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Abstract. We consider examples of Finsler metrics symmetric or not) on S", P"C,

P"H, and P2Ca with only finitely many closed geodesies or with only few short
closed geodesies. The number of closed geodesies in these examples and properties
of the closed geodesies are considered.

0. Introduction

It is an old problem in variational calculus to estimate the number of closed
extremals for a one-dimensional variational problem on a compact manifold. In
order to apply the usual methods of calculus of variations, the variational problem
has to be positive and positive regular. This reduces the problem to the existence
of closed geodesies for a Finsler metric on a compact manifold. By a Finsler metric
we mean a norm on each tangent space, possibly not symmetric, such that the unit
sphere in each tangent space is a strictly convex submanifold which depends
differentiably on the f ootpoint. One calls the Finsler metric symmetric (or reversible)
if the length of v and —v is the same and non-symmetric (or non-reversible)
otherwise.

It was quite surprising when Katok [12] in 1973 found some non-symmetric
Finsler metrics on S" with only finitely many closed geodesies. It is therefore of
some interest to examine these examples more closely, which will be done in this
paper. The examples are simple enough so that one can easily compute all invariants
of the closed geodesies and make a number of interesting observations.

It turns out that these examples exist in any neighbourhood of the standard
metrics on S", PnC, P"H, and P2Ca and that all closed geodesies are non-degenerate
and elliptic. The smallest number of closed geodesies that one obtains in these
examples is In on S2n and 52""1, n(n +1) on P"C, 2n(n +1) on P"H, and 24 on
P2Ca.

For these spaces we can show that any Finsler metric sufficiently close to the
standard metric and with all closed geodesies non-degenerate has at least as many
closed geodesies as in the examples. In addition to the Poincare map, one can also
compute the lengths and the Morse indices of all closed geodesies and one obtains
some remarkable pictures of what the Morse theory on the free loop space
C ' X S ' S M ) has to look like in order to build up the homology of this space with
only finitely many closed geodesies. For M = S2 for example, one can build up the
homology below any prescribed dimension with only one closed geodesic. On the
other hand these examples are rather exceptional, since we will show that for a
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136 W. Ziller

generic Finsler metric on a compact manifold, the initial vectors to closed geodesies
are dense in the unit tangent bundle.

The same construction also shows that there exist Finsler metrics on S", P"C,
P"H, and P2Ca with all geodesies closed, but not of the same least period. On the
other hand one can show that for any Finsler metric with all geodesies closed there
exists a common period for the closed geodesies, and for any symmetric Finsler
metric on S2 with all geodesies closed, the closed geodesies have to have the same
least period.

We will also generalize the construction of Katok to find some other interesting
examples. The Lusternik-Schnirelmann theory implies that, if one considers all
Finsler metrics close to the standard metrics on M = S", P"C, P"H, or P2Ca (instead
of only those which have only non-degenerate closed geodesies), then any such
metric has at least dimAf closed geodesies with lengths close to 2TT. We will
construct examples on these spaces of Finsler metrics with only dimM closed
geodesies of lengths close to 2TT and with the length of all other closed geodesies
larger than any prescribed number.

If one considers only symmetric Finsler metrics on S" which are close to the
standard metric, then Lusternik-Schnirelmann theory implies the existence of at
least g(n) = 2n — s — 1 closed geodesies with lengths close to 2TT, where

+ s <2
Notice that

( 3 n - l ) / 2 < g ( n ) < 2 n - l .

We will show that there exist symmetric Finsler metrics on S" with only 2 n - l
closed geodesies of lengths close to 2TT and with the length of all other closed
geodesies larger than any prescribed number. Using an unpublished example of J.
Milnor of a function on the Grassmannian of unoriented two planes in four space
with only four critical points, we will also construct Finsler metrics on S3 with only
g(3) = 4 closed geodesies of lengths close to 2TT and with the length of all other
closed geodesies larger than any prescribed number. These examples on S3 seem
to be a counter-example to one of the main theorems in [13], namely theorem
5.1.1, which claims that any metric on S" has at least 2n - 1 short closed geodesies.

In § 1 we explain the Katok examples, compute the smallest number of closed
geodesies that one can obtain, and explain the topological significance of these
numbers. In § 2 we derive the geometric properties of the Katok examples and in
§ 3 we give examples of symmetric and non-symmetric Finsler metrics with few
short closed geodesies.

1. Examples with finitely many closed geodesies

Let M be a differentiate manifold. A Finsler metric on M is a norm on each
tangent space, possibly not symmetric, such that the unit sphere in each tangent
space TqM is a strictly convex submanifold which depends differentiably on q.

Alternatively a Finsler metric is a function N: TM->R, differentiable off the
zero-section, such that D2

F{N2) is positive definite and such that
N{Xx) = \N{x) for all A >0 and x e TqM.
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Here D2
F denotes the second derivative in the fibre direction (see [22], chapter 1,

for details). N is called symmetric if N(-x)=N(x). If N is not symmetric and c(t)
is a closed geodesic, then c(-t) need not be a closed geodesic any more. If c(-t),
or a reparametrization of it, happens to be a closed geodesic, as will be the case
in the Katok examples, it will therefore be counted as a second closed geodesic.
If N is symmetric they will be counted as only one.

Finsler metrics are sometimes conveniently described on the cotangent bundle.
We consider T*M as a symplectic manifold with canonical symplectic form <o. Any
function H: T*M -* R gives rise to a Hamiltonian vector field XH defined by

dH(y) = co(XH, y) for all y e T(T*M).

If D%H is positive definite, the Legendre transform

LH=DFH:T*M^TM

is a local diffeomorphism. If H is homogeneous of degree two,

H(\x) = K2H{x) forA>0,

then LH is a global diffeomorphism and

N2=H°LH1

is a Finsler metric on M. XH describes the geodesies of the Finsler metric since the
projection of the integral curves of XM under n:T*M -*M are the geodesies-of
N. If 2N2 is a Riemannian metric, 2H is the dual metric and LH is the canonical
identification between TM and T*M.

