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Abstract

Consider the region L := {(x, y) : 0 ≤ y ≤ C log(1 + x), x > 0} for a constant C > 0.

We study the percolation and coverage properties of this region.

For the percolation properties we place a Poisson point process of intensity λ on the

region L. At each point of the process we centre a box of a random side length ρ. In case

ρ ≤ R for some fixed R > 0 we study the critical intensity λc of percolation.

For the coverage properties we place a Poisson point process of intensity λ on the entire

half space R+ ×R and associated with each Poisson point we place a box of a random side

length ρ. Depending on the tail behaviour of the random variable ρ we exhibit a phase

transition in the intensity for the eventual coverage of the region L.

Keywords: Boolean model, Poisson point process, percolation, coverage.

AMS Classification: 60K35.

1 Introduction

Let (X,λ, ρ) be a Poisson Boolean model on H := R+ × R, i.e. X := {x1,x2, . . .} is a

homogenous Poisson point process on H with intensity λ, and, at each point xi we situate

the box xi + [0, ρi]
2, where {ρi : i ≥ 1} is a collection of i.i.d. random variables, each ρi

having the same distribution as the non-negative random variable ρ and is independent of the

underlying Poisson process. The covered (or occupied) region of this Boolean model is defined

as C := ∪i≥1(xi +[0, ρi]
2); while the vacant region is V := H\C. In general the shapes situated

at points of the Poisson process are usually balls of random radius (see e.g. Stoyan [10], Hall

[6]), Meester and Roy [7]); however for the convenience of writing we consider boxes instead of

balls. It may be seen easily that all our results carry through for the standard case.

∗Supported by a grant from the Department of Science and Technology, Govt. of India
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For an unbounded connected region L ⊆ H we say that

• there is occupied percolation in L if C ∩ L admits an unbounded connected component

with positive probability,

• there is vacant percolation in L if V ∩L admits an unbounded connected component with

positive probability, and,

• there is eventual coverage of L if, with positive probability, there exists t > 0 such that

L ∩ {(x, y) : x > t} ⊆ C.

It is easily seen that there is no equivalence of eventual coverage on the vacant region unless L

has finite Lebesgue measure and the Boolean model (X,λ, ρ) is inhomogenous with side lengths

of the squares decreasing rapidly with the distance of the Poisson points from the origin.

For a non-decreasing function f : [0,∞)→ [0,∞) let

Lf := {(x, y) : 0 ≤ y ≤ f(x)}

and, the critical parameters are defined as

λc(Lf ) := inf{λ : occupied percolation occurs in Lf},

λ⋆
c(Lf ) := sup{λ : vacant percolation occurs in Lf},

λe(Lf ) := inf{λ : there is eventual coverage of Lf}.

Although, we have not specified it explicitly, in all the above three definitions there is an implicit

dependence on the random variable ρ and the underlying space H on which the Poisson point

process is defined.

In case of Bernoulli bond percolation on a region L of the 2-dimensional square latttice, the

critical probability pc(L) of percolation is well studied. Grimmett [4] has shown that the critical

probability pc(L) equals the critical probability 1/2 of percolation on the entire square lattice

whenever the function f grows faster than log x, and, pc(L) equals 1 whenever the function

f grows slower than log x. While, if f is such that f(x) ∼ a log x for some constant a > 0,

then pc(Lf ) is obtained as the unique solution p of the equation ξ(1− p) = a, where ξ(·) is the

correlation length of the 2-dimensional Bernoulli bond percolation process.

Our first result (Theorem 1.1) is similar to the above result of Grimmett. The method of

proof is also similar, although the vacancy and the occupancy structures not being in a duality

relation as in the case of Bernoulli bond percolation, we need to do some extra work.

Our second result (Theorem 1.2) studies λe(Lf ) for f(x) = a log(1 + x) for a > 0 and

for ρ having a heavy tailed distribution as given by (1). It is to be noted that for any ρ

having a tail either thicker or thinner than that given by (1) the critical intensity λe(Lf ) is
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trivial, i.e. λe(Lf ) = 0 or ∞ respectively. The analogy of eventual coverage in Lf with that

of the percolation result is also exhibited in Theorem 1.2, where we study the coverage of a 1-

dimensional line lg := {(x, y) : y = g(x)} and show that λe(Lf ) = λe(lg) for any non-decreasing

g : [0,∞)→ [0,∞) and f as given in the beginning of this paragraph.

To complement the above two theorems, we study the behaviour at criticality. It is shown

that (i) the occurrence or otherwise of percolation in Lf at criticality for f(x) = O(log x)

depends on the higher order terms of f , and (ii) the occurrence or otherwise of eventual

coverage of Lf depends on the higher order terms of the tail distribution of ρ. These are

discussed at the end of the proofs of the theorems in the appropriate sections.

Theorem 1.1 Let ρ be such that 0 < ρ ≤ R for some fixed R > 0. For f : [0,∞) → [0,∞)

non-decreasing we have

(i) if f is such that f(x) = o(log x) as x→∞ then λc(Lf ) =∞ and λ⋆
c(Lf ) = 0,

(ii) if f is such that log x = o(f(x)) as x → ∞ then λc(Lf ) = λ⋆
c(Lf ) = λc(R

2) = λ⋆
c(R

2),

and

(iii) if f is such that f(x)/ log x → a as x → ∞, for some a > 0 then λc(Lf ) is the unique

λ ∈ (λc(R
2),∞) satisfying ξ⋆(λ) = a, and λ⋆

c(Lf ) is the unique λ ∈ (0, λc(R
2)) satisfying

ξ(λ) = a, where the vacant and occupied correlation lengths ξ⋆(λ) and ξ(λ) are as defined

in Propositions 2.1 and 2.2 respectively.

Remark: In (ii) above λc(R
2) and λ⋆

c(R
2) are the critical intensities for occupied and

vacant percolation when the Boolean model is defined by a Poisson point process on the entire

plane R
2. Although the equality of λc(R

2) and λ⋆
c(R

2) is known only when the shapes are discs

of bounded radius (see Meester and Roy [7]), the result can be easily extended to shapes which

are squares of bounded side length.

