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ABSTRACT.

This work is concerned with the relationship between two concepts:
the geometry of operator algebras, and their temsor products. First,
Hermitian elements of a Banach algebra, and the special geometry of a
C*—algebra are discussed. The extremal Banach algebra generated by a
Hermitian element is examined.

Some norms related to the matricial structure available 1in
C*—algebra, are considered, and their relationships studied. The
symmetrized Haagerup norm is defined, which corresponds to a variant
of the notion of complete boundedness and a Christensen-Sinclair type
representation theorem. A categorical definition of a temsor product
of C*—algebras is proposed, and an analysis of the geometry of such
tensor products provides a complete description of the Hermitian
elements and a characterization of the C*—tensor norms.

Next the notion of a tracially completely bounded multilinear map
is introduced, and thé associated tensor norm is shown to be
equivalent to the projective norm. Bounds are given for the relevant
constants.

Finally non-self-adjoint operator algebras are considered. The
projective and Haagerup tensor products of two C*-algebras are shown
not to be operator algebras. The problem of characterizing operator
algebras up to complete isometry is considered. Examples are studied
and necessary and sufficient conditions given.

As an appendix a criterion for the existence of invariant

subspaces for an operator related to the Bishop operator is given.
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INTRODUCTION.

The origins of the theory of tensor products of Banach spaces are
to be found in work of von Neumann, Schatten [Sc] and Grothendieck
[6r2]. The tensor product is a fundamental construction in the
category of Banach spaces and bounded maps; but like the direct sum
or quotient constructions the tensor product is not merely a formal
device: the geometry of Banach spaces and their tensor products are
intimately related.

Naturally the relationship between two norms on the algebraic
tensor product of two Banach spaces mirrors geometrical information
about the spaces concerned. Classes of multilinear haps on Banach
spaces are in duality with the tensor products of these spaces, thus
to study a particular class of maps it is often useful and
enlightening to consider the associated tensor product.  Tensor
products seem to be the correct framework to study factorization
[GL], a concept central to the geometry of Banach spaces. There is
also the interesting work of Varopoulos, Carne [Va3,Ca3] and others
characterizing operator algebras in terms of tensor products.

The injective morm A and'projective worm Y , respectively the
'least' and ‘'greatest' tensor norms, have received the most
attention. These norms have important applications in many fields,
for example in harmonic analysis [Val].

The theory of tensor products of C*-algebras began in 1952 [Tu].
Since then it has been concerned with the case when the tensor
product is again a C*-algebra. Analysts were distressed to discover

. .
that there could exist more than one C -norm on the algebraic tensor
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product of two C*—algebras. Naturally attention was drawn to the
nuclear C*—algebras: those C*-algebras A for which there exists a
unique C*—norm on A®B for all C*—algebras B . Such C*—algebras
have been the subject of much research, and are now fairly well
understood. The property of nuclearity plays a similar role to that
of the approximation property in the metric theory of tensor products
of Banach spaces, and has been found to be equivalent to a number of
important spatial and geometric notions [La3,To].

One advantage C*—algebras have over Banach spaces is the fact that
a matrix of operators may be regarded as another operator in a
canonical fashion. If A is a C*-algebfa, then the set M (4) of
n x n matrices with elements in A may be identified with the
C*—algebraic tensor product of A with the C*—algebra of complex
n x n matrices. Recently the study of this attendant matricial
superstructure of a C*—algebra has proved to be most rewarding. The
mappings respecting the natural order and metric in the matrix spaces
over a C*—algebra, the completely positive [St] and completely
bounded maps [Ar] respectively, have deep applications in single
operator and group representation theory as well as to operator
algebras. The completely bounded multilinear maps were characterized
by Christensen and Sinclair [ChS1]): this led to interesting results
in the cohomology theory of C*—algebras [ChSE,ChS2]. The sort of
representation theorem that they obtained may be regarded as a
factorization through a Hilbert space.