To obtain the examples of Katok one starts with a Riemannian metric g on M
with all geodesies closed and which admits a one-parameter group of isometries.
By a theorem of Wadsley [5, p. 182], the closed geodesies of g have a common
period r and we normalize the metric such that r = 2n. After changing the one-
parameter subgroup <f>, if necessary we can also assume <f>27T = id. (Since the isometry
group of g is a compact Lie group, it contains a closed one-parameter subgroup
once it contains a non-trivial one-parameter subgroup.) Let V be the vector field
generated by <f>,. Define Ho, H^. T*M^R by

//„(*) HMI* and H1(x)=x{V)

where || ||* is the dual norm of g. Let

Ha is differentiate off the zero-section and homogeneous of degree one. For a
small D2F{H2

a) is positive definite since this is true for a = 0 and hence

defines a Finsler metric on M. Since Ha(-x) #//„(*), Na is not symmetric.
We will now examine the geodesic flow of N». The Hamiltonian vector field XHo

is not quite the geodesic flow of g (under the canonical identification of TM and
T*M via g) since Ho is homogeneous of degree one. But XHo and X{Hl are
proportional: _

XLHI = H0 XHO

and thus their integral curves are reparametrizations of each other. If c(t) is a
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geodesic and (c(t), Y(c(t)) an integral curve of XiHi in T*M and if co(s) is the

geodesic c parametrized by arc length, then (co(s), Y(co(s)) is an integral curve of

XHo- Thus if 4>"° is the flow of XHo we have

</'2ii = id

on all of T*M. It is well known that the flow of XHl is

<Af' = £>*<£,.

To see this one can verify directly that

( d \
\ ' dt t=o '

for a basis y =d/dq(, d/dp( of T(T*M). The flow of XHo and XHl commute since

<f>, are isometries of g. Thus the flow of XHa is

The geodesic flow of Na, i.e. the flow of X^Hi, again differs from tl/"a only by

reparametrization: if (c{t), Y(c(t)) is an integral curve of X<.Hl then (co(s), y(co(s))

is an integral curve of XHa where Co is a reparametrization of c such that

Na(c0(s))=l.

To examine the closed geodesies of Na let x e T*M be such that

$Tax = x

where T is the length of the closed geodesic in the Na metric. Since then

and since the flow of Ho and Hi commute, this implies that I/»"J- leaves the orbit

invariant. Hence <I/"*T leaves c invariant for « = 1, 2 , . . . . If aT/ln is irrational,

anTI7.iT is dense in R/Z and since

</'&=id,

c is then invariant under the whole one-parameter group ip"\ If aT = 2nm/n, then

x = <A%mx = 4>%x = 4>-ZTX

which implies that T/2TT and hence a must be a rational number. Since the base

point curves of \ji"° and il/"a are, up to parametrization, the geodesies of g and

Na respectively, we obtain:

/ / a is irrational, then the closed geodesies of Na are, up to parametrization, the

closed geodesies of g which are invariant under the one-parameter group <f>,.

The simplest example is M = S2 with its standard metric of constant curvature 1

and <f>, the one-parameter group of rotations leaving the north and south poles

fixed. The equator traversed in each direction is the only great circle invariant

under <f>, and hence Na is a Finsler metric on S2, which for a small and irrational,

has only two closed geodesies. To visualize the geodesic flow of Na we can identify

T*M and TM via g in which case the flow ifj"a carries over into the flow G, ° D<t>al

where G, is the geodesic flow of g. The base point curves of G, ° D<f>al are then the
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geodesies of Na parametrized according to arc length. One can view this as observing
the geodesic flow on 52 with constant curvature from a coordinate system which
is rotating at constant irrational speed.

The constant curvature 1 metric on S" and the standard metrics on PnC, PnH,

and P2Ca with curvature between 1/4 and 1 have all geodesies closed of length
2TT and we will now show:

There exist Finsler metrics on S2n and S2"'1 with only 2n closed geodesies and on
P"C, PnH, and P2Ca with only n(n+1), 2n(n +1), and 24 closed geodesies respec-
tively. These Finsler metrics exist in any neighbourhood of the standard Riemannian
metrics.

For S2"'1 any closed one-parameter group of isometries is conjugate to a diagonal
matrix

<f>, = diag (Ript/py),... ,R(pt/pn))

where p, eZ, p = p\ • • • pn and R((o) is a rotation in R2 with angle w. For S2n the
same is true if the matrix is enlarged by one row and one column with a 1 in the
diagonal. The closed geodesies on 5" invariant under <f>, are given by the intersection
of two-dimensional invariant planes in Rn+l with Sn. If the p, are relatively prime
only the two-dimensional planes corresponding to the planes of rotation are
invariant under <j>,. Each gives rise to two closed geodesies and hence Na has 2n
closed geodesies on S2n and S 2 " 1 if a is irrational. By different choices of the p,-'s
one obtains Finsler metrics on S" where the number of closed geodesies is any
even number between n and n (n +1)/2.

For PnC the isometry group is SU(« + l)/Zn+i which can be realized as follows:
If we take the Hopf fibration S1 -* S2n+1 -*PnC then U(n +1) acts on S2n+1 = C"+1

and only the elements in the centre of U(n + 1) induce trivial maps on P"C. Every
closed one-parameter subgroup in U(n +1) is conjugate to

for some p, and p =pi • • • pn+i. Any closed geodesic on P"C lifts to a closed
geodesic on S2n+1 which is orthogonal to the fibres and vice versa. Thus the lift to
52"+1 of a closed geodesic in P"C invariant under <t>, lies in a two-dimensional
complex subspace of C"+1 invariant under </>,. If the p, are relatively prime these
consist of two-dimensional planes spanned by any two coordinate vectors. This
reduces the situation to U(2) acting on S1-*S3-*P1C = S2. But we already know
that on S2 there are only two closed geodesies invariant under a one-parameter
group. One easily sees that the closed geodesies coming from distinct planes are
distinct. Hence Na has n (n +1) closed geodesies if a is irrational. A similar argument
works for P"H using the Hopf fibration S3^S4n+3^PnH. For P2Ca there exists
no such fibration, but one can also argue intrinsically by observing that any closed
geodesic on P2Ca lies in a unique 8-dimensional totally geodesic sphere of constant
curvature 1 which then has to be left invariant under <£,. A general one-parameter
group of isometries leaves only three such spheres invariant and on each there
exist 8 invariant closed geodesies by the previous discussion.

https://doi.org/10.1017/S0143385700001851 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700001851


