a finite family 
of  closed halfspaces whose bounding hyperplanes pass through the origin. A 
simple cone is one that consists of  all nonnegative linear combinations of  a 
linearly independent set; equivalently, it is a k-cone that has exactly k extreme 
rays. It is known that each polyhedral k-cone C is the union of  all the (simple) 
cones of the form con(R, u .  •. u Rk) (equivalently, R1 +" • • + Rk, the + indicat- 
ing vector addition), where the R~'s are extreme rays of C. 

The usual inner product in R d is denoted by ( , ). In terms of  this inner 
product, points o f R  d may be regarded as linear functionals on R d, and vice versa. 

The family ~ of  Theorem 1.1 is sometimes called the support system of  P. The 
conclusion of  Theorem 1.1 is denoted by SH1 because it is one of  the standing 
hypothesis in Section 2. 

Theorem 1.1. Suppose that V is the vertex-set o f  a pointed d-polyhedron P in R a. 
For each v c V, let 

C~ = {w ~ Rd: (V, W) = max(p, w)}. 
pep  
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Then with ~ = {  C,: v~_ ¢}, it is true that 

SHI:  ~ is a nonempty finite family of  pointed polyhedral d-cones in R d such that 
the union [..j ~ is convex and the intersection o f  any two members of  ~ is 
a face of  each. 

Note that C~ consists, in effect, of  all the linear functionais on R d whose 
P-maximum is attained at the vertex v. (It  is interesting also that the vector sum 
v +  C~ consists of  all points p ~ R d such that v is a point of  P nearest to p.) It is 
known that whenever a linear function on R a is bounded above on a pointed 
polyhedron P, it attains its P-maximum at a vertex of P. Hence I,_J~¢ is just the 
set of  all linear functions that are bounded above on P. This set is obviously 
convex, it is closed, and when P is bounded it is all of  R d. 

In Theorem 1.1 P is merely a geometric object sitting in R ~. However, for 
algorithmic purposes we must consider an algebraic representation of  P. 

Theorem 1.2. Suppose that z , , . . . ,  Zh are points of  Rd\{0}, none of  which is a 
positive multiple of  another, and that a , , . . . ,  ah are scalars. For each i let 

J i = { u ~ R d : ( u ,  zi)<-a~} and Hi={ucRd: (u , z~)=ai} ,  

a closed half-space and its bounding hyperplane. With P = (-~ J~, assume that P is 
pointed and d-dimensional, and let V and ~ be as in Theorem 1.1. For each v ~ V, 
let 

and set 

z ~ = { z , :  v~H,}, 

Z = U Z~ = {zi :Hi intersects V}, 
u E V  

= {[0, oo[z: z e Z}.  

Then 

SH2: ~ is a finite set o f  rays issuing from 0 such that (..j ~ c ( . . J  ~ and [.A Yt 
includes each extreme ray of  each member of  c~. 

In effect, Z~ consists o f  all the zi's for which the associated constraint is "'tight" 
or "binding" at v. By definition, 

[0, oo[z = {,~z: 0-< ,~ < oo}, 

so ~ is just the set of  rays that issue from the origin and pass through points of  
Z. Note that we permit an unlimited (finite) number  of  constraints of  each of  
the following sorts: 

nonbinding--half-spaces  Ji for which zi e Z ;  
binding but redundantmhalf-spaces  J~ such that z~ ~ Z but the ray [0, oo[z~ is 

not an extreme ray of  any member  of  cg; 
nonredundant  associated with the same v ~ Vmhalf-spaces J~ such that zi e Z 

and the ray [0, o0[zi is an extreme ray of C~. 
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The usual nondegeneracy assumptions require that no binding constraint is 
redundant and that each v e V is associated with precisely d binding constraints-- 
in other words, each member of  c~ is a simple d-cone and ~ consists precisely 
of  the extreme rays of  the members of cC In contrast, aside from requiring that 
the polyhedron P is pointed and full-dimensional, we do not restrict its com- 
binatorial structure or the algebraic structure of its representation. It is certainly 
appropriate to assume pointedness, because whenever an LP problem is formu- 
lated in standard or canonical form, its feasible region is (if nonempty) pointed 
by virtue of being a polyhedral subset of a nonnegative orthant. However, the 
assumption of full dimensionality is temporary, designed to make the geometric 
picture easier to follow. As is shown at the end of  Section 2 and in Section 3, it 
is not needed for our analysis of  the Gass-Saaty algorithm. 

