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ABSTRACT. 

This work is concerned with the relationship between two concepts: 

the geometry of operator algebras, and their tensor products. First, 

Hermitian elements of a Banach algebra, and the special geometry of a 

* 
C -algebra are discussed. The extremal Banach algebra generated by a 

Hermitian element is examined. 

Some norms related to the matricial structure available in 

* 
C -algebra are considered, and their relationships studied. 	The 

symmetrized Jfaagerup norm is defined, which corresponds to a variant 

of the notion of complete boundedness and a Christensen-Sinclair type 

representation theorem. A categorical definition of a tensor product 

of C
* 
 -algebras is proposed, and an analysis of the geometry of such 

tensor products provides a complete description of the Hermitian 

* 
elements and a characterization of the C -tensor norms. 

Next the notion of a tracially completely bounded multilinear map 

is introduced, and the associated tensor norm is shown to be 

equivalent to the projective norm. Bounds are given for the relevant 

constants. 

Finally non-self-adjoint operator algebras are considered. The 
* 

projective and Haagerup tensor products of two C -algebras are shown 

not to be operator algebras. The problem of characterizing operator 

algebras up to complete isometry is considered. Examples are studied 

and necessary and sufficient conditions given. 

As an appendix a criterion for the existence of invariant 

subspaces for an operator related to the Bishop operator is given. 



To Michelle. 
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INTRODUCTION. 

The origins of the theory of tensor products of Banach spaces are 

to be found in work of von Neumann, Schatten [Sc] and Grothendieck 

[Cr2]. 	The tensor product is a fundamental construction in the 

category of Banach spaces and bounded maps; but like the direct sum 

or quotient constructions the tensor product is not merely a formal 

device: the geometry of Banach spaces and their tensor products are 

intimately related. 

Naturally the relationship between two norms on the algebraic 

tensor product of two Banach spaces mirrors geometrical information 

about the spaces concerned. Classes of multilinear maps on Banach 

spaces are in duality with the tensor products of these spaces, thus 

to study a particular class of maps it is often useful and 

enlightening to consider the associated tensor product. 	Tensor 

products seem to be the correct framework to study factorization 

[CL], a concept central to the geometry of Banach spaces. There is 

also the interesting work of Varopoulos, Came [Va.3,Ca3] and others 

characterizing operator algebras in terms of tensor products. 

The injective norm \ and projective norm y , respectively the 

'least' and 'greatest' tensor norms, have received the most 

attention. These norms have important applications in many fields, 

for example in harmonic analysis [Val]. 

The theory of tensor products of C*_algebras  began in 1952 [Tn]. 

Since then it has been concerned with the case when the tensor 

* 
product is again a C -algebra. Analysts were distressed to discover 

* 
that there could exist more than one C -norm on the algebraic tensor 
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* 
product of two C -algebras. Naturally attention was drawn to the 

* 	 * 
nuclear C -algebras: those C -algebras A for which there exists a 

* 	 * 	 * 
unique C -norm on A ® B for all C -algebras B . Such C -algebras 

have been the subject of much research, and are now fairly well 

understood. The property of nuclearity plays a similar role to that 

of the approximation property in the metric theory of tensor products 

of Banach spaces, and has been found to be equivalent to a number of 

important spatial and geometric notions [La3,To]. 

* 
One advantage C -algebras have over Banach spaces is the fact that 

a matrix of operators may be regarded as another operator in a 

canonical fashion. If A is a C*algebra,  then the set An(A)  of 

n x n matrices with elements in A may be identified with the 

* 	 * 
C -algebraic tensor product of A with the C -algebra of complex 

n x ii matrices. 	Recently the study of this attendant matricial 

* 
superstructure of a C -algebra has proved to be most rewarding. The 

mappings respecting the natural order and metric in the matrix spaces 

over a C 
*
-algebra, the completely positive [St] and completely 

bounded maps [Ar] respectively, have deep applications in single 

operator and group representation theory as well as to operator 

algebras. The completely bounded multilinear maps were characterized 

by Christensen and Sinclair [CliS1]: this led to interesting results 

* 
in the cohomology theory of C -algebras [ChSE,ChS2]. The sort of 

representation theorem that they obtained may be regarded as a 

factorization through a Hilbert space. 

Under the usual algebraic correspondence between multilinear maps 

and tensor product spaces the space of completely bounded multilinear 

* 
functionals on C -algebras is in duality with the Haagerup tensor 

product of these algebras [EK]. Certain questions arising naturally 
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from the study of such maps relate to the geometry of this tensor 

product. For example, the commutative Grothendieck inequality may be 

regarded as the equivalence between the projective norm and the 

* 
Haagerup norm on the tensor product of commutative C -algebras, 

The work of Haagerup and Pisier [11a2,11a3,Pr2] on the Grothendieck-

Pisier-Haagerup inequality and related geometrical topics (such as 

factorization of bilinear functionals through a Hilbert space) lead 

naturally to the consideration of other tensor norms which are not 

* 
C -norms. However there has been no systematic theory of general 

* 
norms on the tensor product of C -algebras, nor any attempt to make 

comparisons with the theory of Banach space tensor norms. Perhaps 

this is because until recently the *..representations  have been 

* 
assumed to be the only class of morphisms of C -algebras which behave 

well with respect to tensoring, and these, correspond properly to the 

* 
C -tensor norms. 	The serious study in the last decade or so of 

completely positive and completely bounded maps has provided a lot of 

machinery without which a general theory of tensor products is not 

possible. 

In the late seventies and eighties the work of Choi, Effros, 

Paulsen, Smith, and Ruan appeared on the theory of matricial vector 

spaces and operator spaces [ltu,Eltl]. Operator spaces are the natural 

setting for the study of completely bounded maps. With this theory 

came the notion of 'non-commutative' or 'quantized' functional 

analysis [Ef2]. The study of operator spaces and completely bounded 

maps is a strict generalization of classical functional analysis: 

there is a faithful functor ([ER1] Theorem 2.1) embedding the 

category of Banach spaces and bounded maps into the category of 

operator spaces and completely bounded maps. Thus the Hahn-Banach 
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theorem becomes the Arve son -Witt stock-Hahn-Banach theorem on the 

existence of extensions for completely bounded maps. 

The quotient construct for operator spaces and certain specific 

'operator space tensor norms' were studied [Ru]. The operator space 

Haagerup tensor norm is the appropriate tensor norm corresponding to 

the class of completely bounded multilinear maps. 

We now summarize the contents of this work. We shall be concise 

since most chapters have their own, more detailed, introduction. 

In Chapter 1 we establish our notation and state some facts which 

will be of use later. Section 1.1 includes some approximate identity 

machinery which enables us in later chapters to extend results on 

* 
unital C -algebras to the general case. A brief discussion of tensor 

products of Banach spaces is given in 1.2; the injective and 

* 
projective C -tensor norms are defined at the end of this section. 

Chapter 2 is concerned with the theory of numerical range and the 

geometry of Banach algebras. 	We establish in 2.2 some 

* 
characterizations of C -norms which are interesting in their own 

right. For example it is shown that an algebra norm dominated by an 

* 	 * 
(uncompleted) C -norm is itself a C -norm; and that if there exists a 

* 
unital norm decreasing linear map from a C -algebra into a Banach 

algebra with dense range then there is an involution on the Banach 

* 
algebra with respect to which it is a C -algebra. 	In 2.3 

representations and the duality structure of the extremal algebra 

generated by a Hermitian element are studied. 	This section is 

self-contained and does not relate to the subsequent material. 

In Chapter 3 we examine the matricial structure associated with a 
* 
C -algebra. 	Section 3.1 is a quick review of the theory of 

completely positive linear maps and completely bounded multilinear 
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maps; the Christensen-Sinclair representation theorem is stated. 

Operator spaces are introduced in 3.2 and a proof is given (due to E. 

C. Effros) of the Arveson-Wittstock-Hahn-Banach Theorem. In 3.3 we 

define and discuss operator space tensor norms. 	The symmetrized 

Haagerup norm is presented, which corresponds to multilinear maps 

having Christensen-Sinclair representations but with Jordan 

*_homomorphisms taking the place of the usual *....representations. 

In Chapter 4 we investigate geometrical properties of general 

* 
algebra norms on the tensor product of C -algebras, and also discuss 

some particular tensor norms and their geometrical relationships. A 

* 
uniformity condition appropriate to tensor norms of C -algebras is 

introduced and some implications of this condition considered. It is 

* 
shown that if A 	is a nuclear C -algebra then the canonical 

contraction A 	B -+ A 0 B is injective for all C*_algebras  B 

and for any tensor norm a which is uniform in our new sense. In 

4.3 we prove that for an algebra norm a which is uniform in this 

sense either A 0 B is a C*_algebra  for all C*_algebras  A and 

B , or A 0 B is never a C*_algebra  unless A or B is C . In 

4.4 it is found that for such a there is actually a dichotomy for 

Hermitian elements: if A and B are unital C*algebras  then the 

set of Hermitian elements in A e
a
B is either a spanning set or is 

as small as it could possibly be. 

In Chapter 5 we define the tracially completely bounded 

multilinear maps, and investigate some related geometrical questions. 

In the bilinear case these maps are essentially the same as the 

* 
completely bounded maps of Itoh [It] from a C -algebra to its dual. 

* 
In section 5.2 every bounded bilinear map of C -algebras is shown to 

be tracially completely bounded, and thus the tensor norm which 



corresponds to the class of tracially completely bounded bilinear 

functionals is equivalent to the projective norm. Some bounds for 

this equivalence are found. 	An example is given in 5.3 of a 

trilinear bounded map which is not tracially completely bounded; and 

some comments made on the possibility of a Christensen-Sinclair type 

representation theorem for tracially completely bounded maps. 

In Chapter 6 we discuss characterizations of subalgebras of 
* 
C -algebras. This subject is closely related to the study of certain 

tensor norms [Va3,Ca3]. 	In 6.1 we show that the projective and 
* 

Haagerup tensor products of two C -algebras are not subalgebras of a 
* 
C -algebra, but are often subalgebras of B(B(X)) for some Hubert 

space 71 . 	In 6.2 we consider the problem of characterizing 
* 

subalgebras of C -algebras up to complete isometry. Examples are 

studied and necessary and sufficient conditions given. A result of 

* 
Cole, that the quotient of a subalgebra of a C -algebra by a closed 

two-sided ideal is again a subalgebra of a C*_algebra  [Wr2], is 

generalized. Hopefully these characterizations will also shed some 

* 
light on the tensor product construct for subalgebras of C -algebras. 

As an appendix we give a sufficient condition for the existence of 

invariant subspaces for an operator on the space L2(11) composed of 

a multiplication operator and a translation (here T is the unit 

circle in the complex plane regarded as a topological group). 

This work was completed under the supervision of A. M. Sinclair 

with the exception of the appendix and some of the material of 

Chapter 5 which was done in the summer of 1986 under the supervision 

of A. M. Davie while A. M. Sinclair was on sabbatical. 
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CHAPTER 1. PRELIMINARIES. 

1.1 DEFINITIONS AND NOTATION. 

We make some conventions and recall some definitions and facts, 

most of which are very well known and are stated here for 

completeness. 

All linear spaces are over the complex field C unless explicitly 

stated to the contrary. 	As usual if a and a' are norms on a 

linear space E , and if al(e) ~ a(e) for each e e E , then we say 

a' dominates a , and write & > a . This determines a partial 

ordering on the set of norms on E . If ( E , a ) is a normed 

linear space then BALL(E) denotes the set of elements e € E with 

a(e) < 1 	The dual space of E is denoted by E* , and the natural 
* 	 * 

pairing E x E - C is often written < 	, 	> ; thus if b E E 

and e € E then 

e>=b(e) 

Write B(E) 	for the normed linear space of all bounded linear 

operators on E . The identity on E is denoted by 
'E 	

A linear 

map 	T : E - F 	between normed linear spaces is said to be 

bicontinuous if T is invertible and if T and T 	are 

continuous. If E1,. . ,E and F are normed linear spaces then we 

write B(E1 x 	x E;F) for the normed linear space of all bounded 

rn-linear 	maps 	E1 x .. x E 	F . 	 An 	element 	of 

BALL( B(E1 x •. x E;F) ) 	is said to be a contraction, or 



contractive. 

For n e IN we write E(11)  for GP
=1

E , the direct sum of " 

copies of E . If it is a Hubert space then 	is taken to 

have the natural Hubert space structure. We write 	for the i'th 

entry of an element 	e 	; conversely if 	c e it 

then we write ( for the element of 	whose i'th entry is 

A projection on a Banach space E is an operator P E B(E) which is 

idempotent : i. e. P2  = P . An orthogonal projection on a Hubert 

space it is a projection P E B(it) which is either self-adjoint or 

a contraction [Conw]. 

Let A be an algebra. An algebra norm a on A is a norm which 

is sub-multiplicative: 

a(a b) 	a(a) a(b) 

In this case the pair ( A , a ) is called a normed algebra. An 

algebra A is unital if it possesses an identity 1 and a(1) = 1 

A linear map between unital algebras is called unital if it preserves 

the identity. We shall call an algebra norm a on A a *_algeb ra  

* 	 mexcG 

norm (respectively C -norm) if there is anlinvolution  on the 

a-completion of A making it into a Banach *_algebra  (respectively 

C*_algebra); if A was already a *_algebra  it is usually assumed 

that the involutions coincide. k 2611 aWqs ac 
V 

If E and F are linear spaces and B is an algebra, and if 

S : E - B and T : F -+ B are maps such that 

S(e) T(f) = T(f) S(e) 

for each e E E and f E F , then we say that S and T have 

commuting ranges (not to be confused with commutative ranges). 



The unitization A' of an algebra A is defined as follows: put 

A' = A if A has an identity, otherwise let A' be the algebra 

obtained by adjoining an identity. In other words, if A does not 

have an identity then A' is the direct sum A 9 C with the algebra 

structure 

(a,A) (b,i) = ( ab + Ab + pa , Aj ) 

for a,b E A and A,p E C 	We write a + Al for (a,A) e A' . If 
* 	 * 

A is a C -algebra there is (see [Di] for example) a unique C -norm 

on A' extending the original norm on A ; we call A1  with this 
* 

norm the C -unitization of A 

A two-sided contractive approximate identity for a normed algebra 

( A , a ) is a net of elements (er) in A such that a(e) S 1 

for each ii , and such that if a E A then a e 	and  eu  a both 

converge to a 

The following result shall be needed several times so we choose to 

state it in this place: 

1.1.1 PROPOSITION. Let A be a normed algebra, and suppose I 

is a two-sided ideal of A 	If there exists a two-sided contractive 

approximate identity (er) for I then for a e A the following 

identities hold: 

sup { ha bli : b e BALL(I) } = sup { lIb all : b E BALL(I) } 

= sup { Ilb a cli : b,c e BALL(I) } 

= limp  la ehl = limp  hle all = limp  lle a e1111 
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Proof. Let a be the expression on the left hand side. 	If 

a = 0 then certainly limp I la eMIl = 0 ; thus for b e I we have 

b a = limp (b a) ep = 0 

and hence all the equalities hold. 

Now suppose a # 0 ; for b E BALL(I) we have 

lb all = limp ll(b a) eII < Ili, la ell < a 

Let E > 0 be given, and choose b E BALL(I) with Ma bll > a - 

Thus 

	

a - c < Ila bll = limp lle 	(a b)Il 

~ lint 
V lle all = U!1, lim Ilev a ell 

~ 1itn ha eA l 

which shows that limp Ile all and limp Ma ell exist and equal a 

Hence all the equalities except the last one have been established. 

To see this last equality observe firstly that Ile a ehI ~ a for 

each ii . Notice that for e and b as above 

hIe a e b - a bll S lle a ep b - ev a bll + Ile, a b - a bi 

	

lle 	b - bll Ilall + hie 	a b - a bIl 

and the right hand side converges to 0 . Now 

a > jLiii
v lieu a ell ? limp ile a e bll = ha bll > a - c 

which gives the last identity. 	 o 

For the remainder of this section the reader is referred to 

[Di,Ta] for further details. 
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1.1.2 COROLLARY. Let A be a 
C*_algebra 

 and suppose (er) is a 

two-sided contractive approximate identity for A 	The unique 

C*
-norm on A' extending the original norm is given by 

ha + A lii = sup { Ila b + A bhl : b E BALL(A) } = urn,, ha e,, + A e,,Ih 

whenever a e A and A e 

The set of self adjoint elements in a *_algebra  A shall be 

denoted by Asa • If A is a C*algebra,  we may define a cone 

in A consisting of the positive elements of A ; i. e. those 

elements a e A for which one (and hence all) of the following 

conditions hold: 

* 
a = b b for some bEA 

a = h2  for some self-adjoint element h e A 

a is self-adjoint and the spectrum 	(a) of a in A is 

contained in [O,cx) 

if A is represented faithfully on a Hubert space it 

then a is positive-definite as an operator on it , i. e. 

( 	eit) 

If S is a subset of a C*_algebra  A then we write 5+  for the 

set of positive elements in A which also lie in S . If A is a 

* 
C -algebra then one can always find a two-sided contractive 

approximate identity for A consisting of positive elements of A 

* 
If f is a linear functional on a C -algebra A then we say f 

is positive if f(A+) C [O,o) 
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* 
1.1.3 PROPOSITION. For a linear functional f on a C -algebra 

A any two of the following three conditions implies the third: 

f is positive, 

f is contractive, 

there is a two-sided contractive approximate identity 

(en) for A such that f(e) -' 1 

Proof. 	The only part of this that does not follow from [Di] 

Proposition 2.1.5 is the fact that together (iii) and (ii) imply (i). 
* 

To see this notice that any functional f 	on a C -algebra A 

satisfying (iii) and (ii) may be extended to a unital linear 
* 

functional f on the C -unitization A1 of A , and 

If-(a + A 1)1 = limp If(a ep + A e)I ~ limp I la e + A eiI 

for a e A and A e C . Corollary 1.1.2 now shows that f 	is 

contractive. 	By [Di] 2.1.9 f 	is positive on A' , and 

consequently f is positive on A . 	 o 

e call a linear functional satisfying the conditions of 

Proposition 1.1.3 a state of A . The proposition would still be 

true if the last condition was replaced by 

(iii)? for all two-sided contractive approximate identities (eu) 

for A we have f(e) - 1 

If 	A 	is a C*algebra let 	J111(A) 	be the algebra of n x n 

matrices with elements in A . We shall usually use a capital letter 

( e.g. A ) for an element of JI(A) , and the (i,j) coordinate of 

that matrix shall be denoted by the same letter in lower case with 
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the usual i-j subscript ( e.g. aij ) . Sometimes we may have reason 

to write a(i,j) for aij . If A is the trivial C*_algebra  C 

then we write A
n 
 for An  (A) . We write eij  for the usual system 

of matrix units in J( , and I for the identity element of Al11  

Now J111(A) has an obvious involution given by 

[aij]* = [at] 

for 	A e Jç1(A) . There is a unique way to make An  (A) into a 

C -algebra: if A is faithfully represented on a Hilbert space 11 

then An  (A) may be naturally identified with a closed *.suba1gebra  

of B(X(11)) 

We shall write 	for the transpose map 

rai  .
1 

L jJ [a] 

This mapping has a norm bounded by n , and is a contraction (and 

positive) if and only if A is commutative [Tm2], 1. e. if and only 

if A is the C*algebra  C0(Z) of continuous functions converging 

to zero at infinity on some locally compact Hausdorff space 2 

1.2 TENSOR PRODUCTS. 

If E and F are linear spaces then we write Eø F for their 

algebraic tensor product. 	If 	X 	is another linear space and 

E x  F - X is a bilinear map then we shall usually write b for 

the canonical linear mapping E 0 F X induced by lk , namely 

b(e of) = '(e,f) 	( e E E , f E F ) 

Conversely if 0 is a linear mapping on E 0 F then we write lk 

for the associated bilinear map. 
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If E1  , E2, F1 	and F2  are normed linear spaces, and if 

Ti : Ei -+ F 	(i 	1,2) are linear maps, then we write T1  ® T2  for 

the map 

E1  ® E2 - F1  0 F2  : e1  0 e2  H T1 e1  0 T2  e2  

If a is a norm on E 0 F we will usually write E 0 F for the 

a-completion of E 0 F . As usual a is called a cross norm if 

a(e 0 f) = hell llfll 

for each e E E and f E F . There is (in a sense which we do not 

specify here) a least and a greatest cross norm on E 0 F , the 

injeciive and projective tensor norms 	) 	and 	7 	respectively. 

These are defined by 

0 f) = sup { 	E'=1 7(e) 	:p E BALL(E* ) i 
* 

E BALL(F ) } 

and 

	

7(u) = inf { E 1  lleill hhfhl 	u = 	
e. 0 f } 

The injective norm is so called because it has the following property 

(inject ivity): 	if 	E1  c F1 	and 	E2  C F2 	then 	E1  0,  E2 	is 

contained isometrically in F1  0 F2  

Let E and F be normed linear spaces. Associated to each 

* 
bounded linear map T E F 	is a linear functional 

E®7 FC given by 

(eof) =<T(e) , f> 	(eEE , fEF) 

* 
This association gives an isometric isomorphism from B(E;F ) onto 

the dual space of E 07  F 
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1.2.1 Definition. 	Following Grothendieck [Cr2] we define a 

reasonable tensor norm a to be an assignment of a Banach space 

E 0 F to each pair of Banach spaces ( E , F ) such that 

E 0 F is the completion of E ® F with respect to some cross 

norm which we write a or 	, and 

if E1  , 	, F1  and F2  are Banach spaces, and if 

Ti  :Ei  - F1  (i = 1,2) are bounded linear maps, then 

T1  ® T2  has a (unique) continuous extension T1 
®a 

T2 

mapping E1 
0a 

E2  to F1  ®a  F2  such that 

T1 ®a T211 
S  lIT1  11  11T211 

Thus a reasonable tensor norm may be regarded as a bifunctor from 

the category of Banach spaces and bounded linear maps to itself 

[Ca4,Mi]. 	Schatten [Sc] called a norm possessing property (ii) a 

uniform norm. This property allows us to 'tie' together the action 

of the tensor norm in some coherent fashion; to rule out arbitrary 

allocation of norms to different pairs of spaces. 

Clearly \ and y are reasonable tensor norms. Grothendieck in 

his influential paper on the metric theory of tensor products 

[Grl,Gr2] produced a set of fourteen natural inequivalent reasonable 

tensor norms, including ,\ and -y . We shall say that a reasonable 

tensor norm a is an algebra tensor norm if whenever A and B are 

Banach algebras then 	A 0 B 	is again a Banach algebra. 	In 

[Cal,Ca4] Came gave a characterization of algebra tensor norms, and 

using this showed that of Grothendieck's natural norms only 7 , Ht 

y\/ and \/'y are algebra tensor norms. The norm li 	is of some 

interest in the sequel; It may be defined by the statement 
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b E BALL((E ®ll' F)*) 	if and only if there exists a Hilbert space 

T , and contractive linear maps S : E -* it and T : F - it , with 

(eeE,fEF) 

If it and K are Hubert spaces then we write it 0 K for the 

(completed) Hubert space tensor product [Ta] of it and K .14 
wv' 	 e&r j- IC: 	<, > 5 . 

If A and B are C -algebras then A 0 B is a *.algebra  with 

the natural involution and multiplication 

* 	* 	* 
(aob) =a 0  

and 	(a 0 b) (c 0 d) = (ac) 0 (b d) 

* 
for a,c E A and b,d € B . There is a least and a greatest C -norm 

on 	A 0 B , namely the injeciive (or spatial) C*-norm 	and 

the projective C-norm 11-11 
max 

 respectively [Ta]. 	Both of these 

norms are cross. 	If A and B are faithfully represented on 

Hubert spaces it and K respectively then the norm 11-11 
min 

 may be 

defined by identifying A 0 B with a *subalgebra  of B(it 0 K) in 

the obvious way. This norm is independent of the specific Hilbert 
* 

spaces it and K used to define it. The projective C -tensor norm 

is given on E1 a 0 b e A 0 B by 

11 E 	ai 0 b I 	= sup { 	E 	9(a) 7(bu) II } 

where the supremum is taken over all * representations e and 7 of 

A and B respectively on a Hilbert space it with commuting ranges. 