Theorem 1.2 Let f(x) = a log(1 + x) for some a > 0. We have for any g : [0,∞) → [0,∞)

nondecreasing

(i) if ρ is such that, for all x large

P (ρ ≥ x) =
Kρ + η(x)

x2
(1)

for some Kρ > 0 and η(x)→ 0 as x→∞, then

λe(Lf ) = λe(lg) =
1

2Kρ
; (2)
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(ii) if ρ is such that,

x2P (ρ ≥ x)→ 0 as x→∞, (3)

then

λe(Lf ) = λe(lg) =∞; (4)

(iii) if ρ is such that,

x2P (ρ ≥ x)→∞ as x→∞, (5)

then

λe(Lf ) = λe(lg) = 0. (6)

The result on percolation extends the work of Tanemura [11]. Tanemura uses a Grimmett

and Marstrand method to study continuum percolation on slabs, half spaces and other regions

of space. In particular Tanemura [11] shows that λc(R
d) = λc(R

d
+) and λ⋆

c(R
d) = λ⋆

c(R
d
+).

We extend these results to further subsets of R
2. Towards this we need to develop correlation

lengths for both occupied and vacant connectivity functions. Tanemura [12] uses lace expansion

techniques to study such connectivity functions in high dimensions.

Eventual coverage has been studied for quadrants and octants by Athreya, Roy and Sarkar

[1]. It is the natural analogue of complete coverage of space in Boolean models. Hall [6] shows

that for the Boolean model defined on R
d complete coverage occurs, i.e. C = R

d almost surely,

if and only if Eρd =∞. Molchanov and Scherbakov [8] study the question of complete coverage

for an inhomogenous Poisson Boolean model. Here we study eventual coverage of the region

under the log function.

The rest of the article is organized as follows. In section 2, for each of the cases of infi-

nite occupied and infinite vacant components, we first derive in Propositions 2.1 and 2.2 the

properties of the connectivity functions or correlation lengths by vacant or occupied paths re-

spectively. These are then used to prove Theorem 1.1 for infinite occupied and infinite vacant

components respectively. In section 3, the Boolean model is first compared to two discrete

models; then eventual coverage or otherwise of the Boolean model follows from the same for

the discrete models. Finally the discrete model is studied.

2 Proof of Theorem 1.1

2.1 The case of infinite occupied component

We begin by noting that for a Poisson point process X of intensity λ and an independent

collection of i.i.d. random variables {ρi : i ≥ 1} the process

Y := {xi +
1

2
(ρi, · · · , ρi) : xi ∈ X}

4



is again a Poisson point process of intensity λ. Hence it suffices to prove Theorem 1.1 for

the Boolean model obtained by centering the Poisson point in its associated box, i.e. xi +

[−ρi/2, ρi/2]
d. We also assume R = 1, i.e. ρ ≤ 1. First we derive properties of the connectivity

function.

The box of side length 2n centered at the origin will be denoted by Bn. We are interested

in the probability of the event that there is a vacant path from the origin to ∂Bn, an event

that we write as 0
⋆
←→ ∂Bn. Consider a box of side length one centered at the origin denoted

by D(0) and consider the event of a vacant path from this box to ∂Bn, an event we write as

D(0)
⋆
←→ ∂Bn, whose probability we denote by β⋆(n). We first prove

Proposition 2.1 There are positive constants ρ and σ so that

ρn1−de−nφ⋆(λ) ≤ Pλ(D(0)
⋆
←→ ∂Bn) ≤ σnd−1e−nφ⋆(λ). (7)

The limit of − 1
m log β⋆(m) = φ⋆(λ) is a continuous function of λ. Moreover φ⋆(λ) = 0 for

λ ≤ λc, φ⋆(λ) is increasing on (λc,∞) and φ⋆(λ) ↑ ∞ as λ ↑ ∞. As customary, the vacant

correlation length is defined by ξ⋆(λ) = 1/φ⋆(λ).

Remark: If there is a vacant path from the origin to ∂Bn that implies D(0)
⋆
←→ ∂Bn.

On the other hand if there is a box of side length three around the origin which is devoid of

Poisson points from X, and a vacant path from D(0) to ∂Bn then that implies 0
⋆
←→ ∂Bn.

Using the FKG inequality it now follows easily that Pλ(0
⋆
←→ ∂Bn) is bounded as in (7) above

but with different positive constants σ and ρ.

Proof: We put boxes of side lengths one centered at the integer points of ∂Bm+2. We

notice that if there is a vacant path from D(0) to ∂Bm+n+2 then there is a vacant path from

D(0) to ∂Bm and a vacant path from D(x), where D(x) is a box of side length one around

some x ∈ ∂Bm+2 with integer coordinates, to the boundary of a box of side 2n around this

box D(x). In addition these two events happen disjointly as the maximum of ρ is assumed to

be one. By the extension of the BK inequality for the Poisson Boolean model proved in Gupta

and Rao [5] we then have considering all such D(x) with x having integer coordinates situated

on ∂Bm+2,

β⋆(m + n + 2) ≤ β⋆(m).
∑

x∈∂Bm+2

β⋆(n)

β⋆(m + n + 2) ≤ β⋆(m).2d((2(m + 2) + 1)d−1.β⋆(n)

i.e. log β⋆(m + n + 2) ≤ log β⋆(m) + log β⋆(n)

+(d− 1) log(2(m + 2) + 1) + log 2d,

which we write for convenience as

log β⋆(m + n + 2) ≤ log β⋆(m) + log β⋆(n) + g1(m) + c1, (8)
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where g1(m) ∼ log m and c1 is a constant.

Conversely we consider events which imply a vacant path from D(0) to ∂Bm+n. Writing

D(x) = [x1 − 1/2, x1 + 1/2] × [x2 − 1/2, x2 + 1/2] × · · · × [xd − 1/2, xd + 1/2], consider the

collection Dm = {D(x) : x is such that x has integer coordinates and xi = ±m for some i}.