In addition to the members of  ~f, two other collections of  cones are essential 
to our analysis. For h = d and for h = d -  1, let (qg, ~)h  denote the collection of  
all simple h-cones S such that the h extreme rays of S all belong to ~ and are 
all contained in the same member of cC Thus the members of (c¢, ~ )d - ,  are just 
the facets of the members of (c¢, ~)d.  Each member C of ~ is the union of the 
members of  (c¢, ~)d  that are contained in C, and the boundary aC is the union 
of  the members of (c¢, ~)d-~ that are contained in aC. Also, each member of 
(~, ~ )d  is contained in a unique member of  ~, by the second part of SH 1. Under 
the usual nondegeneracy assumptions, c~ is equal to (c¢, ~)d- 

AS is explained in the Introduction and in Section 3, the Gass-Saaty algorithm 
starts from a bfs So that represents an f-maximizing vertex of  P, and then attempts 
by suitable pivots to find a bfs that maximizes a different objective function g or 
to decide that g is not bounded above on P. Under the usual self.duality of R d 
with respect to the inner product, f and g may be regarded as points of  R a, and 
they determine an oriented line L (oriented, say, from f toward g). There is no 
point to the algorithm when g is a positive multiple of f, and the example in 
Section 4 shows that cycling may occur when g is a negative multiple of f. For 
the analysis in Section 2, we make the following nondegeneracy assumption: 

SH3: L is an oriented line in Rd\{0} that intersects U c¢ but does not intersect 
the relative boundary o f  any member o f  ( ~, ~ )d-t .  

(The relative boundary and relative interior of  a convex subset K of R d are 
respectively the boundary and the interior of K relative to the smallest fiat 
(affine subspace) containing it. In particular, the relative boundary of a member 
R~ +. • • + gd_  ! of (c~, ~ )d-l is the union of the d - 1 simple (d -2 ) - cones  formed 
by adding up all but one of  the Ri's.) 

Finally, the initial f-maximizing bfs so is brought into the picture by means 
of  the following assumption: 

SH4: The point f o f  L belongs to the member So o f  (~, ~)d .  

For the situation described in Theorems 1.1 and 1.2, condition SH3 is unrealistic 
because the vertex-set V, the collection ~ of polyhedral cones, and the collection 
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of  rays are usually not immediately available from the presentation of the 
feasible region p=(--)h j .  However, SH3 is implied by the condition that no 
point of  L can be expressed as a nonnegative combination of d - 2  of the points 
z~, and this in turn is implied by the following easily tested condition: 

SH3': For each linearly independent set Y consisting of  d - 2  of  the points z~, 
the linear hull of  Y u L is the entire space R d. 

2. Line Crossing a System of Polyhedral Cones 

Three conditions from Section 1--SH1, SH2, and SH3--are  assumed as standing 
hypotheses in the present section. Let < denote the antireflexive linear ordering 
of the line L that agrees with L's orientation, so that f < g  when L is oriented 
from f toward g. For each u ~ L, let L<(u) (resp. L>(u))  denote the open ray 
consisting of  all points q e  L such that q <  u (resp. q >  u). 