140 W. Ziller

There are other Riemannian metrics satisfying the hypothesis needed for the
construction of such Finsler metrics. On S" one has, for example, the generalizations
of Zoll surfaces [5, p. 120], but there also exist metrics on S" with all geodesies
closed and admitting no isometries [5, p. 126]. Nevertheless one does not obtain
any examples with less closed geodesies than in the ones above. Notice also that
by a theorem of Bott and Samelson [5, p. 186], the only manifolds admitting
Riemannian metrics with all geodesies closed of the same least period are either
diffeomorphic to PnR or have the same integral cohomology ring as S", P"C, P"H,
P2Ca. The same theorem is probably true if one does not assume that the closed
geodesies have the same least period, see e.g. [5, p. 192]. Hence spheres and
projective spaces are the only manifolds on which one obtains examples as above
of Finsler metrics with only finitely many closed geodesies. This is complemented
by a theorem of Gromoll-Meyer [10], which has been generalized to Finsler metrics
[14], and states that if the Betti numbers 6,(A(Af), K) of the free loop space
A(M) = C0^1, M) are unbounded as i -* oo for some field K, then any Finsler metric
on M (symmetric or not) has infinitely many closed geodesies. The only known
simply connected examples of manifolds where bi(A{M), K) is bounded for every
field K are again the spheres and projective spaces.

Notice that the assumption that Ho comes from a Riemannian metric was not
essential in the construction of Na. More generally if Ho and Hi are two commuting
Hamiltonians such that all orbits of XHo are closed and non-trivial with a common
period and such that the flow of XHl induces an S1 action, then the periodic orbits
of

are, for a irrational, the periodic orbits of Ho invariant under the flow of H\. See
[8] for an application of this idea to the problem of the existence of brake orbits.

We will now show that the number of closed geodesies in the examples on spheres
and projective spaces have some topological significance and are optimal in a certain
sense.

Let M be a manifold with a Riemannian metric such that all geodesies are closed
of the same least period 2v. Then one has an S1 fibration S1 -» T\M -*C where Sl

acts on TiM by linear reparametrization of the closed geodesies. C is
a compact manifold and from [25] one knows that the Euler class e e H2(C) of the
S1 fibration TXM^C satisfies e""1 = [C]#0. Perturbation methods as in [27]
or Lusternik-Schnirelmann theory (respectively Morse theory) on the free loop
space show that any Finsler metric N on M sufficiently close to g has at least as
many closed geodesies of length approximately 2TT as a function on C has critical
points. If all closed geodesies of N with lengths close to 2ir are non-degenerate
(which is satisfied for an open and dense set of Finsler metrics N) then N has at
least Zilo"" bi(C) closed geodesies of length approximately 2n.

The number of critical points of a function on C can be estimated from below
by the category of C, which in turn can be estimated by the cup length of C. The
cup length is the largest number of (not necessarily distinct) cohomology classes
whose cup product is non-zero, where we are allowed to count leH°(C) once.
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Since e"1 9^0 the cup length of C is at least dimM. Hence any function on C has
at least dimM critical points. To compute £6;(C) one can first use the Gysin
sequence of S"'1 -*TiM ->M to compute the cohomology of 7\M and then the
Gysin sequence of Sx -*T\M->C to compute the Betti numbers of C. Since the
cohomology ring of M is isomorphic to the cohomology ring of a sphere or a
projective space if M is simply connected, we can restrict ourselves to these spaces
and obtain:

M non-zero b, (C, Q)

S
in I H

bi = \,i even

S2 n + 1 bi = 1, / even except b2n = 2

P"C b0 = 1, b2 = 2, 64 = 3 , . . . , b2n-2 = n = b2n, b2n+2 = n - 1 , . . . , bn,n-2 = 1

P H bo = b2 = 1, b\ = bf, = 2,..., b^-4 = b4n-2 = n = b*n = b4n+2,..., b%n-2 = 1

P Ca bo = b2 = 64 = be— 1, ^g = iio = • • • = b22 = 2, b2\ = b2e = • • • = fe30 = 1

Thus we obtain for X b,(C): 2n for S2n and 5 2 "" 1 ; n(n +1) for P"C ; 2n(n +1) for

P n / / ; and 24 for P2Ca.

Any Finsler metric on M = S", PnC, P"H, P2Ca sufficiently C2 close to the standard

metric has at least dim M closed geodesies of length approximately 2TT. If all closed

geodesies of length close to 2ir are non-degenerate, then the Finsler metric has at

least 2n such closed geodesies on S2n or S2"~~\ n(n + \) on P"C, 2n(n +1) on P"H,

and 24 on P2Ca.

Thus among all Finsler metrics (C2 close to the standard metric) only the examples
Na on S2" are optimal, but all examples are optimal if one considers only Finsler
metrics with non-degenerate closed geodesies. As we will see later, for the examples
Na with a irrational, the closed geodesies are always non-degenerate.

These examples of Finsler metrics with only finitely many closed geodesies are
rather exceptional, as the following result shows:

Among the C2 Finsler metrics on a compact manifold, it is a generic behaviour in

the C2 topology, that the initial vectors to closed geodesies are dense in the unit tangent

bundle.

For Hamiltonian systems this is a well known theorem, if the unit tangent bundle
is replaced by any compact energy surface, see [20] and [21]. The statement for
Finsler metrics follows easily from the one for Hamiltonian systems as we will now
see. Let H: T*M -* R be a Hamiltonian such that the energy surface H = c inter-
sected with each cotangent space T*M is a compact strictly convex hypersurface
containing the origin of T*M in its interior. The set of such Hamiltonians is an
open set in the set of all Hamiltonians on T*M. For each such Hamiltonian we
can define a function F on T*M which is homogeneous of degree two in the fibre
direction and such that F = c agrees with H = c. F is then a Finsler metric on M
and the geodesies of F on F — c are just reparametrizations of orbits of H on
H = c, see e.g. [26]. Now the closing lemma for Finsler metrics follows directly
from the closing lemma for Hamiltonian systems. Similarly a Finsler metric with a
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closed geodesic can be perturbed so that the closed geodesic becomes non-degen-
erate (under the homogenizing procedure the Poincare map stays the same). But
these two facts are sufficient to prove the above generic statement just as in the
Hamiltonian case, see [21, pp. 591-592].

