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MOTIVATION

Trees have been used extensively in biology and other fields to graphically
represent various types of hierarchical relationships, including evolutionary
relationships between species, divergent patterns between subpopulations
and evolutionary relationships between genes. These trees are generally
rooted and semi-labeled, i.e., they descend from a single node called the
root, bifurcate at lower nodes and end at terminal nodes, called tips or
leaves; the leaves are labeled by the names of the species, subpopulations
or genes being studied. In biological studies the latter are called operational
taxonomic units (OTU’s).

Traditionally, trees were inferred form morphological similarities among
the OTU’s. To build an evolutionary species tree, or phylogenetic tree, two
species which shared the most characteristics were classified as ‘siblings’
and assumed to share a common ancestor which is not the ancestor of any
other species. Such ‘siblings’ are said to be homologous, and it is this basic
homology which has been of interest to biologists for a very long time.
In Figure 1 we reproduce a tree from Haeckel (1866) which represents an
attempt at depicting the relationships between all living organisms.

Over the last few decades, biologists have been building trees based on
DNA sequences from certain parts of the genome. This has led to remark-
able advances in the study of homology. Examples of the kinds of issues on
which new light has been shed include the origin of diseases such as AIDS
(Krushkal and Li (1998)) and the most deadly form of malaria (Escalante
and Ayala (1995)), and connections between tribal groups such as those
raised by the African tribe whose oral tradition holds that the tribe is de-
scended from Jewish priests (DNA analysis does indicate such a relation).

In spite of the successes of DNA analysis, a great deal of uncertainty
remains about precise relationships between the tips or leaves of the tree.
Uncertainty about which branching order is the correct one is sometimes
represented by filling out the tree as in Figure 2 to cover several possible
binary trees and exclude others which biologists are sure are impossible.
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Figure 1: Haeckel’s tree with 3 branches
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Figure 2: Equus tree from (MacFadden, 1985)

For example Figure 2 from MacFadden (1985) implicitly rules out the
possibility of Sinohippus and Protohippus being homologous; however it
also allows for indetermination of the branching order of Neohipparion,
Pseudohipparion and Cormohipparion. In this paper we propose a geomet-
ric model which parameterizes the set of trees with a fixed set of OTU’s;
in this model, uncertainty can be represented by coloring in the portions
of the space corresponding to possible trees.
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One reason for uncertainty about the true phylogenetic tree is that dif-
ferent choices for DNA sequences (usually the choice of a single gene or
coding region) often point to different trees, each of which is called a ‘gene-
tree’ (Doyle, 1992). Finding the best way of combining the information
contained in numerous different gene-trees for the same set of species re-
mains an open problem in contemporary biology. Several methods have
been proposed to solve this combination problem. One proposal is to treat
the data from different genes as if they came from a single gene. For exam-
ple, Brooks (1981) has suggested building all the different trees and then
coding the tree data into binary columns, combining them and finding the
best tree for the combined columns. Other proposed methods use some
specified set of combination rules such as majority rule, strict consensus
or Bayesian combination. A difficulty with combining data from different
genes into a single, larger data set arises from differences in the mutation
rates in different genes. Another interesting effect is that in simulation
studies, where the true tree topology is known in advance, investigators
have observed that a more accurate tree is obtained by subdividing the
data into many different sequences and then averaging by some method
than by agglomerating all of the sequences and then building a single tree
with the merged data. Perturbing the simulated data by bootstrap resam-
pling and then averaging also produces a tree which is closer to the known
original tree (Berry and Gascuel, 1996). This points to the importance of
understanding the rules used to average trees. None of the proposed con-
sensus rules has previously been studied in a geometric context. Details of
their comparison in the geometric context introduced in this paper will be
explained in Billera et al. (2001).

Uncertainty about the true phylogenetic tree arises also from problems of
statistical stability. The classical tree-building algorithms attempt to find a
single tree consistent with the data. The question of how sure one is that the
tree is correct is thus also a statistical one: the tree becomes an unknown
parameter that the various procedures are trying to estimate. Would a
small change in the data resulting from a sequencing or an alignment error
result in a change of choice of the resulting tree? This is currently studied
by using bootstrapping as a perturbation tool (Felsenstein, 1983), but in
fact this can be interpreted as a problem in the estimation process. This
problem has inspired certain authors (see Efron et al. (1996) and Zharkikh
and Li (1995)) to imagine partitioning a space of trees into regions, each
labeled by a different binary tree. When a data set is associated to a point
in this space, the question of the resulting tree’s stability can be translated
into a question about how close the point is to the boundary between
different regions. The question was raised in Zharkikh and Li (1995) as to
how many regions are within a certain range of a given point. The current
paper attempts to give the intuitive arguments presented in the above cited



6 BILLERA, HOLMES AND VOGTMANN

papers a rigorous geometric interpretation. In particular, since our space
of trees has a metric, this allows a “Voronoi” decomposition into nearest-
neighbor regions, that is, regions consisting of those trees closest to each
of a fixed finite set of trees (see Edelsbrunner (1987)).

One more reason for uncertainty about the true phylogenetic tree involves
the tree-building process. The first problem encountered by taxonomists
who build phylogenetic trees using any of the several methods available is
the complexity of the underlying optimization problem. There are

(2n− 3)!! = (2n− 3)× (2n− 5)× . . . 3 =
(2n− 2)!

2n−1(n− 1)!

rooted binary semi-labeled trees with n leaves (Schröder, 1870). The prob-
lem of computing the best tree for a certain data set is NP complete for
two of the most common methods, the maximum likelihood methods and
the parsimony methods (Foulds and Graham, 1982). As a consequence bi-
ologists have to use approximate optimization algorithms that use random
starting points and certain random moves between trees. The resulting
trees thus vary from run to run. The geometric model we introduce in
this paper allows one to compare these trees in a quantitative way. Such
comparisons could be useful in contexts such as those discussed in Lin and
Gerstein (2000).

Biologists use a range of methods to construct trees from DNA sequences,
each of which results in a tree with branch lengths. At one end of the spec-
trum lie the parametric models, such as the maximum likelihood method.
In this method, a probability is given for each possible base change in a
DNA sequence, and the tree that maximizes the likelihood under this model
is the one chosen as the best estimate. Many biologists believe that as more
data becomes available the mutation rates will be known with better accu-
racy and parametric models will be better justified. The geometric model
of tree space presented in this paper enables one to represent the maximum
likelihood tree as a point in a space of trees with branch lengths; it should
then be possible to define isocontour regions around the estimated tree to
build the desired confidence regions.