Note that IHImiR  is injective: indeed if A1  , A2  , Bi and B2  

are C -algebras, with A1  C B 	(i = 1,2) , then A1 ®ffljn  A2 	
is a 

*subalgebra  of B1 
®min 

 B2 

A C*_algebra  A is said to be nuclear if "min = Hmax on 

A 0 B for every C*_algebra  B . 	Note that finite dimensional 
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C*_algebras are nuclear; in particular A
n 
 is nuclear. If A is  

C -algebra then 	A 0 A
n 

, endowed with its unique C -norm, is 

isometrically *.isomorphic  to the space Jmn(A) defined in 1.1. 

We discuss C -tensor norms and nuclearity again in Section 4.1. 



CHAPTER 2. GEOMETRY OF BANACH ALGEBRAS. 

2.1 11ERMITIAN ELEMENTS OF A BANACII ALGEBRA. 

We refer the reader to [BoD1,BoD2,BoD3,BD] for details and a more 

thorough treatment of the ideas contained in this section. 

Let 	A be a unital Banach algebra. 	A continuous linear 

functional f on A is said to be a state if lf II = f(1) = 1 . If 
* 

A 	is a unital C -algebra then this coincides with the former 

definition. We shall write S(A) for the set of states on A . For 

a e A define the numerical range V(a) of a to be the compact 

convex sub-set of the plane given by 

V(a) = { f(a): f e S(A) } 

It is well known that V(a) contains the spectrum o,  (a) of a 

Define the numerical radius v(a) to be the number 

v(a) = sup { P1 : .\ E V(a) } 

It is clear that r(a) 	v(a) 	hail , where r(a) is the spectral 

radius of a . In fact v is a norm on A equivalent to the 

original norm. Indeed is shown in [BoD1] Theorem 4.8 that 

lali , n! (e/n)11 v(a)n 	( a E A ) 

for n = 1 52,... , and this inequality is best possible: there is a 

Banach algebra (see section 2.3) where this bound is attained for 

each n 
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2.1.1 THEOREM. Let h be an element of a unital Banach algebra. 

The following three conditions are equivalent: 

V(h) c 

Ilexp (ith)II = 1 	( t e IR ) 

I II + ithlj = 1 + 0(t) 	( t e IR ) 

2.1.2 Definition. An element h of a unital Banach algebra is 

said to be Ifermitian if one (and hence all) of the conditions of 

Theorem 2.1.1 is met. 

It may also be shown that if h is a Hermitian element of a 

Banach algebra then Y(h) is the convex hull of o(h) , and thus 

v(h) = r(h) . In fact more is true: 

2.1.3 THEOREM [Sil]. If h is a Hermitian element of a unital 

Banach algebra then r(h) = v(h) = lihil 

We write 11(A) for the real Banach space of Hermitian elements in 

A , and we put J(A) = 11(A) + 1 11(A) . The following proposition is 

[Boil] Lemma 5.8. 

2.1.4 PROPOSITION. Let A be a unital Banach algebra. 	Then 

J(A) 	is a closed subspace of A , and the natural involution 

J(A) -, J(A) given by h+ i k 	h - 1k for h , k E 11(A) is well 

defined and continuous. 

It follows directly from the definitions above that if 
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T : A1  -+ A2  is a unital contraction between unital Banach algebras 

then T(H(A1 )) C 11(A2) . We shall use this fact extensively in the 

sequel. 

* 
2.2 GEOMETRICAL CHARACTERIZATIONS OF C -NORMS. 

The following deep result is crucial in what follows: 

2.2.1 THEOREM (Vidav - Palmer). 	Let A be a unital Banach 

* 
algebra such that J(A) = A . Then A is a C -algebra with respect 

to the original norm and algebra structure, and the natural 

involution of J(A) 

* 
2.2.2 THEOREM. Let A be a C -algebra and let B be a Banach 

algebra. 	Suppose 	T : A -4  B 	is a linear contraction with dense 

range, mapping some two-sided contractive approximate identity for A 

to a two-sided contractive approximate identity for B . Then there 

* 
exists an involution on B such that B is a C -algebra and T is 

involution preserving. 

Proof. Let A , B and T be as above, and suppose (e71) and 

(Ten) are two-sided contractive approximate identities in A and B 

respectively. 	Suppose firstly that A has an identity, then 

e 	ev  1 - 1 and T(e) -' T(1) ; consequently 

T(1) b = limp T(e) b = b = limp  b T(e) = b T(1) 

for b e B . 	Thus B has an identity and T 	is a unital 

contraction, whence 
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T(A) = T(11(A)) + I T(H(A)) c 11(B) + i 11(8) 

and so the last set is dense in B . Since 11(B) + 1 11(B) is always 

closed (Proposition 2.1.4) it equals B . 	An application of the 

Vidav-Palmer theorem (Theorem 2.2.1) now completes the proof. 

Suppose now A has no identity; adjoin an identity in the usual 

way to obtain a C*_algebra  A1  . Let BI be the unitization of B 

Then B1  becomes a Banach algebra with the norm 

1b+1 Iii =sup{ lby+yII 	Iyb+yI : yEBall(B) } 

max { limp  lb Te + 	Te,,lI , limp  IlTe. b + 	TeIl } 

where the equality holds by Proposition 1.1.1. 

Define a unital linear mapping 

A1  -B' 	a+1HTa+1 

Now 	limp II Ta Te + 	Te', 11 = limp  II T(a ep  + 	es,) I 

S limp  11 a e + 	e, 11 

=IIa+ 1  II 

similarly limp  11 Te', Ta + 	Te', II 	II a + 	1 II ; and so T 	is a 

unital contraction. Clearly T has dense range, and the result now 

follows from the first part. 	 o 

2.2.3 REMARK. 	The author is indebted to J. Feinstein for 

valuable discussions regarding the theorem above, and for the example 

below. 

2.2.4 EXAMPLE. Given the hypotheses of Theorem 2.2.2 we cannot 

expect T to be surjective in general, even if T is injective. To 
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* 
see this consider the following example. Let c be the C -algebra 

of convergent complex sequences, and consider the linear mapping 

T : c - c given by 

T a = (a1  , a2/2 , a3/3 , ... ) + (lim a11) (0,1/2,2/3, ... ) 

for a = (a) 1  e c . It is clear that T is an injective unital 

contraction; and the range of T is certainly dense in c since it 

includes all sequences with only a finite number of non-zero terms. 

The mapping T is not surjective, because its range does not include 

the convergent sequence ( 1 , 1/2 , 1/3 , ... ) 

However if the mapping of Theorem 2.2.2 is a homomorphism then it 

is indeed surjective: 

* 
2.2.5 COROLLARY. Let A be a C -algebra, let B be a Banach 

algebra, and suppose 0 A - B is a contractive homomorphism. Then 

0(A) 	possesses an involution which makes it into a C*_algebra 

isometrically *_isomorphic  to 	A / ker 8 , and 	8 	is a 

*_homomorphism  onto 8(A) 

Proof. Without loss of generality take B to be the closure of 

8(A) , and then 8 satisfies the condition of Theorem 2.2.2. Thus 

B is a C*_algebra  and 0 is a *_homomorphism;  the corollary now 

follows from elementary C*_algebra  theory ([Di] Corollary 1.8.3). 	o 

We note in passing that [Di] Corollary 1.8.3 can be proven 

directly from 2.2.2. 

The following corollary shows that the C*_norms  are minimal 
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amongst the algebra norms on an algebra. 

2.2.6 COROLLARY. Let A be an algebra. Any algebra norm on A 

dominated by a Cm-norm is itself a C'-norm, and the canonical 

contraction between the two completions is surjective and involution 

preserving. 

2.3 THE EXTRFAMALL BANACH ALGEBRA GENERATED BY A IIIERMITIAN ELEMENT. 

* 
The results of 2.2 show that the C -algebras are extremal amongst 

the Banach algebras: they have the smallest norms, and are 

consequently the biggest algebras, in some sense. We consider in 

this section another extremal object in the category of Banach 

algebras. 

We are concerned here with unital Banach algebras A which are 

generated by a Hermitian element h , with IIhI 	1 ; in other words 

the set of polynomials in h is dense in A . We summarise this 

situation by writing A = <h> . Let T  be the class of such Banach 

algebras. Via the Geif and transform C[-1,1] may be regarded in 

some sense as the largest algebra in T , with the smallest norm. 

There is also in some sense a 'smallest' algebra A[-1,1] = <u> in 

called the extremal algebra generated by a Hermitian with 

numerical range [-1,1] , and it may be identified algebraically with 

a dense subalgebra of C[-1,1] . It has the 'largest' norm in the 

following sense: 

2.3.1 THEOREM. 	Let 	B be a Banach algebra generated by a 

Hermitian element h , with JJhJJ < 1 . 	Then there exists a unique 
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contractive homomorphism 9 : A[-1,1] -* B such that 9(u11) = h11  for 

each n = 0,1,2..... 

We delay the proof of this theorem for a little while. 	The 

condition of Theorem 2.3.1 may be regarded as a universal property: 

there can only be one algebra in T  which possesses this property. 

The mapping 9 provided by Theorem 2.3.1 shall be called the 

ext remal homomorphism, and may be regarded as a functional calculus 

for Hermitian elements of a Banach algebra. Note that the range of 

9 is dense in B , and composing the extremal homomorphism 9 with 

the Gelfand transform gives the canonical restriction map 

A[-1,1] -' C(c(h)) 

Interest has been shown [Si2,Si3] in using this functional 

calculus to understand Hermitian operators on Banach spaces; in 

particular inner derivations in B(B(E)) 	given by a Hermitian 

operator on E , where E is a Banach space (see example below). 

These objects are not very well understood, and if the functional 

calculus is bicontinuous then this would give much information about 

the structure of such operators. 

2.3.2 EXAMPLE. Let 7 be a Hilbert space, and let T be a 

positive linear contraction on 71 , with spectrum c(T) . 	The 

*_derivation  D on B(71) given by 

D(S) =TS - ST 	(SEB(71) ) 

is Hermitian, since. 

1 = Ilexp(itD) (1)1 
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~ Ilexp(itD)I 

= sup{Ilexp(itT) S exp(-itT) : S E BALL(B())} 

using [BoD3] Proposition 18.8. It is easy to show that IIDII ~ 1 

and so by 2.3.1 there exists an extremal homomorphism 

9 : A[-1,1] - 

It is shown in [KaS] that there is a bicontinuous homomorphism 

- C(o(T)) 0, C(u(T)) 

with 	(D") = (z 0 1 - 1 0 

for 	n = 0,1,2... . 	Now 	C(o(T)) 07 C(o(T)) 	is semisimple (see 

[Tnil] or Chapter 4), and consequently so are < z 0 1 - 1 0 z > and 

<D> . 	Thus in this case the extremal homomorphism 	9 	is a 

monomorphism. 

A particularly simple example is the situation where 

it = L2[0,1] , and T is the multiplication operator 

(Tf)(t) = t f(t) 	(t e [0,1] ) 

defined for f e L2[0,1] . Whether the extremal homomorphism 9 is 

bicontinuous or not in this case is an open problem, posed in 1971 at 

the Aberdeen Conference on Numerical Range. 

The extremal algebra A[-1,1] 	can be constructed in many 

different ways (see [Bo,Br,Si2]) , but we choose to highlight one 

specific construction [CrDM] in terms of classical spaces of entire 

functions (see also [Go]) which displays its interesting duality 

structure and highlights a connection with derivations. 
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2.3.3 CONSTRUCTION. 	We merely sketch the construction, full 

details may be found in [B0D2] or [CrDM], whose notation we follow. 

We shall in fact construct a family of algebras A(K) , where K is 

a compact convex subset of the plane containing more than one point. 

We assume that K has been normalized so that K c BALL (C) ; and 

either 0 is in the interior of K , or K = [a,1] , where 

-1 < a < 0 

For CEC put 

w(() = sup { exp(t )l : t E K } 

Let R(C) be the Banach algebra of regular Borel measures on the 

plane, with convolution product. Put 

J(C)={pE(C) : JwdIpl < oo } 

a Banach algebra with respect to convolution and the norm 

IIlI LJ  = J 

For p e Jt'(C) define a function f E C(K) by 

f(t) = J exp(( t) dp(() 	(t E K) 

Put 	A(K) = { f E C(K) : f = f 	for some p e J(C) } , a Banach 

space with the norm 

11f 11 = inf { II: f = f 	}• 

Now 	f 	= f1, f 	(pointwise) and so A(K) 	is a subalgebra of 

C(K) 

The function u(t) = t defined for t e K is in A(K) since 

(2i)1 Jr exp(( t) -2 dC = t 

where r is the unit circle in C . It is clear that the set of 
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elements of A(K) 	of form exp (C u) for ( e 41 spans a dense 

subspace of A(K) , and thus A(K) is generated by u . The maximal 

ideal space of A(K) is K , and consequently A(K) is semisimple. 

We now proceed to examine closely the duality structure of A(K) 

Since the first part appears explicitly in [Cr1111] we merely sketch 

the details, maintaining the notation of [Cr1111] to avoid confusion. 

Let E(K) be the Banach space of entire functions b such that 

11011 = SUP { Iø(OIIu(() : 	} < oo , 

and let E0(K) be the closed subspace of 	E(K) 	consisting of those 

functions 0 E E(K) with 

- 0 	as 	Cl -+ 

When 	K = [-1,1] 	then 	E(K) 	is the Bernstein class [Go] of 

functions. 

It is proved in [Cr1111] that for f e A(K) and 	E E(K) the 

pairing 

= J 0 dp 

is well defined and provides an isometric isomorphism 

E(K) 	A(K)*  :Fi to 

where 	V 15(f) = < f , b > 	( f € A(K) ) 

Proof of Theorem 2.3.1. Suppose B = <h> . Define a map 

0: A[-1,1] 	B: f+ J exp((h) dp(() 

Now for any state g on B and any C E C we have 

	

lg(exp(( h))ll / 	(C) S  llexp(( h)Il / w(C) 
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~ exp(Re (l) / (C) 

=1 

Thus the function ( H g(exp( h)) is in E[-1,1] 
	

If f = 0 then 

g(J exp(( h) dp(()) = J g(exp(( h)) d1i(() 

= < f , g(exp(. h)) > 

Since g was any state on B we see that v(9(f 
14 
)) = 0 and 

consequently 9(f) = 0 . This shows that 9 is a well defined 

function. It is easy to see that 9 possesses the other properties 

that were promised. 	 o 

For f e A(K) define a functional Ff on E0(K) by 

Ff() = < f , 	 (beE0(K) ) 

It is proved in [CrDM] that the mapping f s- 
F 
	is an isometric 

isomorphism of A(K) onto 

For C e C the element exp(( u) of A(K) may be represented by 

the discrete measure with unit mass at C , and so 

<exp((u) , 	>=(C) 	(EE(K)) 

Let 	A 	: 	C -, B(E0(K)) be the group action of C 	on 	E0 (K) 	by 

translation: if 	C e C and 0 E E0(K) then 

(A(C) 0) () = 0(C + 
	

(EC) 

Let 0 e E(K) , then for f,, and f 	in A(K) we have 

< f f , 0> = II 0(C + ) du() d(() = <f 	> 

where 9 is the element of E(K) given by 
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= J (( + ) dv() 	((E C) 

We claim that if '0 e E0(K) then ço e E0(K) . To see this notice 

firstly that 

(C) = < fV  I A(()'0> 

Now f may be approximated arbitrarily closely in A(K) by finite 

linear combinations of elements of the form exp( u) for 	e C 

and certainly 

1< exp( u) , A() '0>1 / w(C) = 0(( + )I / w(() 	0 

as 	oo 

We may now appeal to the following result: 

2.3.4 PROPOSITION. Let A be a unital Banach algebra and let ir 

be the right regular representation of A on itself. Suppose that 

A satisfies the following two conditions: 

* 
there is a Banach space E with E = A , and 

* 	 * 
the set of operators on A of the form T(a) 	for a E A 

* 
leaves E , the canonical image of E in A , invariant 

(or, equivalently, that for each fixed a E A and e E E 

the functional 

b '-' < ba , e > 

on A is in E ). 

Then there exists a unique isometric homomorphism 	ir1 : A - B(E) 

* 
such that 	?r(a) = 7r (a) for each 	a e A . 	Also if 	e 	is the 

mapping B(E) -, A defined  by 

, e>=<1 ,Te 	( e E E ) 
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for T E B(E) , then € is a unital projection ( identifying A and 

(A) ), 	ku = 1 , and 

€(ST) = e(S) o T 

for S , T e B(E) . If A is commutative then r*(A) is a maximal 

commutative subset of B(E) 

Proof. Define a mapping 7r : A -+ B(E) by 

e = ((a)* (e) 
) = 7(a)iE 

for a e A and e E E . It is clear that 7r 	is a contractive 

unital homomorphism. By the Hahn-Banach theorem, for each a E A 

there exists an element e E BALL(E) with <a , e > =Mall , and 

then 

iir*(a)ii ~ li*(a) ell ~ 1< r(a) 	e , 1 >1 = < e , a > = hail 

* 
Thus 7r 	is an isometry. By definition r(•) = 	, and 7r 	is 

the only mapping with this property. 

Defining c : B(E) -, A as in the statement of the proposition we 

see that 

1 
= 	 ku 	1 

and so IIEI = 1 . For a e A and e e E we have 

< €(r(a)) , e > = < 1 , *(a) e > = < a , e > 

and so € o 	
= 'A 

• Clearly 

< €(ST) , e > = < 1 , ST e > = < €(S) , Te > = < €(S) o T , e > 

for S , T E B(E) and e E E . If A is commutative, and if S is 

an operator on E in the commutant of r* (A) , then for any a E A 

and e e E we have 
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< a , T e > = < 1 , *(a) T e > 

= < 1 , T 	(a) e > 

= < e(T) , *(a) e > 

= < f(T) a , e > 

= < a , *(E(T)) e > 

and so T 	. 	 o 

There is a similar result for the left regular representation. 

If A and E are as in 2.3.4 then we can deduce as a corollary 

of 2.3.4 that any mapping from A can be extended to a mapping on 

B(E) . Indeed if F is any Banach space, and a any reasonable 

tensor norm, then 

A ®a 
 F c B(E) 

®a 
 F 

isometrically. 

2.3.5 EXAMPLE. Let ( X , It ) be a measure space, let A be 

the space L(X,p) of essentially bounded p-measurable functions on 

X , and let E = L1(X,p) . Then by 2.3.4 we may identify A with a 

subalgebra of B(E) , the cominutant At of A in B(E) equals A 

and there exists a contractive projection from B(E) onto A 

Proposition 2.3.4 shows that the mapping 	: A(K) - B(E0(K)) 

defined by 

(*(f) ) ( C) = J (( + ) dv 

(for f E A(K) , 	E E0  (K) and C e C ) is actually an isometric 

homomorphism. Under this isometry it is clear that for C E C the 
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element exp(( u) of A(K) corresponds to the translation operator 

It is natural to ask which operator on E0(K) corresponds to 

the element u e A(K) . 	Recall that u = f 	where IL was the 

measure on the unit circle r given by 

dp = (2i) 	C2 dC 

Thus 

(*(u) )() = (2i)1J 	+ 0 / 	2 dy = 

or in other words, w*(u) is the operation of differentiation on 

E0(K) . Set ir*(u) = D 

If K = { ( E € : 1(1 ~ 1 } , and we define '0E E0(K) by 

then we see that 

I' 
lull ~ l(Dn'0) (0)1 = n! (e/n)n, 

and hence A(K) is an algebra in which the extremal values mentioned 

in 2.1 are attained. 

Putting these results together we have: 

2.3.6 THEOREM. 	The mapping 	: A(K) -, B(E0(K)) 	is a unital 

isometric monomorphism, and 

* 
w(•) 	is the regular representation of A(K) on itself, 

*(u) is the differentiation operator D on E0(K) 

for each ( e C r(exp(( u)) is the translation operator 

(iv) the map € : B(E0(K)) -+ A(K) defined in Proposition 2.3.. 
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is ( after identifying A(K) and w*(A(K)) ) a unital 

projection with 11c1l = 1 , and 

e(T f) = c(T) f = f e(T) 

for T e B(E0(K)) and f e A(K) 

	

(v) 	(A(K)) is a maximal commutative subset of B(E0(K)) 

Thus A(K) may be simultaneously regarded as 

the closed subalgebra of B(E0(K)) generated by the translation 

operators ,\() for C E C ; and 

the closed unital subalgebra of B(E0(K)) generated by the 

differentiation operator D 

We now return to the case K = [-1,1] . Consider the derivation 

A on B(E0[-1,1]) defined by 

A(T) = 3 (D T - T D) 	( T e B(E0[-1,1]) ) 

It is easy to see (as in Example 2.3.2) that A is Hermitian, and 

that JJAJJ < 1 . As usual let <A> be the unital Banach algebra 

generated by A . 

I 

	

2.3.7 	THEOREM. 	The extremal map 	9 : A[-1,1] -' <A> 	is an 

isometric isomorphism. 

Proof. By 2.3.6 it clearly suffices to show that 

+ (, A + ... + (R A 	~ 	+ 	
D + ... + (

R 
D11 11  

for 	C11 E C . Let R be the isometric reflection 
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(R b)(C) = 
	

(0 E E0 (K) , ( E C) 

Notice that R has the property 

A' (R) = R Dm 

for m = 0,1,2,... , whence 

lICo + 	
A + ... + (n Anil ~ II(( + 	

A + ... + ( A) (R)I 

= hR (C
O + (1 	.. 	 n 	

" D + . 	
+ 	D"' 

 

= hI( + (1 	
... D + 	+ ( 	 U 

We note that a similar calculation would show that 
axnckc 

isometrically isomorphic to theJ inner derivation 

differentiation operator on E[-1,1] 

A[-1,1] 	is 

given by the 
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* 
CHAPTER 3. THE MATRICIAL SUPERSTRUCTURE OF A C -ALGEBRA. 

In this chapter we explore the additional information about a 
* 
C -algebra A that is obtained by considering the spaces of matrices 

over A . For instance for an element a of a unital 

C -algebra A it is true [Pn] that 

hail < 1 	if and only if 	1 a 
	

is positive in 
1a 1 

* 
It is natural then to consider maps between C -algebras which respect 

the order and the norm of the associated spaces of matrices, 

respectively the completely positive [St] and completely bounded 

[Ar] maps. 	In 3.1 we discuss firstly the theory of completely 

positive maps, giving some of our own proofs; and then multilinear 

completely bounded maps and the Christensen-Sinclair representation 

theorems. 

In 3.2 we review quickly the theory of operator spaces and 

completely bounded maps on operator spaces, and we discuss the sense 

in which this is a generalization of classical functional analysis. 

We also give a most illuminating proof (due to E. C. Effros) of the 

celebrated Arveson-Wittstoek-Hahn-Banach theorem. 

In 3.3 we define operator space tensor norms and discuss the 

operator space Haagerup norm and its relationship with completely 

bounded multilinear maps. We also introduce the symmetrized Jlaayerup 

norm. 	This corresponds to a variant of the notion of complete 

boundedness; and to maps which have representations of Christensen-

Sinclair type, but with Jordan *_homomorphisms  instead of the usual 
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*-representations. 

3.1 COMPLETELY POSITIVE AND COMPLETELY BOUNDED MAPS. 

A linear map T : A - B of C*_algebras  is said to be positive if 

T(A) c B+  (this implies in particular that T is *-linear); and 

n - positive if the map 

: JIn(A) -+ An(B) : [a1 ] H [Ta] 

is positive. If T is n - positive for each n e tN then T is 

completely positive [St]. If the maps T 	are uniformly bounded 

then I is said to be completely bounded and we put 

IITlIcb = sup { JIT n1l: 
n E [N 

We now collect together some facts which we shall need in the 

sequel. 	We refer the reader to [Pn,Ta] for details and a more 

thorough treatment. We do not dwell on the results on completely 

bounded maps since these shall be revisited in 3.2. Throughout this 
* 

section A and B are C -algebras, and T A - B is a linear map. 

3.1.1 THEOREM [St,BD]. If A or B is commutative and 

T : A - B is a positive linear map, then T is completely positive. 