Let Ux = {D(0)
⋆
←→ D(x)} for some x with D(x) ∈ Dm. Without loss of generality let x be

such that x1 = m. Consider also the event Vx of a vacant path from D(x) to ∂Bm+n ∩ {y1 =

m + n}. If in addition we consider a box of side length three around x and require it to be

empty then these three decreasing events imply a vacant path from D(0) to ∂Bm+n. By the

FKG inequality then

β⋆(m + n) ≥ Pλ(Ux)e−λ3d

Pλ(Vx). (9)

Now using translation invariance for Vx, a vacant path from D(0) to ∂Bn implies the union

of vacant paths in fixed directions, and these probabilities in fixed directions are same by

symmetry. Let us define γ⋆(n) = Pλ(D(0)
⋆
←→ ∂Bn in a given direction). So Pλ(Vx) =

γ⋆(n) ≤ β⋆(n) ≤ 2d.γ⋆(n). On the other hand

β⋆(m) ≤ Pλ(∪x∈∂Bm
Ux) ≤

∑

x∈∂Bm

Pλ(Ux),

where the union and the sum are over the integer points on ∂Bm. Considering the maximum

over integer points x in fixed directions we see that there is an x so that Pλ(Ux) ≥ β⋆(m)/|∂Bm|,

where |∂Bm| counts integer points on ∂Bm. Using this and Pλ(Vx) = γ⋆(n) ≥ β⋆(n)/2d, (9)

gives

β⋆(m + n) ≥
e−λ3d

β⋆(m)β⋆(n)

2d|∂Bm|
,

which implies

− log β⋆(m + n) ≤ − log β⋆(m)− log β⋆(n) + 3dλ + g2(m) + c2, (10)

where g2(m) ∼ log m and c2 is a constant. From appendix II of Grimmett the subadditive

inequalities (8) and (10) imply the existence of a limit as m → ∞ for −(log β⋆(m))/m, say

φ⋆(λ), and after adjusting for the largest of the constants in absolute value as well as the largest

of g1(m) and g2(m), we also get the inequalities

−const.− g(m) ≤ mφ⋆(λ)− log β⋆(m)− const.λ ≤ const. + g(m), (11)

for λ lying in a compact set where g(m) = (d − 1) log(2(m + 2) + 1) = O(log m). We have

established the bounds (7).

We now remember that β⋆(m) is also a function of λ, so that if we can argue β⋆(m) is a

continuous function of λ for fixed m, then the inequalities (7) after making m → ∞ would

imply the continuity of φ⋆(λ). As λ increases the probability Pλ(D(0)
⋆
←→ ∂Bm) decreases.
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Thus considering the superposition of two independent Poisson processes with intensities λ− ǫ

and 2ǫ respectively, a simple coupling argument gives

Pλ−ǫ(D(0)
⋆
←→ ∂Bm)e−2ǫ.V ol(Bm) ≤ Pλ+ǫ(D(0)

⋆
←→ ∂Bm)

≤ Pλ−ǫ(D(0)
⋆
←→ ∂Bm). (12)

Thus

Pλ−ǫ(D(0)
⋆
←→ ∂Bm)− Pλ−ǫ(D(0)

⋆
←→ ∂Bm)e−2ǫV ol(Bm)

≥ Pλ−ǫ(D(0)
⋆
←→ ∂Bm)− Pλ+ǫ(D(0)

⋆
←→ ∂Bm)

≥ 0, (13)

leading to continuity of Pλ(D(0)
⋆
←→ ∂Bm). Hence φ⋆(λ) is a continuous function of λ.

Now

θ⋆(λ) := Pλ(there is an unbounded vacant

component containing the origin)

= lim
n→∞

Pλ(D(0)
⋆
←→ ∂Bn),

and here λ < λ⋆
c implies θ⋆(λ) > 0. From this and the right side of the inequality (7) we get

φ⋆(λ) = 0 for λ < λ⋆
c . Continuity gives φ⋆(λc) = 0. On the other hand if λ > λ⋆

c then by

Lemma 4.1 of Meester and Roy [7] Pλ(d(V ) ≥ a) ≤ C1e
−aC2 , for positive constants C1, C2

where d(V ) denotes the diameter of the vacant component of the origin. This along with the

left side of the inequality (7) implies φ⋆(λ) > 0 if λ > λ⋆
c .

Finally we want to show that for λ > λc, φ⋆(λ) is increasing and goes to infinity as λ→∞.

For this we approximate the Poisson process by independent Bernoulli in small squares of

volume 1/md with failure probability qm = e−(λ/md). Our event D(0)
⋆
←→ ∂Bn, under such

a discretized setting, is decreasing and imitating the proof of Theorem 2.38 in Grimmett [3]

we get that for any decreasing event depending on finitely many of these boxes the probability

h(qm) satisfies h(qγ
m) ≤ h(qm)γ for γ > 1. As m → ∞ the Bernoulli probability converges to

the Poisson probability and we get Pγλ(D(0)
⋆
←→ ∂Bn) ≤ Pλ(D(0)

⋆
←→ ∂Bn)γ , which after

taking logarithm gives

−γ
1

n
log Pλ(D(0)

⋆
←→ ∂Bn) ≤ −

1

n
log Pγλ(D(0)

⋆
←→ ∂Bn).

As we make n → ∞ we get φ⋆(γλ) ≥ γφ⋆(λ) > φ⋆(λ) since γ > 1. This shows that φ⋆(λ)

is increasing for λ above λ⋆
c and goes to infinity as λ → ∞. This completes the proof of the

proposition. 2

Remember, φ⋆(λ) = 1/ξ⋆(λ), and note that the results in Theorem 1.1 (iii) are stated in

this notation. Note also that as stated in the remark after the statement of Theorem 1.1, with

d = 2 we have λc = λ⋆
c .
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Proof of Theorem 1.1 (iii) for infinite occupied component: Suppose λ > λc and

a < ξ⋆(λ). Then we want to show Lf almost surely contains no unbounded occupied cluster.