It is not known if this generic behaviour is also true for Ck Finsler metrics (or
Ck Hamiltonian) in the Ck topology, 2<k <oo. It is also not known if the above
generic statement is true for symmetric Finsler metrics or Riemannian metrics,
even in the C2 topology.

Let us finally remark that the purpose of Katok's paper [12] was not to construct
such Finsler metrics Na. Katok wanted to construct Riemannian metrics or Finsler
metres on S" whose geodesic flow is ergodic. He showed that one can perturb the
Finsler metrics Na to obtain Finsler metrics N'a such that the geodesic flow of N'a
is ergodic and such that Na and N'a have the same closed geodesies and Na and
JV|, and all of their higher derivatives agree along these closed geodesies. Hence
one also obtains ergodic Finsler metrics with the same number of closed geodesies
and all of the geometric properties in § 2 remain true for N'a.

It seems that the proof in [12] of the existence of only finitely many closed
geodesies for Na is different from the one in this section. See also [1] and [14] for
a discussion of the Katok examples, but the number of closed geodesies in [14]
has been determined incorrectly.

2. Some geometric properties
We will now examine some of the geometric properties of the Finsler metrics

Ha=H0

on M = S", PnC, P"H, P2Ca where Ho comes from the standard metric on these
spaces. In most cases we carry out the computation only for M - S2, the other
cases being similar. Let us first determine the lengths of the closed geodesies.
From § 1 it is clear that the length agrees with the period of the periodic orbits of
XHa. Let

c{t) = ^°x

be a closed geodesic of Ho (in T*M) invariant under <j>,. For M = S2 it is clear that

il>?lc(t) = c(t±s)

and hence

il/?°°tl/"'x=c(t±at).

Therefore the length of c{t) under Na is equal to 2TT/(1 ±a).

The length of the closed geodesies of Na on S2 is equal to 2TT/(1 + a) and 2TT/(1 - a)
respectively depending on whether the closed geodesic is traversed in or opposite to

the direction of the rotation.

For the metrics Na on S", if <f>, is as in § 1, the lengths of the closed geodesies turn
out to be 2T7-/(1 +pa/pi) and 2TT/(1 —pa/pi) respectively and similarly for the other
manifolds.
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We will now examine for which a Ha is still a Finsler metric, i.e. for which a

is still a diffeomorphism. Let x e T*M and let *: T*M-> TM be the usual
identification between T*M and TM induced by the Riemannian metric Ho, and
|| || the norm of Ho on TM. Then

DFH0(x) = *x/\\*x\\ and DFHl(x)=V

and hence

DFHa{x) = *x/\\*x\\ + aV.

Thus

&l Ha(x) • DFHa(x)

Since || V|| < 1 it follows easily that DF(\H2
a) is a diffeomorphism iff \a\ < 1.

Na is a Finsler metric as long as \<x \ < 1. As a -* 1 the lengths of the closed geodesies

on S2 go to v and oo respectively.

Let us remark that the examples Na are also very interesting when a is rational.
Let a = k/m where k and m are relatively prime. The closed geodesies invariant
under <f>, then have least period

and

respectively. But all other closed geodesies have least period Itrm. Thus

There exist Finsler metrics on Sn, PnC, PnH, P2Ca with all geodesies closed but not

of the same least period.

If a = k/(k +1) for example then, after a renormalization, all geodesies are closed
of length 2TT except for one which has length 2ir/(2k +1). This is remarkable in
view of the following two facts.

For any Hamiltonian H on T*M, homogeneous of degree one and H{x)>0 for x # 0,
and such that all orbits ofXH are closed, the orbits have a common period.

This follows by combining the result of Helton [11] with the proof of the theorem
of Wadsley [5, p. 182], and the result of Moser [19, p. 622]. In particular this is
always true for Finsler metrics. For Riemannian metrics there is a conjecture that
if a metric on a simply connected manifold has all geodesies closed, then the closed
geodesies have to have the same least period. Recently this was shown to be true
for M = S2 [9]. Their proof carries over to symmetric Finsler metrics and hence:

For any symmetric Finsler metric on S2 such that all geodesies are closed, all geodesies

have to have the same least period and no self-intersections.

We will now compute the Poincare map of the closed geodesies. For a general
Hamiltonian H with flow &„ let c (t) be a closed orbit of period T, c (0) = c (T) = x,
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and energy 1 i.e. H(x) = l. Choose a section 2 in // -1(1) transversal to c at x.

Then there exist smaller neighbourhoods So and £x of x in 2 and a function
a: So -» i? such that

is a diffeomorphism which is symplectic with respect to w/S. @ is called the Poincare
map of c. P = D ^ is called the linearized Poincare map of c. In general P differs
from DxtpT since TXS is not necessarily invariant under Dxif/T. But if H is
homogeneous, say of degree one, then one can find a 2, such that TX1 is invariant.
From the homogeneity it follows that

and differentiating with respect to A and setting \ = 1, t = T, y = x we obtain

Dxtl,T(x) = T-c(0) + x

where x is equal to x considered as a vertical vector at x. But we also have

Thus x and c (0) form an invariant subspace which is non-degenerate with respect
to o) since

Since Dxt//T is symplectic, the w orthogonal ccomplement Z? of this subspace is a
non-degenerate invariant subspace. Choose 2 such that Tx 2. = E. Then

The linearized flow Dxip, can be described by choosing a variation of solution
curves cs(t), c0 = c, and the variation vector

= 0

is a solution of the linearized flow:

and hence P(Y(0))= Y(T). To compute Y(t) we choose a coordinate system q,
on M such that q 2

= • • • =<7« =0 is c(t), t=qu and <7i is periodic, qi(t + T) = qi(t)

(possible if c is orientable). Let (qi,Pi) be the induced coordinate system on T*M.

Since cs is a solution of the Hamiltonian equations qt = //Pl, p, = -//„, we obtain
for the vector field

the linear differential equation:

it =HPjPi • r)j+HqjPi • ij

ij -Hqfli

where derivatives are evaluated along c(t).