The following construction is fundamental. 	Let 	A be a 
* 
C -algebra, let Y be a Hilbert space and let T A - B(X) be a 

completely positive linear mapping. On the algebraic tensor product 

A 0 71 we define a semi inner product by 

* 
<aO( , b0>=<T(b a) ( , 
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for a , b e A and C , 	e it . The complete positivity of T 

ensures that < 	, 	> is positive semi-definite. Let 

1= { 	e Aeit : < 	, e > = 0 } 

then it is not hard to show (see [Kit] Theorem 2.1.1) that Al is a 

linear subspace of A 0 it ; write A 
®T 

 it for the Hilbert space 

completion of A ® it! Al in the induced inner product. For a E A 

and C E it we shall write [a 0 (] for the coset of a 0 ( in 

A 
0T 

 'jL' 

* 
3.1.2 THEOREM (STINESPRING). Let A be a C -algebra and let it 

be a filbert space. 	A linear map 	T 	A - B(it) 	is completely 

positive if and only if there exists a *...representation  r of A on 

a filbert space K , and an operator V e B(it,K) , such that 

* 
T(a) =V 2r(a) V 	( aeA) 

In this case we can choose V with JIVII = IITIl . Further, if A is 

unital then 	r may be taken to be unital, and thus 11T1 = IIT(1 )I1 

If A and T are unital then we may assume that K contains it as 

a subspace and T(.) = Pit T(.)Iit  

Proof. The sufficiency is obvious. Suppose that A is unital. 

We merely sketch the proof of the necessity in this case, as it is 

standard [Pu]. 	Let K be the Hubert space 
A ®T 	

defined 

immediately above the statement of this theorem. For a E A define 

ir(a) : AOit-4AOit by 

ir(a) (b 0 () = ( a b) 0 C 

for b e A , 	e it . The complete positivity of T ensures that 



r(a) extends to an operator on K , and then it is immediate that r 

is a *_representation of A on ,t . The operator V : it It is 

defined by V C = [1 0 ] . 	
If T is unital then V is an 

isometry. 

* 

Now suppose A is not unital and let A1 be the C -unitization 

of A . If (efl) is a two-sided contractive approximate identity for 

A then ( T(e, e) ) is a bounded net in B(it) ; suppose E is a 

cluster point of this net in the weak operator topology. Define an 

extension T~ of T to A1 by 

T (a+Al) =Ta+AE 

for a + A 1 E A' . It is easy to show that T 	is completely 

positive, and now the result follows from the first part. 	o 

3.1.3 COROLLARY. If T 	A - B is Completely positive then it 

is completely bounded, and IITIIcb = 11T1 

3.1.4 COROLLARY (Generalized Schwarz inequality). If T A - B 

is completely positive then 

* 	 * 

T(a) T(a) ~ 11T1 T(a a) 

for each a E A 

* 

3.1.5 COROLLARY. Let B be a C -algebra, and suppose A is a 

closed *...subalgebra of B . 	 If it 	is a Hubert space, and if 

T : A - B(it) 	is a completely positive linear map, then T has an 

extension to a completely positive map T 	B - B(it) 

Proof. This follows immediately from 3.1.2 and [Di] 2.10.2. 	13 
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* 
3.1.6 THEOREM. If A is. a C -algebra and if P : A -' A is a 

completely positive contractive projection, then there is a 

multiplication on the range of P with respect to which, with the 

* 
usual norm and involution, it is a C -algebra. 

Proof. Suppose A is represented on a Hubert space 7t . Let 

B = P(A) , then it is immediate that B is closed. If we can show 

that 

P(P(a) P(b)) = P(P(a) b) = P(a P(b)) 

for all a , b e A , then the contractive bilinear map 

B x  5-+ B : ( b1  , b ) H P(b, b2) 

is an associative multiplication. The statement of the theorem shall 

then follow from Theorem 2.2.2, since P preserves two-sided 

approximate identities with respect to this multiplication on B 

Construct the Hubert space 	t = A ® X 	defined immediately 

before Theorem 3.1.2. 	Define a map 	Q A 0 71 -+ A® 71 	taking 

a®C to P(a) ®( . Now 

II[Ell  1  P(a) ® C] II = Ej 	
<P(P(aj)*  P(a1)) Cu 

= < P(P(A) '11(A)) ( , ( > 

where A =a 0 e1  ; thus by the generalized Schwarz inequality 

[E 	P(a) ® (] 1,2  <<Pn(A*  A) 	, (>= [E 	a 	C] 12. 

Thus Q extends to a contractive operator on K . Since Q is also 

an idempotent operator it is an orthogonal projection, and so 

Q [a ® (] , Q [b ® ] > = < Q [a e (] , [b ® ] > 

=<[aoC],Q[be]> 
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for a , b E A and ( , 	. In other words 

<P(P(b) P(a)) ( , 	> = < P(b P(a)) C 

=<P(P(b) a) 	, 

for a , b E A and ( , q E '7 , which proves the result. 	o 

I believe the result above first appeared, with a different proof, 

in [ChE1]. Our proof gives explicitly a Hilbert space on which the 

C*_algebra may be represented.5mQ 0C 	kL 	ot 	[mI. 

3.1.7 THEOREM [hi]. 	If 	T : 	A -, B is 	completely 	bounded 	then 

there 	is a *_representation 	r of 	A on a Hubert space 	K , 	and 

operators U , V E B(X,K) 	with I JUJI 	IIV1I = 	llTllcb 	, 	such 	that 

* 
T(.) =U 	(•) V 

If A is unital then ir can be chosen to be unital. 

3.1.8 Definition [CliS1]. Let A1  , ... 	A 	be C*algebras,  7( 

a Hilbert space and let * : A
l 
 x 	x Am -+ B('7) 	be an rn-linear 

map. For each Ii E IN define an rn-linear map 

In  (A,)x •. x 11 
 '
(A

m
) -4J1

n 
 (B('7)) , 

the n-fold amplification of !4 , by 

A) 	
= 	

i' .-i=i 
W1(j) , ... 	A

m  (i m1i))] 

for A
l 
 E A1  , ... , Am E  Am • We say 	is completely bounded if 

sup { litnil : n E IN } < o , and then we define 	
1'1cb 

 to be this 

supremurn. 	In the case 	m = 1 	this coincides with the earlier 

definition. The space CB(A1  x 	x Am;B('7)) of completely bounded 
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maps A1  x 	x  Am -4  B(T) is a Banach space with the norm IHIcb 

H A
l 
= 	

= 4m = 
A in the above, then the map 4 is said to 

be symmetric if 4 = 4 , where 4' 	is defined by 

**(ai,. 
 . . ,am) = 4'(a,. .. 

for 	a1,... ,a E A 

The next result is a generalization of Theorem 3.1.7 to the 

multilinear case. 

3.1.9 	THEOREM [ChS1]. 	Let 	A
l 

 Am 	be 
C*_algebras, 	

let 	71 

be a hubert space, and 	let 	4' 	: 	A, x 	•.. x Am 	9 B(71) 	be an rn-linear 

map. 	Then 	It is 	completely 	bounded if 	and 	only 	if there 	are 

*_representations  7 
i 	' 	' 	of rn A1 	, Am on 	hlilbert 

spaces 	X1 
	... 

7 	respectively, 	and operators 	T  	
e  B(71k,71k1) 

for 	1 < k < m+1 , where 	
o 	71m+1 	

71 , such 	that 

T1 	71(a1) 	T2 	••. T 	Tm+i 

for 	a1  e 	A, , ... 	, 	am E 	Am 	In this 	case 	we can 	choose 

T1 	, 	... 	, 	T 1 	such that 	11T1 11 	... 	IT 	1 

If 	A1 	, 	... 	, Am 	are unital 	then we can choose 

unital. 

The expression given for 4' in Theorem 3.1.9 is called by some a 

Christensen-Sinclair representation. The operators T i occuring in 

the representation are sometimes called bridging maps. 

Christensen and Sinclair also characterized the symmetric 

completely bounded maps. We shall need the following: 
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* 
3.1.10 THEOREM [CliS1]. Let A be a C -algebra and let I be a 

Hubert space. 	If 	t : A x  A - B(X) 	is a symmetric bilinear 

completely bounded map then we can find a representation r of A 

on a Hubert space K , a contractive operator U : T - K , and a 

self-ad joint operator V on K with 
IIVII = ""cb 	such that 

* 
4'(a,b) = U r(a) V 7r(b) U 

for a , b E A . 	If A is unital then 7r may be chosen to be 

unital. 

* 
Let A and B be C -algebras. Define a positive function 

on AOB by 

jIUIIh = inf { 11 E' 	a1  a 	b bi  " 	u 	a1  e b1  } i" 

Let u = E 1  a1  ® b1  and v = E 1  C1  0 d be elements of A 0 B 

without loss of generality we may assume that 

II,
' 1  aalI = IIE' 1  b  b1II 	and  IIE 	ccI 	"Em= d* dill k i1 I 

Then 

Ilu + vMh 	 i=1 b b + E11  d d1  

	

a1  a + 1 	=i c c 	
* 	in 

	

* 	 * 
E =1  a a1  II + II E 1  c c1  

= IE 1  a4ii 	IIE 1  b  bII + IIE 1  cicillk  IIE =1  di  d1M. 

Thus 	is sub-additive. 

Let ir and 9 be *..representations  of A and B respectively 

on some Hubert space 11 , with commuting ranges. 	For 

a1,... 	E A , b1,. . . ,b11  E B , and 	, 	e BALL(X) 

I <E 1  (a) 9(b1) C 	> I <E=1  II 9(b1)  (II II (a) 	II 
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<{ E =1 	II 	9(b) 	{ E (a) 	n 	112 	} 

} 	{E 1  < 	(aa) 	, 	> = { E1 <

N 	

c> 

II 	Ej 

	

ai 	ai 	11 	
11i=1 	b 

b1 	II 

and thus 	11I 	IIIIh 	
. 	This shows 

max 
that 

''"h 	
is a norm. 

We call 	
1I'11h 	

the 	Haagerup 	tensor 	norm [EK]. 	Following the 

custom we often write 	A 
®h  B 
	for the uncompleted normed vector 

space ( A 0 B 
	11'11h ) 	

. 	This 	is an abuse of our earlier convention 

and we hope it does not confuse the reader. The Haagerup norm is the 

tensor norm 	corresponding 	to 	the notion 	of 	completely 	bounded 

bilinear maps. 

* 
3.1.11 THEOREM [EK]. Let A and B be C -algebras, and let 11 

be a Hubert space. If 4 	A x  B -' B(X) 	is a completely bounded 

bilinear map then the associated linear map 	: 1 O B -, B() 	is 

bounded, and then 	'" 	'cb . 
	A bilinear functional 

A x  B - C 	is completely bounded if and only if the associated 

linear functional b on A Oh  B is bounded, and then 

'cb = IkbII 

3.2 OPERATOR SPACES. 

The reader is referred in this section to [Ru] for further 

details, also to [EIt1,Ef2,Pn]. 

Let X be a linear space. Then for each n e IN the linear space 

of n x n matrices with entries in X is an J111  - bimodule 

in the obvious fashion. 	If A e J(n(X) , and B E J1(X) we may 



define the direct sum A @ B in JIn+m(X)  by 

AeB=[ 	
] 

We write Jlnm(X)  for the linear space of n x m matrices with 

entries in X . 	This is a left it11  - module and a right 

	

- module, a 	 a 	 U  66 i&-K W. 

3.2.1 IJefinit ion. Let X be a linear space, and suppose that 

for each n € IN there is a norm 	specified on 1111 (X) , such 

that for all A , B e 1111 (X) and A1  , A2  E itn the two conditions 

	

(i) 	A1  A A2  I 	11A I II IIAI 11  

and 	(ii) 	II A ® B 11 	= max { IJAIIn , IBII 	} 

hold. Then we say that { 	} is an L-matricial structure for 

X , and that ( X , JlI ) is an L-matricial vector space. Often 

we shall simply write X or ( X , . ) for  ( x , 	I )if 

there is no danger of confusion. 

3.2.2 EXAMPLE. Let 7( be a Hilbert space, and suppose that X 

is a linear subspace of B(Y) . 	Then X , together with the 

attendant norms 	on RR  (X)inherited from B(l(11)) , is an 

L° -matricial vector space. We call such an L-matricial vector space 

( X , I. 	) an operator space. 

Let Y be a linear subspace of an L-matricial vector space X 

Clearly Y is again- an L-matricial vector space. One may also 

verify [Ru] that X / Y is an L-matricial vector space with respect 

to the quotient matricial norms obtained from the identifications 
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"n (X/ Y) = umn(X) / .4111(Y) 

Let 	( X , I. III, ) and  ( Y , 	) 	be two L-matricial vector 

spaces and suppose T : X -* Y is a linear map. If there exists a 

positive constant K such that 

[T(a)] In 	K hAh n  

for A E J111(X) , then T is said to be completely bounded, and we 

put 	hITIIcb to be the least such K which will suffice. 	If 

IThhcb < 1 then we say T is completely contractive. If T has an 

inverse defined on its range, and if T and T 1  are completely 

bounded, then we say T is completely bicontinuous. If in addition 

T and T 1  are completely contractive then T is said to be a 

complete isometry. 

More generally we can define completely bounded multilinear maps 

of operator spaces by mimicking Definition 3.1.8. 

The following theorem due to Z-J. Ruan shows that all L-matricial 

vector spaces are operator spaces, and consequently provides an 

abstract characterization of operator spaces. 

3.2.3 THEOREM [Ru]. Let ( X , Hmn  ) be an LCmatricial  vector 

space. Then there exists a hubert space 71 and a complete isometry 

of X into B(71) 

3.2.4 COROLLARY. Let X be an operator space, and Y a linear 

subspace of X . Then X / Y , with the quotient matricial norms, is 

an operator space. 
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By the Bourbaki-Alaoglu Theorem ([Conw] Ex. 5.3.3) if E is a 

normed linear space then there is a compact Hausdorff space R such 

that E c C() isometrically. Now C(9) OA  An is the C*_algebra 

M11(C()) [Ta], and consequently giving the spaces An  (E)= E 0 An  

the injective tensor norm makes 	E 	into an operator space, 

completely isometrically contained in the operator space C() 

Conversely, operator spaces contained completely isometrically in a 
* 

commutative C -algebra may be described by the construction above. 

In addition there is the following result: 

3.2.5 PROPOSITION [Pn]. Let X be an operator space, let Q be 

a compact Hausdorff space, and let T : X -' C(l) be a bounded linear 

map. Then T is completely bounded and IITIICb = ITI 

Let INJ be the functor which takes a Banach space E to the 

operator space whose L-matricial structure { 	} is specified 

by taking 	to be the injective norm on E ® U , and which 

takes a bounded linear map T between Banach spaces to the same map 

between the corresponding operator spaces. Then INJ is a full 

embedding of the category of Banach spaces and bounded linear maps 

onto a full subcategory of the category of operator spaces and 

completely bounded maps. 

Thus we may regard normed linear spaces as the 'commutative 

operator spaces', or, conversely, regard the theory of operator 

spaces and completely bounded maps as 'non - commutative functional 

analysis' [Ef2]. 	Under this meta-transformation 'normed spaces' -# 

'operator spaces' the complex scalars become B(1) in some sense. 

Often theorems from functional analysis carry over under this 
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transformation to theorems about operator spaces. 

The pièce de résistance of this analogy is the following theorem, 

the Arveson -Witt stock -Hahn -Banach theorem, so called by analogy with 

the ordinary Hahn-Banach theorem. Many proofs of this result have 

appeared in the literature, each succeeding proof more elementary 

[Pn]. The proof given here is due to E. G. Effros, and was presented 

at the Durham International Symposium on Operator Algebras in 1987. 

We give simpler proofs of his two 

3.2.6 THEOREM (Arveson-Witt stock -Hahn -Banach). L e t X be an 

operator space which is contained in an operator space Y . Suppose 

T is a Hubert space and T : X -, B(it) 	is a completely bounded 

linear map. 	Then 	T 	extends to a completely bounded map 

Y -, B(it) 	with 	IITl cb = JITIIcb 

First we establish some notation. For the moment let it = C11  

* 
and write it. for the Hilbert space dual to it . Let X be an 

operator space, and let ( CB(X;J111) 	I111 cb) be the Banach space of 

completely bounded maps from X into A. . Now the pairing 

* 
<T , ( ®xø>=<T(x) 	, 

gives a duality between CB(X;J111) and it 0 X 0 it , and thus defines 

a semi-norm 	II. _ 	on it 0 X o it . 	In fact 	is a norm, 

because if II E1  ( o x 0 	II- = 0 then in particular 

EL 1 f (Xi) < (i 	> < 	ni > = 0 

 
for each f E X and ( , 	e it , and consequently 

II 	C 0 x 0 ni Il, = 0 



- 	 * 
If it 0 X 0 it is the completion of it 0 X 0 it in 	then 

(it* OXOit)* = CB(X;En) 

If p is a positive integer, if A e J1(X) , and if C , ,i E 
it(P) 

then define 

C* xAxl=EjiC0aij0 ,1j  

* 	 * 
This is an element of it 0 X 0 it 	If V E 71 0 X 0 11 then 

certainly V_ is dominated by the expression 

inf { E =1  I(I1 IAII 	: V = 	
x A x nj 

. 
A 	JI(X) ; 	

, 	
E it 

 (p j) } 

3 
* 

and so this expression defines a norm on it 0 X 0 it . 	Now the 

Hahn-Bauach theorem shows that this new norm is the same as 11-11-

Write Veit 0X01 as 

(p.) 
with A e .4I 

pj 
 (X) and 	

, 	
it 	, such that 

=i IIII IIAII IIII 	+ f. 

By adding in zero entries if necessary we may assume that 
(=, Sij) 

= 	
=  PN L• 

We may alo assume without loss of generality that 

IIAII = 1 , and that 	11( j ll =jjnj jj for each j 	1,... ,N . 	Define 

and 	E 	 to be the concatenations of the 	and the nj  

respectively, and define a matrix A =,A 	... 	AN in A 
(Nxp) 

 (X) 

Then V=( xAxn and 	IJAII ljlI < IIVII- + € . 	Thus we may as 

well take N = 1 in the infimum above. Now notice that by the next 
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lemma we can in fact take p = n for the representations considered 

in the infimum. 

3.2.7 	LEMMA. If p ~ n 	, and if 
,. ..P 

e Cn , 	then 	there 

exists 	
,. . . 	

e Cn , 	and a unitary matrix U e A 	, with 

Proof of lemma. Let A be the p x p matrix with the 	as 

rows (inserting zeroes in the last columns). 	Then by the polar 
* 

decomposition in finite dimensions we may write A 	U (A A)
" 

where U is unitary. Clearly (A A) 	consists of an n x II block 

in the top left hand corner and zeroes elsewhere. Take 	
.. 

to be the first n rows of (A A) 	(ignoring the last (p-u.+1) 

zero columns). 	 o 

- 

Thus we have established for V E 7( 0 X 0 X that 

IIV1I- = inf f 11(11 11AM Jjnjj : V 
= 

C x A x n ; A E p11(X) ; C 	e 

Proof of Theorem 3.2.6. 	As usual 	[hi] 	it suffices to prove the 

theorem for all finite dimensional subspaces 7 	of 	7( . 	For then 

letting T = P 	T(.)I 	, 	and extending to an operator T 	defined 

on 	Y , we obtain a bounded net of operators { T 	} 	in 	B(X;B(X)) 

directed by the finite dimensional subspaces T 	of 	7( . 	Now there 

exists a sub-net convergent in the bounded weak topology [Pn] to a 

limit which has the desired property. 

Thus we may assume that 	X 
= n 	

If we can show that 

*- - 

71 0 X 0 71 c 71 0 Y 0 71 isometrically then an application of the 
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ordinary Hahn-Banach theorem completes the proof. To this purpose 

let V e I0 X 0 7( be given, with IpVII.* 	
Y 	Ix< 

1 . Thus we can 

write V = 	0 B0  0 	, with B0  e JI(Y) and 	, 	e 	, such 

that IICII = 	= 1 , and 11B01I < 1 . Decompose ( as a direct sum 

of 	n vectors 	,. . . n 	
each in 	T, similarly write 

= n1 e ... 
	. 	We can assume that 	... ,( 	are linearly 

independent, for if they were not proceed as follows. Let A be the 

matrix with columns 	,. . . ,( , and using the polar decomposition 

and spectral theorem in finite dimensions write 

A = U diag{)t1,... 
	

. 10} V 

where U and V are unitary and each A > 0 . Let 	be the 

i'th column of 

(1+(n-k)e2) 	U diag{A1,.. '} V 

where 	e 	is small enough to ensure (1+(n-k)€2) 11BO 11 	< 	1 	. 	It 	is 

not difficult to see that { 11 C! 	} 	= 	1 	, and that the 

are linearly independent. 	If = ij Ct 	we have 

(1+(n-k)E2) 

and 	V 
= 	

0 [j] 	B0  0 n. Similarly we can assume 

are linearly independent. 

* 
0 Define 	OX : J111(X) 	1 X 0 Y : A 	

'-' 	
x 	A 	x 	/ ; 	and 

OY 	JIn(Y) : B 	x B x 

These 	are 	isomorphisms 	of vector spaces, 	and 	the 	diagram 	below 

commutes. 
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umn(X) inclusion J111(Y) 

exI 	oY1 
- 	 - 

'k' ®X01 	eY  
inclusion 

Now 	if OX (AO) = V then 	we see 	that A0 = 	B0 	, 	and 	so 

ii VII j 	x 
< 	1. This completes the proof. o 

3.3 OPERATOR SPACE TENSOR NORMS. 

3.3.1 Definition. 	An operator space tensor norm a is an 

assignment of an LODmatricial structure { a1 } to the algebraic 

tensor product X 0 Y of X and Y , for every pair of operator 

spaces X and Y , such that 

a1 is a cross norm , and 

if T
i 
: X1 - Y1 and T2 : X2 Y2 are completely bounded 

linear maps then T
i 

0 T : X1 ® X2 -+ Y1 0 Y is completely 

bounded with respect to the L-matricial structures { an } on 

X1 0 X2 and Y1 0 Y2 , and 

11 Ti 
0 T2 Mcb ~ IITlIIcb lIT2IIcb 

We sometimes write X O
a
Y for the operator space ( X 0 Y , an ) 

we shall not be too particular about whether the a
n 

are completed 

or not. The norm a1 shall sometimes be called the commutative a 

norm. 

This is a very general definition of an operator space tensor 
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norm. 	One might possibly require, as an additional 'cross norm' 

condition, that 

IA 	x 
Biln - < IIMIm  liBlim  - 

whenever A 	1n (X) and B e Al n0 	whe'e A x B is defined to 
x'\ 4p. 

be the matrix [j 	ak 0  bkj] in 	1)4. If we did insist on 

this condition there is a 'biggest' operator space tensor norm, 

namely the operator space Haagerup tensor norm defined below. One 

might also require that there be a least operator space tensor norm, 

the spatial operator space tensor norm IHimin , also defined below. 

In the light of Proposition 3.2.5 and the remarks after Corollary 

3.2.4 the notion of an operator space tensor norm generalizes the 

notion of a reasonable Banach space tensor norm (Definition 1.2.1). 

If X C B() and Y C B(K) are operator spaces one can define 

the spatial operator space tensor norm 	min on X 0 Y by giving 

X 0 Y the L-matricial structure it inherits as a subspace of 

B(X ® 	. This structure is independent of the specific Hubert 

spaces 71 and K that X and Y were realized upon. Condition 

(ii) of Definition 3.3.1 is verified in [Pn] Theorem 10.3. 

We can also define the Haagerup operator space tensor norm [PuS] 

Namely if U E Ji(X 0 Y) define IIU11h  to be the expression 

	

inf { l IIAk II IIBkII : U = E =1  A  x  Bk I 
A E 	 B  E 

= inf { hAil IIB1I : U = A x B 	A E 1n,p 	B C Ap,nm } 

where x is as defined above. 	It is not difficult to see that 

11 ' 11
hII'llmin , and thus 11'11h is a norm. It is easily checked [Ru] 

that 	is an L-matricia1 vector space and consequently an 
* 

operator space. If X and Y are contained in C -algebras A and 
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B respectively then one can write down an explicit complete isometry 

of X 
®h 
 Y into the C*algebraic  free product of A and B [CliSE]. 

The commutative Haagerup norm on C -algebras is what was called the 

.Haagerup norm in Section 3.1. 