Let λa be the solution of ξ⋆(λ) = a. Note that over (λ⋆
c ,∞), ξ⋆(λ) is decreasing, thus a < ξ⋆(λ)

implies λ < λa. Choosing δ > 0 such that (1 + δ)a < ξ⋆(λ), we define wk = (k1+δ , 0). Let Bk

be the smallest square with wk in the middle of the lower side with the upper side just above

the curve v = f(u). By our assumption f(u)/ log u→ a, hence the side length lk of Bk satisfies

lk = a(1 + o(1)) log k1+δ as k →∞.

Now Bk has side length lk and center wk + (0, lk/2), and let Ak be the event that there is a

vacant path from the top edge to the bottom edge of Bk. By the FKG inequality

Pλ(Ak) ≥ {
1

4
Pλ(D(0)

⋆
←→ ∂Bk(

1

2
lk))}

2e−32λ.

However,

Pλ(D(0)
⋆
←→ ∂Bk(

1

2
lk)) ≈ e−lk(2ξ⋆(λ))−1

as k →∞,

by (7) where the ≈ sign means equality in the limit after taking logarithm and dividing by

lk. Hence Pλ(Ak) ≥ (1/16)e−32λk−(1+o(1))(1+δ)a/ξ⋆ (λ) as k → ∞, i.e.
∑

Pλ(Ak) = ∞ since

(1 + δ)a < ξ⋆(λ). On the other hand for large k the squares Bk are separated by more than

twice the maximum of the sides of the Boolean squares (assumed R = 1 here), hence the

configurations inside Bk’s are independent for large k. Thus Ak occurs infinitely often almost

surely.

Secondly, suppose λ > λc and a > ξ⋆(λ). We want to show Lf contains almost surely an

infinite occupied cluster. Choose α such that a > α > ξ⋆(λ) and Dk be the box with center

(k, 0) and side length 2α log k. For large values of k, Dk lies strictly beneath the curve v = f(u).

Let Ek be the event that (k, 0) is joined by a vacant path to ∂Dk. From (7) we have

Pλ(Ek) = Pλ(0
⋆
←→ ∂B(α log k)) ≤ Pλ(D(0)

⋆
←→ ∂B(α log k)) ≈ k−(α/ξ⋆(λ)), (14)

as k → ∞. This gives
∑

Pλ(Ek) < ∞ from the assumption that α > ξ⋆(λ). Therefore there

exists M such that

Pλ

(
∪k≥M Ek

)
< 1/2. (15)

However if none of the events {Ek, k ≥ M} occurs, then a vacant path cannot join f(u) and

the x-axis, and Lf contains almost surely an infinite open cluster.

Combining the two steps this proves that λc(Lf ) is the unique solution in (λc(R
2),∞) of

ξ⋆(λ) = a. 2

Proof of Theorem 1.1 (i), (ii) for infinite occupied component: In (i), λc(Lf ) =∞

follows from the fact that the solution of ξ⋆(λ) = a goes to infinity as a ↓ 0. Similarly in (ii),

λc(Lf ) = λc(R
2) follows from the fact that the solution of ξ⋆(λ) = a goes to λc(R

2) as a ↑ ∞.

2
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2.2 The case of infinite vacant component

Again we first derive properties of the connectivity function. When we consider the event that

there is an occupied path from the origin to ∂Bn, much of the argument remains the same,

except that now some of the events become increasing events as opposed to earlier.

First of all, there is a t > 0 such that P (ρ > 2t) > 0 (as before ρ ≤ 1). We divide the

square of side three around 0 into [3d/td] many small squares of side t and consider the event

that in each smaller square there is at least one Poisson point with associated ρ > 2t. If an

occupied path from D(0) to ∂Bm also exists then these two events imply 0←→ ∂Bm, which is

our notation for an occupied path from one to the other. Thus using the FKG inequality it is

enough to work with P (D(0)←→ ∂Bm) = β(m) and parallel arguments lead to the existence

of the limit

φ(λ) = lim−
1

m
log Pλ(D(0)←→ ∂Bm). (16)

which satisfies the inequalities

−const.− g(m) ≤ mφ(λ)− log β(m)− const.λ ≤ const. + g(m), (17)

for λ lying in a compact set where g(m) = (d − 1) log(2(m + 2) + 1) = O(log m). The precise

statement can be written as (for covenience we use the same notation for constants ρ and σ)

Proposition 2.2 There are positive constants ρ and σ so that

ρn1−de−nφ(λ) ≤ Pλ(D(0)←→ ∂Bn) ≤ σnd−1e−nφ(λ). (18)

The limit of − 1
m log β(m) = φ(λ) is a continuous function of λ. Moreover φ(λ) = 0 for λ ≥ λc,

φ(λ) is decreasing on (0, λc) and φ(λ) ↑ ∞ as λ ↓ 0. As customary, the occupied correlation

length is defined by ξ(λ) = 1/φ(λ).

Proof: Continuity of φ(λ) follows as before from the continuity of

Pλ(D(0) ←→ ∂Bn) in λ for each fixed n, which can be proved noting that in the inequalities

(12) and (13) we can substitute Pλ±ǫ{(D(0) ←→ ∂Bn)c} for Pλ±ǫ(D(0)
⋆
←→ ∂Bn) keeping

the inequality signs unchanged, using the previous argument on vacancy. Using continuity and

taking limit in (17) we have proved there are positive constants ρ and σ so that (18) holds

where φ(λ) is a continuous function of λ.

It then follows that φ(λ) > 0 for 0 < λ < λc, is zero for λ ≥ λc. Since Pλ(D(0)←→ ∂Bn) ≤

Pλ(|W | ≥ n) where |W | is the number of Poisson points in the occupied component of the origin,

from Theorem 10.1 of Penrose [9] it follows that φ(λ) ≥ lim−(1/n) log Pλ(|W | ≥ n) = ζ(λ)

and since ζ(λ) ↑ ∞ as λ ↓ 0, we then have φ(λ) ↑ ∞ as λ ↓ 0.