In a parametric model, the data are approximated by points in a very low-
dimensional manifold, thereby losing much of the information contained
in the original data. The Jukes-Cantor model, for instance, uses an n-
dimensional parameterization of the data corresponding to trees with n
leaves. To get a rough idea of this, imagine asserting that the data points
lie on an ellipse and then choosing the two parameters of the ellipse so as
to minimize the sum of the distances from the points to the ellipse. The
ellipse is parameterized by two numbers, and represents the parametric
model that biologists will try to fit the data to.
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At the other end of the spectrum of tree-building methods lie the non-
parametric models, such as the parsimony representation. A nonparametric
approach could simply interpolate between points; as the number of points
increases the number of descriptive parameters increases. A more sophisti-
cated nonparametric approach would propose a smooth curve minimizing
the distance to the points. Thus nonparametric methods are also said to
be infinite dimensional. For instance, in the parsimony model, the tree is
defined to be the minimal Steiner tree compatible with the observed dis-
tances between the OTU’s, the branch lengths then represent numbers of
mutation events.

In between these two extremes lie the distance-based methods, which are
semi-parametric models, in which the mutation model is parametric with
very few parameters (usually between one and four) and the tree building
procedure is non-parametric. See Holmes (1999) for a detailed comparison
of these three estimation paradigms.

Each method of producing trees from data results in trees with branch
lengths, but these branch lengths have different meanings in different meth-
ods. The choice of which procedure is used to produce trees will not affect
the geometric representation of the space of trees as we propose it here,
but only the interpretation of points in the space.

A brief summary of the paper follows. In §1, we describe two preliminary
attempts to obtain a geometric setting for the study of trees, each closely
related to a convex polytope (the matching polytope and the associahe-
dron). In §2 we give an explicit construction of the space of trees T n, and
in §3 we give some of its basic combinatorial properties. While T n is not
a manifold, the underlying combinatorial properties of trees help expose
some of its structure. In §4 we study the geometric properties of T n such
as curvature (the CAT(0) property), geodesics and centroids. We also dis-
cuss ways to introduce probability measures on this space in order to find
a geometric setting for the statistical study of tree data. We conclude in
§5 with a discussion of some of the questions that arise when considering
such data.

1. TWO PRELIMINARY ATTEMPTS

In Diaconis and Holmes (1998), trees were coded as “matchings” on a
complete graph. These matchings allow trees to be identified with the
vertices of a convex polytope, called the matching polytope (see Lovasz and
Plummer (1985)). A shortcoming of this matching representation is that
a small move on the matching polytope may have either a very small or
a very large effect on the tree, as it interchanges two nodes which may
be either far from or close to the root. This asymmetry in the matching
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representation is not present in the geometric representation presented in
this paper.

There is another convex polytope, called the associahedron (see Lee
(1989) or Stasheff (1963)) whose vertices can be identified with the set
of planar rooted binary trees with n leaves in a fixed order or, equivalently,
with the set of triangulations of an (n + 1)-gon. The associahedron for
n = 4 is a pentagon, and is illustrated in Figure 3; the triangulations are
indicated by dotted lines and the corresponding binary trees are drawn
with solid lines. Two vertices of the associahedron are adjacent if the
corresponding triangulations differ by “rotating” a single interior edge e,
i.e., removing e to form a quadrilateral in the interior of the (n + 1)-gon
and then replacing e by the opposite diagonal of the quadrilateral. The
corresponding trees are also said to be linked by rotation (see Figure 15).
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Figure 3: Associahedron in the case n = 4

By “gluing” associahedra together, one can construct a space of planar
labeled trees with n leaves, where each associahedron corresponds to a dif-
ferent ordering of the labels. This space has appeared in several different
contexts (Davis et al., 1998; Devadoss, 1999; Kapranov, 1993), and is de-
noted M0,n+1. The space M0,5 is tiled with 12 pentagons, corresponding
to all possible permutations of the leaves up to complete reversal. Each
space M0,n+1 has a dual tiling by (n − 3)-dimensional cubes. The dual
tiling of M0,5, by squares, is illustrated in Figure 4; in the dual tiling, the
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12 pentagons become 12 vertices of degree 5. The shaded region shows a
single tile of the tiling by associahedra.
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Figure 4: Cubical tiling of M0,5, where the arrows indicate oriented identifications.

A problem with the above representation is that we are interested in
the abstract combinatorial information contained in the tree, which does
not depend on how the tree is embedded in the plane. The space of trees
as described in this paper is in fact a quotient of M0,n+1, but a direct
construction seems easier to visualize. One should be able to view this
space as the subset of the cone of all metrics on a fixed finite set consisting
of those metrics that are derived from trees. See, for example, Böcker and
Dress (1998) for the relation between trees and metrics.

2. CONSTRUCTION OF THE SPACE OF TREES

In this section, we describe a geometric model for tree space, in which
each point represents a rooted semi-labeled tree with n leaves and positive
branch lengths on all interior edges. In general one moves around in the
space by varying the branch lengths of the trees, but when a branch length
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reaches 0 some degeneration or uncertainty occurs which can be resolved
in one of several ways, each of which leads to a new tree.

We now proceed to formally define the space. The term n-tree will mean
a tree (i.e., a connected graph with no circuits), with a distinguished vertex,
called the root, and n vertices of degree 1, called leaves, that are labeled
from 1 to n. Although we are primarily interested in binary trees (i.e.,
trees in which the root has degree 2 and all other vertices have degree 1
or 3), in order to interpolate between these we will also need to consider
trees whose vertices have larger degree. Perversely, mathematicians usually
put the root at the top when drawing a picture of a tree, so that the tree
“grows downward” from its root (see Figure 5).

root

leaves

interior 
edges

1 2 3 4 5

Figure 5: A semi-labeled binary tree

For technical reasons, it will often be convenient to “hang each tree up
by its root,” i.e., to place an edge directly above the root of every tree, with
the corresponding leaf labeled with 0. Note that there are several ways of
drawing a diagram of the same tree, depending on how it is embedded in
the plane. For example, the three pictures in Figure 6 represent the same
tree.

1 42 3

0

1 32 4

0

2 14 3

0

Figure 6: Three pictures of the same tree

On the other hand, two trees that have exactly the same combinatorial
structure but whose leaves are labeled differently are considered different
(see Figure 7). The number of different binary trees on n leaves is equal
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to (2n − 3)!!. In contrast, the number of different unlabeled trees with n

leaves is the Catalan number Cn−1 = 1
n

(
2(n−1)
n−1

)
. For example, there are 15

different binary trees with 4 leaves. If we do not restrict ourselves to bi-
nary trees, the enumeration can be done through an exponential generating
function (Stanley, 1999, p. 14).