One can easily check that the llaagerup tensor product is 

associative; 1. e. if X1  , X2  , and X3  are operator spaces then 

(X1 	X2) 
®h X3 

= 	
®h (X

2 	X3) 

as operator spaces; thus there is no confusion in writing 

X1 
®h  X

2  ® X3  

* 
Just as in the C -algebra case, the operator space llaagerup norm 

is the 'correct' tensor norm when considering completely bounded 

multilinear maps: 

3.3.2 PROPOSITION. Suppose X1  , ... , X 111  are operator spaces. 

If 'X is a Hubert space, and if it : X1  x ... x X  -' B() 	is an 

rn-linear map, then 	'I' 	is completely bounded if and only if the 

associated linear map 	Ø : X1 ®h 	®h Xrn - B(X) 
	is completely 

bounded, and then we have 

iltlicb = 'cb 

There is a Christensen-Sinclair representation theorem for 

completely bounded multilinear maps on operator spaces. For other 

formulations of the representation theorem see [CliSE]. 

3.3.3 	THEOREM [PnS]. 	Suppose 	X1  , ... , X 	are operator 

spaces, contained in unital 
C*_algebras 

 A1  , ... , Am respectively. 
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If 	X 	is a Hubert space and * : X1  x 	x X  - B(X) 	is a 

completely bounded rn-linear map then there are unital 

*-representations 	
' 	' 	m 	

of 	A
l , ... , 

A
m  

 on Hubert 

spaces 71 , ... , 'X 	respectively, and operators T   
e  B(k,'Xkl) 

for 1 < k < rn+1 , where 10 
= m+1 = 	

, such that 

11T1 11 	IlTII 

and such that 

T1  71(x1) T 2  ... T 7,(x,) Tm+i 

for x1  E X1  , ... , x € 

The llaagerup norm is injective in the following sense: 

3.3.4 THEOREM [hiS]. Suppose X1  and X 2  are operator spaces, 

contained in operator spaces Y1 	and Y 2 	respectively. 	Then 

X1  ®h  X 2  is contained as an operator space in Yj ®h  Y2 

We now introduce a new tensor norm related to the Haagerup norm; 

the class of associated multilinear maps having a Christensen-

Sinclair type representation, but with Jordan *_homomorphisms  taking 

the place of the usual *_representations 

3.3.5 Definition. Let X be an operator space, contained in a 

* 	 * 
C -algebra A . Let A

0 
 be the opposite C -algebra of A (i. e. the 

* 
C -algebra with the same Banach space structure and involution as A 

but with the reversed multiplication), and write a '- a°  for the 

° identity map A 
- 

A . It is easy to see that the transpose map 
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'4n (.4)R11  (A°) 

is an isometric *_antj_jsomorphjsm  

Define the symmetrized space of X to be the operator space 

SYM(X) = { xx° EAGA°  : xeX } 

* 
As an operator space this is independent of the particular C -algebra 

A containing X 

3.3.6 IJefinition. Define the operator space symmetrized Haagerup 

norm 11 - 11sh to be the L-matricial structure on the tensor product 

X e Y 	of two operator spaces 	X 	and 	Y 	whose value on 

UEJIn(XØY) is 

IlUlish = inf { max(IIAIl,IAtID max(IIBlI,IIBM) : U = A x  B, 

A e J1(X) 	B e Jl 
P 11 

 (Y) } 

The sub-additivity is proven as for the Haagerup norm, and it is 

clear that 	1111sh  dominates the Haagerup norm, thus 	IHish 	is 

indeed a norm. The commutative symmetrized Haagerup norm is given on 

u€XØY by: 

inf {max (IIE 1  xxII,IIE 1  xxII) max  (IIE 1  y1yII,IIE.1 

u = E ....1  x 0 

In fact we shall see next that it is unnecessary to explicitly 

verify that 	11 - lish 	is a norm. 	The crucial fact about the 

symmetrized Haagerup norm is the following observation: 

3.3.7 PROPOSITION. Let X and Y be operator spaces. The map 

X 0sh 
	SYM(X) 

®h 
SYM(Y) defined by 
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x 0 y '-+ (x 9 x
0 
) 0 (y 	YO) 

is a complete isometry. 

Thus we could have used Proposition 3.3.7 to define Hsh 

3.3.8 Definition. Let X and Y be operator spaces, let £ be 

a Hubert space and let It : X x Y -4 B(C) be a bilinear map. We 

shall say that t is Jordan completely bounded if there is a 

constant K > 0 with 

II 11(A,B) 	~ K max{ hAil 	lAth } max { hlBhl 	hiBthl } 

for all A E Jln(X) and B € )1(Y) 	. 	In this 	case we put 
''I'JCb 

equal to the least such K 	which suffices. 

3.3.9 Definition. Let X and Y be operator spaces , let £ 

be a filbert space and let t : X x Y -+ B(C) be a bilinear mapping. 

We shall say that 4' is Jordan representable if there exists a 

Jordan representation of 4' : i. e. if X and Y are subspaces of 
* 

unital C -algebras A and B respectively, then there exist Hilbert 

spaces 
Y+ 

, Y and 	, K , unital *_representations 9+ and 

of A and B on 	and K+ respectively, unital 

*_ant irepresentations 9 and r of A and B on 11 and K 

respectively, an operator R from 	® 'X to £ , an operator S 

from L+ ,t to 	e , and an operator T from £ to 

such that 

4'(x,y) = R (8 ® 9)(x) S (w
+ 	)(y) T 

for each x E X , y e Y 
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In this case we put 	Jrep equal to the infimum of IIRII ISM 11TI 

taken over all such Jordan representations of 

3.3.10 THEOREM. Let X and Y be operator spaces, let £ be a 

hubert space, and suppose 	: X x Y 	B(C) is a bilinear map. The 

following are equivalent 

4 is Jordan completely bounded with 11111
Jcb ~ 1 

the linear operator X 
®sh 

Y - B(C) induced by f is 

completely contractive, 

t is Jordan representable with II!IIII JreP < 1 

Proof. The equivalence of (i) and (ii) is easy, as is the fact 

that (iii) implies (ii) 

Now suppose '0 : X 
®sh 

Y - B(C) 	is completely contractive, and 

suppose X and Y are contained in unital C -algebras A and B 

respectively. 	By Proposition 3.3.7 	'0 	induces a completely 

contractive map 	SYM(X) 0 s SYM(Y) - B(C) , and by Theorem 3.3.3 

there exist unital *-representations 0 and 7r of A e A° and 

0 
B e B 	on Hilbert spaces 7 and K respectively, and bounded 

linear operators R : 	£ , S : K - 11 , and T : £ - t , such that 

	

0 y) = R 9(x ED x°) S r(y 	y°) T 

for each x e X , y E Y 

Let I be the closure in 71 of the subspace of 71 spanned by 

elements of the form O(a @ 0) ( for a E A , 	71 . Similarly let 

71 	be the closure in 71 of the subspace of 71 spanned by elements 

- 	 0 
of the form 9(0 a ) ( for a E A , 	E 71 . Define a unital 



*...representation  8
+ 
 of A on + by 

= P8(. 	0) 

and define a unital *Jltj_repreSentat  ion of A on 'X by 

=P 0(0 

It is easy to see that 	1( 	and O = 0+ 6)0-  . Define 

subspaces K+  and K of K , and representations + and ir 	in 

an analagous fashion. We have for x E X and y e Y that 

b(x 0 y) = R (8 e 8)(x) S (ç 9 7_)(y) T . 	 0 

It is clear that the results of 3.3.2, 3.3.3 and 3.3.4 above carry 

over to the multilinear analogues of the symmetrized Haagerup norm 

and the corresponding class of completely contractive maps. Thus we 

get Hahn-Banach type extension theorems for a larger class of 

multilinear maps than we had before. 

The commutative symmetrized llaagerup norm is discussed further in 

Section 4.2. 
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* 
CHAPTER 4. GEOMETRY OF THE TENSOR PRODUCT OF C -ALGEBRAS. 

Recall that when A and B are C*_algebras their algebraic 

tensor product A 0 B is a *.algebra in a natural way. 	Until 

recently, work on tensor products of C*_algebras has concentrated on 

C -tensor norms; i. e. norms a which make the completion A 	B 

into a C*algebra. The crucial role played by the llaagerup norm in 

the theory of operator spaces and completely bounded maps has 

produced some interest in more general norms (see for instance 

Chapter 3, [KaS] and [It]). 	In this chapter we investigate 

geometrical properties of algebra norms on A 0 B , as well as 

discussi some particular tensor norms and their geometrical 

relationships. 

The theory of tensor products of Banach spaces following on from 

A. Grothendieck's fundamental papers [Grl,Gr2] studies so called 

'reasonable' norms (see 1.2). 	These are norms 	a satisfying a 

certain uniformity condition 

a( S 0 T (u) ) ~ IISI a(u) IITI 

for all bounded linear operators S and T between Banach spaces. 

No C*_tensor norm is reasonable in this sense - to see this consider 

the *algebra 1n(1n) A
n 
0 A

n
on which all Cnorms coincide; the 

transpose map 	: An -4 An is an isometry, however the map 

An ®min An 	®min An 

can easily be shown [Bk] to have norm n . In 4.1 we introduce a 

uniformity condition appropriate to tensor norms of C*_algebras, 
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namely in the condition above we require the maps S and T to be 

* 
completely positive linear operators between C -algebras; a norm a 

which satisfies this condition shall be called completely positive 

uniform. 	If 	A 	is a nuclear C*_algebra  the canonical map 

A 0 B - A OA  B is shown to be injective for all C*_algebras  B and 

tensor norms a which are completely positive uniform. 

In 4.3 and 4.4 we consider completely positive uniform algebra 

tensor norms a . In Theorem 4.3.3 we prove that for such an a 

either A 	B is a C*_algebra  for all C*_algebras  A and B , or 

A 0 B is never a C*_algebra  unless A or B is 4C . To prove 

this we use the characterizations of C*_norms  that we established in 

Chapter 3. It is shown in Theorem 4.4.2 that for a as above there 

is actually a dichotomy for Hermitian elements: if A and B are 

unital C*_algebras  then the set of Hermitian elements in A @
a
B is 

either a spanning set or is as small as it could possibly be. Thus 

for 	a again as above, if we wish to calculate the Hermitian 

elements of A 0 B for arbitrary C*_algebras  A and B it 

suffices to consider the first non-trivial tensor product £ 

whereto' is the two dimensional C -algebra. 

* 
4.1 NORMS ON THE TENSOR PRODUCT OF C -ALGEBRAS. 

* 
We begin with some results about C -tensor norms. Good surveys of 

* 
the theory of C -tensor norms and aspects of nuclearity may be found 

in [La3,To]. 

Let A and B be unital C*_algebras,  and let PS(A 
®7 
 B) be the 

set of positive states of A 07  B , i. e. those states 0 for which 

0(u u) 	0 for each u e A 0 B . The GNS construction assigns in a 
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canonical fashion a cyclic *..representation  ro  of A 07  B on a 

Hubert space to each element 0 € PS (.4 07  B) . 	We shall say a 

subset I' of PS(A 07  B) is separating if 

pr( 	sup  {II) II: 

is a norm on A 0 B • We call a subset F of PS(A 07  B) a C*_set 

if it is convex, weak -closed and separating, and for all Ø € F and 
* 

U E A 0 B with 	(u u) 0 0 the state ç defined by 

* 	 * 
(v) = (u v u) / (u u) 

for v € A 0 B , is an element of F 

* 
4.1.1 THEOREM [EL]. 	Let 	A and B be unztal C -algebras. 

* 
There is a bijectzve correspondence between C -norms a on A 0 B 

and C*_sets r of Ps (.4 07  B) , given by a - Fa , and r 

where 

r.{ b E PS (A 0 B) : I(u) I < a(u) for all u € A 0 B } 

and 

	

aF(u)=  sup  {(u*u) : o €r} 	(ueA®B) 

If 	F = Ps (.4 07 B) 	then 	aF = Mutmax , whereas if 	IF is 

PS (.4 07  B) n (A 0 B) then ar  
= 111min 	

* 
Theorem 4.1.1 shows us that the set of C -norms on A 0 B has a 

natural lattice structure; if a1  and a2  are C*_norms  on A 0 B 

then for ueA0B 

a1 	a2  (u) = max { a1(u) , a(u) } 

as one might expect. 

The following three propositions are useful when attempting to 
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* 
extend results about tensor products of unital C -algebras to the 

non-unital case. 	We assume throughout this chapter that all 

approximate identities are contractive. 

* 
4.1.2 PROPOSITION. Let A and B be C -algebras and let A 0 B 

be their algebraic tensor product. 	If 	(en) 	and 	(f) 	are 

two-sided approximate identities for A and B respectively, then 

(e 0 f) is a two-sided approximate identity in A e
a
B whenever 

a is an algebra cross norm on A 0 B 

Proof. 	Let 	u E A 0 B and 	e 	> 	0 be given, 	and 	suppose 

a(u - E 	a1  0 b1) < 	e/3 	. Then 

a(u - (e 	0 f) u) < 2e/3 + a( 1  a1  0 b1  - (e 	0 f) E% 	a 	o b1) 

< 2e/3 + E 1  a(a 	0 b1  - (e 	0 f) 	(a1  0 b1)) 

<C 

for 	\>A0 	, a 	say. Thus (e o f) is a left approximate 

identity. 	A similar argument shows that it is also a right 

approximate identity. 	 o 

* 
4.1.3. 	PROPOSITION. 	Let 	A 	and 	B 	be C -algebras with 

approximate identities (e11) and (f) respectively, and let A' 

and 	B' 	be the C -unitizat ions of A and B respectively. 	If 

U E A' o B' satisfies u  (e 0 f) = 0 for all A , t then u = 0. 

Proof. Suppose A and B are represented non-degenerately on 

Hubert spaces Y and K respectively. It is clear that (eu) and 

(f) converge in the strong operator topology to the identity maps 
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on X and K respectively, and thus (e 0 fe,) converges in the 

strong operator topology on 	B(' 0 K) 	to the identity map on 

Te X .  Now X O P is represented naturally on 11 0 K ; and for 

C e it , 7) E K we have 

U (( 0 i) = lim() u (e 0 f,) (( o i) = 0 

Thus u = 0 
	

U 

4.1.4. PROPOSITION. Let A and B be C-algebras, and let A' 

and B' be their C -unitizations. If a is an algebra cross norm 

on 	A 0 B then there is an algebra cross norm a 	on A' 0 B' 

extending a , given by 

a(u) = sup { u(uv) : v E A ® B , a(v) ~ 1 } 

for u E A' 0 B' . If a is an algebra *norm then so is a , and 
* 	 * 

if 	a 	is a C -norm then a 	is the unique C -norm on A' 0 B' 

extending a 

Proof. Let (er) and (f) be positive two-sided approximate 

identities for A and B respectively. From 1.1.1 we have the 

identities 

SUP { a(uv) : v E A 0 B . a(v) 	1 } = lim
vA 
 a(u (e 0 f1)) 

= lim 	a((e 0 f) u (e,, 0 ft)) 

That a_(u) = 0 implies u = 0 follows from the first identity and 

Proposition 4.1.3. 	The second identity. shows that 	a 	is a 

* 	 * 
*..algebra ( C 

- ) norm if a is a *_algebra ( C 
- ) norm. 	The 

* 

uniqueness of extension of C -norms is shown in [La2]. 	0 
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* 
4.1.5. PROPOSITION. Let A and B be C -algebras. If a is a 

vjitL.. ofl'c ottt 

norm on A ® B such that A 	B is a Banach *_algebralwith respect 

to the usual multiplication and involution then a > 	Mmin 

* 
Proof. First suppose that A and B are unital C--algebras. 

Let 	e PS(A 0 B) fl (1 0 B) 	be given, and write 

=
0 g , with f1,.. . ,f 

, 
E A* and g1,. 

. . 
,g, E 

B* 
. Then 

~ (Enj=1 MfIl Ig1Il) A(u) ~ (E 1 IfII IIg1M) a(u) 

and so 0 may be extended to a functional on A 0 B such that 

0(u u) ? 0 for all u E A 
®a 

B . Now since A 0
a
B is a Banach 

*_algebra the remark after Corollary 37.9 in [BoD3] implies that 0 

is a state on A e
a
B . Thus for u E A 0 B we have 

	

Mmin = sup{ 0(u*u) 	e PS(A 
®7 

B) fl (A* 0 B*) } 

< a(u 

~a(u) 

* 
Now suppose A and B are arbitary C -algebras. Let A' and 

B1 	be the C
* 
-unitizations of A and B respectively, and let a 

be the extension of a to a Banach *.algebra norm a on A1 ® B' 

defined in Proposition 4.1.4. Now a > "'min on A1 0 B1 by the 

first part, and the injectivity of 11-11 min implies that a > Illffljn 

on AOB. 	 11 

	

It would be interesting if 	
. "mill 

was dominated by every algebra 

norm. 
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4.1.6 	THEOREM [Pn,Ta]. 	Let 	A1  , A2 	and 	B1  , B2 	be 

C*_algebras, and let 
	T : A 	B 	be completely positive linear 

maps (1 = 1,2). If a is either 	or 	
max 

 then T1  0 T2  

extends to a completely positive map 	A
l 
 o A2  -+ B1 

®a  B
2  . 	If 

Si  : A1  - B 	are completely bounded linear maps 	(i = 1,2) 	then 

S 0 S 	extends to a completely bounded map 

S
1  ® mill 2 	1 

S :A 
0 mm 

. A-+B1 
mm 

0. "
2  

vith 	IIS10 min  S211 Cb = IIS1IICb ht5211cb 

We shall want to regard a tensor norm as a bifunctor on the 

* 
category of C -algebras, and we would like to tie together the way 

* 
that the norm acts on different pairs of C -algebras, to rule out 

* 
arbitrary allocation of norms to different pairs of C -algebras. 

Theorem 4.1.6 would seem to suggest a uniformity condition involving 

completely positive maps. 	Note that the norm 	
max 

 does not 

behave well with respect to the tensor product of completely bounded 

maps [Ru]. 

* 

	

4.1.7 	Definition. 	A tensor norm of C -algebras 	a 	is an 

assignment of a Banach space A 0 B to each ordered pair ( A , B ) 

of C*_algebras  such that 

A 0 B is the completion of A 0 B in some norm which 

we write as a or I•I 	; 	and 

On A 0 B we have ,\ < . "
a 

The second condition forces a to be a cross norm. Henceforth in 

* 
this chapter a 'tensor norm' shall mean a tensor norm of C -algebras. 



A tensor norm a is called an algebra (respectively *_algeb ra, 

* 
C -) tensor norm if a is an algebra (respectively *_algebra,  C * -) 

norm on A ® B for every pair of C
* 
 -algebras A and B . If a is 

* 
a *_algebra  norm or C -norm on A 0 B it is assumed that the 

involution on A 	B extends the natural involution. 

4.1.8 Definition. A tensor norm a is said to be completely 

positive uniform (or uniform if there is no danger of confusion) if 

whenever Ti  : A -' B 	(i = 1,2) are completely positive linear 

maps of C*_algebras,  then T1  0 T2  has an extension 

T1 O
ct  T

2 	4 ®a A2  -4 B1 ®a  62 

satisfying 	II T1 
®a T

2  11 < lIT1 II 11T211 

In some sense in view of 3.1.3 the notion of an operator space 

tensor norm (Definition 3.3.1) generalizes the notion of a completely 

positive uniform tensor norm. 

Examples of completely positive uniform norms include ll.II min and 

(Theorem 4.1.6); the fourteen natural norms of Grothendieck 

including \ and the four algebra norms 7 , H' , 	, and \/ 	(see 

section 1.2); and the commutative llaagerup and symmetrized Ilaagerup 

norms of 3.1 and 3.3 (the completely positive uniformity of these 

norms follows from Corollary 3.1.3). 

The definition of a completely positive uniform tensor norm may be 

generalized to tensor products of operator systems [Pn] (i.e. 

self-adjoint subspaces of C*_algebras  containing the identity). 

Given a tensor norm defined for pairs of unital C*..algebras  one can 

use the uniformity property as the defining condition for a norm on 
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tensor products of operator systems. 

If 	a is a tensor norm, and if A and B are C
* 
 -algebras, then 

we shall write c for the canonical contraction A 0 B - A e B 

The situation when 	c 	is injective is often of interest; for 

example it is not hard to show that 	A 0 B 	is a• semisimple 

A*_algebra whenever 	a • is a *_algebra  tensor norm with 

injective. Indeed A 0 B is a *_semisimple  A*_algebra if and only 

if the canonical map A 0 B A 0 B is injective; where in is the 

greatest C*_norm  on A 0 B dominated by a . This last statement 

follows from [B0D3] Chapter 40 Corollary 11, because if p is a 

C*_norm on 
A 	B then p 	a by [Di] Proposition 1.3.7, thus a 

dominates the greatest C -norm on A 	B . Note that by Proposition 

4.1.5 there exists at least one C -norm dominated by a 

A reasonable tensor norm of Banach spaces a is called nuclear 

[Ca4] if the canonical map E 0 F - E 0 F is injective for all 

Banach spaces E and F . The next proposition relates this notion 

* 
in some sense to the notion of nuclearity for C -algebras. 

* 
4.1.9 PROPOSITION. A C -algebra A is nuclear if and only if 

* 
for all C -algebras B , and all completely positive uniform tensor 

norms a , the canonical map Ca 	A 	B - A O
A
B is injective. 

Proof. 	Suppose the second condition holds. 	Let B be a 

C*_algebra and choose a = II•IImax  . The condition implies that the 

canonical surjection 	A 0 
max 

B -' A 
®min  B 	is one-to-one and 

consequently an isometry. 

Now suppose that A is nuclear. It was shown in [ChE2] that this - 

is equivalent to the existence of a net (Tn) of completely positive 
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.contractive finite rank operators on A converging strongly to the 

identity mapping 14  . Let B be a C*_algebra  and a be a 

completely positive uniform tensor norm. 	Suppose 	u E ker 

choose '0E (4®a 
B) , and for each ii put '0k, = '0 0  (Tv® TB) 

The uniformity implies that the net (0k,)  is uniformly bounded, and 

since '0(u) -+ '0(u) for 11 in a dense subset of A 0a  B , we see 

that '0 -4 	in the weak -topology on (A € B) . Now each 

factors through A 	B since T,, has finite rank, and so 

= 0 for each i/ . 	Thus 0(u) = 0 ; since '0 was chosen 

arbitrarily we see that u = 0 . 	 o 

4.2 SOME SPECIAL TENSOR NORMS AND THEIR RELATIONSHIPS. 

In this chapter we discuss the ordering of some of the norms we 

have met, and the resulting geometry of the dual spaces. By the end 

of the section we shall also have established exactly when any pair 

of the norms 	1III j  , 11-1tmax and 'i'  are mutually equivalent. 

If A is a C -algebra then by definition A is nuclear if and only 

IHimin  is equivalent (equal) to 	max 	on 	A 
0 B 	for all 

C -algebras B . The other characterizations we shall obtain will be 

of the following type: a is equivalent to fi on A 0 B if and 

only if either A or B satisfy some condition C . Firstly 

however we establish some properties of the llaagerup norm. 

4.2.1 PROPOSITION. The Haagerup norm is a completely positive 

uniform algebra tensor norm dominated by H' , and the map 	
ch 

defined above is always injective. 



Proof. Let T be a seif-adjoint operator on a Hubert space it 

and suppose S1,... 
'Sn 

are bounded operators on it . Then we have 

E 1 S T S 	= sup { I EL1 < T S() , S(fl > I : 11a~ 1 } 

~ .JJTJJ sup { E =1 I <S(e) , S).> 	Illl 	1) 

= 11T1 	E1 .1 S S II 

Thus if u = 	a1 0 b 	and v 
= 	i x

, 0 y 	are in the 
1=1

algebraic tensor product of two C*.algebras, then 

II U V 
'h 	IIE 1 E 1 	HE T  E1 YbbuYII 

~ IIE'l=i aahl 	101=1 bbhl 	IIE 1 xxhl 	hIE 

and so 	11 u V 
'h < IIUIIh hIVIIh 

As we remarked earlier the completely positive uniformity follows 

from Corollary 3.1.3. 	Propositions 3.1.9 and 3.1.11 show that 

1' 11
h < II 

Now suppose eh(u) = 0 and choose b e (A ®h B)* . By 3.1.9 and 

3.1.11 there exist Hilbert spaces it and. K , elements 	c it and 

E K , a bounded operator T : K - '71 , and representations 9 and 

ir of A and B on '71 and K respectively, such that 

0 b) = < 9(a) T r(b) n , 

for every a e A and b e B . Let (Pr) be a net of finite 

dimensional orthogonal projections converging strongly to the 

identity mapping on it , and define for each ii a functional 

a0b+< 9(a) PT2r(b) i 

on 	A 
®h 

B . 	By 3.1.11 the net 	(b11) 	is uniformly bounded by 

11T1 II 	and the proof is now completed as in Proposition 4.1.9.o 
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The fact that the Haagerup norm is an algebra norm and its proof 

above is due to R. R. Smith. We note that '"h is not a *.algebra 

norm, to see this consider the following example [11a3]: take A to 

be the bounded operators on a Hubert space 	'X and define a 

contractive functional V(S 0 T) = (ST) on A 
®h 

A , where '0 is a 

fixed state on B(X) . For n e IN take isometries u1 , ... , u 

in 'X with E 1 u u =I 	Then 	u 0 
u '1h 

< 1 , however 

I(E'.1 uO u)*IIh ~ V((..1 u ® u)) = II 

This also shows that in general 
''"h 

is not equivalent to 7 

The next results focus on the intimate relationship between the 

three themes of equivalence of tensor norms, Grothendieck type 

inequalities, and the representability of bilinear functionals. 