We apply this to

H = 2Ha

since the flow of XH is then the geodesic flow of Na. We carry out the calculation
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for M = S2. Let (qu q2) be as above such that d/dq\ = V and d/dq2 orthogonal to
V and of unit length with respect to Ho. Then for the geodesic of length 2TT/(1 +a)

we have Hi(qu pd=p\ and

= k((cos2q2)p
2+p22)'i+ap1)

2.

The periodic orbit c(t) of XiHl with base point curve C\(t) and Ha{c(t)) = 1 is of
the form

since

Along c{t) we have

HPl = l + a,

HP2 = Hqi = //<,2 = 0

and

" P i P2 = "<)lfll ~ "<Jl i2 ~

Hence the differential equation for K(f) is

^ f T n , I ] ! = 0 ,

The first set of equations tells us that E is spanned by d/dq2, d/dp2 and the second
set of equations tells us that with respect to the symplectic basis (l + aYd/dq2,
(1 + a) '3/3p2 ofE, P is a rotation with angle 2TT/(1 +a) . Similarly, for the geodesic
traversed in the direction opposite to the rotation the Poincare map is a rotation
with angle 2n/{l-a).

The linearized Poincare maps of the closed geodesies on S2 are rotations with angles

2-trHX + a) and 2ir/(\-a) respectively. In particular for a irrational all closed

geodesies are elliptic with irrational exponents.

For the metrics on S" the Poincare maps turn out to split into rotations with angles
2ir/(l±pa/p,).

We will now show that one can also give a description of the Morse theory of
the energy functional

on the free loop space A = C°°(S1,M). We do the computation again only for
M = S2, the other manifolds being similar. Denote by C\ the short closed geodesic
of length 2TT/(1 + a) and by c2 the long closed geodesic of length 2TT/(1 - a ) .
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The space C^iS1, M) can be made into a Hilbert manifold by using Hl curves
and the Morse theory for closed geodesies for Riemannian metrics is usually done
this way, see [13]. But for Finsler metrics this is not possible since the energy
function E is only C1 in this topology [15], which is sufficient for Lusternik-
Schnirelmann theory but not for Morse theory. But the classical method of M.
Morse of using finite dimensional approximations has already been used for Finsler
metrics by him [17]. The basic fact is that for Finsler metrics one can join nearby
points by unique minimal geodesies. In fact if M is compact there exists an 17 >0
such that points at distance less than 17 can be joined by a unique minimal geodesic,
see [6]. This is the only fact needed in order to construct finite dimensional
approximations (compare also [16]).

Let

Aa={ceA|E(c)<a}

and choose an integer k >0 such that 2a <k • TJ2. Define A(fc, a) as the subset of
Aa such that c\[i/k, (i + l)/k] is a geodesic for i = 0 , . . . , k - 1 . It follows from the
Schwarz inequality that for any ceA°

L2(c\[i/k,(i + l)/fc])s2a/& <v2

and hence c(i/k) and c((i + l)/k) can be joined by a unique minimal geodesic.
Therefore A(fc, a) is a deformation retract of A" and by choosing k sufficiently
large we can approximate all Aa by these subsets. But since an element of A(k, a)
is determined by the points c(i/k), A(k,a) is a finite dimensional manifold. The
energy function E\\(k,a) has the same critical points as E, namely the smooth
geodesies c, and their Hessian has the same index and nullity. The index will be
denoted by ind(c). Thus the Morse theory on A reduces to finite dimensional
Morse theory since the direct limit of A" as a -* 00 is just A.

For Finsler metrics one defines Jacobi fields just as in the Riemannian case,
namely as derivatives of variations of geodesies. If cs is a one-parameter family of
geodesies in M, then

Y(t) = c.(t)eTelt)M
as s = 0

is a Jacobi field along c. It follows from the computation of the linearized flow £)</<,
that the Jacobi fields in our example are the vector fields with components £,(f)
with respect to the coordinate system qt. Thus if Na(c) = 1 the essential Jacobi fields
(i.e. not tangent to the geodesic) are of the form

(b • cost + d • sin t)d/dq2.

The nullity of a closed geodesic, considered as a critical circle in A, is the dimension
of the space of periodic Jacobi fields (modulo c). Since a is irrational, the nullity
of c\ and c2 is 0. With c all its iterates ck(t) = c(kt) are closed geodesies and
represent different critical circles in A. Again, since a is irrational, all iterates c\

and c\ have nullity 0. Thus we have:

C\ and c2 and all of their iterates form non-degenerate critical submanifolds in A.
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The critical manifold of point curves is always non-degenerate and we can
therefore do Morse theory in A. A classical index theorem of M. Morse says that
the index of a closed geodesic c(t), 0 s t < T, is equal to the number of conjugate
points c(t0), 0<t0<T, counted with their multiplicity, plus the concavity of c. In
general the concavity of c is defined to be the index + nullity of D2EC restricted to
the Jacobi fields Y along c such that Y(0) = Y(T) (but not necessarily smooth at
0) minus the nullity of c. If the endpoints are not conjugate this is an immediate
consequence of the fixed endpoint index theorem. See [18] or [3] for a modern
treatment. For surfaces the concavity has the following geometric interpretation:
If the endpoints are not conjugate there exists exactly one Jacobi field Y with

Y(t)=f(t)d/dq2

and

(Choose a coordinte system so that q2 = 0 is c.) Then if f'(T) </'(0) the concavity
is 1, and if f'(T)s:f'(0) the concavity is 0. In our example, the conjugate points
occur at time t = k • n, fc = 1, 2 , . . . and hence the endpoints of cj or c2 are never
conjugate. The Jacobi field

Y(t)=f{t)d/dq2

with f(0)=f(T) = 1 is of the form

f(t) = cos t + ((1 - cos T)/sin T) sin t.

Since

/'(0) = ( l - cos r ) / s i nT and /'(T) = - ( l - c o s D/sin T

it follows that if

0 < T mod 2TT <ir then concavity = 1

if

IT <T mod 2TT<2-rr then concavity = 0.

Thus for the short geodesic cv.

ir<T = 2ir/{l + a)<2>iT and ind(ci)=l

for all a. But for c2, ind (c2) depends on a. If 0 < a < | then ind (c2) = 3. To see
what the Morse theory in A looks like, let a be small. Then Na is close to the
Riemannian metric g di "constant curvature 1 and one can use the following
argument. For g the simple closed geodesies form a non-degenerate critical sub-
manifold in A diffeomorphic to T1S

2 = P3R of index 1. If its energy value is a then
H*(Aa+E, Aa~c, Z) can be computed using Morse theory:

Ho — 0) H\ = Z, H2 — Z2, H3 = 0, H4 — Z.