Under the usual algebraic correspondence bétween multilinear maps
and tensor product spaces the space of completely bounded multilinear
functionals on C*—algebras is in duality with the Haagerup tensor

product of these algebras [EK]. Certain questions arising naturally
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from the study of such maps relate to the geometry of this tensor
product. For example, the commutative Grothendieck inequality may be
regarded as the equivalence between the projective norm and the
Haagerup norm on the tensor product of commutative C*—algebras,

The work of Haagerup and Pisier [Ha2,Ha3,Pr2] on the Grothendieck-
Pisier-Haagerup inequality and related geometrical topics (such as
factorization of bilinear functionals through a Hilbert space) lead
naturally to the consideration of other tensor norms which are not
C*-norms. However there has been no systematic theory of general
norms on the tensor product of C*-algebras, nor any attempt to make
comparisons with the theory of Banach space tensor norms. Perhaps
this is because until recently the *-representations have been
assumed to be the only class of morphisms of C*-algebras which behave
well with respect to tensoring, and these. correspond properly to the
C*—tensor norms. The serious study in the last decade or so of
completely positive and completely bounded maps has provided a lot of
machinery without which a general theory of temsor products is not.
possible.

In the late seventies and eighties the work of Choi, Effros,
Paulsen, Smith, and Ruan appeared on the theory of métricial vector
spaces and operator spaces [Ru,ER1]. Operator spaces are the natural
setting for the study of completely bounded maps. With this theory
came the notion of 'non-commutative' or 'quantized' functional
_analysis [Ef2]. The study of operator spaces and completely bounded
maps is a strict generalization of classical functional analysis:
there is a faithful functor ([ER1] Theorem 2.1) embedding the
category of Banach spaces and bounded maps into the category of

operator spaces and completely bounded maps. Thus the Hahn-Banach
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theorem becomes the Arveson-Wittstock-Hahn-Banach theorem on the
existence of extensions for completely bounded maps.

The quotient construct for operator spaces and certain specific
'operator space tensor norms' were studied [Ru]. The operator space
Haagerup tensor norm is the'apprOpriate tensor norm correspondiﬁg to
the class of completely bounded multilinear maps.

We now summarize the contents of this work. We shall be concise
since most chapters have their own, more detailed, introduction.

In Chapter 1 we establish our notation and state some facts which
will be of use later. Section 1.1 includes some approximate identity
machinery which enables us in later chapters to extend results on
unital C*—algebras to the general case. A brief discussion of tensor
products of Banach spaces is given in 1.2; the injective and
projective C*—tensor norms are defined at the end of this section.

Chapter 2 is concerned with the theory of numerical range and the
geometry of Banach algebras. We establish in 2.2 some
characterizations of C*—norms which are interesting in their own
right. For example it is shown that an algebra norm dominated by an
(uncompleted) C*—norm is itself a C*-norm; and that if there exists a
unital norm decreasing linear map from a C*-algebra into a Banach
algebra with dense range then there is an involution on the Banach
algebra with respect to which it is a C*-algebra. In 2.3
representations and the duality structure of the extremal algebra
generated by a Hermitian element are studied. This section is
self-contained and does not relate to the subsequent material.

In Chapter 3 we examine the matricial structure associated with a
C*—algebra. Section 3.1 is a quick review of the theory of

completely positive linear maps and completely bounded multilinear
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maps; the Christensen-Sinclair representation theorem is stated.
Operator spaces are introduced in 3.2 and a proof is given (due to E.
G. Effros) of the Arveson-Wittstock-Hahn-Banach Theorem. 1In 3.3 we
define and discuss operator space tensor norms. The symmetrized
Haagerup norm is presented, which corresponds to multilineam' maps
having Christensen-Sinclair representations but with Jordan
*-homomorphisms taking the place of the usual *-representations.