Now consider a sequence of  the form 

. . . .  T-~, S-1, To, So, TI, SI, . . . , (2) 

where only S0 is required to be present and the sequence may begin or end with 
either an S or a T. (For example, S-2, T_I, S_I, To, So, T~ and So, T~, $1, T2, $2 
are both sequences of  the indicated sort.) A sequence of  the form (2) is called 
a (~, ~ ,  L, So)-chain if  the following four conditions are satisfied whenever the 
mentioned sets exist: 

(a) S , e (~g ,~ )d ;  
(b) T~ and Tt+t are facets of  Si ; 
(c) T~ includes a unique point qt of L; 
(d) - . - < q i _ ~ < q o < q ~ < - . . .  

Condition (d) merely says that the points q~ march along L according to the 
given orientation. In particular, there is no repetition in the sequence (d) and 
hence (by (c)) none in the sequence of T~'s. From (a)-(d) and SH1-SH3 it follows 
that when T~ and T~+~ are both present, L intersects the interior of the simple 
d-cone S~ in an open segment ]q~, q~+l[ whose ends belong to the relative interiors 
of  the simple ( d -  1)-cones T~ and T~+t. It follows also that T~ = S H  c~ S; when 
all three of  these sets are present. In particular, there is no repetition in the 
sequence of  Si's. 

When the system (c~, ~,  L, So) arises from a parametric LP problem under the 
usual strong nondegeneracy assumptions, each S~ in (2) is a member of  ~. 
However, under the present hypotheses there may be many successive Si's in (2) 
that are properly contained in the same member of ~. (This occurs when many 
successive bfs correspond to the same vertex of  the feasible region P.) But even 
under the present weak assumptions, the following is true: 

Each sequence of pivots in the Gass--Saaty algorithm is associated with a 
(~ ,  ~ ,  L, So)-chain, and there is no repetition in such a chain. This is the crucial 
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point in explaining why degeneracies in the structure or representation of the feasible 
region cannot be responsible for cycling in the algorithm. 

With SH3 as the only nondegeneracy condition, Theorem 2.1 below contains 
the geometric essence of the Gass-Saaty algorithm. Computational aspects are 
discussed in Section 3. To correlate the theorem with the steps of the algorithm, 
think of  So as the simple d-cone corresponding to the nonbasic variables associ- 
ated with the initial f-maximizing bfs, and think of [qo, q~] as a segment in L 
that contains f. The usual algorithm progresses along the line L in only one 
d i r ec t ion - - f romf  toward g - - and  halts when it reaches g. However, the underlying 
geometry leads naturally to a subdivision of the entire line L, and that is described 
below. 

A (~, ~,  L, So)-chain (2) is said to be full if the following conditions are 
satisfied by the chain and the associated sequence (d) of  q{s: 

(a )  the chain starts with T-k for k>-0, and the ray L<(qk) misses (...) c¢; or 
(a ' )  the chain starts with S-k for k->0, and L<(q_k+~)c S_k; 
(to) the chain ends with Tt for l->0, and the ray L>(ql) misses [._) ~;  or 
(to') the chain ends with $1 for l>-O, and L~.(qt_l)c Sl. 

For a quadruple (c~, ~,  L, So) as in Section 1, condition (to) arises when each 
point of L>(ql) represents an objective function that is unbounded above on P. 
Condition (to') arises when each point of L~.(ql-l) represents an objective function 
whose P-maximum is attained at the vertex of P corresponding to the bfs whose 
set of nonbasic variables is associated with the simple cone $1. Similar comments 
apply to the conditions (c~) and (a'). 

Theorem 2.1. When the standing hypotheses SH1-SH4 are all satisfied, each 
(c~, ~,  L, So)-chain that is not full can be extended to a full (~, ~ ,  L, So)-chain by 
appending suitable S' s and T' s at one or both ends of the chain. 