If a is small the closed geodesies C\ and c2 also lie in Aa+e - A"~e and are the only
critical points there and thus have to generate all the homology. The picture of
Morse theory then looks as in figure 1. c\ generates a one- and two-dimensional
and c2 a three- and four-dimensional local homology class. Thus the one-
dimensional class has to survive in (Aa+e, Aa~c), the two-dimensional one also, but
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a +F

FIGURE 1

twice this class has to get killed by the three-dimensional class, whereas the
four-dimensional class has to survive again. This is the only possible way to generate
the homology. One can say that the boundary of the unstable manifold of c2 (with
respect to the gradient flow of E) has to wrap twice around the unstable manifold
of the whole critical circle coming from c\. The same thing happens to the iterates
of c\ and c2, up to a certain energy level depending on a.

But as a -* 1, the length of c2 goes to oo and hence ind (c2) -» oo whereas

up to a certain energy level depending on a. Thus the picture of Morse theory
looks as in figure 2 and only for large k does c2 come into play. The critical circles

FIGURE 2

in A together with the point curves have to generate the homology of A(S2) which
is [28]:

H0 = Z, H2k-!=Z, H2k=Z@Z2, k = 1 , 2 , 3 , . . . .

Since there exist two local homology classes in every dimension (except 1) some
odd dimensional class has to kill twice some even dimensional class in order to
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generate this homology, although the precise boundary maps are not clear from
the above picture.

Notice also that below any fixed dimension, the homology of A(S2) can be
generated by only one closed geodesic. One could imagine that only one closed
geodesic c could generate all of the homology of A(52) as in figure 2. But at least
in the non-degenerate case one can show that this is impossible by using the
description of the index of the iterates in terms of an index function on S1, due to
Bott [7]. From this description it follows that if

ind(cfc) = 2[fc/2] + l for all k,

then the Poincare map of c would have to have an eigenvalue - 1 which would
mean that c2 is degenerate.

It is rather seldom that one can give such a detailed picture of what the Morse
theory on A has to look like, for a specific example. Usually the picture is trival
as for globally symmetric spaces where all of the relative homology survives in all
of A [28]. One of the few other cases where one can see what happens, at least
for small energy values, is for the ellipsoid with three different axes close to 1
where some of the relative homology has to get killed [17].

Let us finally remark that it seems likely that all the examples Na are completely
integrable. For M = S" and M = P"C it follows from the methods in [24] that the
examples Na are completely integrable. For the other manifolds the problem is
closely connected to the question of whether the standard metric on these spaces
is completely integrable.

3. Examples with few short closed geodesies

We will now generalize the construction in § 1 to obtain some other interesting
examples. Let M be a manifold with a Riemannian metric g such that all geodesies
of g are closed with the same least period 2n. Then we have the S1 fibration
S1^T*M Z C induced by the geodesic flow on T*M. Here T*M denotes the
set of unit cotangent vectors. On C we also have the involution 6 sending a closed
geodesic into the one with opposite orientation. If <u is the symplectic two form
on T*M, then there exists a unique symplectic two form w on C such that

see [25]. 6 satisfies

e*a> = -a>.

Let / : C -*R be a C°° function and / = / ° v. Extending / to all of T*M to become
homogeneous of degree one, we obtain a function Hi: T*M -*R. If Ho is again the
norm of covectors in the metric g, we will study Hamiltonians of the form

For a sufficiently small DF{\H2
a) will be a diffeomorphism and hence

Na=Ha°LkHi

a Finsler metric. Notice that Na is symmetric iff / is invariant under 6.
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The function f on C induces a Hamiltonian vector field Xf with respect to «
and we denote its flow by ipf,. Since

ir*aj=co and Hi\T*M=f°v

we have

n*XHl=Xf

and hence

Since Hi is constant along the orbits of the S1 action on T*M, ip"1 and ipY0

commute, which implies that

*?" = ^"a
° 4%.

Hence if x e T*M is a periodic point of i//"a of period T, then

and hence * = ir(x) is a periodic point of t/rf of period a l . There are two possibilities.
Either x is a critical point of / and hence

i(/,x = x for all t,

or i//,x is a non-trivial periodic orbit of Xf and aT is a multiple of its least period.
We first examine the case where £ is a critical point of /. It is clear that x is

then a periodic point of XH<X- To determine its period we can introduce a symplectic
"coordinate system (qit pt) on T*M such that qx = t is the time parameter along ifr, "x

and such that pi(x) = H0(x). Then

Hi(x)=pi • f{q2,.... qn-u P2, • •., pn-i)

and

The Hamilton equations for Ha are then

q1 = i = HPl =

and

qi=ap1fPi, Pi^-apxf^. for«>l.

Pi = 1 if x 6 T*M and hence the period of tp?-x is 2TT/(1 +a • /(£)).
To examine the periodic orbits of Ha coming from non-trivial periodic orbits of

Xf we observe:

If X is a C1 vector field on R" with Ar(0) = 0, then there exists an e >0 such that

all non-trivial periodic orbits of X in a neighbourhood of 0 have period >e.

Since we could not find a proof of this statement in the literature we give here a
proof which was communicated to us by D. Epstein. Let U be a convex neighbour-
hood of 0 and let r be the maximum of \^DX^ on U. If c(t) is a non-trivial periodic
orbit of X in U, let d be the diameter of c and let /3, y be such that

\\c(l3)-c(y)\\ = d.
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Then /3 and y divide c into two parts C\ and c2. If we let

'
 =

 J>
then

and hence

where T is the period of c. Therefore there exists a t' such that

Similarly

f <«,
and hence there exists a f" such that

(v,X(c(n))s-d/T.

This implies

(v,X(c(t'))-X(c(t")))>2d/T

and since

we obtain T > 2/r as desired.
We can apply this to the Hamiltonian vector field Xf on C. Since C is compact

there exists a lower bound for the period of any non-trivial periodic orbit of AT/.
For the periodic orbits of Ha of the second kind this means that, as a -» 0, their
period goes to oo. Hence:

Let Na be a Finsler metric as above. Each critical point of f gives rise to a closed

geodesic whose length goes to 2-rr as a -* 0. The length of all other close geodesies

goes to oo as a -» 0.