4.2.2 THEOREM (Grothendieckts inequality [Pr3]). There exists a 

(smallest) universal constant KG such that if X and Y are 

locally compact Hausdorff spaces, and 	Co (X) x Co (Y) - C is a 

bounded bilinear functional, then there are probability measures EPx 

on X and PY on Y with 

(f,g) I ~ KG IIII {Jx fl2 x()} {I 	Ig12 	(dy)} 

for f e C0(X) and g e C0(Y) 

It has been shown that 1.33807... < KG < 1.4049... 	(the lower 

bound is due to A. M. Davie (unpublished), the upper bound to U. 

Haagerup [11a4]). 	We note that the theorem is usually stated for 

compact spaces, however by passing to the second dual (as in [fla3]) 

we obtain the result as stated. 

The next result appeared in [KaS], we provide a proof to 
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illustrate the principles involved. 

4.2.3 	COROLLARY. 	On the tensor product of commutative 

* 
C -algebras we have 

1'11h 7 KG '"h 

Indeed the last line is a restatement of the Grothendieck inequality. 

Proof. Let It 	A x B - C be a bounded bilinear functional on 

commutative C*_algebras 	A and B . 	 For f1,.. .,f e A and 

911. .. ,g1 E B we have from 4.2.2 that 

E1 1(f1,g1) 	
(,g1)l 

~ KG IIII 4=1 {Jx 
I fi , 2 

x()} 
Ify Igi,2 
	(dy)} 

~ KG 111 {= Jx I 	l2 x(dx)} {- Jy ii 	y(dy)} 

KG llll ll j 	ll 	ll 11E14 1g1 1 2 ll 

which proves the first assertion. 

Suppose K is a constant such that 	K 	on AB for 

commutative C -algebras 	A and B . 	 Then for every bilinear 

functional P 	A x B -4 C we have 1
1fCb 	

K 	by 3.1.11. For 

such I there exist *-representations ir and 9 of A and B on 

Hilbert spaces 71 and X respectively , elements ( e BALL(X) and 

E BALL(71) , and an operator T : X -4 71 with 11T1 < K 11 111 , with 

(f,g) = < T(f) T 9(g) C , 

for f E A and g e B . Thus 

* 
(f,g) 	IITM II 9(g) C 11ll 	(f ) 	II 

2 
K IIlI <9( g 2) C, C 	(lf I ) Y 	> 
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which is the Grothendieck inequality. 	 o 

4.2.4 	THEOREM (Grothendieck-Pisier-Ilaagerup inequality [11a3]). 
* 

Let 	A and B be C -algebras and suppose 	: A x B 	C is a 

bounded bilinear functional. 	Then there exist states 91 and 92 

on A , and states 01 and 
02 

on B , such that for a e A and 

beB 

	

IlII { 	a) 
+ 92(a a*) } { 	b) + 2(b b*) } 

A calculation similar to the one after Proposition 4.2.1 shows 

that this inequality is best possible (in the sense that if one could 

replace 	JIT11 	by 	C 11,ill 	in the inequality, for some universal 

constant C , then C > 1). 

* 
4.2.5 THEOREM. On the tensor product of two C -algebras we have 

H' < 7 < 2 H' 

Indeed this statement is equivalent to the Crothendieck-Pisier-

Haagerup inequality, although the constants do not necessarily match. 

Proof. The inequality is [11a3] Proposition 2.1, again we give a 
* 

proof to illustrate the technique. Let A and B be C -algebras 
wB 1111k 1. 

and let t : A x B -+ C be a bounded bilinear functionalL Theorem 

4.2.4 implies the existence of states 91 and P2 on A , and 

states 01 and 
02 

on B , such that for a e A and b e B 

~ { 	a) + 2(a a*) } { 
1(b* b) 

+ Ø2(b b*) } 

Now defile a semi inner product on A by 
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< a , b > = c,i(b* a) + 2(a b*) 

for a , b e A . Let I be the Hubert space completion of the 

quotient 

A/ { a : <a , a> = 0) 

in the induced inner product. Let K be the Hilbert space derived 

similarly from B and 
01 1 0

2 . The quotient mappings p : A -+ it' 

and q : B -+ K each have norm 2 . The inequality above implies 

that the bilinear form 

I x  K 	C 	( p(a) , q(b) ) 	(a,b) 

is well defined and contractive, thus there exists a contractive 

* 
operator T : it -, K with 

< T(p(a)) , q(b) > = 4(a,b) 

This implies that the norm of It as afunctional on A OH
I 

B is not 

larger than 2 

* 
Now let A and B be C -algebras and suppose 7 < K H' on 

A 0 B for some positive constant K . Let t : A x  B -+ C be a 

contractive bilinear mapping, then there exists a Hubert space it 

* 
and bounded linear maps 	S 	A -' it 	and 	T : B -+ it 	with 

IISII 11T1 <K , such that 

(a,b) = < S(a) , T(b) > 

for 	a e A and b E B . 	An application of [11a2] Theorem 2.2 

completes the proof. 	 o 

The norm whose equivalence with 7 corresponds exactly to the 

Grothendieck-Pisier-Haagerup inequality, with the right constant, is 
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given on uEA®B by 

inf{(E 	a4ii + IIE 1 aaJI) 	(11B 1 b1bIj 
+ II=1 bbII): 

u = 	a1 ® b1} 

We now consider the commutative symmetrized llaagerup norm of 

3.3.6, which by a similar argument to that of 4.2.1 may be shown to 

be an algebra norm. 

* 
4.2.6 PROPOSITION. Let A and B be C -algebras, and suppose 

A x B -, € is a bilinear map. The following are equivalent 

$ is symmetrically completely bounded with 11t1l 
scb 	

1 
, 

the linear functional on 	
®sii 

B corresponding to 	is 

contractive; 

we may write 

(a, b) = < (9 	9)(a) T (r 	z_) (b) ( , r > 

for all a e A and b e B ; where 9 and 	are 

representations of A and B on Ililbert spaces 	and 

respectively, 9 	and 'r 	are *_antirepresentations of A 

and B on Ililbert spaces 7 	and K 	respectively, 

T : K+ K 	X 	is a contractive operator, and 

	

E BALL(K+ 9 1t) and ii E BALL(X 	71) ; 

there exist states p, and 92 on A , states 01 and 02 

on B , and real numbers s and t in [0,1] , such that 

I(a,b)I ~ {si(a 
* 

a)+(1-s)2(aa 
* 

)}' {t 1(b
* 
b)+(1-t) 02(bb

* 
)} 

for all aeA and bEB. 
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Proof. 	The equivalence of (i) and (ii) and (iii) follow from 

Theorems 3.3.10 and 3.2.5. It is clear that (iii) implies (iv), and 

	

that (iv) implies (ii). 	 o 

* 
4.2.7. PROPOSITION. On the tensor product of any two C -algebras 

we have 

11sh 	
2 	

sh , and 11'11sh S II? < 2 'sh 

moreover the constant 2 is best possible in each inequality. 

Proof. 	The Grothendieck-Pisier-Haagerup inequality and 

Proposition 4.2.6 shows that 

sh S 
H'< 7 	2 11'11sh 

Now 	suppose 	that H' < K 	
I"sh  

for 	some 	constant 	K > 0 , 	to 

complete the proof it is sufficient to show that K > 2 	. 	Let 	n E IN 

be fixed, put 	it 
= 211+1 	

and let {ek}' 	be an orthonormal basis 

for 	it 	. 	Form the exterior 	(or wedge, 	or alternating 	[Lg], 	or 

antisymmetric) product spaces 	An  it and 	A1 	it , which are complex 

vector 	spaces 	of the same 	dimension. 	Let N 	be 	the 	binomial 

coefficient 	(2n)  

Define for 	k = 	1,... 12n+1 	linear maps 	ak : 	A"it - 	A 1it 	given 

by 

ak ( 	A ... A 	) = e  A 	A ... A 
n 	1'"'n 

e it) 

Now A"it has a natural inner product which can be written as 

< 1 A ... A 11 , ?)1 A ... A711>=det [< 	, 

for 	,... 
, 	

e it . 	That this Hermitian sesquilinear 

form is positive-definite is most easily seen with reference to the 
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basis 

{ e
il 

... A e1 }< 

(which is orthonormal with respect to this form). Similarly we can 

define an inner product on A
n+1

T such that 

e.A...Ae. 
11 	1n+1 11 . 111+1 

is an orthonormal basis for 	, and such that the inner product 

is independent of the specific orthonormal basis {e} that was 

chosen. With respect to these inner products one may verify that 

ak a = (n+1) 
'An+lX 

and i=1 	k 
 a ak = (n+1) 

Let A be the C*_algebra B(A'1,AY) , considering A11X as 

being identified with 	via some explicit isomorphism, and let 

E be the subspace of A spanned by {a} . Now A may also be 

regarded as a Hubert space with the Schmidt class inner product [Ri] 

* 

<a,b>2=Tr(b a) 	(a,beA) 

Write 	11-112 	for < , 	 . 	 It is not hard to see that 

{ 0 ak } forms an orthonormal basis for E with respect to this 

inner product. Let P : A -, E be the orthogonal projection onto E 

with respect to < . , 	>2 . We make the following claims: 

N 11ell 	11e112 for e E E, 

if e 0 0 then the rank of e equals N , and 

IIP(a)II ~ hail for a e A 

Identities (i) and (ii) may be seen by first verifying them in the 

case e = a1 , and then observing that the basis free nature of the 

inner product allows this assumption. Identity (iii) follows because 
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if P(a) = e then 

N lieu2 	< e , e >2 = < e , a >2 
= tr(a*e) 

* 	 * 

~ la ell rank(a e) 

~ hell hail rank(e) 

~ N Ilell hall 

and so I lell ~ I lall 

Define a linear map T : A -+ C
2n+1  by 

	

T(a) = N 	(Tr(4 a) )1 

for a E A . Identities (i) and (iii) above assert that JITIJ < 1 

Write < 	, 	> for the bilinear form C2n+l x C2"1 - C giving 

the 	duality of 	C 
2i1+1 	

with itself, and define a functional 

: AOA -+C by 

0 b) = < T(a) , T(b) > 	( a , b e A) 

It is clear that 	(ak 0 ak) = 1 , and that 	' is contractive with 

respect to the 11t norm. Thus 

2n+1 = iE' i=l 	(ak ® ak) I <K 11011 hIE'i=l ak ® akhhSh < K (n+1) 

and since nwas chosen arbitarily we see that K > 2 . 	 o 

The construction above is due to U. Haagerup and was communicated 

to the author by A. M. Davie. 

It is shown in [KaS] that one can represent every bounded bilinear 

map 	A x 5 - C with 	111@11 < in the form quoted in (iii) 	of 

Proposition 	4.2.6 - 	this 	is 	merely the 	equivalence 	of 'y 	and 

'sh 	
From this it follows that if 	A1 	, 	B 	, 	A2 	and B2 	are 

C*_algebras, 	and if A1 C B1 	(i = 1,2) 	, 	then 	A1 0 	A2 C Bj 
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as sets (but not isometrically), since bounded bilinear functionals 
* 	 * 

on C -algebras extend to containing C -algebras (using [Di] 2.10.2). 

The 	following result asserts that the class of C
* 
 -algebras 

satisfies Grothendieck's conjecture [Pr3]. 

* 
4.2.8 THEOREM. Let A and B be C -algebras. The projective 

norm 7 is equivalent to the injective norm A on A ® B if and 

only if A or B is finite dimensional. 

Proof. If y is equivalent to A on A 0 B , then 	
Ilh is 

certainly equivalent to A on A 0 B . Let A1  and B1  be maximal 

abelian *_subalgebras  of A and B respectively; since A and 

IHh  are both injective (1.2 and Proposition 3.3.4) we have that 

IHh  is equivalent to A on A1  0 B1  . This implies by 4.2.3 that 

7 and A are equivalent on A1  0 B1  , and so A1  or B1  is finite 

dimensional [Pri]. This implies by [Kit] Exercise 4.6.12 that A or 

B 	is  finite dimensional. 

A more direct proof of 4.2.8 is given in Section 6.1 	We note in 

passing here that if n and m are positive integers with n < m 

then on 	0 	we have 

7 < (2 n) A 

and the best constant in this inequality is not smaller than n 

The first statement follows directly from an inequality of Littlewood 

(sometimes called Khintchinets inequality) [Ka], the second we give a 

proof of in Section 6.1. 
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4.2.9 THEOREM [Vii]. Let A and B be C
* 
 -algebras. The norms 

A and 11-11
max 

are equivalent on A 0 B if and only if the norms A 

and 
"•'1min 

 are equivalent on A 0 B if and only if either A or 

B satisfies  the following condition: there exists a positive integer 

n such that all irreducible representations have range with 

dimension not greater than n 

* 
4.2.10 THEOREM. Let A and B be C -algebras. The following 

are equivalent: 

A or B is commutative, 

the norms A and 11.11j 	agree on A 
0 B , and 

A is an algebra norm on A 0 B 

Proof. The equivalence of (i). and (ii) is shown in [Ta] Theorem 

* 
IV.4.14 for unital C -algebras and follows in general by the 

unitization technique of 4.1.4. That (ii) implies (iii) is trivial. 

That (iii) implies (ii) follows from Proposition 4.1.5. 	o 

4.3 COMPLETELY POSITIVE UNIFORM ALGEBRA NORMS. 

We now apply some of our results from Chapter 2 to investigate the 

* 
geometry of the tensor product of C -algebras. 	The next result 

states that C*_tensor  norms are minimal amongst the algebra tensor 

norms. 

4.3.1 PROPOSITION. Let A and B be 67*_algebras. 	Then any 

algebra norm a 	on 	4 0 B which is dominated by 	11.II 	is a 



C*_norm, and then the canonical contraction A e
max 

 B -, A e
a
B is 

surjective. 

Proof. Apply Corollary 2.2.6. 

4.3.2 REMARK. If A and B are C*_algebras  then whenever 

A OA  B is a Banach algebra it is a C*_algebra  by Proposition 4.3.1, 

and so A coincides with 	
"mill 	

Thus we obtain another proof 

that (iii) implies (ii) in 4.2.10. 

4.3.3 THEOREM. Let a be a completely positive uniform algebra 

* 
tensor norm, which is a C -norm on 	A0  0 8o 	for some pair of - 

* 	 * 
non-trivial C -algebras A0  and Lo . Then a is a C -tensor norm. 

	

Proof. Let A0 and B0  be as above; let ç  and 	be two 

different states on A0 , and let Ø and 	b' be two different 

states on B0  . Define two positive contractions 

J1: A0 -+: a 	(ç(a),t(a)) 

and 	J2: B0  -, b '-+ ((b),Ø'(b)) 

Since J1 	and J2  have commutative ranges they are completely 

positive by 3.1.1, and it is easily checked that they are surjective. 

By Proposition 1.1.3 they each preserve two-sided approximate 

identities. The uniformity implies that the map 

®a 
J2  : A0 

®a  B
0  - 

is contractive and it certainly is surjective. Moreover it clearly 

preserves a two-sided approximate identity, and so Theorem 2.2.2 



implies that 	1? ø 	is a C*_algebra. 	Note that the induced 

involution on 1 ® f 	is the usual one. 

Now let A and B be two unital C*_algebras,  and choose 

a E (Ball A) 	and b e (Ball B) . Consider the positive unital 

contractions 

Xa : tf -+ A : (' , 2) 	a + 2 (1-a) 

and 	Xb :02 -+ B 	(i ,2) 	i b + 2 (1-b) 

Since is commutative these maps are completely positive by 

3.1.1, and so X 	b is a unital contraction by the uniformity. 

Thus 	X  ®a  Xb ( (1,0) 
(9 (1,0) ) = a 0 b 	is Hermitian and we 

conclude that 	A
. . 
a 	

® B 
s. a 

c H(A o B) 

Now (A 	0 B 	) = (A 0 B) 	as real spaces, thus the set 
s.a. IR 
	

• . 	s.a. 

(A
s. a. ; 

B
s. a.+ 

2: (Asa 0  Bs.a.) 

is dense in A 0 B , and consequently 

H(A 
®a 

 B) + i H(A o B) = A O
a
B 

(using Proposition 2.1.4). 	Applying the Vidav - Palmer theorem 

(Theorem 2.2.1) we find that A 0.  B is a C*_algebra. 

Suppose now that A and B are arbitrary C*_algebras  and let 

(el) and (f) be positive two-sided approximate identities for A 

and B respectively. Let A1  and B1  be the unitizations of A 

and B respectively, and let & 	be the extension of a to 

A1  0 B1  defined in Proposition 4.1.4. The maps 

A - A:a - eAae, and B-4B:b+f b  

are completely positive contractions, and so by the uniformity 



a- < a on A1  ® B . Proposition 4.3.1 now shows that a- is a 

C*_norm. Since A e
a
B is embedded isometrically in A1  ® B1  we 

find that a is a C*_norm  on A 0 B . 	 o 

The proof above leads to the following characterization of 

C*_norms in terms of values on linear combinations of four elementary 

tensors: 

* 
4.3.4 PROPOSITION. Let A and B be unital C -algebras. An 

* 
algebra norm a on A 0 B is a C -norm if and only if for each 

a E (BALL A) , b e (BALL B) 	and 	e C , we have 

ia 0 b + 2a 0 1 + 31 0 b + 41 0 1 11 

Note that we do not require a to be uniform here. 

Proof. 	Suppose that the condition is satisfied, and let 

a e BALL(A) 	and 	b e BALL(B) 	be fixed. 	Define a map 

a,b 	£2X2 -, 
A 
®a 

 B taking an element 	to 

Ali 
a 0 

b + 12 a 
0 (1-b) + 21 (1-a) o b + p22  (1-a) o (1-b) 

The condition of the proposition says precisely that 	bab 	is 

contractive, and since it is certainly unital we see that 

a b(ell) 	a 0 b is Hermitian. The argument used in Theorem 4.3.3 

* 
shows that a is a C -norm. 

Now suppose that a is a C*_norm,  and choose a e BALL(A) 

b E BALL(B) . Then certainly a 	max . The map 

v 0 	v
b  :2°2 

0
max 

 £°
2 
-+Ao

max 
 B /L 	max '  



defined in Theorem 4.3.3 is contractive, and composing it with the 

natural contraction A o 
max 

B -+ A 	B we obtain 0a,b 
	

0 

4.4 THE HERMITIAN DICHOTOMY. 

Let a be an algebra tensor norm and suppose A and B are 

unital C*_algebras.  Since the maps 

A•4 Aea B: 4 aø 1  and B-A®B:bF1øb 

are unital contractions we see that 

.4
s. a. 	s a 

ø1+1øB CH(AØB). 

We call the set on the left hand side the trivial Hermitians of 

A 0 B . It is not hard to prove that if a E As.a. and b e Bsa  

then 

a(a(91 + leb) = inf { Ila- til + lb+tlI : t ER } 

for any cross norm a ; however we shall not use this fact. 

It is clear from the above that for an algebra tensor norm a the 

real dimension of the Hermitians intoo 	0' is either 3 or 4 

The dimension is 3 if and only if every Hermitian element h 

considered as a real valued function on {0;1}2 , satisfies 

h(O,O) + h(1,1) = h(1,0) + h(0,1) 

In the previous section we saw that a uniform algebra tensor norm was 

a C*tensor  norm (and consequently always gives rise to a spanning 

set of Hermitians) if and only if dim H( ®a 
	

= 4 . We shall 

show that if dim H( ®a 
	

= 3 then A 	B commonly has only 

the trivial Hermitians. Itislwtiruel6te4oatof 	4644 dd,as the following 

example shows: 



4.4.1 	EXAMPLE. 	Considerff 0 £ , which may be identified 

algebraically with 	x3 , with the cross norm 

[

P11 1112 /i131 	
{ 	

ii P121 
P21 /122 /L23 

	

= max 	
11 ~21 P22J17 	

: 1,3 = 1,2,3 } 
31 P32 P33 

where we consider the top left square as an element of £ 07 £ 

This is a Banach algebra isometrically isomorphic to 

( o,, 	) e 	. Thus its dual space is ( 	0 £
7 2) 

EB 	and it 

is not hard to show that the set of Hermitian elements is 

H(( 	07 	)) 	H(C) , an 8 dimensional space. 

* 

Let a be an algebra tensor norm; for C -algebras A and B let 

E. 
be the canonical contraction A 0 B A 0 B as before. Put 

Z(A,B) = H(A 
®a 

B) n ker 

a closed subspace of H(A 
®a 

B) . Often Za(AB) = {O} as is the 

case when A or B is finite dimensional, or (by Proposition 4.1.9) 

when A or B is nuclear and a is completely positive uniform. 

Also if A and B are commutative then c 	is just the Gelfand 

transform, and since norm equals spectral radius on Hermitian 

elements (Theorem 2.1.3) we have Z(A,B) = {O} 

4.4.2 THEOREM. Let a be a completely positive uniform algebra 

* 

tensor norm which is not a C -tensor norm. If A and B are unital 

C*_algebras then ll(A 
0 

B) 	is the real direct sum of the trivial 

Hermitians and Za(AB) . If in addition A or B is nuclear we 

obtain only the trivial Hermitians. 

Proof. 	By the observation at the beginning of this section 



H(1 	too) 
	is trivial. 	Suppose 	, 	e 5(A) and 

E S(B) , and define Jj and J2  as in Theorem 4.3.3. Choose 

u E H(A ø B) , then j1 
® J

2  (u) is Hermitian in 	and by 

the remark at the beginning of this section 

0 0 + 	' 	(90, 	, ca
u>=< 900+ ç' 	0 	, 	EU > 	(*) 

The following argument is given in 	[KaS]: 

Now 	let go 	E 	S(A) , 	Øo 	e S(B) 	be 	fixed 	and 	define 	unital 

contractions 

P0 	: A 0 B - A : a® b H 0o (b) a 

and 	Qgo  : A ®a  B - B : a 0 b ' go (a) b 

Put 	h = P0 (u) and k = Q go (u) - 	go 0  Oo , € u > 1 . These are 

Hermitian and for ço E S(A) and 0 e S(B) we have 

fa(u®1_1®k) > = 	0 ' , c 
a
u> - g(h) - 0(k) 

= < ç0 ?' , 	u > - < ç2® b0  , cu > - < 9.'o 0 	- o ® 	, cu > 

I 

by (*) . Recall that a continuous linear functional on a C*_algebra 

may be written as a linear combination of four states; this shows 

that €a(u_h0ll®k) = 0 and so u-h®1-1®k e Z 

The last statement of the theorem follows from Proposition 4.1.9.o 

4.4.3 REMARK. The conclusion of the theorem remains true if A 

and B are unital Banach algebras provided that J1 ® J2  is a 

contraction and the dimension of H( (9
a 
 2) is 3 ; indeed A 	B 

does not even have to be an algebra so long as H(A ® B) is taken 

to be the obvious set. 



Finally, as examples we compute the Hermitian elements for some 

tensor norms we have encountered: 

4.4.4 EXAMPLE. Grothendieck's natural algebra preserving norms 

7, 7\/, \/'y and H' : These norms are all equivalent by Theorem 4.2.5 

and 	[Cr2] Théorème 7Corollaire 2. Haagerup [11a3] showed that c 
It 

is always injective and consequently 	and H' are 

injective too (indeed cH I 	is always injective for Banach spaces 

[Ca4]). Since these are reasonable algebra norms and no C*_tensor 

norm can be reasonable in Grothendieck's sense, Theorem 4.4.2 implies 

that these four norms always give only the trivial Hermitians. 