To show that φ(λ) is strictly decreasing on (−∞, λc) we adapt the argument of Grimmett

[4] in our continuum setting. Let N(k) be the number of Poisson(λ) points in the component of
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the origin which fall in the annulus Bk ∩Bc
k−1 and N(n) = (N(1), N(2), · · · , N(n)). Consider

another intensity λ′, 0 < λ′ < λ < λc. The points with intensity λ are called ‘Light’ and

each of them can be ‘White’ with conditional probability λ′/λ. Let An be the event that the

origin is joined to ∂Bn by a ‘White’ path. If m(n) = (m(1),m(2), · · · ,m(n)), then writing

ǫ = 1− (λ′/λ), we have

P (An|N(n)) = m(n)) ≤ Πn
i=1(1− ǫm(i)) ≤ e−

Pn
i=1 ǫm(i)

,

since each ‘Light’ point is not ‘White’ with probability ǫ. Now

βλ′(n) = P (An) =
∑

P (An|N(n))P (N(n) = m(n)),

where the sum is over all vectors m(n) such that the conditional probability is nonzero. Dividing

the sum into two parts depending on
∑n

i=1 m(i) ≤Mn or
∑n

i=1 m(i) > Mn, where M will be

specified later, we get

βλ′(n) ≤
∑

m:
P

i m(i)≤Mn

e−
Pn

i=1 ǫm(i)
P (N(n) = m(n)) + P (|L| > Mn), (19)

where |L| denotes the number of Poisson points in the ‘Light’ cluster containing the origin.

By the inequality between the arithmetic and geometric means and Theorem 10.1 of Penrose

[9] which says that under intensity λ the probability that the number of Poisson points in the

occupied component containing the origin is greater than k behaves like e−kζ(λ) where ζ(λ) > 0

for 0 < λ < λc, we get

βλ′(n) ≤
∑

m:
P

i m(i)≤Mn

e−nǫM

P (N(n) = m(n)) + P (|L| > Mn)

≤ e−nǫM

βλ(n) + c1e
−ζ(λ)Mn.

Choosing M large enough so that ζ(λ)M > ǫM + 2φ(λ) we get from (16)

βλ′(n) ≤ 2βλ(n)e−nǫM

, for all large n.

Combining this with (16) we see that φ(λ′) ≥ φ(λ)+ǫM , completing the proof of the decreasing

nature of φ. The proof of the proposition is complete. 2

Proof of Theorem 1.1 (iii) for infinite vacant component: Suppose λ < λc and

remember φ(λ) = 1/ξ(λ). When a < ξ(λ), then we want to show Lf almost surely contains no

unbounded vacant cluster. Let λ⋆
a be the unique solution of ξ(λ) = a. Note that over (0, λc),

ξ(λ) is increasing, thus a < ξ(λ) implies λ > λ⋆
a. Fixing δ > 0 such that (1 + δ)a < ξ(λ), we

define wk = (k1+δ , 0). Let Bk be the smallest square with wk in the middle of the lower side

with the upper side just above the curve v = f(u). f(u)/ log u→ a, hence the side length lk of

Bk satisfies

lk = a(1 + o(1)) log k1+δ as k →∞.

10



Now Bk has side length lk and center wk + (0, lk/2), and let Ak be the event that there is an

occupied path from the top edge to the bottom edge of Bk. By the FKG inequality

Pλ(Ak) ≥ {
1

4
Pλ(D(0)←→ ∂Bk(

1

2
lk))}

2(1− e−λt2P (ρ>2t))[3
2/t2],

where t was defined at the beginning of this subsection satisfying P (ρ > 2t) > 0. However,

Pλ(D(0)←→ ∂Bk(
1

2
lk)) ≈ e−lk(2ξ(λ))−1

as k →∞,

by (18). Hence Pλ(Ak) ≥ (1/16)k−(1+o(1))(1+δ)a/ξ(λ)(1 − e−λt2P (ρ>2t))[3
2/t2] as k → ∞, i.e.

∑
Pλ(Ak) =∞ since (1+δ)a < ξ(λ). On the other hand the squares Bk are separated by more

than twice the maximum of the sides of the Boolean squares (assumed R = 1 here), hence the

configurations inside Bk’s are independent for large k. Thus Ak occurs infinitely often almost

surely.

Secondly, suppose λ < λc and a > ξ(λ). We want to show Lf contains almost surely an

infinite vacant cluster. Choose α such that a > α > ξ(λ) and Dk be the box with center (k, 0)

and side length 2α log k. For large values of k, Dk lies strictly beneath the curve v = f(u). Let

Ek be the event that (k, 0) is joined by an occupied path to ∂Dk. From (18) we have

Pλ(Ek) = Pλ(0←→ ∂B(α log k)) ≤ Pλ(D(0)←→ ∂B(α log k)) ≈ k−(α/ξ(λ)),

as k → ∞. This gives
∑

Pλ(Ek) < ∞ from the assumption that α > ξ(λ). Therefore there

exists M such that

Pλ

(
∪k≥M Ek

)
< 1/2. (20)

However if none of the events {Ek, k ≥ M} occurs, then an occupied path cannot join f(u)

and R
+, and Lf contains almost surely an infinite vacant cluster.

Combining the above this proves that λ⋆
c(Lf ) is the unique solution in (0, λc(R

2)) of ξ(λ) =

a. 2

Proof of Theorem 1.1 (i), (ii) for infinite vacant component: In (i), λ⋆
c(Lf ) = 0

follows from the fact that the solution of ξ(λ) = a goes to zero as a ↓ 0. Similarly in (ii),

λ⋆
c(Lf ) = λc(R

2) follows from the fact that the solution of ξ(λ) = a goes to λc(R
2) as a ↑ ∞.