The same is of course true in the more general situation where we start with a
Hamiltonian Ho all of whose orbits are closed and non-trivial of least period 2TT.
A theorem of Weinstein [27] implies that any Hamiltonian H C2 close to Ho has
at least as many periodic orbits of period close to 2TT as a function on C = H^1 W/S1

has critical points. The above statement for Ha then implies that this estimate is
always optimal.

If M is a Riemannian manifold all of whose geodesies are closed of least period
2v, then C is simply connected. If M is simply connected this follows since T*M
is then simply connected if dim M > 2 and from the homotopy sequence of v it
follows that C is simply connected. But if dim M = 2, we have M = S2 and hence
C = S2. If M is not simply connected, then by [5, p. 187], M is diffeomorphic to
P"R and each closed geodesic is not null-homotopic. Hence the space of closed
geodesies of the metric on P"R is the same as the space of closed geodesies for
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the metric on the universal cover S" and hence simply connected. Since C is simply
connected, theorem 5.1 in [23] implies that there exists a function on C with only
dim M critical points, at least if dim C > 6. But if dim C < 6, we have M = S2, P2U,
S3, or P3U (see [5, appendix D]) and hence C = S2 or C = S2 x S2 which implies
again the existence of a function on C with only dim M critical points. In particular:

IfM = S", P"C, P"H, or P2Ca and g the standard metric, then for any e > 0 there

exists a Finsler metric on M, e close to g, with dim M closed geodesies with lengths

in (2ir-e, 2v+e) and such that the length of all other closed geodesies is greater

than l/e.

We do not know if one can find such Finsler metrics where these dimM closed
geodesies are the only ones.

We will now examine the situation for symmetric Finsler metrics. The perturba-
tion methods in [27] or Lusternik-Schnirelmann theory imply that any symmetric
Finsler metric sufficiently C2 close to g has at least as many closed geodesies of
length close to 2TT as a function on C/d has critical points. Conversely if we have
a function on C/d with k critical points then it lifts to a function on C with 2k
critical points and the above methods imply that the corresponding symmetric
Finsler metric Na has k closed geodesies with lengths close to 2TT (since we count
c(t) and c(-t) as only one closed geodesic now) and the length of all other closed
geodesies goes to oo as a -* 0.

But the problem of finding the smallest number of critical points for a function
on C/d is still open. We make some remarks now in the case M = S". Then C is
the space G2,n-i of oriented two planes in Rn+l and C/d is the space G2,n-i of
unoriented two planes in R"+ . The cup length of G2,n-i has been computed by
Alber and turns out to be

g(n) = 2n-s-l where n =2*+s <2fc+1.

Notice that (3re- l) /2<g(ra)<2n-1 and if n =2k then

g(n) = 2n-l.

Since any manifold M has a function with dim M + \ critical points [23, proposition
2.9], there exists a function on G2,n-i with 2n - 1 critical points. Hence if n =2k,

g(n) is optimal. In general not even the category of G2,n-iis known. One only
knows that cat (G2>n_i) < In -1 if n ^ 2k, see [4], and hence

cat(G2>B-i) = g(n) i fn=2 k + l.

But we do not know if there exists a function on G2,n-i with 2« - 2 = g(n) critical
points if « = 2k +1. But for n = 3, J. Milnor gave an example of a function on G2,2
with only g(3) = 4 critical points. Since this example has not been published before
we will describe it briefly here.

G°,2 can be identified with S2xS2 as can be seen, e.g. by identifying the two
planes in R4 with the decomposable unit vectors in A2/?4. The * operator induces
a splitting
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and we A2/?4 is decomposable iff ||w+|| = ||w~||= 1/V2. This also shows that the
unoriented planes G2,i can be viewed as

S2xS2/(x,y)~(-x,-y).

If we choose coordinates (x,, y(), i = 1, 2, 3, on S2 x S2 where Z jc?=Iy 2 = l then

/(jc«,y/)=/i+/2, fi = 'l ((yi-xi)/2f, h = x\-x\

defines a function on S2xS2 invariant under (JC, y)-»(—JC, -y) . We claim that the
induced function / on G2,2 has only 6 critical points with 4 critical levels. To see
this observe that the critical points of f\ are given by y, = xt and y, = —x, and are
projective two planes with critical levels 0 and 1. It follows easily that the critical
points of f\ +f2 must be contained in these piojective two planes and hence consist
of the critical points of f2 restricted to them. But f2 on JC, = yf or JC, = —yt has three
critical points each with critical levels - 1 , 0, 1. Hence /1+/2 has 6 critical points
with critical levels - 1 , 0, 1, 2 and there are two critical points each on the critical
levels 0 and 1. Since these critical levels are connected, proposition 2.9 in [23] now
implies that one can find a new function / ' which collapses the critical points of /
which lie on the same level into one critical point. Hence / ' is the desired function
with 4 critical points. We obtain:

There exist symmetric Finsler metrics on S", in any neighbourhood of the constant

curvature metric, with only In — 1 closed geodesies of lengths close to 2TT and such

that the length of all other closed geodesies is larger than any prescribed number. On

S3 there exist such Finsler metrics with only g(3) = 4 closed geodesies of lengths close

to 2TT.

The example on S3 suggests that theorem 5.1.1 in [13] is incorrect. There it was
claimed that any Riemannian metric on Sn has at least 2n -1 short closed geodesies
(which, if the metric is close to the standard metric, has to have a length close to
2tr). But the proof does not use any properties of Riemannian metrics which do
not also hold for symmetric Finsler metrics. The mistake seems to lie in the concept
of geometric subordination, introduced in [13, p. 174].

If one requires, as before, that in addition the closed geodesies of the symmetric
Finsler metric are non-degenerate, then the perturbation methods imply that the
Finsler metric has at least £ bi(C/0) closed geodesies with length close to 2ir. But

On the other hand one knows that the Riemannian metric one obtains from an
n-dimensional ellipsoid with distinct principal axes close to 1 has n(n +1)/2 closed
geodesies with lengths close to 2v and all other closed geodesies are larger than
any prescribed number if one chooses the axes sufficiently close to 1, see [17].