Proof We consider first the case in which the chain consists of So alone. Since 
the point f of  L belongs to So by SH4, the line L certainly intersects So. By the 
nondegeneracy condition SH3, L does not intersect the relative boundary of any 
facet of So, and from this it follows that L intersects the interior of So. Since So 
contains no line, the intersection of L with the interior of So must be one of the 
following: an open ray L-~(ql), where f ~  ql; an open segment ]qo, q~[, where 
q o ~ f ~  q~ ; an open ray L~-(qo), where qo<f  Each of the q~'s belongs to a unique 
facet T~ of  So, and that makes it possible to begin the extension process. (Section 
3 discusses the algorithmic aspect of choosing T~.) 

Henceforth we discuss the extension process only for the right end of the 
chain. The situation for the left end is similar. We consider two eases, according 
to whether the (current stage of  the) chain under discussion ends with T~_t, S~ 
or with S~, T~. In the first case, the ray L~.(qr_~) is either contained in the simple 
d-cone S~--in which case the extension process at the right end of  the chain is 
terminatedmor it emerges from S~ at a point qt+~ of  a simple ( d - 1 ) - c o n e  
FE(c~, ~)d_l that is a facet of  Si, and in this case the chain is extended by 
appending Tt = F at the right end. 
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In the second case, TI and qt are already present. Then the ray L>(q~) either 
misses I,_J ~g--in which case the extension process at the right end of the 
chain is t e rmina ted- -or  it enters a simple d-cone G c  (~, ~ ) a  of  wh;ch Tt is 
a facet, and in this case the chain is extended by appending S~+1 = G at the 
right end. [] 

Until now we have assumed that the pointed polyhedron P c •  d is d- 
dimensional because that leads to a simpler geometric picture and hence to easier 
understanding. Now it is t ime to review the arguments used earlier, in order to 
explain why the assumption of  full dimensionality can be discarded. Suppose, 
then, that P is a pointed k-polyhedron in R d, with k < d. Let A denote the affine 
hull of  P, so that A is a k-flat (k-dimensional affine subspace) of  ff~d. Let N 
denote the set of  all linear functionals o n  ff~d that are constant on A, so that N 
is a (d - k)-dimensional linear subspace of  R a. Just as before, let V denote the 
vertex-set of  P, and for each v c V define the set C~, as before. Then C~ is still a 
polyhedral cone, but it is no longer pointed because of  course it contains the 
subspace N. The cone Cv has no extreme rays of  its own, but can be expressed 
in various ways as the direct sum of  the subspace N and a pointed polyhedral 
cone which of  course does have extreme rays. However, these extreme rays have 
no intrinsic importance. In the use of  SH2, the requirement that 

includes each extreme point of  each member  of  

was significant only because it guaranteed that 

for each v~  V, the cone C~ is the union of  the members of  the system (~¢, ~ ) a  
that are contained in C~. 

The latter condition is satisfied even when P is not required to be full-dimensional. 
And the use of  SH1 did not depend on the pointedness of the members of the 
collection qg of polyhedral cones, but only on the finiteness of  the collection and 
the fact that the intersection of  any two members is a face of  each. Those conditions 
are still satisfied when P is of  dimension less than d. 

3. Computational Aspects 

The aim of  this section is to relate the computational steps of  the Gass-Saaty  
algorithm to the geometric description contained in the preceding sections. Since 
the algorithm starts from a basic feasible solution, we assume without loss of  
generality that the feasible region is given by 

[All,,,]x=b, x>-'O, (3) 

where A is an r e x ( n - m )  matrix, I,, is the m x m  identity matrix, and the 
m-vector  b is nonnegative. 

Relative to (3), let x, . . . . .  x,_,,  denote the variables associated with the 
columns of  A and let y, , . . . ,  y,, denote the variables associated with the columns 
of  I,,. Thus initially the xr's are nonbasic variables and the yr's are basic variables. 
Let X denote the set of  "x-var iables"  and Y the set of  "y-variables." We shall 
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construct a system of cones in which each cone of maximum dimension corre- 
sponds to a basic feasible solution of (3). This system will not necessarily satisfy 
all the conditions stated in hypotheses SH 1-SH4, but it will fulfill all the conditions 
that were actually used in the proof  of Theorem 2.1. (In this connection, see the 
last paragraph of  Section 2.) Hence Theorem 2.1 will apply to the constructed 
system of  cones. 