The problem of enumerating labeled trees is Schröder’s fourth problem
Schröder (1870). Stanley (1999, p.14) finds that there is no analytical
formula. The solution to Exercise 5.40 (page 133) in Stanley (1999) gives
references and a discussion.

1 42 3

0

2 43 1

0

Figure 7: Different trees

A metric n-tree is an n-tree with lengths greater than 0 on all of its
interior edges. (An edge of an n-tree is called interior if it is not connected
to a leaf.) In what follows, the term “tree” will mean a metric n-tree, unless
otherwise specified.

One could also consider trees with positive lengths on all edges, including
those leading to leaves. However, the effect of this on tree space is simply
to take the product with an n-dimensional Euclidean space. Since this
does not significantly affect the geometry of the space, we will ignore this,
knowing that it is possible to add this information at any later point that
we wish.

Now consider a tree T , with interior edges e1, . . . , er of lengths l1, . . . , lr
respectively. If T is binary, then r = n−2; otherwise r < n−2. The vector
(l1, . . . , lr) specifies a point in the positive open orthant (0,∞)r. To each
other point in this orthant, we associate the unique metric n-tree which is
combinatorially the same as T but has different edge lengths, specified by
the coordinates of that point. Points on the boundary of the orthant, i.e.,
length vectors with at least one coordinate equal to zero, correspond to
metric n-trees which are obtained from T by shrinking some interior edges
of T to 0; thus each point in the orthant [0,∞)r corresponds to a unique
metric n-tree (see Figure 8).
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Figure 8: The 2-dimensional quadrant corresponding to a metric 4-tree

An n-tree has the maximal possible number of interior edges (namely
n−2), and thus determines the largest possible dimensional orthant, when it
is a binary tree; in this case the orthant is (n−2)-dimensional. The orthant
corresponding to each tree which is not binary appears as a boundary face
of the orthants corresponding to at least three binary trees; in particular
the origin of each orthant corresponds to the (unique) tree with no interior
edges. We construct the space Tn by taking one (n−2)-dimensional orthant
for each of the (2n − 3)!! = (2n − 3) · (2n − 5) · · · 5 · 3 · 1 possible binary
trees, and gluing them together along their common faces.

For n = 3 there are three binary trees, each with 1 interior edge. Each
tree thus determines a 1-dimensional “orthant,” i.e., a ray from the origin.
The three rays are identified at their origins (see Figure 9).

 1   2   3

 1   2   3

 3   2   1

 3   1   2

0

0

0

0

Figure 9: T3
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For n = 4 there are 15 binary trees, so that the space T4 consists of 15
two-dimensional quadrants which all share a common origin. Each bound-
ary ray appears in exactly 3 of the quadrants as in Figure 10. Note that
a horizontal slice of this figure forms a copy of T 3 embedded in T 4. In
general, T n contains many embedded copies of Tk for k < n.

1 42 3

0

1 42 3

0

1 42 3

0

1 43 2

0

2 43 1

0

Figure 10: Three quadrants sharing a common boundary ray in T4

All 15 quadrants for n = 4 share the same origin. If we take the diagonal
line segment x + y = 1 in each quadrant, we obtain a graph with an edge
for each quadrant and a trivalent vertex for each boundary ray (see Figure
11). This graph is called the link of the origin.
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1 42 3

0

1 42 3

0

(1,0)

(0,1) 

x+y=1

Figure 11: Constructing the link of the origin in T4

Figure 12 shows another portion of the link which forms a pentagon
embedded in its ambient quadrants.

1 2 3 4
1

2
3

4

1 2 3 41 2 3 4

1 2 3 4

0 0

0

0

0

Figure 12: A pentagon in the link

The entire link of the origin is shown in Figure 13, without the ambient
quadrants. The entire space T4 is an infinite cone on this graph, with cone
point the origin. It is interesting to note that the link of the origin in
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this case is a well-known graph, called the Peterson graph. The Peterson
graph has no planar embedding, and the space T4 cannot be embedded in
3-dimensional space.

Figure 13: Link of the origin in T4

One can visualize T 4 as being obtained from the space pictured in Figure
14 by gluing together edges with the same label. We note that the figure
does not look metrically correct, since each triangle should be a right trian-
gle with right angle at the origin; also, each triangle should extend forever
in the direction away from the origin.

a

b

c

b

a

c

Figure 14: T4

3. COMBINATORICS OF THE SPACE OF TREES

In this section we consider certain combinatorial aspects of the space of
trees, and in particular relations to combinatorial structures which have
been studied in other contexts. The combinatorial properties of the link of
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the origin of this space will be useful in the study of its geometry in the
following section.

3.1. Relation to the associahedron and moduli spaces
We observe that the link of the origin in the space T4 is a graph whose

shortest circuit has length 5.
Figure 12 above showed a length 5 circuit in this graph, embedded in

the appropriate quadrants of T4. This pentagon is easily identified with
the boundary of the dual polytope of the associahedron on 4 letters (see
Figure 3). This is a general phenomenon.

The link of the origin Ln is defined for all values of n, as the union of the
sets of points in each orthant with coordinate sum equal to 1. Since the set
of such points in a single orthant forms a simplex, Ln has the structure of
a simplicial complex of dimension n− 3, with one k-simplex for every tree
with k + 1 interior edges.

Proposition 3.1. The dual of the associahedron on n letters is embed-
ded in Tn; its boundary is a subcomplex of the link Ln.

Proof: The associahedron parameterizes the set of planar rooted trees
with n leaves in a fixed order.

If we restrict the branch lengths to be bounded by some constant C > 0,
then the resulting subspace of T n is a quotient of the manifold M0,n+1

defined in section 1. Points of M0,n+1 can be interpreted as rooted planar
trees with branch lengths between 0 and C, modulo a certain equivalence
relation, given as follows: a rooted planar tree has a natural left-to-right
ordering on the edges descending from each vertex; if the edge above a
vertex P has length C, then reversing all orderings at P and at all ver-
tices below P produces an equivalent tree. The manifold M0,n+1 has been
studied by mathematicians in a variety of different guises (moduli space of
stable (n+ 1)-pointed curves, minimal blow-up of the projective braid ar-
rangement, cyclic operad of mosaics). See for example Davis et al. (1998);
Devadoss (1999); Kapranov (1993); the latter especially gives some back-
ground references.