For Riemannian metrics it has been recently shown [3] that any metric with
curvature \<K < 1 has at least g(n) closed geodesies with lengths in [2ir, 4ir], and
if all closed geodesies are non-degenerate, at least n(n +1)/2 such closed geodesies.
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But it is not known if a corresponding theorem is true for symmetric Finsler metrics.
Returning now to the general situation of an arbitrary M with all geodesies

closed of the same least period 2TT, let us make the following remarks, which shed
some light on the examples in § 1. If we start with a function f on C such that the
flow of XHl on T*M induces an S1 action, as was the case for the examples in § 1,
then the same proof as in § 1 implies that the only closed geodesies of Ha for a
irrational are the closed geodesies of Ho invariant under the flow of Hi. These
correspond exactly to the critical points of /. But if / has only finitely many critical
points, then any zero of Xf has index 1 since the flow of XHl and hence also the
flow of Xf induces an Sl action. Hence, by the Hopf index theorem, the Euler
characteristic of C is equal to the number of critical points of / on C. But by the
computation of bi(C) in § 1, the Euler characteristic of C is 2n for M = S2n"~1 or
S2" and n(n + \), 2n(n + l), and 24 for M = PnC, P"H, and P2Ca respectively.
Hence we do not obtain any Finsler metrics with less closed geodesies by this
method, although the closed geodesies can be degenerate in this more general
situation. If / is in addition invariant under 6, then the same argument on C/8
implies that

ix(C) = x(C/6) = # {critical points of / on C/0}.

But at least for M = Sn, P2C, P2H, P2Ca, \x(C) <dim M, which means that there
exists no such function / invariant under 0. Hence the method in § 1 cannot be
used to produce symmetric Finsler metrics with only finitely many closed geodesies.
Nevertheless, it still seems possible that if one considers functions f on C invariant
under 6, such that one has sufficient control over the periods of non-trivial periodic
orbits of Xf, one could find a symmetric Finsler metric Ha which, for appropriate
a, has only finitely many closed geodesies.

Finally we will show that one can easily compute the linearized Poincare map
of the short closed geodesies of Ha. If JC is a critical point of / and c(t) = 4i"ax the
corresponding periodic orbit of Ha of length 2ir/(l +af(x)), then we can introduce
coordinates as in the beginning of this section and compute the differential equation
for the linearized flow Dxij/"° as in § 2. (Here we choose x e T*M and hence p\ = 1
along c{t).)

ii=Hp.Pi -Vi+HqiPl -ij

= afPjPi(x) • Vi+afqiPi(x) • ij

This differential equation has constant coefficient matrix aJ • A where

=
 (_T n)

Hence the linearized Poincare map is

where T is the period of c. Using the classification of normal forms of a quadratic
polynomial with respect to a symplectic coordinate system (see e.g. [2, p. 381])
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one can compute for each normal form of A the corresponding matrix

P = exp (aTJA)

and one can easily verify the following claims: (see [3] for some of the notation)
(1) If x corresponds to a maximum or minimum of / (possibly degenerate) then,

with respect to a symplectic basis, P splits into 2x2 blocks

/cosc6 -sin<j!>\ / I 0\
. , - 7 T < < M T T , and/or

\sin<p cos<p/ \<T 1/
where <f> > 0 and <r = 1 if x is a minimum and 0 < 0 and cr = -1 if x is a maximum.
The blocks

/ I OX
\<7 1/

and <£ = 0

only occur if x is degenerate.
(2) If the index of A<k<\dimC, then P has at least k Jordan blocks

/R (e '*, m, cr) with <£ > 0 and cr > 0. If c&# 0, then m is odd and cr > 0.
(3) If the index + nullity of A >fc >|dim C, then /> has at least k Jordan blocks

JR(ei4>, m, a) with c6 >0 and cr <0. If <£ # 0 m is odd and cr <0.
Notice that (l)-(3) are completely analogous with the results in [3]. The assump-

tions on the index and nullity of A in (2) and (3) are quite natural, since Lusternik-
Schnirelmann theory implies that if Hk(C) # 0, then there exists a critical point x
of / such that the index of A < k < index + nullity of A, where A = Hess f(x).

Notice also that (l)-(3) remain true in the more general situation where Ho is a
Hamiltonian function on an arbitrary symplectic manifold with all orbits closed
(and non-trivial) of the same least period.

Using the above remarks one can now easily construct functions / such that the
corresponding Finsler metric Ha has only two short closed geodesies of elliptic-
parabolic type, the one corresponding to the maximum and minimum of /. One
can also construct such Finsler metrics which are symmetric. Furthermore one can
show that the above relationship between the index of A (and hence the index of
c) and the number of Jordan blocks that P has with eigenvalues on the unit circle
(and their signs) are the only possible ones in general. Hence the results in [3] are
optimal, as far as the estimates for the number of Jordan blocks and their signs
are concerned.

We would like to close by asking the following questions, which seem to be the
most important unsolved problems concerning the existence of closed extremals in
variational calculus:

(1) Do there exist symmetric Finsler metrics with only finitely many closed
geodesies?

(2) Do there exist non-symmetric Finsler metrics on M = S", P"C, PnH, P2Ca
with only dim M closed geodesies?

(3) Do there exist symmetric Finsler metrics on 5" with only g(n) short closed
geodesies? Or equivalently, do there exist functions on G2,n-i with only g(n) critical
points?
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(4) Does every Finsler metric on M = S", PnC, P"H, P2Ca have dimM closed
geodesies?

(5) Does every symmetric Finsler metric on 5" have g(n) closed geodesies?
(6) If, for a simply connected manifold M, bi(A(M),K) is bounded for every

field K, is then H*(M,Z) isomorphic to the cohomology ring of M = Sn, P"C,
PnH, or P2Cal This would imply that any Finsler metric on a compact simply
connected manifold whose cohomology ring differs from these, has infinitely many
closed geodesies.

Sections 1 and 2 of this paper were completed in 1978 at the University of Bonn
under the programme of the 'Sonderforschungsbereich SFB 40'. Section 3 was
done at the University of Pennsylvania with partial support from a grant by the
National Science Foundation.
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