Let ~ denote the set of  all feasible bases for (3), and for each B e  
let XB w Y~ denote the set o f  nonbasic variables, where Xa c X,  YB c y,  and 
card(XBw Y a ) = n - m .  With ei denoting the ith member  of  the standard 
basis for R n -"  and ak denoting the kth row of the matrix A, the cone S(B)  
associated with the feasible basis B is defined as follows: 

S(B)  = p o s ( { - e j  : Xj E X B }  L) { a k  : Y k  E yn}). 

In other words, S(B)  is the set of all nonnegative linear combinations of  the 
indicated vectors -e j  and ak. We claim that the n - m  generators - e j  and ak of 
S(B)  are linearly independent,  whence S(B)  is a simple ( n - m ) - c o n e  in the 
sense of  Section 1. 

In proving linear independence, we assume without loss of  generality that 

X n = { x l  . . . . .  x,} and Y a = { Y l , . . . , Y , - m - , } .  

Then the vectors - e ~ , . . . ,  - e , ,  al , .  • . ,  a , - , , - r  can be arranged as follows in an 
(n - m) × (n - m) matrix: 

a 1 ~ 

a n _ m _  r --> 

- e  I -> 

- e r . ~  

X I " " .  X r X r + l  " ' "  X n _  m 

• • D 

-1  
0 

- t  

To establish the desired independence, it suffices to note that the submatrix 
D (whose columns correspond to the basic variables x r+~ , . . . ,  Xn-m) has full 
rank, and this in turn follows from the fact that the m x m submatrix of  [AlIm] 
corresponding to the basic columns for B has the structure 

X r +  l " " " X n - m  Y n - m - r +  l " " " Y m  

and is invertible. 

D 

, • • . 

, ° . .  

0 

* 1 
• °  

0 

0 

1 

From the system ~ of  feasible bases for the system (3), we obtain a correspond- 
ing system of simple (n - m)-cones in R n - ' .  To compare this system directly with 
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the system (~, ~ ) d  of Section 1, we pass to the inequality version of (3), which 
is 

Ax<-b ,  x>-O (with x ~ R " - m ) .  (4) 

In connection with (4), the y-variables are interpreted as slack variables, and 
this leads to the usual bijective correspondence between the sets of  vertices of 
the feasible regions of  (3) and (4). 

Let P denote the feasible region of (4), and let the vectors 

- e l ,  • • •, -er ,  al , • • •, an -m-r  E ~n-m 

be associated as before with a feasible basis for (3). Then the associated vertex 
of P is the intersection of hyperplanes 

- -  f ~  n - m - r  
v -  H - e , m  0 H,~, 

j = l  k = l  

where 

H _ e = { x e R " - m : x j = O }  and H , ~ = { x ~ R " - " : ( a k ,  X)=O}. 

Thus the cone S ( B )  is spanned by the normals of  the n - m  hyperplanes in R "-m 
whose intersection is v. Setting d := n - m, this is exactly the situation described 
in Section 1, where Co is the union of all cones of  the form S ( B )  for which B 
is a feasible basis associated with the vertex v. This shows that the system (q¢, ~ ) d  
of Section 1 corresponds precisely to the set of  all S ( B )  where B belongs to the 
collection ~ of all feasible bases of  (4) (or (3)). Each extreme ray of the cone 
S ( B )  is associated with a unique nonbasic variable in B and is a member  of  the 
set Z of Theorem 1.2. 