3.2. Combinatorics of the link of the origin
An alternate description of the link Ln can be given in terms of parti-

tions of the set {0, 1, . . . , n} of leaves (recall that we have attached a leaf
labeled 0 to the root). The correspondence between partitions and trees
hinges on the observation that each interior edge of a tree partitions the
leaves into two sets, each with at least two elements (such a partition is
called thick). Different edges of the same tree give compatible partitions,
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where two partitions {X,Y } and {X ′, Y ′} of {0, 1, . . . , n} are defined to be
compatible if one of the subsets

X ∩X ′ X ∩ Y ′ X ′ ∩ Y Y ∩ Y ′

is empty. The link Ln can now be identified with the simplicial complex
whose k-simplices are sets of k + 1 pairwise compatible thick partitions of
{0, 1, . . . , n}. In this guise, Ln is studied in Vogtmann (1990), where it is
shown that Ln has the homotopy type of a wedge of (n − 1)! spheres of
dimension (n− 3) (in fact, Ln is Cohen-Macaulay); see also Robinson and
Whitehouse (1996). Each of these spheres corresponds to the boundary of
an associahedron embedded in T n.

3.3. Tree rotations
Combinatorialists sometimes measure the distance between binary trees

by counting the number of rotations needed to change one tree to another.
Here a rotation is a move which collapses an interior edge to zero, then
expands the resulting degree 4 vertex into an edge and two degree 3 vertices
in a new way (see Figure 15). This move is known to the biologists as a
nearest neighbor interchange (NNI) Waterman and Smith (1978).

0 0 0

1       2      3       4 1       2      3       4 1       2      3      4 

Figure 15: Rotation

In the link Ln as we have defined it, each maximal simplex corresponds
to a binary tree, and two maximal simplices share a codimension 1 face if
and only if the corresponding trees differ by a rotation move. In Sleator
et al. (1992) it is shown that the maximal rotation distance between two
trees on n leaves is O(n logn), while the maximal rotation distance between
two trees contained in the same associahedron is exactly 2n−6 (see Sleator
et al. (1988)). These results give an indication of the size of our space of
trees.

4. GEOMETRY OF THE SPACE OF TREES

By the geometry of the space we mean its metric, as opposed to com-
binatorial, properties. The space of trees comes equipped with a natural
distance function, due to the fact that it is made up of standard Euclidean
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orthants. The distance between any two points in the same orthant is sim-
ply the usual Euclidean distance. If two points are in different orthants, we
can join them by a sequence of straight segments, with each segment lying
in a single orthant; we can then measure the length of the path by adding
up the lengths of the segments. We define the distance between the two
points to be the minimum of the lengths of such “segmented” paths joining
the two points. A segmented path giving the smallest distance between
two points is called a geodesic.

4.1. Non-positive curvature
A metric space X is said to have non-positive curvature if triangles in X

are “at least as thin” as Euclidean triangles (see Figure 16). More precisely,
X is said to be CAT(0) if the following is true: given any three points a, b
and c in X, with distances d1 = d(b, c), d2 = d(a, c) and d3 = d(a, b), form a
“comparison triangle” in the Euclidean plane with vertices a′, b′ and c′ with
side lengths d1 = d(b′, c′), d2 = d(a′, c′) and d3 = d(a′, b′). If x is a point
on the geodesic from a to b, at distance d from a, find the corresponding
point x′ on the straight line from a′ to b′ at distance d from a′. Then
d(x, c) ≤ d(x′, c′).

a b

c
c’

a’ b’x
x’

Figure 16: Comparison triangle

The following lemma shows that the natural metric on Tn has non-
positive curvature. This key property of Tn has many important conse-
quences, including uniqueness of geodesic paths and existence and unique-
ness of various types of centroids.

Lemma 4.1. T n is a CAT(0) space.

Proof. We first subdivide each orthant into the unit cubes having integral
vertices. The space T n is then a cubical complex. A theorem of Gromov
(1987) states that a cubical complex is CAT(0) if and only if the link
of every vertex is a flag complex, i.e., a simplicial complex in which a
simplex belongs to the complex if and only if its entire 1-skeleton does. (In
particular, if all the edges of a triangle are in the complex then so is the
triangle; if all edges of a tetrahedron are in the complex, then so is the
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tetrahedron, and so on). Note that the link Ln of the origin, defined in the
previous section, is such a complex, since simplices are defined by pairwise
compatibility of partitions.

Let v be an arbitrary vertex of the cube complex, which lies in the interior
of a (unique) orthant of dimension k. This orthant corresponds to a tree
with k interior edges, and thus to a set S of k pairwise compatible partitions
of {0, . . . , n}. If k is maximal, i.e., k = n−2, the link of v is a triangulated
sphere, which we think of as the k-fold suspension of the empty set. In gen-
eral, the link of v is the k-fold suspension of the subcomplex of Ln spanned
by all partitions compatible with S. Since this itself is a flag complex, and
since the suspension of a flag complex is again flag, this completes the
proof.

Alternatively, T n is the 0-cone on the link Ln (for definition, see Bridson
and Haefliger (1999, I.5)). Since Ln is a flag complex, it is is CAT(1) by
Gromov’s theorem (Bridson and Haefliger (1999, 5.18,p. 211)). A theorem
of Berestowski (Bridson and Haefliger (1999, 3.14, p. 188)) then implies
that T n is CAT(0).

In the case n = 4, the flag condition says that the links of all vertices
are graphs with no triangles; note that, for example, the smallest circuit in
the link of the origin has length 5. The fact that the set of unlabeled trees
forms a flag complex was noted in (Billera et al., 1999).

4.2. Geodesics
Since the tree space T n is CAT(0), it follows by Gromov (1987) that

there is a unique shortest path connecting any two points of T n, called the
geodesic. In this section we characterize geodesics and show how to find
them. Once the geodesic is found, its length gives the distance between the
two trees.

There is an obvious path between any two trees T and T ′ in T n, obtained
by connecting T to the origin by a straight line segment, then connecting
the origin to T ′ by another straight line segment; we will call this path
the cone path from T to T ′. The cone path may or may not be a geodesic,
depending on the “angle” it makes at the origin T0. One makes this precise
as follows.

We have described the link of the origin in T n as the union of “flat” sim-
plices, consisting of all points in each orthant with coordinate sum equal to
one. We could just as well have considered each simplex as the intersection
of the unit sphere with the appropriate orthant, i.e., the set of points such
that the sum of the squares of the coordinates is equal to one. This new
metric on simplices extends to a natural metric on the entire link Ln, in
which each simplex is a right-angled spherical simplex with all edges of
length π/2. Each tree T of T n lies on a unique ray from the origin. The
intersection of this ray with Ln is called the projection of T onto Ln, and
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is denoted t(T ). The angle between T and T ′, denoted 6 (T, T ′), is defined
to be the distance between t(T ) and t(T ′) in the spherical metric on Ln.