4.4.5 EXAMPLE. The Haagerup and symmetrized Haagerup norms: it 

was shown earlier that 
11•11h 

 is not a *_algebra  tensor norm so by 

Theorem 4.4.2 and Proposition 4.2.1 we obtain just the trivial 

Hermitians. Since 
11'11sh 

 is equivalent to 7  Theorem 4.4.2 implies 

that 
1111sh 

 gives only the trivial Hermitians. 



ON 

CHAPTER 5. 

* 
TRACIALLY COMPLETELY BOUNDED MULTILINEAR MAPS ON C -ALGEBRAS. 

In this chapter we define the class of tracially completely 

bounded multilinear maps, and investigate some related geometrical 

questions. This class includes all completely bounded multilinear 

* 
maps on C -algebras. The author was led to this definition in an 

attempt to build invariance under cyclic permutation of variables 

into the assignment 4' 
- 4'n 	

the standard n-fold amplification of a 

multilinear map (Definition 3.1.8). This was in order to create a 

class of maps which would be suitable for a 'completely bounded' 

cyclic cohomology theory [ChS2,Con]. We explain our motivation in 

more detail in 5.1. 

In section 5.2 we show that every bounded bilinear map of 

* 
C -algebras 4' A x B - B(X) is tracially completely bounded, and 

indeed 

II'II S 114'M tcb ~ 2 II'M 

where 
1111tcb 

is the norm appropriate to the space of tracially 

completely bounded maps. The norm on A ® B which corresponds to 

the class of tracially completely bounded functionals is a completely 

positive uniform *algebra tensor norm equivalent to the projective 

norm, and in general not equivalent to the Haagerup norm. We also 

show that the least constant that suffices in the inequality 

I!Mtcb ~ K II 4'Il 

is not smaller than 4/7r . The inequality of the previous line is 

somewhat akin to the Grothendieck-Fisier-llaagerup inequality (Theorem 



4.2.4). 

Finally, we give an example of a trilinear bounded map which is 

not tracially completely bounded, and make some comments on the 

possibility of a Christensen-Sinclair type representation theorem for 

tracially completely bounded maps. 

The work described above had been completed when the author 

obtained a copy of [It]. 	In his paper Itoh introduces a new 

* 
definition of complete boundedness for linear maps A -' B , where A 

* 	 * 
and B are C -algebras. 	If T : A -+ B 	we may consider the 

associated bilinear functional T defined by 

T(a,b)=<T(a) ,b> 	(aEA,bEB) 

Itoh's completely bounded maps are the same as the bilinear tracially 

completely bounded maps via the correspondence T -' T , except for a 

slight twist which arises from the ambiguity in the definition of the 

duality of J1 and J11  . Our results give alternative proofs of the 

theorems in [It]. In addition, the proof of Theorem 5.2.2 shows that 

* 
every bounded operator T : A -# B 	is completely bounded in Itohts  

sense; and indeed 

11Th 	11Th' 1cbd 	
2 11T1 

where we write IHIcbd for the completely bounded norm defined in 

[It]. Thus the tensor norm h.11, of [It] is in fact equivalent to 

the projective norm. 	The proof of Theorem 5.2.6 can be also be 

modified fractionally to show that the least constant that suffices 

in the inequality hIThIcbd 	K  11T1 is not smaller than 4/ir 
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5.1 DEFINITIONS AND MOTIVATION. 

Let A be a C*_algebra and let JIn(A) be the C*_algebra of n ri 

matrices with entries in A . Define the 'normalised trace' 

J1(A) -+ A : A H n 1 E1 au 

This a contractive mapping. 	We reserve the symbol 	Tr for the trace 

map defined on the trace class operators on a Hilbert space [Ri]. 

Now let 	A1 	, 	... , A 	be C*_algebras, and let 	7( be a Hubert 

space. 	Suppose is an m-linear map A1 	x 	•.. x Am - 	B('X) 

Define for each 	n E 	l 	the rn-linear map 

An (.4m) - B() 

by 

where It 
n 

is the n-fold amplification of 41 defined in 3.1.8 

Written explicitly this is 

if n(Xl ... ,X) = n 	E1=1. 	
m=1 	

X1) 

where Xi e An(Ai) for i = 1,...,m 

We say $ is tracially completely bounded if 

sup { 1n11 : n e N } < 

and then we write 	II!IItCb for this supremum. 	Write 

TCB(A1 x •.. x A;BX)) for the Banach space of tracially completely 

bounded rn-linear maps A1 x •.. x A 	B() , with the norm 

It is clear that if 	is completely bounded then it is tracially 

completely bounded and 

11" 	IIII 	~ III" tcb 	tcb 

Thus 



CB(A1x ... xA;B('I)) C TCB(Ax ... xA;B(X)) C B(Ax ... xA;B('Y)) 

Also if 	is a linear map, then 	* 	is tracially completely bounded 

if and only if it is bounded, indeed 	
'1t1tcb 

 =11#11 in this case. 

Notice that the explicit expression for 	*" is invariant under 

cyclic permutation of the indices i1,. . . ,i . Thus if p is the 

'cyclic permutation of variables' map 	- 

(po4c)(am,ai,.. . ,a_) = *(a1,. . .,a) 

then p o f 
= (pot) 11 . This is not the case for the map 

indeed as remarked in the introduction, the original motivation for 

the definition of 	' was that it had this property. We give some 

further motivation below. 

Let n e EN be fixed. We wish to consider functors a from the 

class of multilinear maps 

A1 x •.. xA-B('K) 

(for all in e IN , A1 C*_algebras, 	allilbert space) t,o the class 

of multilinear maps 

(for all m e IN , A1 C*_algebras,  X a Hilbert space). The only 

sensible such functors a would seem to be those satisfying the 

* 
following condition (*) : For each in E IN , for all C -algebras 

A1,... Am , for all Hubert spaces X , and for all rn-linear maps 

A1  x ... x Am 4 B(1() , we have 

	

(a 	)(a1  ® e. 	... 	0 e) 
= 
a 	. . !I(a1,. . . ,a) 

 

	

for 	a1  E A1 	... 	a e A . Here ai Iii, ... 
	

is a complex 

* 
number which is independent of the particular C -algebras 
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Hubert space 7 , or mapping 4 

We shall want to consider functors a as above which also satisfy 

the normalizing condition (**) 

(a f) (x 0 I) = f 	( x€ A) 

* 
for linear functionals f on a C -algebra A 

Suppose A is a C*algebra,  and let ( C(A) , b ) be the cyclic 

cohomology cochain complex [Con]. It is easy to show by mathematical 

induction that, subject to the conditions (*) and  (**) above, there 

is only one functor a such that the following diagram commutes 

C
O (.4) 
	

b 	C1 (.4) 
	

b 	C1 (.4) 
	

b 

a! 	a! 	a! 

C(1k(A)) -- C(JI(A)) -- C (An (A)) 

	

for all C*-algebras A , and that is the functor 	n defined in 

the beginning of this section. It is not surprising then that this 

functor appears in various guises in Hochschild and cyclic cohomology 

theory (e. g. the Dennis map [Ig]; the cup product # Tr [Con]). 

Thus if there was a useful representation theory for tracially 

completely bounded maps, perhaps similar to the representation of 

Theorem 3.1.9 for completely bounded maps, then the tracially 

completely bounded maps would be an appropriate setting for a 

'completely bounded' cyclic cohomology theory (see [ChS2,Con]). We 

make some comments on representations in 5.3. 
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5.2 THE BILINEAR CASE. 

* 
Throughout this section A and B are C -algebras and 	is a 

Hubert space. Define a semi-norm 1111tcb on A e B by 

IIUIItcb = inf { E 1lIA'Il IlB'II : ii = E 1 n(k) 	E ()1 	0 b 	} 

= inf { E1IIAkII IIBkII : u = E 1 n 1 E 1 	0 b 	} ii 	ji 

as can be seen by building larger matrices of fixed size I1 .j n(k) 

made up of the smaller matrices repeated sufficiently many times 

along the main diagonal. 

5.2.1 PROPOSITION. The seininorm Hltcb defined above on A 0 B 

is actually a completely positive uniform *..algebra tensor norm 

satisfying 

II 	1 tcb 	11 ' 11 7 

If A 
®tcb 

B is the completion of A 0 B with respect to 

then 	B(A 
®tcb 

B;B(X)) 	is 	isometrically 	isomorphic 	to 

TCB(A x B;B()) 

Proof. To show that HItch is a norm it suffices to show that 

N 	- in 	a' ®b' ,then 
11'11h tcb 

• Write u = Ek1 

IluhIh 	
n-i 

II 	. 	 a 	(ak )* 
	 k * k 

i 	II 	,j=i 
(b) 

S 	E 1 II 
711(Ak (A k)*) 

II 
	

11 
711((Bk)* Bk) 

II 

~ IIA'Il IIBkII 

and thus 11 ' 11 h S II 'tcb 

Now if u v e A® B 	with ' 
= 	

" 
" 	

ak eb' 	and 
i,j=l i. 

v 
=

n 1 E 1 c 0 	then we have 
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U V 
= 
E1=1n 2 Ejpq=i a '3 

. c' 
pq 
0 b  d1 

ii qp 

Consequently letting A  0 Cl and B  0 D 	be the matrices in 

J1112 (A) given by [4 Cq ](jp)(jq) and [b 	d q ](j p),(j,q) 

respectively we have 

N 
11 U 

v 'tcb 	Ekll II 
A  0 Cl 	II B  0 D1 

1A k11 	IBkII) (= 
	11C111 IID'II) 

and so 	
11

U V 
1 tcb 	IUII tcb IIVIItcb . 	Thus II'I1tcb 	

is an algebra 

norm. The complete positive uniformity follows from 3.1.3, and the 

other statements of the proposition are obvious. 	o 

In fact the proof above shows that 1111sh ~ 	tcb 
, where Hish 

is the commutative symmetrized llaagerup norm of 3.3.6. Notice that 

by the last statement of Proposition 5.2.1 there is no need to 

attempt to consider 
"11tcb 

as an operator space tensor norm. 

5.2.2 THEOREM. Let It : A x B -, B(X) be a bilinear map. 	Then 

4 is tracially completely bounded if and only if it is bounded and 

then 

114'II ~ '"tcb ~ 2 11*11 

Thus the norm 'I"tcb is equivalent to the projective norm. 

Proof. The necessity is clear. Suppose T is bounded. If f 

is a linear functional on B(X) then f o 	= (f A),' , and the 

Hahn-Banach theorem allows us to assume without loss of generality 

that 	It 	is a bilinear functional. 	By the Grothendieck-Pisier- 

Haagerup inequality (Theorem 4.2.4) there exist states p, and 
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on A , and states 0, and 0
2

on B , such that 

I(a,b)I ~ 11*11 { 1(a* a) + 92(a a*) } { 01(b b) + 2(b b*) } 

for 	a e A 	and 	b e B . 	 Using this and the Cauchy-Schwarz 

inequality we obtain for each A E Jmn(A) and B € )111 (B) that 

I*11(A,B)I < J i Il 

i,j=1 

n 	
= { 	a 1,3 	 ) + 9

2(aij 4) } 

	

1(b 	bji 	) + 2(b 	b) } ji 

~ n 	{ i 	a 	a) + 22(E j=1 	4) 
}3 

n 	
b { En 

i 	
b 	b  ji 	) + 2(E ,=i 	b) } 

	

* 	 * 
n 	{ E=1 	+ E1 

1 E=1 ji ii  II + II E =1 	II 

~ 

	31 ii 

IIII {IITn( 	A)II + 1ft11(A A
*)I} 	{IIrn(B* B)Il 

+ 11711(B B*)I} 

~ IIII { 11 
A* A 11 + 11  A A* 11  } 	{ 11 B* B 11 + II 

B B* 

~ 2 	hAil ilBIl 	. 

	

5.2.3 REMARK. 	If A and B are commutative we can use 

Corollary 4.2.3 to improve the inequality to 

ill ~ 11"11 tcb 	lltll cb 	
KG 1011  

where KC is the complex Grothendieck constant. 

	

5.2.4 REMARK. 	The complete positive uniformity of 	
1111tcb 

together with the results of Chapter 4 now inform us that if A and 

* 
B are unital C -algebras then 

H(A®tCbB) = (A® 1) 	(1eB. 
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If A and B are any two C*algebras then A 
®tcb 

B is a 

semisimple A -algebra and never a C -algebra unless A or B is C. 

* 
5.2.5 COROLLARY. 	Every bounded linear map T : A - B 	is 

completely bounded in the sense of [It], and JIT11cbd S 2 IITI 

Let Ktcb be the least constant such that 

II'IItcb 
	K 11t1l  

* 
for all C -algebras A and B , all Hubert spaces I , and every 

bounded bilinear map 	: A x B - B(X) . The theorem above asserts 

that 1 < Ktcb ~ 2 . The next theorem gives a better lower bound for 

Ktcb 

5.2.6 THEOREM. The constant Ktcb is not smaller than 4/?r 

We shall need two lemmas and some notation. Both lemmas are well 

known, but we include a sketch proof of the first for completeness. 

5.2.7 LEMMA. For each e >0 there exists 8>0 such that 

I 	(2) _n '{0,2) 
	=i 

r e 9 	d 1 ... d8 - 	 / 2 	< 

whenever r1,. 
. . ,rn 	are positive numbers, each smaller than 	8 

such that E 1 r = 1 

Proof. 	For n = 1,2,.. 	let 	Oni , ... , 9nn 
 be independent 

random variables, each uniformly distributed on 	[0,271) ; and let 

r111 , ... , r 11 be fixed positive scalars with 



ME 

E1r=1
2 i 
	, 	 - 

and 	sup {r11  : 1<j<n} -+O as n -+ oo . 

For 	j = 1,...,n put X11  =r nj eZOfj 	and S11  = E 1  X11  ; then 

2 S  	
converges, by the Lindeberg form of the central limit theorem 

(see [Bi] for example), to the standard complex normal distribution 

with density 	. Thus given f : C - C continuous and bounded, and 

E > 0 , there exists a positive number 8 such that if r1,... ,r1  

are positive numbers each smaller than 8 , and E 	r = 1 , then 

(2711 f

[o 2w)11 

f( 2 E 	r eZOj ) dO1  ... dO - Ic M 	< 

To see this notice that the converse leads to acontradiction. The 

lemma will now follow after an appropriate choice of f . 	o 

We endow A
n

with the inner product 

<A 	
15 	 ij  

* 
=Tr(AB) 

and write 11-112 for the associated norm. The group 11(n) of n x  fl 

unitary matrices inherits a topology from 	( An  , IHl ) 	with 

respect to which it is a compact, and thus unimodular, topological 

group. Let ll denote the normalized Haar measure on 11(n) , writing 

dLP(U) as dU as usual. Let 7rij  denote the 	(i,j) coordinate 

function on 11(n) , namely 

= u j 	( U e 11(n) ) 

We need the following facts, proofs of which may be found in [HR]. 
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5.2.8 LEMMA. 	For 	i , j , k 	and 	1 	in {1,.. .,n} 	we have 	the 

following orthogonality relations: 

 J11(11) dU 
= 	

5j1 

 '11(n) 	1ij1217kl12 dU 
= 1/(112 _i) if i#k and jl 

= 2/(112 +11) if i=k and j=l 

= 1/(n2 +n) otherwise. 

For any A 
E .111 we have 

J11(n) I <A , U> 12 dU = 	
IIMI 

* 
Proof of Theorem 5.2.6. Let A be the C -algebra of continuous 

complex valued functions on 11(n) . Define a bilinear functional 

AxA-4C by 

	

(f,g) 
= J11(n) 	11(n) f(U) g(V) < U , V > dU dV 

Lemma 5.2.8 (iii) gives 

I 	
fl([]*[]) 

I 
= 	

JJ I < U , V > 1 2 dU dV 

=11-i 

whereas 

I 1 - 	 - 1 
LjiJ - 	 L k=1 7ki 7kj -' 	- 

Thus we see immediately that 

Ktcb ~ 1 / (n IIll) 

The remainder of the proof of the theorem is the calculation of an 

asymptotic lower bound for the right hand side of this inequality. 

Let 	f , g E BALL (A) 	be fixed. 	By the Riesz representation 

	

theorem there exists W 	such that 



<UW>=J11() <UV>g(Y)dV 	(UEJI11 ) 

Now IIWII = < V , V > -< 111(n) I 
< V , V > I dV < II1II2 C1 

where c11 is defined by 

c = sup 
{ 4(n) I < A , U > 	dU A E JL , hAil2 ~ 1 } 

Thus we see that 11V112 	c . Using the definition of W we have 

I 	(f,g) I 	I f11(n) < U , V > f(U) dU I 

~ 111(n) I < U , W > I dU 

~ hh19I2 Cn 

~ c I 

Since f and g were arbitrary elements in BALL(A) we conclude 

that 11#11 < 

To complete the proof it suffices to show that given € > 0 , we 

have 

C < 	/ 2 + c 

for n large enough. To that purpose let c > 0 be given, and choose 

5 > 0 as in Lemma 5.2.7. 

Now suppose A is an arbitrary element of En , with hAi12 = 1 

Let 	......,,\ 	be the eigenvalues, in increasing order, of the 

positive definite square root JAI of A A . Thus 

and 	E:=1=1 

Put 	A = diag{.A1,.. .,A11} . 	Using the polar decomposition and 

spectral theorem in finite dimensions we can find unitary matrices 

V1 and V2 such that 



ZrA 

AY1  JAI and V AIV2 =A. 

By the invariance of Haar measure it follows that 

	

'11(n) I < A , U > I dU = 111(n) 	< A , U 
> I dU 

	

= J11(n) 	=i 	
u 	I dU . 	(2) 

A direct application of Lemma 5.2.7 will fail here if some of the A
i  

are too large. To avoid this possibility we spread each large 

over its own column in A ; to retain independence of the columns we 

eliminate some of the smaller A . More specifically, let C be 

some large positive number, to be chosen later, and suppose s is 

the smallest positive integer with 

(3) 

H A
n  < C / n the proof will be substantially easier, we leave it 

to the reader to prune the argument below in this case. 

From (1) we have immediately that 

n - s+ 1 =#{ Ai >C/n}  <n/C2  . 	 (4) 

Write [.] for the 'integer part of' function 

[x] = max { n = 0,1,... : ii < x } 	( x > 0 ) 

(not to be confused with the square bracket matrix notation). 

We now define some integers: m51  = 0 

m
i 
 = [n A] + ... + [n 	] 	( i = s,.. . ,n ) 

and put m = n 
	By (1),(4) and the Cauchy-Schwarz inequality it 

follows that 

M < nA. <n (n-s+1) < n / C . 	(5) 1=s 1 - 

Thus if C 2  3 then (4) and (5) give 
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s-m>n/2  

Now from (1) we see that 

A2  < 1 - ES_i 	A < 1 - (S-M-1) A2 

	

i=m+1 1 	 m 

and so by (6) 

A2 < (s-m) 	< 2 / n . 	 (7) m 

By Lemma 5.2.8 (iii) and the Cauchy-Schwarz inequality 

E 1  A u 	I dU 	' { 4(n)(n) I E 	A U 	1 2  dU 

	

111(n) 	} 

= {Em A2  
i=1 i J 

< rn Am 

(8) 

using (5) and (7). 

Let (ek)l  denote the usual orthonormal basis of C" . Let V 

be an operator on C" such that 

(i) V ek = ek 	for k = (m+i),...,(s-i) 

V ek = [n Ak] 	(e mki+i + ... + e mk ) for k = s,. .. ,n 

( Vek 	is an orthonormal basis for C" 

this forces V to be unitary. 

	

Let 	A = A / [n A] 	for i = s,.. . ,n . By the invariance of 

Haar measure we have 

	

nZI(n) I 	
A1  u1 I dU 

	

= " 	Jll(n) I Tr  ( diag{0, ... OAm+i 	A11} U) 	dU 

	

" 	
Jll(n) I Tr  ( diag{0,.. . 	. . ,A 11} U V ) I dU 
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= 	I n u 	
+ 

E 
 3=imi-i 

~1 n u 	I 	dU 	. 	(9) 

In what follows if an integrand is not specified it shall be the 

integrand on the right hand side of (9). 

Define the following random variables on 11(n) 

r(U) = 	
i IiI  

r(U) = n A 	luijI( i = s,.
.. 
,n  

and 	(U) 
= 

o 	{ E~1 r(U)2 + 	=s
ETI 
 mi+1 r(U)

2 } 

where 	62 = Ell 

From (1) and (8) it follows that if C > 4 then 

(10) 

Now let 9 be the set of matrices U in 11(n) such that 

r1(U) < 6 , 	i = m+1,.. . ,s-1 

and 	r1 (U) < 6 , 	i = s,.. ,n , j = m1 +l,. . 

We may split up (9) into fp + J 	, where 	
t is the complement of 

in 11(n) . Using Fubini's theorem and the invariance of Haar 

measure, one may replace this integrand by 

(22r) _n S Es-i 	e 9 
+ d m 

{o,2) 

	

	 j=m1+l 	
e 9 	d91. . i=m+1 

and so by Lemma 5.2.7, 

fp 	J ( 	/2 + c ) A o, dU 

( 	/2 + c ) { ff, A2 dU 	, by Cauchy-Schwarz and (10) 

< 7/2+ € 

using Lemma 5.2.8 (1). This together with (2) and (8) proves the 

theorem providing we can show that 	is small. 	Now by 
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Cauchy-Schwarz and Lemma 5.2.8 (i) again, 

.2 

~ 	 IP(r 	> 5/2)+E
=s 

E' 
I 	1

P(rij> 

Using Chebychev's inequality and Lemma 5.2.8 (1) we see that 

LP(i<i) = IP((1-A2)2 > 9/16) 

<2J 
lI(n (1-22+4)dU -  

=2[J11(fl) 4 dU-1] 

Expanding A and applying Lemma 5.2.8 (ii) yields 

dU = n2/(n21) + 	
n/(n~1) [(E~ 4) 	(n-2)/(n-1) + 111(n)  

(E1' 	A4 
' 
( 1/[nAil-'/(n+'))] 

< n2/(n-1) + 16 C
4 
/n + 16/(C-1) 

by (3) and (10) 

By Chebychev's inequality and Lemma 5.2.8 (ii) we obtain 

( IuI > 	5/(2 n 	) ) < 128 C4/(54 (n2+11)) 

for i=m+1,. . . ,s-1 ; also for i = s,. . . ,n , and j = in+l,.. . ,in 

( I u I > o, S [nA ]/( 	) ) <1284 / (54 [n A]2) 

Thus we have finally, 

< {2/(n21) + 32 C4/n + 32/(C-1) + 128 C4/(S n) + 128 

and so by choosing first C , and then n , large enough we can ensure 

nJ 
11(n) 

This completes the proof of the theorem. 	 0 
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5.2.9 REMARK. 	The proof above shows that the convolution 

operator 

C(U(n)) -' L1(ll(n)) : f H Tr * f 

has a norm which is asymptotically bounded above by ir/(4 n) 

5.2.10 REMARK. 	The construction above was on a commutative 
* 

C -algebra. 	Thus in the commutative case one has that the best 

constant lies between 4/2r and K . Is this constant equal to 

KC ? In the general case is Ktcb = 2 ? 

5.2.11 REMARK. This construction originated in (rothendieck's 

construction [Cr2] yielding a lower bound for his constant; however 

there are some additional complications here which we had to 

overcome. I am indebted to A. M. Davie for suggesting this approach. 

A. M. Davie has modified Grothendieckts  construction to improve the 

lower bound for Crothendieck's constant (unpublished); if one adapted 

this in 	the 	way the 	Grothendieck 	construction 	is adapted in 	the 

theorem above one should be able to improve the lower bound 4/ir for 

Ktcb 

5.2.12 COROLLARY. 	The least constant which .suffices in the 

inequality 

11Th cbd 	
K 11T1 

* 	 * 
for all C -algebras A and B , and all linear maps T : A -, B 

(where 	IHIcbd 	is the completely bounded norm of [It]) is not 

smaller than 
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Proof. Almost identical to the proof above, but now define 

< T(f) , g > = Jf f(U) g(V) (,j=1  u j  7) dU dV . 	o 

5.3 REPRESENTATION OF RACIALLY COMPLETELY BOUNDED MAPS. 

The results of the previous section might lead the reader to 

suppose that tracially completely bounded maps are just bounded maps 

in another guise. The first example below shows that the situation 

is more complicated than this. 