2

Remark: At criticality, i.e. when f(x) ∼ a log x for some a > 0 and λ = λc(Lf ) as obtained

in Theorem 1.1 (iii), infinite occupied component is possible and similarly at λ⋆
c(Lf ) infinite

vacant component is possible. Let us consider the case of λc(Lf ) and show that there exists a

function f such that f(x)/ log x→ a as a→∞ and with ξ⋆(λa) = a we have

Pλa
(Lf contains an infinite occupied cluster) = 1. (21)

Consider the function f satisfying f(u) = a log u + b log log u for all large u where b > 2a. Let

Dk be the largest box having center at (k, 0) and lying strictly beneath the curve v = f(u).

11



Then Dk has side length 2f(k)+O(1) as k →∞ and let Ek be the event that (k, 0) is joined by

a vacant path to ∂Dk. Instead of (14), Pλ(Ek) can be bounded more precisely by the inequality

on the right side of (7) as

Pλ(Ek) ≤ Pλ(D(0)
⋆
←→ ∂B(f(k) + O(1)))

≤ σ(log k) exp{−
a log k + b log log k

ξ⋆(λ)
}

for all large k. At λa we have ξ⋆(λa) = a and then Pλa
(Ek) ≤ σ/k(log k)α where α = (b/a) −

1 > 1. Summability of Pλa
(Ek) as before gives (21) following the argument after (15). The

calculations for λ⋆
a are similar. 2

3 Proof of Theorem 1.2

In this section we work with the original Boolean model {xi + [0, ρi]
2 : xi ∈ X}. Note, in case

we center the boxes at the Poisson points then we would get results on the complete coverage

of space rather than eventual coverage.

Proof of Theorem 1.2 (i): Without loss of generality we take a = 1, i.e. f(x)/ log x→ 1

as x → ∞. For eventual coverage, following Athreya, Roy and Sarkar [1] the Boolean model

is compared to two discrete models as follows. Under the red model if a square of the Z
+ × Z

lattice has at least one Poisson point, then the lower left hand corner of that square is declared

open and a square of side max{ρ1, · · · , ρN}+1 is placed there where N is the number of Poisson

points in the previous square. It can be checked that the side of the new square follows the

distribution

Fred(m) = P (max{ρ1, · · · , ρN} < m− 1|N ≥ 1)

=

∞∑

j=1

e−λλj

(1− e−λ)j!
P (ρ < m− 1)j

= e−λ eλP (ρ<m−1) − 1

1− e−λ

=
e−λP (ρ≥m−1) − e−λ

1− e−λ
,

and that each lower left corner of the new square is open with probability 1−e−λ. As in Lemma

3.1 of Athreya, Roy and Sarkar [1] it is clear that eventual coverage of Lf under the Boolean

model ensures the same under the above discrete model in which each point of the lattice is

open with probability p = 1− e−λ and at each lattice a square with integer sides following the

distribution Fred is placed. We write Gred(m) = 1 − Fred(m − 1), and assume that the tail

G(m) = 1− F (m− 1) of the distribution of ρ satisfies

G(m) =
Kρ

m2
+

η(m)

m2
for all large m, (22)

12



where Kρ > 0 and η(m)→ 0 as m→∞. Under this assumption Gred(m) satisfies

Gred(m) =
λKρ

1− e−λ

1

m2
+

ηred(m)

m2
, for all large m,

where ηred(m) → 0 as m → ∞. In Corollary 3.1 we shall prove that in a discrete model with

G as in (22) if 2pKρ < 1, then Lf is not eventually covered almost surely. Thus under the red

model Lf is not eventually covered almost surely if

2(1− e−λ)
λKρ

1− e−λ
< 1,

hence under the above condition under the Boolean model Lf is not eventually covered almost

surely

Similarly we consider a green model in which if a square of the Z
+ × Z lattice has at least

one Poisson point with ρ ≥ 3, then the upper right hand corner of that square is declared open

and a square of side max{ρ1, · · · , ρN ′} − 3 is placed there where N ′ is the number of Poisson

points with ρ ≥ 3 in the previous square. It can be checked that the side of the new square

follows the distribution (here ρ′ has the same distribution as ρ conditioned on the fact that

ρ ≥ 3)

Fgreen(m) = P (max{ρ′1, · · · , ρ
′
N ′} < m + 3|N ′ ≥ 1)

=
e−λP (ρ≥3)

1− e−λP (ρ≥3)

∞∑

j=1

(λP (ρ ≥ 3))j

j!
P (ρ′ < m + 3)j

=
e−λP (ρ≥m+3) − e−λP (ρ≥3)

1− e−λP (ρ≥3)
,

and that each lower left corner of the new square is open with probability 1− e−λP (ρ≥3).

As in Lemma 3.2 of Athreya, Roy and Sarkar [1] we see that eventual coverage of Lf under

the Boolean model is ensured by the same for the green model which is a discrete model in

which each point of the lattice is open with probability p = 1 − e−λP (ρ≥3) = 1 − e−λG(4) and

at each lattice a square with integer sides following the distribution Fgreen is placed. From our

assumed form of G we get the behavior of

Ggreen(m) = 1− Fgreen(m− 1) =
λKρ

1− e−λG(4)

1

m2
+

ηgreen(m)

m2
,

for all large m, where ηgreen(m) → 0 as m → ∞. In Corollary 3.1 we shall show that in a

discrete model with G as in (22) if 2pKρ > 1 then Lf is eventually covered almost surely. Thus

under the green model Lf is eventually covered almost surely if

2(1− e−λG(4))
λKρ

1− e−λG(4)
< 1,

hence under the above condition under the Boolean model Lf is covered eventually almost

surely.