Standard CAT(0) theory (see Bridson and Haefliger (1999), 5.6-5.10)
tells us that the cone path is a geodesic if and only if the angle between T
and T ′ is at least π. If 6 (T, T ′) < π, the geodesic g from T to T ′ projects
to the unique geodesic γ from t(T ) to t(T ′) in Ln; furthermore, if we know
γ, we can reconstruct g.

Another standard notion we will need in this section is that of the de-
velopment of a geodesic in a spherical complex (see Bridson and Haefliger
(1999, p. 104), where the development of a geodesic is more generally de-
fined). Let v be a vertex of Ln, and let γ be a geodesic in Ln starting at a
point t in the interior of a simplex in the star of v. If γ intersects a simplex
σ in an arc of positive length, we say that γ traverses σ. Let σ1, σ2, . . . be
the sequence of simplices which γ traverses. For each i, γ intersects the
common face σi ∩ σi+1 in a single point, which we will call ti. If t1 6= v,
take the totally geodesic surface in σ1 containing t, v and t1; this surface is
a spherical triangle τ1, with the distance of v to the other vertices equal to
π/2 (if we think of σ1 as lying in the unit sphere in a Euclidean orthant,
this surface is the intersection of σ1 with the three-dimensional subspace
containing these three points). We embed this triangle as a triangle τ̄1 in
S2 with the image v̄ of v at the north pole (see Figure 17).

v

τ1 τ2
τ3

γ

t1

t2

t3

t

Figure 17: Development of γ on S2

If γ exits σ1 via a face with a vertex at v, we next take the totally geodesic
surface in σ2 containing v, t1 and t2; again this is a spherical triangle τ2
which we embed in S2 as a triangle τ̄2 adjacent to τ̄1, with the image of
v at the north pole. We continue to lay out triangles in S2 as long as
the “exit faces” of γ have v as a vertex. The image γ̄ of γ in S2 is called
the development of γ near v, and is isometric to its preimage in γ. Recall
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from Section 3 that each interior edge of a tree T partitions the leaves of
T into two sets, each with at least two elements. Edges of T and T ′ are
said to be the same if they determine the same partition of the leaf-labels,
and compatible if the corresponding partitions are compatible. A set of
partitions corresponds to the set of interior edges of a tree if and only if
the partitions are pairwise compatible.

Proposition 4.1. If the cone path from T to T ′ is not a geodesic, then
there are non-empty sets E1 ⊃ E2 ⊃ . . . ⊃ Ek of the edges E(T ) of T , and
F1 ⊂ F2 ⊂ . . . ⊂ Fk of the edges E(T ′) of T ′ such that
(i) each element of Ei is compatible with each element of Fi, so that Ei∪Fi
form the vertices of a simplex σi of Ln and
(ii) the geodesic in Ln from t(T ) to t(T ′) traverses each simplex in the
sequence σ1, . . . , σk.

Proof. Since the cone path is not a geodesic, the geodesic γ realizing
the distance between t(T ) and t(T ′) has length less than π.

Let σ be the simplex of Ln spanned by the edges E(T ). We first consider
the case that γ traverses σ. If γ is contained in the closure of σ, the
proposition is trivial. If not, γ leaves σ via a face corresponding to a subset
of E(T ), which we define to be E1; this face is also a face of the next
simplex σ1 which γ traverses.

Fix any vertex v in σ1 which is not in E1, and develop γ near v. Since
γ has length less than π, the development γ̄ remains in the northern hemi-
sphere; this translates to the fact all simplices encountered by γ must have
v as a vertex, including the simplex containing t(T ′), i.e., v corresponds to
an edge of T ′. Since v was an arbitrary vertex of σ1 not in E1, the set of
vertices of σ1 consists of E1 plus a subset F1 of edges of T ′.

We now continue following the simplices traversed by γ, and repeat the
argument to find vertex sets Ei and Fi as in the statement of the proposition
until we arrive at the simplex containing t(T ′).

If γ does not traverse σ, we set E1 = E(T ), and let σ1 be the first sim-
plex traversed by γ. We take any vertex v of σ1 which is not not in the
face spanned by E1 and develop γ near v. We conclude that every simplex
encountered by γ has v as a vertex, including the simplex containing t(T ′).
Thus all vertices of σ1 which are not in E1 are in E(T ′), and we can set F1 to
be the vertices of σ1 not in E1. We now continue as before until we arrive at
t(T ′).

Corollary 4.1. If no edge of T is compatible with any edge of T ′, then
the cone path is a geodesic.
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Proof. If the cone path is not a geodesic, any element of F1 is compatible
with any element of E1, by the proposition.

Example. The cone path may be a geodesic, even if T and T ′ do have
some compatible edges. For example, let T be the tree on four leaves
with edges e1 = {2, 3|0, 1, 4} and e2 = {1, 2, 3|0, 4}. and let T ′ be the
tree with edges f1 = {0, 1|2, 3, 4} and f2 = {0, 1, 2|3, 4}. Then e1 and f1

are compatible. If the lengths of e1 and f1 are relatively large, then the
geodesic from T to T ′ passes through trees with edges {e1, f1}. However,
if the lengths of e1 and f1 are small, the cone path will be a geodesic (see
Figure 18 ).
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f2

f1

e1
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Figure 18: Cone path may or may not be geodesic

Proposition 4.1 allows us to give an effective procedure for finding the
geodesic between binary trees T and T ′. We realize the orthants of T and T ′

as the totally negative and totally positive orthants of (n−2)−dimensional
Euclidean space Rn−2. We find all possible chains Ei and Fi as in the
statement of the proposition, find a candidate geodesic for each chain, and
compare their lengths. We carry out this procedure in Billera et al. (2001).

Suppose Ei has ni elements and Fi has mi elements. We order the edges
of T in such a way that edges in Ei correspond to the first ni coordinates of
Rn−2 and edges in Fi correspond to the last mi coordinates. Our candidate
for the geodesic from T to T ′ is then a union of straight line segments in
Rn−2, constrained by the fact that each line segment must lie in one of the
orthants whose first ni coordinates are negative, whose last mi coordinates
are positive, and whose remaining coordinates are zero. We illustrate this
with the following special case:

Let T ∈ T n be a tree, and e an interior edge of T . We denote by |e|T
the branch length of e in T .
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Proposition 4.2. Let T and T ′ be binary trees with no edges in com-
mon. Suppose the edges {ei} of T and {fi} of T ′ can be ordered in such
a way that Ei = {e1, . . . , ei} and Fi = {fi+1, . . . , fn−2} are compatible for
all k = 1, . . . , n − 3. If for all i < j we have |ei|T |ej |T ′ − |ej |T |ei|T ′ > 0,
then the geodesic from T to T ′ contains trees with edge sets Ei ∪ Fi for
all i, and the distance from T to T ′ is the length of the vector (|e1|T +
|e′1|T ′ , . . . , |en−2|T + |e′n−2|T ′).