5.3.1 EXAMPLE. A bounded trilinear map that is not tracially 

completely bounded. Let 'K be the infinite separable Hilbert space, 

with orthonormal basis ( e11 
)n€IN 	

Define a trilinear functional 

If :B('K) xB('K) xB('K)C: (R,S,T)<Rt St Tt e1  , e1 > 

where 	is the transpose map relative to ( e11  ) . It is clear 

that 41  is bounded, however if X = [ e ® e 
],j=1 

 then 

lxii = ii X X 	li 	= ii [e 0 e] [e 0 e] li 

15 cm 	
e Oe L ij'k=1 k k 

=1 

whereas 

411(X,X,X) = " 	Eijk=1 < (e 0 e) (e 0 ek) (ek ® e) (e1), e1  > 

= 	
1,j,k=1 < (e

1  0 e) (e1) 	e1  > 

=n 

Thus 	is not tracially completely bounded. 
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5.3.2 PROPOSITION. Let Al, Am be C-algebras. Define 

an rn-linear functional 4 : A
l 

x •.. x A - C by 

,a) = Tr(T1 01(a1) 
••. Tm 9m(am)) 

where Tr is the trace on a Hubert space X , where 9 

are *_representations of A1 , ... , A 	respectively on I , and 

where for i = 1,...,m the T 	are in the von Neumann - Schatten 

p 	class [Ri], where 1 < p ~ ao and E 1 1/pi = 1 . Then ' is 

tracially completely bounded and 

11"tcb S JIT
111 1 	lITIIp 

iforeover, 	every 	completely 	bounded 	rn-linear 	functional 

A
l 

x •.. x Am - C may be written in this form. 

Proof. 	Let 	be of the form described above. 	Then if 

A1 E Ji11(A) for I = 1,... ,m we have 

Am) = n ° 'n ( A1 , ... , A ) 

= T11 ( jr), ((T1 ® 	lnl •.. (Tm ® 	mnm 

= n-1 Tr(n) ((T
i 

9 In) 01ni ... (Tm 0 I) 
(9m)nm)) 

where Tr(n) is the trace map on 	(") . Thus by well known von 

Neumann-Schatten class inequalities [RI] 

<n 	
T
1 

® 1 
nIIp1 	91nl) (T2 e I) ... (Tm ® n' 	(Am)jj ' -  

1 1111P1 
IIT1II 1 I1(91)11(A1)M I1(T2 0 

In) 	. (T 0 	mAmpj 

proceeding in this manner we obtain eventually 

I(A1,. . 	,A) 	~ IIT1I1 	lITmIIp 	11A111 ... IAII 
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Now suppose that 	P : A1  x •.. x A -+ C is completely bounded. 

By 3.1.11 and 3.1.9 we can find *_representations  2r1  , ... , 
	

of 

A1  , ... , A 	on Hubert spaces T , ... , X 	respectively, with 

= 	, bridging operators T1  , ... , T11 _ 	, and ( , 	E 

such that 

• 	. ,a) = < 71(a1) T1  ... T1 7rm(am) C 	?7 > 

ccs' 
It is easy and standard to adapt this representation so that a single 

Hubert space is involved. Thus we may write 

,a) = Tr ( T1(a1) T •.. T 1  T(a) ( ® 1) ) 

for a1  E A1 I .. , a e Am  • 

Perhaps it is possible to represent every tracially completely 

bounded functional in the form described in the proposition. This 

interesting class shares certain characteristics with the tracially 

completely bounded maps, for instance the trace Tr allows one to 

cyclically permute the variables, just as one may cyclically permute 

" the indices (see remark in Section 5.1) in the expression for  
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CHAPTER 6. SIJBALCEBRAS OF C*_ALGEBRAS. 

In this chapter we consider Banach algebras which, are isomorphic 

* 
to a subalgebra of a C -algebra. 	The history of this subject 

probably began in the 1960's, with the study of Q-algebras. 	A 

Q-algebra is a commutative Banach algebra isomorphic to a quotient of 

a uniform algebra - the term is due to Varopoulos. B. Cole proved 

[Wr2] that such an algebra is isomorphic to a subalgebra of B() 

for some Hubert space T . Many people have observed subsequently L1 

that his proof actually shows that a quotient of a subalgebra of a 
* 	 * 

C -algebra is again a subalgebra of a C -algebra. 

In 1972 A. M. Davie [Dal] gave a necessary and sufficient 

condition for a Banach algebra to be a Q-algebra, and shortly 

afterwards N. Th. Varopoulos [Va3] gave a characterization of Banach 

* 
algebras which are isomorphic to a subalgebra of a C -algebra. Both 

proofs used properties of certain tensor norms; and both produced 

surprising examples of algebras which were Q-algebras or isomorphic 
* 

to subalgebras of C -algebras, and algebras that were not. 

Subsequently T. K. Came [Ca3] gave a proof of Varopoulos's result 

which displays more prominently the role of tensor norms (see also 

[Ca2]). A. M. Tonge [Tnl,Tn2] has produced other interesting results 

concerning the relationship with certain tensor norms. 

In Section 6.1 we review some of the topics mentioned above in 

more detail. 	In Theorem 6.1.5 we show that if A and B. are 
* 
C -algebras, and if a is either the projective, H' , or Haagerup 

tensor norm, then A 	B is not isomorphic to a subalgebra of a 

C -algebra, unless A or B is finite dimensional. As a corollary 
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to the method of the proof we obtain some estimates on how far the - 

* 
projective tensor product of two finite dimensional C -algebras is 

* 
from being a subalgebra of a C -algebra. We show that the Haagerup 

tensor product of two operator spaces is represented isometrically on 

the space B() of bounded operators on some Hubert space, and that 

in a sense the Haagerup tensor product of two subalgebras of 

* 
C -algebras is isometrically isomorphic to a subalgebra of B(B(l)) 

In 6.2 we consider operator spaces which are also Banach algebras. 

Following the characterization of operator spaces [Ru] as 

'L-matricial vector spaces' researchers in this area became 

interested in an abstract characterization of such 'matricial 

operator algebras' [PnP]. The author was made aware of this problem 

in conversations with E. G. Effros and V. I. Paulsen in 1987; and 

subsequently worked on the characterizations described in 6.2 with 

A. M. Sinclair. 

It is easy to see that a completely bounded multiplication on an 

operator space satisfies Varopoulos's criterion, and consequently 

* 
such a space is isomorphic to a subalgebra of a C -algebra. The 

difficulty lies in obtaining a 'complete isomorphism'. We study some 

examples which illustrate some of the problems if there is no 

identity of norm 1 for the algebra. Theorem 6.2.6, which was found 

by A. M. Sinclair, gives a characterization in the presence of an 

identity of norm 	1 . 	We give some necessary and sufficient 

conditions in the general case, however these are not as desirable as 

one might wish. 	As a corollary we are able to generalize the 

aforementioned result of Cole to the operator space situation. 

In [hiP] Paulsen and Power define three 'complete operator algebra 

tensor norms', and make some comments on the development of a theory 
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of such norms. It is to be hoped that the characterizations above 

might play a role in this development. 

6.1 OPERATOR ALGEBRAS. 

6.1.1 Definition. We say a Banach algebra A is an operator 

algebra if there exists a Hilbert space 	it and a bicontinuous 

Thonomorphism of A into B(it) 

6.1.2 REMARK. Suppose that A is a Banach algebra with identity 

e , hell ~ 1 , and suppose that 	9 : A - B(it) 	is a bicontinuous 

homomorphism. Let X be the closed linear span in it of O(A)(it) 

We obtain by restriction a bicontinuous homomorphism 0 : A - B(X) 

with 9(e) 
= 
'K and 1191 < 11011 , but now 

1 < 119
1

1I ~ 119(e)hl 1101 

6.1.3 THEOREM (Cole [Wr2]). Let A be an operator algebra, and 

suppose I is a closed two-sided ideal in A . Then A I I is an 

operator algebra. 

The following result of Varopoulos [Va3,Ca3,Tu2] gives a 

characterization of operator algebras: 

6.1.4 THEOREM. A Banach algebra A is an operator algebra if 

and only if the following condition is satisfied: 

There is a constant K > 0 such that if f E BALL(A 
*

) , and if n 

is a positive integer, then there exists a Hubert space 	it 



110 

elements ( and n in BALL(X) , and linear maps 	of A 

into B(Y) , each bounded by K , such that 

< f , a1 
... an > 	< T1(a1) 

... Tn(an) c 	?l > 

for a1,...,a11 E A 

Proof. We prove the necessity only, the reader is referred to 

[Va3] or [Ca3] for the sufficiency. Let A be an operator algebra, 

let K be a Hubert space, and let 0 : A - B(K) be a bicontinuous 
* 

homomorphism. Suppose f E BALL(A ) , then 

g(S) = 	f (9 	(S)') 	 (zse 0c4) 

defines a bounded linear functional on 0(A) , with llI < 110- 
1 

11 
WV6k 1134-1311,  

Extend g to a functional g 	on B(K) J. By Proposition 3.2.5 g 

is completely bounded and 	IIgII 	b 	= 	lIIJ 	. Thus by 3.1.7 there exists 

a Hilbert space 	7 	, a *_representation 'r 	of B(K) 	on it' 	, and 	C 

and y E I , such that 	IICII IIII ~ 110 111 and 

< f , a> = g(0(a)) = < w(0(a)) C , 

for aEA. Thus 

ai. . .am > = < IICII 117111 	(0(ai)) ... 	(0(a)) liCh
- 	

C, 	
> 

for a1,.. .,am e A , and so the condition of the theorem is met. 	o 

Let a be a Banach space tensor norm. We say a Banach algebra A 

is an a-algebra if the map 

A® A -+A: a1 øa2 -a1 a2 

is continuous wtk r 	tk Ao rm o 

The necessity proof given in Theorem 6.1.4 above shows that every 
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operator algebra is an H'-algebra, a result which appeared first in 

[Cli]. 	Tonge [Tn2] showed that every /H'-algebra is an operator 

algebra, where /11' is a related tensor norm. In [Ca2] Came shows 

that if a is a Banach space tensor norm such that the class of 

operator algebra coincides with the class of a-algebras then a is 

equivalent to H' ; then he constructs an H'-algebra that is not an 

* 
operator algebra. Recall that for C -algebras the norms 7 and H' 

are equivalent (Theorem 4.2.5), and thus it is clear that every 
* 
C -algebra is an H'-algebra. The following theorem shows that the 

* 
H'-tensor product of two infinite dimensional C -algebras is never an 

operator algebra. I do not know if it is ever an H'-algebra. 

6.1.5 THEOREM. Suppose a is either the projective tensor norm, 

the Haagerup norm or the H'-tensor norm. 	If A and L 	are 

C*_algebras, then A e
a
B is an operator algebra if and only if A 

or B is finite dimensional. 

We shall need the following lemma, which the author was unable to 

find in the literature, although most of the ideas appear in [DS]. 

The proof given may not be the most direct one, however later we 

shall need some-of the details contained in this particular proof. 

* 
6.1.6 LEMMA. Suppose A and B are commutative C -algebras, 

and 'X is a hubert space. Let p and o be non-trivial bounded 

homomorphisms from A and B respectively into B() 	with 

commuting ranges. Then there exists an invertible operator T on 11 

with 
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11T1 II'hI ~ 81 11p112 1I1I2 

such that if p(•) = T p(.) f1 and r(.) = T q(•) T 	then p 

and o 	are *_representations of A and B respectively on 

Proof of lemma. First notice that because of the existence of 

* 
contractive approximate identities for C -algebras 	hlII 	and 

hIiI ? 1 . Suppose A and B are isometrically isomorphic to C0(X) 

and C0(Y) , for locally compact Hausdorff spaces X and Y 

respectively. Suppose C , 	e 7 . By the Riesz representation 

theorem the functional on C0(X) given by 

f H < p(f) C 

defines a regular Borel measure pC,, on X , and 

II 	
?1 	

II 	~ 	hIhI 	11 01 	Ih'iII 

We now define a regular bounded B(X) - valued spectral measure 

(c. f. [lid]) E 	by 

< E(B) C 	a,(B) 

for Borel sets B of X . This is not a spectral measure in the 

sense of [DS] since E(X) is not necessarily L, . The important 

thing here is that E(B) is an idempotent in B(X) for Borel sets 

B of X . We now have the following identity: 

<p(f) C 	>=< Jf(x) E(dx) C 

for f E C0(X) and ( , 

Similarly we can find a regular bounded B() - valued spectral 

measure F on Y , and an associated family of regular Borel 

measures { zi 	such that 
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< 	(g) 	C , 	> = < fy g(y) F(dy) 	, > = Jy g du 

for 	g E CO  (Y)and , ?7 	E T . 	Using these identities one may 

verify that 

E(B) F(C) = F(B) E(C) 

for Borel sets B and C of X and Y respectively. 

Consider the family S of operators of the form I. - 2 E(B) 

This family is bounded by the constant 3 JI 	; and since 

I 
IX 
- 2 E(B) )2 = 

	

( I - 2 E(B1) ) ( L - 2 E(B2) ) = 	- 2 E(B1  i B2) 

where A is the usual set theoretic symmetric difference, we see 

that S is a bounded group of operators on 11 . Similarly the 

family T of operators on I of form I - 2 F(C) , for Borel sets 

C of Y , forms a bounded group in B(X) . Then, since S and T 

commute, we see that S T is a group of operators on 7 bounded by 

the constant 9 

We now have recourse to a theorem of Wermer [DS], which states 

that if 9 is a group of operators on a Hubert space, which is 

bounded by the constant M , then there exists an invertible operator 

T on the Hilbert space, with 	11T1 IIf'II 	M2  , such that every 

operator S in Q  is similar via T to a unitary operator. Thus 

in our case there exists an invertible operator T on I , with 

_1 hI 	121 	2 11Th lIT 	81 lI I 	loll 

such that for Borel sets B and C of X and Y respectively, 

there exists unitary operators UB  and Vc  with 
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Now U = I, 
	

and so UB = UB = U 1  ; thus T E(B) T 1  

orthogonal projection 	(I, + UB) . Similarly T F(C) T' 

orthogonal projection. 

Defining p  and a by 

p(.) = T 1  p(.) T and u(.) = T 
1 
 o,(-) T 

is the 

is an 

we see that p 	and o 	are homomorphisms of C0(X) and Co  (Y) 

respectively into B(X) . 	The B(X) - valued spectral measures 

corresponding to p 	and o 	are in fact orthogonal projection 

valued, and hence p and r are *..homomorphisms. 	o 

	

If, in the statement of the lemma above, p (or 	o-) was 

contractive, then the proof would imply that it is a *_homomorphism  

already, in which case one could improve the bound on 11T1 hI 	II 

6.1.7 COROLLARY. Suppose { S 
}i€i 

 and { T }jJ are 

families of idempotens in B(X) such that 

(i) ST=T3 S 	(iEI and jeJ) 

S. 
1 i 2 
S 	= T. 

3i 
 T.  2 = 0 	( if i1 	i2  and j1 	j2  ) , and 

1   

if a E BALL(1) then E
n 

ak S 	and 	k T 
	are 

n 	k=1
ik 

bounded independently of n or the choice of u , {in} or 

{j11} 

Then 	there is 	a 	positive 	constant 	C 	such 	that 

Ek11 kl S. T. 	< C ma { hakll : 1 < k 	1 < n } 
'k 3l 	- 

for all sequences {} of complex numbers. 
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Proof of corollary. The result follows either by the methods of 

the proof of 6.1.6 or by an elementary argument directly from the 

statement, after defining two homomorphisms from 	into B(X) . o 

Proof of Theorem 6.1.5. 	The sufficiency is clear. 	For the 

necessity we suppose A and B are infinite dimensional, and that 

O : A O
a

B -+ B('X) is a bicontinuous homomorphism. Choose a maximal 

abelian *_subalgebra  (henceforth a 'masa') in A , which we may take 

to be C0(X) , for some locally compact Hausdorff space X 

similarly find a masa C0(Y) in B . Now X and Y are infinite 

spaces, since masa's of infinite dimensional C -algebras are infinite 

dimensional ([Kit] Exercise 4.6.12). If a was the Haagerup norm 

then the injectivity (Theorem 3.3.4) would enable us to assume 

without loss of generality that A and B are commutative. 

Write p and r for the induced homomorphisms from C0(X) and 

C0(Y) into B() . Since p and o have commuting ranges we find 

ourselves in the situation of Lemma 6.1.6, and may choose E , F and 

T 	as in the lemma. Here 11T1 IlT 1iI S 81  11 oil 

Since X is locally compact we can choose a sequence { f11 } in 

Ball(C0(X)) , and a sequence I 5 } in the maximal ideal space of 

C0(X) (evaluation at points in X ), such that 

ff=O  

and 	<5 ,f3 >=6 ij 

By the Hahn-Banach theorem we may extend each 
6n  to a contractive 

functional 9.on A . Choose sequences { g11  } and { on } in B 

and B similarly. 

Let a positive integer N be given. For{ 'k },k=1 
	

a double 
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sequence in [0,27) , we have 

EN 
j,k=1 

ezw
jk 9(f ® 	= Ej,k=l 	

jk 
f f(x) E(dx) J g(y) F(dy). 

Choose for k = 1,...,N sequences { f 	} 	and { g 	of 

positive simple functions converging uniformly to f
k and gk 

respectively from below. For fixed ni e IN we have 

Ejk=l 	jk j f(x) E(dx) J 	k(Y) F(dy) 

= T 	(Ejk=1 
e jk T 

f f(x) E(dx) T 1 T J 	 f k(Y) F(dy) 	') T 

and this last expression is bounded by 	IT-1 
11 JIT1 1 , using the fact 

that if 	P1 , 	 P 	are orthogonal projections onto mutually 

orthogonal subspaces then 

I 	L II 	{iI'' n I} i=1 1 1 

for 	
,, 

e C . Thus in the limit as m —'co we obtain 

1w
j 

II 	j,k=1 e 	
k 9(f ® 	II ~ If 111 IITM 	81 

1 
11011 

Now let [uk]k1 be a unitary matrix with IUjkI = 0 ; for 

example let 

uk = 0 exp(27i(j-1)k/N) 

Define a functional 

= Ej k=1 uk Ij ® Ok 

on A 	B . Now if a E A and b e B then 

V(a ® b)I = I Ejk=l uk 	(a) k(b) I 

= { 4=1 I(a)I2 
}1/2 

{= I(b)l2 
11/2 
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~ N IIaI IIbI 

Thus if a = 'y then JIVII ~ N . If a = H' then Theorem 4.2.5 gives 

IVM < 2 N . 	If 	a 
= 111h 	

then Theorem 4.2.3 gives 	IIV!I ~ KG N 

(recall we are assuming in this case that 	A and B are 

commutative). 

However, if we choose 
wkl such that ukl e '

kl 
 = N 	, then 

zwkl 
 

zwkl 
 IVI ~ V( 11 e 	

k ® 1)I / IJ,l1 e 	O 	k 	gl) 11 

~ IO-'II- N31 / (81 II&II) 

which is a contradiction, since N was chosen arbitrarily. 	o 

The construction above gives a direct proof of Theorem 4.2.8: 

6.1.8 COROLLARY. The tensor norms 7 and A are equivalent on 

* 
the tensor product A 0 B of two C -algebras if and only if A or 

B is finite dimensional. 

Proof. 	If 	y is equivalent to A on A 0 B then 7 is 

equivalent to 11•IJ 	, and so A 07 B is an operator algebra. An 

application of Theorem 6.1.5 concludes the proof. 	o 

Suppose A is an operator algebra, and that 9 : A - B(') is a 

bicontinuous homomorphism. 	By Remark 6.1.2, if A possesses an 

identity then the associated unital homomorphism 9 	satisfies the 

condition 	ItO__ h i > 1 . 	 Notice of course that in any case 

1011 119 111 > 1 ; thus if llIl < 1 then lOhll > 1 , and if llOhll 	1 

then 11 011 > 1' 



118 

6.1.9 Definition. Let A be an operator algebra. Define the 

non-expansive distance d(A) of A from an operator algebra to be 
OA 

the following expression: 

inf {1I91I 110
-1 

11: bicontinuous homomorphisms 0 : A -4 B() , 110111 ? 1}. 

Define the contractive distance dA(A) 	of A from an operator O 

algebra to be the same expression, except now the infimum is taken 

over all contractive bicontinuous homomorphisms 0 : A -+ B(') 

Finally, define the expansive distance 
de 

	

OA 	of A from an 

operator algebra to be: 

inf{II01I : bicontinuous homomorphisms 6 : A 	B(X) with 110
-1 

11 ~ iiii. 

The next results gives some idea of how far the projective tensor 

* 
product of two finite dimensional C -algebras is from being a 

subalgebra of some B(X) 

6.1.10 COROLLARY. For n , m e N , with n < m , we have 

3 1 p1/8 < d ne (too
0 	< (2 n) 

OA 117111 

3_i 1/8 dA(V 
0 	) , and 

117111 

1 <dA(° 0 £) / n 	2 
- 	117m 

Proof. Let A = 	, let B = 	, and suppose that 7( is a 

Hilbert space and that 	6 : A 07 B - B('X) 	is a bicontinuous 

homomorphism. Proceeding as in the proof of Theorem 6.1.5, we obtain 

the inequality: 

(81 116111 116114Y1 n3/2 

Thus 
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pp_ipj 	81_1 n 

and so d(A 07  B) and dA(A 07  B) both exceed 
3 1 1l8 

If 9 was contractive, then by the remarks after Lemma 6.1.6 we 

actually obtain the inequality 11_
1

11 ? n , which implies that 

dc (too 	
> 

oa ii 7 m - 

Indeed in this case it is easy to see that 

9( 	07 	= too 
®A m 

isometrically. 

On the other hand, it is well known (see remark after 4.2.8) that 

the canonical contraction 1 0, 	-+too 	
C'  has an inverse with 

norm dominated by (2 n) . 	 o 

* 
6.1.11 COROLLARY. 	If A and B are C -algebras, with A 

finite dimensional and B infinite dimensional, then 

d(.4 0 B) 2 31 (dim A)1116  OA 

dA(A 0 B) > 31 (dim A) 16  , and 

dA(A 07  B) 2 (dim A)1/4  

Proof. Let A and B be as above, suppose 11 is a Hilbert 

space and suppose 9 : A 07  B - B() is a bicontinuous homomorphism. 

Write 

A=A 

where 	
•'11k 

e N , and put m 
= 1 	11k 	

We proceed as in 

the proof of Theorem 6.1.5, but now choose f1,... ,f 	of the theorem 

to be the 'diagonal elements' 
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(09... 	
. . 

,0) 

of A . We obtain 

in > (81 110_11l 119,1 4) -1 
	3/2 

and thus 

	

ii°ii 119 h11 ~ 81 	m > 811 (dim 4)1/4 

The case when 9 is contractive follows as in the last corollary. o 

It is shown in Theorem 4.2.1 that the Haagerup tensor product 

®h 
B of two C*_algebras 

A and B is a Banach algebra. In 

addition, by the same theorem, there is a natural faithful 

representation of 	B on a Hilbert space. However by Theoiin 

6.1.5 we know that 	®h B is never an operator algebra, unless A 

or B is finite dimensional. Earlier Paulsen and Power [PnPIiad 

noticed that there can exist no isometric homomorphism of ili B 

into the bounded operators on a Hilbert space. It is interesting to 

note that there often exist bicontinuous homomorphisms into EB()) 

for some Hubert space T (see [KaS]). 

6.1.12 TIIEOREM. Suppose that X and Y are operator spaces 

* 
contained in C -algebras 	A 	and 	B , and suppose that 

(j 	
' u ) 	and 	( Bu 	

' 'u ) 	are the universJ 

representations of A and B respectively. 	There is an natural. 

isometry 

9: X ehY -+B(B (XU RU)) 

- 	 given by 
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O(a®b)(T) = (p (D 0)(a) T (0)(b) 

for TEB(7(u(DXU) 

If we give A 
®h 
 B the multiplication 

(a 0 b) o (cod) = (ac) 	(d b) 

for a,c E A and b,d e B , then A Oh  B is a Banach algebra with 

respect to 	o , and with respect to this multiplication 

9 : A 
®h 
 B - B(B(71u e 	is an isometric homomorphism. 