13



Combining the two cases we see that using Corollary 3.1 and the above domination of the

Boolean model by two discrete models, the critical intensity for the eventual coverage of Lf

under the Boolean model is given by λe = 1/(2Kρ). It will also follow similarly from Corollary

3.2 that the critical intensity for eventual coverage of the line lg = {(x, g(x)), x ≥ 0} where

g : [0,∞) → [0,∞) is nondecreasing, is also λe = 1/(2Kρ). This completes the proof of

Theorem 1.2 (i). 2

Proof of Theorem 1.2 (ii), (iii): It will be proved in Corollary 3.3 that in the discrete

case there is no eventual coverage for any p < 1 in case of tail of ρ thinner than 1/x2, and there

is eventual coverage for any p > 0 in the case of tail of ρ thicker than 1/x2. Then by a similar

domination of the Boolean model by two discrete models in case of thinner tails there is no

eventual coverage for any λ > 0, i.e. λe =∞, and in the case of thicker tails there is eventual

coverage for any λ > 0, i.e. λe = 0. 2

It remains to discuss the discrete model and derive the conditions for eventual coverage in

that model.

3.1 Eventual coverage in the discrete model

In the discrete model, at each (i, j) ∈ N × Z, we put iid Bernoulli random variables with

probability of success p, 0 < p < 1. Let {ρ(i,j) : (i, j) ∈ N × Z} be a collection of nonnegative

integer valued random variables having the same distribution as ρ. The probability measure

will be denoted by Pp. Now define the covered region

C :=
⋃

{(i,j)∈N×Z,Xi,j=1}

{
(i, j) + [0, ρ(i,j)]

2
}

.

Let us consider a nondecreasing nonnegative function f(i), i ∈ Z
+. Let Lf = {(i, j) : 0 ≤

j ≤ f(i)} be the discrete version of the region Lf defined earlier. We say that Lf is eventually

covered with probability one if with probability one for every realization of the Xi,j’s and the

ρ(i,j)’s there is some N <∞, such that {(i, j) ∈ Lf : i ≥ N} ⊂ C. We now have

Proposition 3.1 Define for (i, j) ∈ N × Z, the event A(i,j) = {(i, j) /∈ C}. Notice that by

invariance Pp(A(i,j)) = Pp(A(i,0)) for any j ∈ Z. We have that (a) for g(i) : Z
+ → Z

+ a

nondecreasing function, the line lg = {(i, g(i)) : i ≥ 1} is covered or not covered eventually

with probability one if and only if
∑∞

i=1 Pp(A(i,0)) is finite or infinite, (b) Lf is eventually

covered with probability one
∑∞

i=1(f(i) + 1)Pp(A(i,0)) < ∞ and Lf is not eventually covered

with probability one if
∑∞

i=1 Pp(A(i,0)) =∞.

Proof: (a) Note that (i, g(i)) can only be covered by squares situated on the lattice points

of the region [0, i] × (−∞, g(i)]. Since the ρ random variables are nonnegative, as soon as

we observe the first uncovered point say (i1, g(i1)), the coverage by the points in the region

14



[0, i1]× (−∞, g(i1)] and their ρ’s is below the line Z
+ × {g(i1)} from (i1, g(i1)) onwards to the

right. Since g is nondecreasing, the coverage of the next point (i2, g(i2)) is then determined by

the points in [i1 + 1, i2]× (−∞, g(i2)] and their ρ’s. Thus A(i,g(i)) is a renewal event (see Feller

[2]) satisfying

Pp(A(i,g(i)) ∩A(k,g(k))) = Pp(A(i,g(i)))Pp(A(k−i,g(k)−g(i))), i < k,

and by Pp(A(i,g(i))) = Pp(A(i,0)), if
∑∞

i=1 Pp(A(i,0)) = ∞ then on the line lg = {(i, g(i)) :

i ≥ 1} there are infinitely many uncovered points with probability one. On the other hand if
∑∞

i=1 Pp(A(i,0)) <∞ the the Borel-Cantelli lemma says that with probability one only finitely

many of the events A(i,g(i)) can happen.

(b) Since f is assumed to be nondecreasing, using part (a) under the assumption
∑∞

i=1 Pp(A(i,0)) =

∞ we have every horizontal line is not eventually covered with probability one, and the same

holds for Lf . On the other hand when
∑∞

i=1(f(i) + 1)Pp(A(i,0)) < ∞, then for each i, we

consider the points 0 ≤ j ≤ f(i) and remember that by invariance Pp(A(i,j)) = Pp(A(i,0)).

By considering union over i, Pp(∪
∞
i=1 ∪

f(i)
j=0 A(i,j)) ≤

∑∞
i=1(1 + f(i))Pp(A(i,0)) < ∞, and the

Borel-Cantelli lemma says that with probability one only finitely many of ∪
f(i)
j=0A(i,j), i ≥ 1 can

happen. 2.

Under assumption (1) on the tail of ρ, the proposition gives a simple criterion for deciding

the threshold between eventual coverage and not eventual coverage for Lf in terms of p. At

the end in a remark we shall also see that for thinner tails there is no eventual coverage for any

p < 1, and for fatter tails there is eventual coverage for any p > 0. We shall also discuss what

can happen for p at the threshold.

Let F be the distribution function of ρ, i. e. F (i) := Pp(ρ ≤ i) and let G(i) = 1−F (i− 1).

The following formula will be used

Pp(A(i,0))

= (1− p)
i−1∏

t=1

(
(1− p) + pF (t− 1)

)2t+1
∞∏

k=i

(
(1− p) + pF (k − 1)

)i

=

i−1∏

t=0

(1− pG(t))2t+1
∞∏

k=i

(1− pG(k))i. (23)

Now we need to find conditions on ρ so that
∑∞

i=1 Pp(A(i,0)) is infinite and
∑∞

i=1(f(i) +

1)Pp(A(i,0)) is finite. Under assumption (1) on the tail of ρ we first derive bounds on the

behavior of Pp(A(i,0)), and show that

Lemma 3.1 Given any positive ǫ we can find constants 0 < C1(ǫ) ≤ C2(ǫ) <∞ so that