For expository reasons, P was assumed in Sections 1 and 2 (except for the 
last paragraph of Section 2) to be of full dimension d. For purposes of  the present 
discussion, d is equal to n - m. Note, however, that the system (~, ~ ) d  of simple 
d-cones is obtained (as described in the preceding paragraph) whenever P is 
described as in (3), even if P is of  dimension less than d. I f  the feasible region 
P is nonempty and is described initially in the standard form 

A 'x  = b', x >- O, 

where A' is an m x n matrix, then whenever A' is of  rank m the usual conversion 
to canonical form yields a system such as (3). This leads to a system of  the form 
(4) and hence to the desired system of cones. (As was explained at the end of 
Section 2, pointedness of  the cones Cv is not essential.) 

Now let Si := S(B~) for some basis B~ ~ ~ ,  and let Z~ consist of  the vectors that 
span the extreme rays of  S~. (Thus each member  of  Z~ is a - e j  or an ak, and 
corresponds to a nonbasic variable for B~.) 
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Recalling the pivot procedure that is customary for edge-following primal LP 
algorithms, we see that the usual sort of feasible pivot step for (3) or (4) amounts 
to a transition from some S~ to some St÷,, where this is accomplished by removing 
an element of Zi (the corresponding variable enters the basis) and replacing it 
by another element (corresponding to the variable leaving the basis) to obtain 
Z;÷I. The sequence of pivots chosen by the Gass-Saaty method can be interpreted 
in terms of a line intersecting the sequence of the Si's. 

In the version of the parametric cost LP considered by Gass and Saaty [6], 
[7], two linear functionals c and c' on R d are given, along with a basic feasible 
solution that maximizes c on the feasible region P defined by (4). The aim is to 
find basic feasible solutions that maximize the various functionals of  the form 

c + h c '  with h ->0, (5) 

and this is equivalent (setting ~ = h / ( I  + h)) to maximizing the convex combina- 
tions 

f~ = (1 - / x ) c  +/xc' (0-</z < 1). (6) 

The linear functionals in (6) all belong to the segment [c, c'] in the space of linear 
functionals on g~d, and of course this segment is contained in the line L determined 
by c and c'. (With respect to the usual inner product, points of  •d are regarded 
as linear functionals on R d, and vice-versa.) 

The following nondegeneracy condition corresponds to condition SH3' of 
Section 1: 

Each set consisting of c, c', and d - 2  linearly independent columns of the matrix 
[AT I1,_,,] is linearly independent. 

This condition restricts only the position of the line L with respect to the feasible 
region P; it does not in any way restrict P itself. Once the condition has been 
checked, it will hold throughout the computation. There is no need to recheck 
it for the updated tableaus that result from changes in the set of basic variables. 

The Gass-Saaty algorithm starts from a basic feasible solution So (hence from 
a vertex of P) that maximizes the objective function Co := c. The bfs So corresponds 
to a simple d-cone--call  it So--that includes the point Co of L, and (as was noted 
in Section 2) the intersection of the line L with the interior of  So is an open 
segment ]qo, q,[, a ray L<(q~), or a ray L>(qo). The algorithm then successively 
pivots from Si to Si+, by finding a point qi÷~ which belongs to the boundary of  
S~ and also to the ray L>(qi) in L that issues from q~ and passes through the 
other objective function c'. The cone S H  is associated with another bfs that is 
obtained by replacing just one member of  Z~ by an element of  Z~÷,, and this 
corresponds to the geometric fact that S~÷~ intersects S~ in a ( d -  1)-cone T~÷I 
that contains q~+,. The algorithm stops at t he / t h  stage, where l is such that one 
of  the following holds: 

(i) c' is contained in [qt, qt÷,] and the bfs st maximizes the objective function 
C t" 
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(ii) No St exists, which means that the linear functional c' is not bounded 
above on P. 

(iii) No q~+~ exists, which means that s~ maximizes c'  and L > ( q l ) c  $~. 

The cases (ii) and (iii) correspond respectively to the cases (to) and (to') of 
Section 2. The sequence 

S o ,  T 1 ,  S t ,  . . . , S z - i ,  Tt or S o ,  T l  , S l  , . . . , Tt ,  St  

is a (~, ~ ,  L, So)-chain in the sense of  Section 2. The algorithm usually does not 
produce what we have called a full chain, because it is concerned only with the 
segment [f, g] c L and not with the entire line L. 