Proof. The compatibility conditions say that the orthants correspond-
ing to the trees Ti and Ti+1 share a codimension 1 face; in fact we may
arrange that the orthant for Ti is the orthant whose first n − 2 − i coor-
dinates are negative and whose last i coordinates are positive. The tree
T corresponds to the point (−|e1|T , . . . ,−|en−2|T ) and T ′ to the point
(|e′1|T ′ , . . . , |e′n−2|T ′); the inequalities ensure that the straight line between
these two points is contained in the union of the orthants corresponding to
the Ti, which is therefore the geodesic from T to T ′.

The following corollary says that we can basically ignore edges of T and
T ′ which are the same when we are computing the geodesic from T to T ′:

Corollary 4.2. Let e be an edge of T which is also an edge of T ′. Then
every tree on the geodesic from T to T ′ has e as an edge.

Proof. The geometric meaning of this statement is that the union X(e)
of the orthants containing the ray R(e) corresponding to e is convex in T n.

Since R(e) is an edge of the orthant containing T , the angle between
R(e) and T is less than π/2. Since the orthants containing T and T ′

intersect in R(e), the angle between T and T ′ is less than π, so that
the cone path is not a geodesic. Consider the geodesic γ in the link Ln
from t(T ) to t(T ′). By Proposition 4.1, every edge in every simplex tra-
versed by γ is compatible with e, i.e., γ stays in the closed star of the
vertex v(e) corresponding to e. If we develop γ near v(e), it begins and
ends in the open northern hemisphere, so remains in the open northern
hemisphere at all times. This translates to the fact that every simplex
encountered by γ in fact has v(e) as a vertex, as we wished to show.

For any edge e, the union X(e) of quadrants containing the ray R(e) is
a product [0,∞) × C(e), where C(e) is a cone on the flag complex of all
sets of partitions which are compatible with e. The cone C(e) is thus also
a CAT(0) complex, consisting of a union of orthants sharing a common
origin. The geodesic from T to T ′ projects to a geodesic in C(e); in fact, if
we know the geodesic from the projections of T and T ′ onto C(e), we can
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recover the geodesic from T to T ′ by following this geodesic while rescaling
the length of e linearly from |e|T to |e|T ′ .

We conclude this section with an easily checked criterion which is suffi-
cient to show that the cone path is not a geodesic:

Notation. Let T ∈ T n be a tree, and e an interior edge of T . The norm
‖T‖ is the Euclidean length of the vector of branch lengths of edges of T ,
(i.e., the square root of the sum of the squares of the branch lengths).

Let E = {e1, . . . , ek} be a set of edges of T ; we denote by T (E) the tree
with edge set exactly E, with branch lengths inherited from T . We may
also think of T (E) as obtained from T by collapsing every edge not in E.
We denote by T/E the tree obtained from T by collapsing every edge in E.

Proposition 4.3. Suppose that T and T ′ have no edges in common, but
that a set of edges E = {e1, . . . , ek} of T is compatible with a set of edges
F = {f1, . . . , fl} of T ′, and that ‖T (E)‖‖T ′(F )‖ − ‖T/E‖‖T ′/F‖ > 0.
Then the cone path is not a geodesic.

Proof. Informally, the inequality ensures that we can produce a shorter
path than the cone path by “cutting across” the orthant corresponding to
the tree with edge set exactly E∪F . Formally, we show that 6 (T, T ′) is less
than than π, and hence that the cone path is not a geodesic by Gromov’s
criterion (Gromov (1987)).

Since T and T (E) are in the same quadrant, the angles α = 6 (T, T (E))
is at most π/2; similarly, and β = 6 (T ′, T ′(F )) ≤ π/2. Since E and F are
disjoint but compatible, 6 (T (E), T ′(F )) = π/2.(see Figure 19)

T'

T

α T(e)

T(f) β

Figure 19: The cone path from T to T ′
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The angle between T and T ′ is at most α+π/2+β. Therefore 6 (T, T ′) <
π if α+ β < π/2, i.e., if cos(α+ β) > 0. We have

cos(α+β) = cos(α) cos(β)−sin(α) sin(β) =
‖T (E)‖
‖T‖

‖T ′(F )‖
‖T ′‖ −

‖T/E‖
‖T‖

‖T ′/F‖
‖T ′‖ ,

which is positive if and only if ‖T (E)‖‖T ′(F )‖ − ‖T/E‖‖T ′/F‖ > 0.

4.3. Centroids
There are several ways of defining the center of a finite scatter of points X

in a CAT(0) metric space, including the center of mass, the circumcenter,
and the points of maximum depth. The center of mass, defined for any
probability distribution over the space, is the unique point that minimizes
the expected squared distance from points in the space (see §3.2 in Jost
(1997)). To define the center of mass of a finite point set, we take the
uniform distribution over X. A clear account of this type of mean value
and its properties can be found in Sturm (2000a,b). Another type of center,
the circumcenter, is the center of the smallest ball enclosing the points of
X (see, e.g. Brown (1989)). The points of maximum depth (Tukey (1975))
are defined by forming the convex hull of X (i.e., the smallest set containing
X and containing all geodesic paths between pairs of its points), removing
the extreme points (the minimal subset of X having the same convex hull)
and repeating until the set becomes empty.

In this section we introduce another notion of center, which we call the
centroid. The centroid of a set of n > 2 points is defined by iterating
the operation of taking centroids of each subset of n − 1 points, where
the centroid of 2 points is defined to be the midpoint of the geodesic path
that joins them. We note that for n = 3, our construction gives the same
centroid as that defined in Bruhat and Tits (1972, pp. 63-64).

It should be noted that to compute any of these notions of center for a
finite set of points in a CAT(0) space X, one needs to be able to compute
the geodesic paths between pairs of points, as discussed in the previous
section for the space T n.

For x, y ∈ X, let c({x, y}) denote the midpoint of the (unique) geodesic
joining x to y. Suppose Y ⊂ X is a set with n > 2 elements (some of which
may be repeated), and suppose we have defined c(W ) for all W ⊂ X with
|W | < n. Then let c1(Y ) denote the set { c(W ) | W ⊂ Y, |W | = n − 1 },
and for k > 1, ck(Y ) = c1(ck−1(Y )). Note that the sets ck(Y ) all have n
elements (some possibly repeated).