C1(ǫ)i
−2pKρe−ǫ log i ≤ Pp(A(i,0)) ≤ C2(ǫ)i

−2pKρeǫ log i (24)

for all large i.
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Proof: After taking logarithm of Pp(A(i,0)) given by (23) we first consider the term

i

∞∑

k=i

log(1− pG(k)) = i

∞∑

k=i

{−pG(k) + O(1/k4)}

= −pi

∞∑

k=i

(
Kρ

k2
+

η(k)

k2
) + O(i

∞∑

k=i

1

k4
)

∼ −pi{(Kρ/i) + O(1/i)}

∼ −pKρ + O(1), (25)

where we remember that η(i)→ 0 as i→∞. Now consider the crucial term

i−1∑

t=1

(2t + 1) log(1− pG(t))

=
i−1∑

t=1

(2t + 1){−pG(t) + O(1/t4)}

= −pKρ

i−1∑

t=1

2t + 1

t2
− p

i−1∑

t=1

(2t + 1)η(t)

t2
+ O(

i−1∑

t=1

1

t3
)

= −(2pKρ) log i + O(1/i) − p

N∑

t=1

(2t + 1)η(t)

t2

−p

i−1∑

t=N

(2t + 1)η(t)

t2
+ O(1), (26)

where N is a large fixed integer so that |η(t)| < ǫ/2 for t > N . We use

| − p
i−1∑

t=N

(2t + 1)η(t)

t2
| ≤ (ǫ/2)

i−1∑

t=1

(2t + 1)

t2
≤ ǫ log i + O(1),

and then (25) and (26) give (24). 2

Using part (b) of Proposition 3.1, we now have the following result.

Corollary 3.1 Under the assumption (1), we have that for f = a log(1 + x), for some a > 0,

(a) Lf is eventually covered almost surely-Pp if 2pKρ > 1.

(b) Lf is not eventually covered almost surely-Pp if 2pKρ < 1.

Proof: For part (a) we need to prove the finiteness of
∑∞

i=1(log(1+i))Pp(A(i,0)). From (24),

(log(1+i))Pp(A(i,0)) ≤ C2(ǫ)(i
ǫ log(1+i))/i2pKρ for all large i. Choosing ǫ so that 2pKρ > 1+ǫ,

gives the finiteness of the required sum.

For part (b) using (24) again we have Pp(A(i,0) ≥ C1(ǫ)1/i
2pKρ+ǫ for all large i, and choosing

ǫ such that 2pKρ + ǫ < 1 get
∑∞

i=1 Pp(A(i,0) =∞, completing the proof. 2
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Let us define,

pe(Lf ) := inf{p > 0 : Pp{eventual coverage occurs} = 1}.

Then, by Corollary 3.1 under the assumption (1), we have pe = 1
2Kρ

. Similar calculations for

part (a) of Proposition 3.1 prove

Corollary 3.2 For g : Z
+ → Z

+ nondecreasing, the line lg = {(i, g(i)) : i ≥ 1} is eventually

covered almost surely if 2pKρ > 1 and is not eventually covered almost surely if 2pKρ < 1,

which shows that the critical probabilities for the wedge Lf with f as above and any line

{(i, g(i) : i ≥ 1} for g as described are the same.

Finally we discuss what happens if the tail of ρ is thinner or fatter in the following

Corollary 3.3 If t2G(t) → 0 as t → ∞ then pe(Lf ) = 1. On the other hand if t2G(t) → ∞

as t→∞ then pe(Lf ) = 0.

Proof: In the first case we can take Kρ = 0 and with the same assumption on η as before,

see from the order determining terms in the last lines of (25) and (26) that Pp(A(i,0)) ≥ C1(ǫ)/i
ǫ

for any ǫ > 0 for sufficiently large i. Thus
∑

Pp(A(i,0)) =∞ establishing no eventual coverage

for any p > 0, i.e. pe = 1.

In the second case we can take G(t) = Kρ(t)/t
2 where Kρ(t) → ∞ as t → ∞. Now for

any p > 0, from a certain i onwards 2pKρ(i) > β > 1, for some constant β and from the order

determining terms in the last line of (25) and the third line of (26) we get Pp(A(i,0)) ≤ const.i−β

for all large i. It follows that for any p > 0, we have
∑

log(1 + i)Pp(A(i,0)) <∞, showing that

for any p > 0 there is eventual coverage, i.e. pe = 0. 2

Similar arguments hold for an extension of Corollary 3.2 related to the eventual coverage

of a line.

Eventual coverage at criticality in the Boolean model: If Kρ > 0 and G(i) =
Kρ

i2
+ γ

i2 log i
where γ > 0 , then at λe depending on γ > 2Kρ or γ ≤ Kρ respectively, eventual

coverage may or may not occur. The proof of this will follow by comparing the Boolean model

to the Red and Green discrete models if we prove the corresponding statement in the discrete

case.

Thus we need to show that in the discrete case at the critical point both the scenarios, i.e.,

eventual coverage and no eventual coverage, can happen. For example, let us take the following

special case:

G(i) =
Kρ

i2
+

γ

i2 log i
(27)
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where γ > 0. In other words, we have η(i) = γ/ log i for all sufficiently large i. Then it can be

checked that the new estimate for the sum in the third line of (26)

−p

i−1∑

t=2

(2t + 1)η(t)

t2
= −p

i−1∑

t=2

(2t + 1)γ

t2 log t
∼ −2pγ log log i + O(1)

gives the asymptotic behavior

D1

i2pKρ(log i)2pγ
≤ Pp(A(i,0)) ≤

D2

i2pKρ(log i)2pγ
(28)

for all large i where 0 < D1 ≤ D2 <∞ are constants. Hence, at the critical point p = 1/(2Kρ),

the sum
∑∞

i=1 Pp(A(i,0)) <∞ if and only if γ > Kρ whereas the sum
∑∞

i=1(log(1+i))Pp(A(i,0)) <

∞ if γ > 2Kρ. Thus, at the critical point p = pe = 1/(2Kρ) for γ ≤ Kρ, no eventual coverage

occurs almost surely, while for γ > 2Kρ, eventual coverage occurs almost surely. 2
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