Proof. Clearly 9 is contractive. Let u E X 
Oh

Y be fixed, 

with Ilullh = 1 . By the Hahn-Banach Theorem there isa contractive 

linear functional f on X 
®h 
 Y with 

u>=1 

By 3.3.3 there exists unital *_representations  9 and r of A and 

B on Hilbert spaces 71 and X respectively, a contractive linear 

operator T L - 71 , and ( E BALL(K) and i e BALL(71) , such that 

f(x 0 y) = < 9(x) T w(y) C , 	> 

for x e X , y E Y 

Now since 9 and r are subrepresentat ions of pU  and 

respectively we may write 

f(x 0 	= < PU(x) T' 2r(y) C' , i' > 

for some T' E BALL(B(Ku,71u)) , (' E BALL(XU) 	
' E BALL(XU) . Now 

let S be the operator on 	® 	which equals T' on KU , and 

which annihilates Ilu . Then 	- 

119(u) (S)IJ?  1<  9(u)(S) (0 	C) , (' e 0)> 
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= 1< f , U > 

=1 

and so 9 is an isometry. 

That A ®h  B is a normed algebra with the multiplication o 

follows as in 4.2.1. The other statements of this proposition are 

obvious. 	 o 

6.2 MATRICIAL OPERATOR ALGEBRAS. 

In this section we investigate some of the themes of 6.1 in the 

context of operator spaces. 

6.2.1 Definition. Let ( X , l.lI ) be a norm-closed operator 

space, and suppose X is also an algebra with multiplication m 

We write such a space as a triple ( X , 	, m ) , or ( X , m ) 

or even X when there is no danger of confusion. We say that 

X , 	
, m ) 	is completely bicontinuously isomorphic to an 

operator algebra if there exist a Hilbert space 7 , and a completely 

bicontinuous map 9 : X - B(X) with 

9(m(x,y)) = 9(x) 9(y) 	(x , y E X ) 

In this case we say that ( X , 
	

, m ) is a matricial operator 

algebra if 9 is a complete isometry. 

Notice that just as in the operator algebra situation, we may 

assume completely bicontinuous homomorphisms of complete operator 

algebras with identity are unital; but again the norm of the inverse 

mapping may change. 
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We would like to characterize matricial operator algebras, 

preferably up to complete isometry, but also up to complete 

bicontinuity. 	Clearly a necessary condition is that the 

multiplication m is completely bounded. 	Indeed, if X is an 

operator space, and if 9 : X -+ B(7) is a completely bicontinuous 

linear mapping onto a subalgebra of B(') , then defining 

m(x,y) = 91(9(x) 9(y)) 

for x,y E X , we obtain a completely bounded multiplication. 

6.2.2 THEOREM. If X is an operator space, and if ni is a 

completely bounded multiplication on 	X , then 	X , with the 

multiplication in , is an operator algebra. 

Proof. 	By Theorem 3.3.3 the multiplication m 	satisfies the 

condition of Theorem 6.1.4. 	 o 

The preceding theorem shows that 	''th - matricial algebras', 

whatever this means, are operator algebras. 	The following two 

examples show that a completely bounded multiplication is not 

sufficient for a completely isometric characterization. 

6.2.3 EXAMPLE. Let X be an operator space, realized on the 
* 

Hubert space 7( , and choose f e BALL(X ) . Define 

m(x,y) = f(x) y 

for x,y e X . Then m is a completely contractive and 

associative multiplication. The algebra ( X , m ) has no identity 

unless X is one dimensional. If f is the zero functional then 
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( X , m ) is indeed a matricial operator algebra, via the complete 

isometry 0 : X -+ J12(B(X)) given by 

On the other hand, if X is the Calgebra, and if 

f((A1,A2)) 
= Al 

for 	(A1,A2) e C, then there is no isometric imbedding 

9 : X -+ B(X) . For if there were, and 9((1,0)) = P , 9((0,1)) = I 

then P is a contractive idempotent and consequently an orthogonal 

projection onto a subspace of T . The relations 

P T = T , T2  = T P = 0 

give 

II Al P + A T 11 = { IAI 2 + 	JA 2 12 } 

which is a contradiction. 

A completely bicontinuous representation 0 : X -' J12(B(X)) of any 

multiplication m of the type above, given by a functional f , can 

also be written down explicitly, namely 

9(x) = [f(x)I 	( x - f(X)I7 ) 

] 

6.2.4 EXAMPLE. Let ii be a positive integer or o , and let 

An  be the C -algebra of bounded operators on 
Cn 

. With respect to 

the usual basis of C 	we regard elements in Al 	as infinite 

OD  complex matrices. Consider the Banach algebra [Va3] 	( Al11  , o ) 

where o is the Schur product 

A o B = [ab] 	( A , B€Al) 
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With respect to the usual matricial norms on 	A 	the Schur 

multiplication can be shown to be completely contractive. However if 

O : J111 -+ B(X) is a contraction, and a homomorphism with respect to 

o , then { O(e) } is a double sequence of orthogonal projections 

onto mutually orthogonal subspaces of 1 , and hence 

11 	)t. . 8(e) II = sup { 	i1 :1 < i,j i,j=1 13 

Thus 8 could not be an isometry. 

Of course if n < oo and if 8 is the map taking a matrix A to 

an 	n 2 x n2 matrix with the a.j on the main diagonal then 8 is a 

homomorphism with respect to o , and 11011 ~ 1 , jO_lit < n 
. In the 

case n < co the multiplication o has an identity of norm n . It 

is difficult to imagine a homomorphism 8 from ( JI , o ) into 

B(l) with 11811 
j_lp, S K 

, where K is independent of n , however 

some such homomorphism must exist, since the condition of Theorem 

6.1.4 shows [Va3] that Al is an operator algebra, and of course Al11 
00 

is algebraically embedded in Al in a natural way. 
00 

6.2.5 EXAMPLE. Let A be a subspace of B(1) , and suppose 

there is an operator V E BALL(B(1)) such that A V A C A . Then we 

may define a bilinear mapping in : A x A - A by 

m(a,b) = a V b 

for a,b e A . It is clear that m is a completely contractive 

multiplication. The map 0 : A J12(B(X)) defined by 

* 

0 	0 

is a completely isometric homomorphism with respect to the 
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multiplication m 

More generally if X is an operator space, if 9 is a completely 

bicontinuous linear mapping X -* B(A) , and if 9(X) V 0(X) c 9(X) 

then defining 

m(x,y) = 9(9(x) V 9(y)) 	(x,y E X ) 

we obtain a completely bounded multiplication. One can construct, as 

in the last paragraph, a completely bicontinuous homomorphism from 

( X , m ) into J12(B(K)) 

Examples 6.2.3 and 6.2.4 above suggest that the absence of a 

completely isometric homomorphism into B() could be attributed to 

the lack of an identity of norm 1. This is in fact the case as the 

following theorem, found by A. M. Sinclair, shows: 

6.2.6 THEOREM. Let X be an operator space with a completely 

contractive multiplication m , and suppose there is an identity e 

for m , and hell = 1 
	

en 	( X , m ) 	is a matricial operator 

algebra. 

Proof. Suppose X is a subspace of B() for some Hubert space 

Let L be the self-adjoint subspace of A2(B(')) consisting of 

elements of the form 	
X 	

, where x and y are in x 
y 0 

Define a multiplication m 011 L by 

1 m ( [ 0 	
xii 	

r 
0* x

2 	r 0 	* m(x1,x2) ] 

	

[y1  oj 	[y2  0] 	= [m(y2,y1) 	o 

for x1  , x2 , y1  and y2  e X . It is easy to see that m 	is 
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symmetric (Definition 3.1.8). AlsoI O 	e 	is an identity for L 
e 0 

of norm 1. Further, the map taking an element x in X to the 

element [ 
	

] of L is a complete isometry. Thus to prove the 

statement of the theorem we may assume without loss of generality 

that X is self-adjoint in B(7) , and that m is symmetric. 
* 

Let A be the C -algebra generated by X in B() , and let 

( 	u ' u ) be the universal representation of A . Now since 

zU  o m : X x X -, B(u) is a completely contractive bilinear map, it 

induces a completely contractive map 	X Oh  X -+ B('u) . 	By the 

injectivity of the llaagerup norm (Theorem 3.3.4) and the 

Arveson-Wittstock-Hahn-Banach Theorem (Theorem 3.2.6), the linear map 

induced by zU  o m 	extends to a completely contractive map 

A ®h  A B(l(u) . Then 

* 
= ( + 

induces a symmetric completely contractive bilinear map 

A 	A ' B(Xu) . 	The Christensen-Sinclair representation theorem 

(Theorem 3.1.10) allows us to choose a Hilbert space K , a unital 

*_representation 7 of A on K , an operator U1  e BALL(B(7(,K)) 

and a self-adjoint operator sV1  in BALL(B(K)) , such that 

m(a ® b) = U 7r (a) V1  7(b) U1  

for a , b E A 

Since 7 is a sub-representation of rU  there exist an operator 

U and a self-adjoint operator V in BALL(B(Xu)) such that 

	

m)(a,b) = U u(a)  V  7u(b)  U 	( a , b E X ) 

Without loss of generality, and for notational simplicity, we can 

replace X with 7u(X) , 1 with X1j , and m with rU  o m ; now 
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m(a,b)=U*aVbU 	
(a,beX) 

Define an operator * in B(B('7)) by 

<*(S) C, 	>=LIM< (U*)RSU11C 

for S E B(X) and ( , i E I ; where LIM is a Banach limit on too 

(see [Conw]). By the properties of Banach limits * is completely 

positive. Also if A , B e J1(X) then 

(U* 
® In)k mn(A,B)* m11(A,B) (U ® In)k 

4(U* 0 J) 1 B* (V 
® I) A* A (V 0 I) B (U o In) k+1 

~ IIA 	
(U* 

0 In)k+l B B (U 0 
J)k+1 

and thus 

11(mn(A,B)* m11(A,B)) < hA112 f 11(B* B)  

Also 	B B = m11(e 0 111,B) mn(e 0 111,B) 

~ (U* 0 1) B* B (U o 

and hence inductively, for k = 1,2,... we have 

B* B < (U* 0 
111)

k B* B (U 0 
j)k 

Thus it is clear that 

B 	B < '
n 
(B B) 
	

(2) 

Now following the construction before Theorem 3.1.2 define a semi 

inner product on X 0 71 by 

* 

<a0C,bo>=<(b a)(,> 

Let X 	be the Hubert space which is the completion of the quotient 

of X o 71 by the subspace 
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with respect to the induced inner product. We shall write [u] for 

the coset of an element u E X 0 

For 	a,b1,. . . ,b E X and 	
11 	. 	

I' we have 

< 	
m(a,b) 	Ci. , E1 m(a,b) 	> 

= E1 <(m(a,bj)* m(a,b1)) C 	C j > 

= < 	0 e11,B) m11(a 0 e11,B)) C 	C > 

where B 
= =i 

b 0 e1 . Thus, by (1) we see 

< E 1 m(a,b1) 0 
( 	=i m(a,b) 	Ci > 	tall2 < 	B) C 	C> 

= 1al12 < E=1 b 	C 	b ® C > 

This inequality allows us to define a mapping 9 : X - B(t) by 

9(a) ([b 0 C]) = [m(a,b) 0 C] 

for a , b E X and C in 	1 . 	It is clear that 	0 is a 

contractive homomomorphism. Indeed the matricial counterpart of the 

calculation above shows that 9 is completely contractive. Also if 

A E 4111(X) , ifC E BALL (y(11)) 	and if 	is the vector in 

BALL (X()) whose i1 th component is [e 0 	, then 

hl9],(A)ll ~ II 911(A) () 112 

= 	< 
E'=1 a 0 C1 

, 
E =1 a1 ® C1 > 

= 
Eiikl < (a 1ç a1) C 	Ck > 

= < 1*n (A A) C 	C > 

* 
?<A A( , 

=<AC, AC> 

using (2) . Thus 
119 (A)11 ~ llAhI 	and consequently 0 is a 
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complete isometry. 	 U 

If X is an algebra with respect to a multiplication m we shall 

write in for the extension of in to X 0 C given by 

	

m(a 	A,b e 	= (m(a,b) + A b + 1u a) 	A u 

for a , b E X and A , a E C . With this multiplication X C 

has an identity, namely 0 1 

6.2.7 COROLLARY. Let X be an operator space with a completely 

contractive multiplication m . 	Then 	( X , m ) 	is a matricial 

operator algebra if and only if there exists an L o-matricial 

structure { II } for X 	€ such that 

JA In = hAil11 	( A e J11  (X) ) 

101 1=1 ,and 

the multiplication m 	on X 0 C extending m is 

completely contractive. 

The following result generalizes Theorem 6.1.3: 

6.2.8 COROLLARY. Let A be a matricial operator algebra, and 

suppose I is a closed two-sided ideal in A . Then. A / I with 

the quotient matricial norms is a matricial operator algebra. 

Proof. We may assume without loss of generality there exists a 

Hilbert space 71 such that A is a subalgebra of B(71) . Now apply 

	

Corollary 6.2.7. 	 0 
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6.2.9 REMARK. 	The condition in Corollary 6.2.7 is less than 

desirable, but unfortunately we have not been able to improve on it. 

It would be of interest if one could obtain a proof mimicking the 

construction of Varopoulos giving the sufficiency in Theorem 6.1.4. 

Varopoulos uses Theorem 6.1.3 to construct a contractive monomorphism 

from a concrete operator algebra onto the algebra satisfying the 

condition of 6.1.4. 	However for this to succeed in our case we 

require an operator space version of the open mapping theorem. 

The next result informs us that we can assume that the 

multiplication has an identity if we are interested only in a 

completely bicontinuous representation. 

6.2.10 PROPOSITION. 	Let 	X 	be an operator space with a 

completely contractive multiplication m . 	Then there exists an 

L-matricial structure on X 	€ such that the natural extension m 

of m to X C is completely contractive, and the canonical 

embedding of X in X 	C is completely bicontinuous. 

Proof. Define an L-matricia1 structure on X C by 

I A e A In = max { hAIl11 , lAth } 

for A E 	and A c j1n . With respect to this structure m is 

completely bounded, with lmlcb = ,c , say. Then 

h.l 	= 	hI 

defines a new L-matricial structure on X ® C with respeôt to which 

M_ 	is completely contractive. Note that the identity of X 9 C 

does not have norm 1. 	 o 
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6.2.11 REMARK. Let X be an operator space, represented on 

B() , with a completely contractive multiplication m , and suppose 

there exists an identity e for in , 	? 1 . Let A be the 
* 
C -algebra generated by X in B(T) . Then following the proof of 

6.2.6 we can assume X self-adjoint and in symmetric and write 

* 
2r(m(a,b)) = U ir(a) V 7r(b) U 	( a , b e X ) 

for some Hubert space I , some representation r of A on iC 

and some operator U and self-adjoint operator V in B('Y) . If 

these objects can be chosen such that 	KY 7r(e) U)nJJ 	is bounded 

uniformly by some positive constant K , then 	( X , m ) 	is 

completely bicontinuously isomorphic to an operator algebra. In fact 

in this case there exists a Hilbert space 	K , and a unital 

completely bicontinuous and completely contractive linear mapping 6 

from X into B(K) , which is a homomorphism with respect to in 

It 
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7. APPENDIX. 

7.1 Definition. A non-trivial invariant subspace of an operator 

T on a Banach space X is a proper closed linear subspace E of X 

such that E 0 {0} and T(E) C E . The subspace E is said to be 

hyperinvariant for T if E is an invariant subspace for every 

operator on X that commutes with I 

Throughout what follows the set [0,1) is taken to be identified 

in the usual way as a topological group with T , the unit circle in 

the complex plane. In this appendix we give a sufficient condition 

for an operator on L2[0,1) composed of a multiplication operator 

and a translation to possess an invariant subspace. In fact all that 

follows is valid for L[0,1) , 1 < p 

More specifically, let a be a fixed number in [0,1) and let 

be a fixed non-zero continuous function on [0,1) . This implies 

that 	(0) = ç,(l) . Define an operator I on L2[0,1) by 

Tf(x) = ç2(x) f(x + ) 	( x E [0,1) ) 

for each f e L2[0,1) . Here addition is modulo 1 of course. Thus 

if Mc, is the multiplication operator on L2[0,1) 

Mc,f(x) = c, (x) f(x) 	( x E [0,1) ) 

and if S. is the translation operator 

S
a 
 f(x)=f(x+a) 	(xE [0,1)), 

then we have 

T=Mc,Sa 
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This operator is related to a class of operators introduced by 

Bishop as candidates for operators possibly not possessing invariant 

subspaces. Subsequently almost all of these have been shown by A. M. 

Davie [Da2] to have hyperinvariant subspaces. 

7.2 Definition. An irrational number £ is called a Liouville 

number if for each natural number n there exist integers p and q 

with q > 2 such that 

It - p/qI < q 

One can [Ox] show that the set of Liouville numbers is dense in IR 

but has s-dimensional Hausdorff (and consequently also Lebesgue) 

measure zero for all s > 0 

We shall need the following theorem: 

7.3 THEOREM (Vernier [Vrl,CoF]). Let X be a Banach space and 

suppose R is an invertible operator on X satisfying the following 

two conditions: 

the spectrum of R contains more than one point, and 

EOO 	log 11R11 11 / (1 + 
2) < 

00 n=-00  

Then R possesses a non-trivial hyperinvariant subspace. 

The result we give below asserts that the operator T defined 

above possesses an invariant subspace provided that a is not a 

Liouville number and provided that ç  is sufficiently smooth. For a 

bounded function g : [0,1) -, C the modulus of continuity 
w  
	of g 
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is defined to be 

= sup { g(x) - g(x') 	: Ix-x'I ~ 6 } 

for 5 > 0 . This is an increasing function of S 5 0 . Note that 

Wg is not quite the usual modulus of continuity [Zy] since the 

subtraction above on [0,1) is modulo 1 ; however if g(f) = g(0) 

then &g is bounded above and below by a constant multiple of the 

usual modulus of continuity. 

Suppose g is a fixed non-vanishing complex valued function on 

[0,1) , with g(0) = g(1) , such that g and g 1 are bounded. 

Let 	
w 
	be the modulus of continuity of g . 	Notice that if 

Ix - X'I < t then 

g(x')l + W g (t) 

and consequently 

I logg(x) - logg(x') 	I = 	log(jg(x)/Ig(x')) I 

~ log(' + IIg 1II Wg(t)) 

~ IIgII &g(t) 

Thus it is clear that the modulus of continuity of log I gI 	is 

dominated by a constant multiple of the modulus of continuity of 

flu 

7.4 THEOREM. Lei a E [0,1) . Lei ç be a fixed non-vanishing 

continuous complex valued function on [0,1) ( with ç(0) = ç(1) ). 

The operator T on L2 [0,1) defined by 

Tf(x) = ç2(x) f(x + a) 	( x E [0,1) ) 

where the addition is modulo 1 , possesses an invariant subspace 
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provided that a is not a Liouville number and provided that the 

modulus of continuity w of p , or even of loyII , satisfies 

J(t)/tdt<w 

If, in addition, a is irrational then T possesses a hyperinvariant 

subspace. 

Proof. If a is rational then we do not need the smoothness 

condition for p : if a = p/q , for some p,q e IN , then the space 

of functions which are zero on alternate intervals of length (2q) 1  

is an invariant subspace for T 

Assume henceforth then that a is irrational, and put 0 = logç 

By the remark immediately • bef ore the statement of the theorem we may 

as well assume the integral condition holds for the modulus of 

continuity w of b . If ii is a non-negative integer and we put 

n-i 	k 
'n '1k=O 5a 

then we have T11  = M 	S 	and so IIT"II = 	. Similarly if n 

is a negative integer we have liTnil = 	
1100 

. Thus as n -+ oo 

log 11T1111 / n = sup { (n1 E 	S)) (x) : x e [0,1) } 

- 5 0 dt 

by the uniform ergodic theorem (see [Pa] 1.1), if not by more 

elementary considerations. We may conclude from this that r(T) 

the spectral radius of T , satisfies 

r(T) = exp(J1  0 dt) 

If M is the unitary multiplication operator on L2[O,1) given 

by 
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Mf(x) = e 2 f(x) 	(x E [0,1) ) 

for f e L2[0,1) , then it is easy to see that 

T - e2ria A I = e2 ia M (T - A I) M 1  

for any A e C . This shows that the spectrum of T is invariant 

under rotation by e2
ria  
 , and so certainly contains more than one 

point. Indeed it is easy to see that the spectrum o,  (T) 	is the 

circle of radius r(T) , centred at 0 , but we shall not explicitly 

need this fact. Normalize the operator T by setting 

R=r(T) 1 T 

This is equivalent to scaling ç by a constant. 

For a bounded function g : [0,1) -' C let us write D(g,n) for 

the discrepancy 

D(g,n) = sup { J (n1 E
n-1

S g)(x) - fo 
 g dt 	: x 	[0,1) } 

We now appeal to Wermers Theorem (7.3 above) to deduce that the 

operator R has a non-trivial hyperinvariant subspace if 

E 	n 1  sup { (n 1  E 	S g) (x) - 
	

g dt : x E [0,1) } < 00 

for g = Ø and g = - . We may rewrite this condition as 

=i 	
D(b,n) <o . 	 (*) 

Now since a is not a Liouville number by elementary number 

theory (see [Da2]) there exists K , N e IN such that if n is a 

positive integer greater than N then there exists p , q e EN , with 

p and q coprime, such that both 

ni/K < q < 

and 	la - p/qj < q2 
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hold. For such n we may write n = rq + s , for some non-negative 

integers r and s , with s < q . We obtain 

In 	E 	(x + ka) 
- J 

0 
0 dt I 

~ n 	IEIq (x + ka)I + (n1 - (rq)) 	(x + ka) + 

(rq) 	E 	(x + ka) 
- 	 dtl 

~ 2 (q/n) 11011 + (rq) 1 E 	(x + ka) 
-k=O 	5' 	dt I 

r 	E 	q 1 E J=o (x + jqa + ka) 
- 	

dt I + O(n) 

As an integer a runs from 1 to q , the number a p/q assumes 

each of the values 0 , 1/q , ... , (q-1)/q in some order (modulo 1 

of course). Since Ja a - a p/qI ~ q_i the following assertion is 

clear: for each x € [0,1) there is a partition of 	[0,1) 	into 

disjoint intervals 1 
o 	

_i each of length q 	such that 

each of the q numbers x , x + a , ... , x + (q-1) a may be 

associated with a unique interval J 
0 1 

... 	 respectively 

which it lies within a distance of q 1 from. 

By the mean value theorem we may for each k = 0,...,(q-1) choose 

E I
k

such that 

'k' 	
1'k 	

dt 
= 	k) 

Then 	+ ka) 
- I'k 	

5'k 	
dt 	w(21q) 

where w is the modulus of continuity of 0 , and so 

1q 1 EI'0(x + ka) 
- 

1 

0dt I < q 	EI I '0(x + ka) - q 
5'k'0 

dt 
k=O 

w(21q) 

Thus for any x € [0,1) we see that 
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r' E 	I q 	Ei3=0 (x + jqa + ka) 
- 	

dt I ~ w(21q) 

and so 

D(,n) 	(2/q) + O(n) 

~ w(2 111/K) 
+ O(n) 

Consequently (*) is satisfied if 

E00 	
n'-1 w(2 n /K) < 00 

n=1 

which proves the theorem after an application of the integral test of 

elementary undergraduate analysis. 	 o 

7.5 REMARK. It would be of interest if one could enlarge the set 

of numbers a or the set of functions 9 for which the result 

holds. It is probably possible to use the method of [Da2] to extend 

this result to the case when 9 is permitted to assume the value 0 

For s > 0 let A8 be the Holder class [Zy]: the class of those 

bounded complex valued functions g on 	[0,1) for which there 

exists a constant C > 0 such that the modulus of continuity w of 

g satisfies 

W(b) 5C6S 	( 6>O) 

7.6 COROLLARY. 	The operator T defined above possesses an 

invariant subspace if a 	is not a Liouville number and if the 

function ç , or even logç , is in the HOlder class A
s 

for some 

s>0.. 
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Proof. 	If p E A 	then log I p I E A , by the remark above 

Theorem 7.4. Thus if either ço or logjqj is in A 	for some 

s > 0 and if w is the modulus of continuity of logjpj then 

f1 w(t) /tdt< oo 

An application of Theorem 7.4 completes the proof. 	o 
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