We showed in Section 2 that there is no repetition in the sequence of cones 
So, S l , .  • . ,  and thus it follows (under the assumption SH3') that the Gass-Saaty 
algorithm does not cycle. And it follows from the remarks preceding Theorem 
2.1 that the vertex associated with the cone Si maximizes all the linear functionals 
in the segment [qi, q~+~]. 

In computational practice [6], [7], the tableau defining the feasible region P 
is augmented by rows that express - c  and - c '  in terms of the nonbasic variables. 
And rather than moving along the segment in L given by (6), it is customary to 
parametrize the procedure along the ray given by (5). This is of course equivalent 
to the procedure described above. 

Let us denote by /3k and c~k the entries in the kth column of  the rows that 
represent the respective functionals - c  and - c ' .  At the pivot step from S~ to Si+t, 
the value 

/3r 
/}k i .~.~ 4 - -  

O / r  

= m i n { -  fl----~k : C~k < 0  and column k is nonbasic} 

is computed, the rth column of the tableau is chosen as the pivot column, and 
the pivot element in the column is chosen as usual [6], [7]. The procedure 
terminates when a c'-maximum is attained (or it is realized that no finite c'- 
maximum exists), and this is checked in the usual way. 

At each pivot step, the value Ai determines the critical functional qi = c + Aic'. 
The vertex determined by Si maximizes all q = c + ; t c '  for which )ti---A---A,+~. 
This sequence of q~'s corresponds to the one described in Section 2. 

For the Gass-Saaty procedure, the amount of  computation per pivot is compar- 
able to that for the ordinary simplex algorithm, because the only extra work 
consists of  updating the additional row. Computational experience (with a series 
of  randomly generated problems) seems to indicate that the number of pivots 
for the Gass-Saaty rule is slightly higher than for the usual gradient rule when 
both start with a basic feasible solution that maximizes c and the sole aim is to 
find a bfs that maximizes c'. However, the extra information supplied by the 
Gass-Saaty algorithm is useful in the circumstances for which the algorithm was 
developed. 
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4. An Example of Cycling 

The Gass-Saaty algorithm deals with "parametric cost" LP problems, and these 
are dual to "parametric right-hand-side" LP problems. Murty [11] describes an 
example of Gana [5] that produces a cycle of eight pivots for the "parametric 
right-hand-side simplex algorithm," and remarks that cycling can also occur in 
the "parametric cost simplex algorithm" (i.e., the Gass-Saaty algorithm). We 
shall dualize Gana's example, and demonstrate that the reason for cycling is 
precisely the violation of our assumption SH3. This illustrates the conclusion of  
our general analysis--that cycling cannot arise from any special algebraic relation- 
ship that involves the constraints alone, but only from "degeneracy" in the 
relationship of  the two objective functions to each other or to the constraints. 

The example in [11] can be stated as follows: 

Minimize 0x subject to 

x~+2x2 --> A - 1 .  

X2+2X 3 ~ A - l ,  

2xl + x3 -> ) t - l ,  

where xn, x2, x3, A ->0. 

The dual problem is: 

Maximize -(Yl + Y2 + Y3) q- A (Yl + Y2 + Y3) subject to 

Yl +2y3 -< 0, 

2yl + y2 <- O, 

2y2+  Y3 -< 0, 

where Yl ,Y2 ,Y3 , ) t  >- O. 

After the introduction of  slack variables, the dual problem assumes the form 
(3), with c = ( -1 ,  -1 ,  - 1 )  and c '=  (1, I, 1) = -c .  Thus condition SH3 is violated, 
even independently of  the constraints. The Gass-Saaty algorithm produces a 
cycle consisting of  eight pivots. 
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