We begin by observing that for Euclidean spaces, the sets ck(Y ) can be
used to find the usual centroid c(Y ) = 1

|Y |
∑
y∈Y y of any finite set Y . It is

straightforward to check in this case that c(Y ) = c(c1(Y )), and if |Y | = n,
diam c1(Y ) = 1

n−1 diam c(Y ). From this the following is immediate.
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Proposition 4.4. If X is a subset of a Euclidean space and c(W ) de-
notes the centroid of W , then for any finite subset Y ⊂ X, the elements in
ck(Y ) converge to the point c(Y ) ∈ X as k →∞.

Our goal is to prove that the convergence in Proposition 4.4 continues
to hold in an arbitrary CAT(0) space; the resulting limit point c(Y ) will
be defined to be the centroid of the set Y . To do this we need to prove a
general form of the convexity property that essentially defines these spaces.
Suppose centroids exist for all n-element subsets of a CAT(0) space X. We
say the centroid function c(Y ) is convex if whenever Y = {y1, . . . , yn} and
Y ′ = {y′1, . . . , y′n}, then d(c(Y ), c(Y ′)) ≤ 1

n

∑
d(yi, y′i).

Theorem 4.1. In any CAT(0) space X,

1.centroids exist for any finite set Y ⊂ X, and
2.the centroid function is convex.

Proof. The proof is by induction on n = |Y |. The case n = 2 is
Proposition II.2.2 in Bridson and Haefliger (1999).

Suppose n ≥ 3 and we have a convex centroid function c(W ) for |W | =
n−1. Let Y = {y1, . . . , yn} and Yi = Y \{yi}. Suppose Y has diameter D.
Then by convexity for (n−1)-sets, d(c(Yi), c(Yj)) ≤ 1

n−1 d(yi, yj) ≤ 1
n−1D,

and so diam c1(Y ) ≤ 1
n−1D. Thus the diameter of ck(Y ) is bounded above

by
(

1
n−1

)k
D and so goes to zero.

To show convergence, let Dk denote the diameter of ck(Y ), and consider
the sequence zk ∈ ck(Y ), where z0 = y1, z1 = c(Y1), z2 = c({c(Yi) : i 6= 1}),
etc. It follows by convexity for (n−1)-sets that d(zk, zk+1) ≤ 1

n−1Dk. Thus
for l ≥ k,

d(zk, zl) ≤ Dk +
1

n− 1
Dk +

(
1

n− 1

)2

Dk + · · · =
n− 1
n− 2

Dk,

showing that {zk} is a Cauchy sequence. Thus, centroids exist for n-sets.
To show convexity of c(Y ), |Y | = n, suppose Y = {y1, . . . , yn} and

Y ′ = {y′1, . . . , y′n}. If Yi = Y \ {yi} and Y ′i = Y ′ \ {y′i}, then by convexity
for (n− 1)-sets,

d(c(Yi), c(Y ′i )) ≤ 1
n− 1

∑
j 6=i

d(yj , y′j) (1)

for each i. Let δi = d(yi, y′i) and d0 = (δ1, . . . , δn). Then if dk is the
corresponding vector of distances between elements of ck(Y ) and ck(Y ′),
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it follows from (1) that dk ≤ Bknd0, where Bn = 1
n−1 (Jn − In), Jn is the

n × n matrix of 1′s and In is the n × n identity matrix. Since Bkn →
1
nJ as k →∞, it follows that d(c(Y ), c(Y ′)) ≤ 1

n

∑
d(yi, y′i) as desired.

Since T n is a CAT(0) space, any finite set of points has a unique centroid.
If the points are all in the same orthant, i.e., correspond to trees with
the same combinatorial structure but possibly different branch lengths,
then the centroid is the usual Euclidean centroid of the points, i.e., it
corresponds to the tree with the given combinatorial structure and the
average of the branch lengths (see Proposition 4.4).

If two trees have all branch lengths equal to 1 but have no combinatorial
structure in common, the centroid will be the origin, i.e., the tree with all
branch lengths equal to 0. In a large set which contains one tree which is
markedly different from the others, the effect of this tree on the centroid
will be negligible. An interesting effect occurs when there are duplicate
trees in the set. We illustrate this by the following example: Let T1, T2 and
T3 be the trees illustrated in Figure 20.
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Figure 20: Three trees

The centroid of {T1, T2, T3} is the left tree in Figure 21, while the centroid
of {T1, T1, T2, T2, T3, T3} is the tree on the right. This shows a non-linear
property of this definition of centroid.
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Figure 21: Two different centroids

This method of taking centroids provides a coherent mathematical way
of forming the consensus of a set of trees. The convexity property of cen-
troids says that given two sets {T1, . . . , Tk} and {T ′1, . . . , T ′k} of trees, the
distance between the centroids will be less than or equal to the average of



28 BILLERA, HOLMES AND VOGTMANN

the distances from Ti to T ′i . Thus taking centroids of the two sets creates
two trees which agree at least as well as the average pairwise agreement.

4.4. Probability Measures on Tree Space
Aldous (1996) has described several possible constructions for probabil-

ity measures on combinatorial trees without branch lengths. One of the
parameters he proposes to use is the height of the tree, which is defined as
the largest number of interior edges between a leaf and the root.

There are several natural routes to complementing our geometric con-
struction with a probability measure. They are all simplified by imposing
a bound on the interior branch lengths. This has the effect of truncating
each orthant to a cube.

In this section we assume the branch lengths are renormalized, to obtain
unit cubes. The extension to more general compact subsets of tree space
is straightforward. Here are some natural measures:

• The base measure called dτ puts a probability of 1/(2n− 3)!! on each
cube, while within the cube the distribution is considered uniform. Note
that balls of the same radius centered at different points may have different
probabilities. It is clear that for τ far from any of the boundary regions (i.e.,
equivalently all the edges of τ sufficiently large), dτ will be proportional
to the volume of a small cube around τ . In this case dτ denotes the local
Lebesgue measure in the cube.

If τ is a metric binary tree with exactly one small edge, then its neighbor-
hood will meet 3 cubes. If the number of small edges is k there will be at
most (2k + 1)!! neighboring cubes for τ .

For trees with n leaves, the maximum volume attained is at the origin,
which is contained in 2(n− 3)!! cubes.
• If one wants to describe the simple case of a distribution concentrated

around a center, then a probability distribution can be defined using the
notion of distance we have developed above. This follows a Mallows’ type
model as developed for the symmetric group in (Mallows (1957), Diaconis
(1988)) or for decision trees in Shannon and Banks (1999). In this model the
central tree τ0 together with an exponential family produces a probability
for any branching pattern τ , defined by

f(τ) = Ke−λd(τ,τ0)dτ.

The term K is a normalizing constant and λ is a concentration param-
eter; for λ = 0 the distribution is the base measure, and as λ increases
the measure will be more concentrated around τ0. This is a distribution
concentrated around the central element τ0, which we can choose to be the
centroid that we defined in section 4.3.



SPACE OF PHYLOGENETIC TREES 29

• Non-uniform probabilities can be constructed to agree with some infor-
mation about the data; for example if one wants to be nearly sure to have a
binary tree, without knowing which tree, each orthant could be given mea-
sure 1/(2n− 3)!!, but the distribution on each cube could be concentrated
at the point with all branch lengths equal to 1.

Remarks:

1. In the case when the parametric maximum likelihood method has
been used to determine the optimal tree, there is a natural measure on
T n that will result in likelihood-based confidence regions. This supposes
a parametric mutation model. An example of this is provided in Billera
et al. (2001).

2. Eventually our aim is to be able to map a probability on to the space
so we can create isocontours determining confidence regions. Maybe a good
intuitive picture is:

Figure 22: A hot plot of a possible probability

5. REAL DATA EXAMPLE

In this section we illustrate how the questions of averaging trees and
building confidence regions in tree space come about, by examining a real
data set. This data set consists of 12 mitochondrial DNA sequences, each



30 BILLERA, HOLMES AND VOGTMANN

of length 898 bases, from 12 species of primates. This data is published
in Hayasaka et al. (1988). We will use the program dnapars, from Felsen-
stein’s Phylip package (available on his web site Felsenstein (1993)) to find
the most parsimonious trees for these DNA sequences.

The following list shows the species names, in quotes, together with the
first 80 characters of our DNA data. Data are collected by reading the
DNA sequences for a specific gene occurring in all of the species. These
sequences are written in rows, and the rows undergo a multiple alignment
so that they have the greatest possible agreement in the columns. Here is
part of the data:

’Lemur_catta’ AAGCTTCATAGGAGCAACCATTCTAATAATCGCACATGGCCTTACATCATCCA...

’Tarsius_syrichta’AAGTTTCATTGGAGCCACCACTCTTATAATTGCCCATGGCCTCACCTCCTCCC...

’Saimiri_sciureus’AAGCTTCACCGGCGCAATGATCCTAATAATCGCTCACGGGTTTACTTCGTCTA...

’Macaca_sylvanus’ AAGCTTCTCCGGTGCAACTATCCTTATAGTTGCCCATGGACTCACCTCTTCCA...

’Macaca_fascicul.’AAGCTTCTCCGGCGCAACCACCCTTATAATCGCCCACGGGCTCACCTCTTCCA...

’Macaca_mulatta’ AAGCTTTTCTGGCGCAACCATCCTCATGATTGCTCACGGACTCACCTCTTCCA...

’Macaca_fuscata’ AAGCTTTTCCGGCGCAACCATCCTTATGATCGCTCACGGACTCACCTCTTCCA...

’Hylobates’ AAGCTTTACAGGTGCAACCGTCCTCATAATCGCCCACGGACTAACCTCTTCCC...

’Pongo’ AAGCTTCACCGGCGCAACCACCCTCATGATTGCCCATGGACTCACATCCTCCC...

’Gorilla’ AAGCTTCACCGGCGCAGTTGTTCTTATAATTGCCCACGGACTTACATCATCAT...

’Pan’ AAGCTTCACCGGCGCAATTATCCTCATAATCGCCCACGGACTTACATCCTCAT...

’Homo_sapiens’ AAGCTTCACCGGCGCAGTCATTCTCATAATCGCCCACGGGCTTACATCCTCAT...

The program dnapars found two different trees, each with total branch
length 1163,meaning that 1163 mutations are needed to explain the DNA
sequences in each tree (see Figure 23). We note that the situation of the
root is unspecified a priori; however, it is known in this case to be at the
Lemur branch as depicted. Simple inspection of the two trees shows that
only one of its aspects seems subject to be in doubt, namely the branching
between Pan, Gorilla and Homo sapiens.
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Figure 23: First tree
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Figure 24: Second tree

Thus the relevant confidence statement says that we are ‘sure’ of all
parts of the tree except for the relationship between Homosapiens, Pan and
Gorilla. Either the first two are together or the latter two are together.
Only two of the three possible subtrees with three branches are equally
likely; thus a confidence region assigning equal probabilities to each of
these two in a continuous way would be reasonable if no other information
were available.

The fact that two different trees were produced is a result of conflicts in
the data. Biologists often translate such contradictions by saying that the
tree has an unresolved node and using a triple branch at this node, with
homo sapiens, gorilla and pan all descended from a single ancestor, with
no chosen two-some apparent among them. Note that the centroid of the
two trees in the sense of section 4.3 in tree space is on the boundary line
represented by the same unresolved tree. Thus here our notion of centroid
gives a triple branch at the disputed node with homo sapiens, gorilla
and pan all coming from a common ancestor, which is the same as the
representation of uncertainty that the biologists use.

If the proportions were not fifty-fifty we would get a binary tree with
non-zero edge lengths. For instance if we assigned a biological meaning to
the edge lengths, such as the number of mutations along that branch, then
the respective lengths given by dnapars on the relevant subtrees would be
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those shown on the left in Figure 25. If we used the method from section
4.3 the resulting centroid tree would have the subtree on the right.

18

Pan

Homo
Sapiens

Gorilla

Homo
Sapiens

Gorilla

Pan

23

Homo
Sapiens

Gorilla
Pan

2.5

Figure 25: Two subtrees and their centroid

Biologists would explore the proximity to the boundary by using boot-
strapping to simulate small plausible perturbations in the data. To illus-
trate this, we perturb the data with Phylip’s seqboot program, thereby
obtaining 100 data sets of exactly the same dimensions (12 × 898). Each
of these data matrices will give one or several trees.

When these trees are combined by using a majority rule consensus, (i.e.,
which concludes that a partition is present if it is present in a majority of the
trees, and labels that edge of the tree with the percentage of trees that had
that particular partition), the edges are assigned a number corresponding
to the frequency with which a particular partition occurred. These are
interpreted by biologists as surrogate ‘confidence levels’ for the partitions.
If a number is close to 50% this indicates a doubt as to whether the edge
exists.
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100.0
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Figure 26: Tree with confidence levels

Such an edge-weighted tree is unsatisfactory as a summary of the per-
turbation analysis. A multidimensional representation would be more in-
formative. The embedding property of the tree space will often make such
a representation feasible in practice, at least approximately. In the case of
Figure 26 the only notable differences that occur are on 3 edges. We can
project all the trees onto a complex of three-dimensional cubes. Looking
at the data this way, it is possible to further simplify since for instance the
cube with the edge corresponding to the grouping of homo sapiens and
gorilla does not exist. A more detailed analysis of such examples can be
found in Billera et al. (2001).
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