In Chapter 4 we investigate geometrical properties of general
algebra norms on the tensor product of C*-algebras, and also discuss
some particular tensor norms and their geometrical relationships. A
uniformity condition appropriate to tensor norms of C*—algebras is
introduced and some implications of this condition considered. It is
shown that if A  is a nuclear C*—algebra then the canonical
contraction A ®, B- A ®) B is injective for all C*—algebras B,
and for any tensor norm @ which is uniform in our new sense. In
4.3 we prove that for an algebra norm e which is uniform in this
sense either A ®, B is a (*-algebra for all C*-algebras A and
B, or A.®a B is never a C*—algebra unless A4 or B is €. In
4.4 it is found that for such e there is actually a dichotomy for
Hermitian elements: if A and B are unital C*-algebras then the
set of Hermitian elements in A ®, B is either a spanning set or is
as small as it could possibly be.

In Chapter 5 we define the tracially completely bounded
multilinear maps, and investigate some related geometrical questions.
In the bilinear case these maps are essentially the same as the
completely bounded maps of Itoh [It] from a C*-algebra to its dual.
In section 5.2 every bounded bilinear map of C*-algebras is shown to

be tracially completely bounded, and thus the tensor norm which
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corresponds to thé class of tracially completely bounded bilinear
functionals is equivalent to the projective norm. Some bounds for
.this equivalence are found. An example is given in 5.3 of a
trilinear bounded map which is not tracially completely bounded; and
some comments made on the possibility of a Christensén-Sinclair typé
representation theorem for tracially completely bounded maps.

In Chapter 6 we discuss characterizations of subalgebras of
C*-algebras. This subject is closely related to the study of certain
tensor norms [Va3,Ca3]. In 6.1 we show that the projective and
Haagerup tensor products of two C*—algebras are not subalgebras of a
C*-algebra, but are often subalgebras of B(B(¥)) for some Hilbert
space ¥ . In 6.2 we consider the problem of characterizing
subalgebras of C*-algebras up to complete isometry. Examples are
studied and necessary and sufficient conditions given. A result of
Cole, that the quotient of a subalgebra of a C*-algebra by a closed
two-sided ideal is again a subalgebra of a C*—algebra [Wr2], is
generalized. Hopefully these characterizations will also shed some
light on the tensor product construct for subalgebras of C*-algebras.

As an appendix we give a sufficient condition for the existence of
invariant subspaces for an operator on the space Lz(ﬂ) composed of
a multiplication operator and a translation (here T is the unit
circle in the complex plane regarded as a topological group).

This work was completed under the supervision of A. M. Sinclair
with the exception of the appendix and some of the material of
Chapter 5 which was done in the summer of 1986 under the supervision

of A. M. Davie while A. M. Sinclair was on sabbatical.
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CHAPTER 1. PRELIMINARIES.

1.1 DEFINITIONS AND NOTATION.

We make some conventions and recall some definitions and facts,
most of which are very well known and are stated here for
completeness.

All linear spaces are over the complex field € wunless explicitly
stated to the contrary. As usual if o and @' are norms on a
linear space E , and if e'(e) > a(e) for each e € E , then we say

al

dominates o , and write @' > ¢ . This determines a partial
ordering on the set of norms on E . If (E, ¢) 1is a normed
linear space then BALL(E) denotes the set of elements e € E with
a(e) <1 . The dual space of E is denoted by E* , and the natural
pairing E* x E- C is often written < - , - > ; thus if ¢ € E*

and e € E then

<p,e>= ¥(e)

Write B(E) for the normed linear space of all bounded linear
operators on E . The identity on E 1is denoted by IE . A linear
map T:E-F between normed linear spaces is said to be

bicontinuous 1if T is invertible and if T and T-1 are

continuous. If El”"’Em and F are normed linear spaces then we
write B(E; x ... x E ;F) for the normed linear space of all bounded
m-linear  maps E1 x ... xE - F. An  element of

BALL ( B(E1 x ... x B SF) ) is said to be a comtraction, or
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contractive.

For n €N we write E(n) for e?z

{ E , the direct sum of n
copies of E . If % 1is a Hilbert space then W(H) is taken to
have the natural Hilbert space structure. We write Ci for the i'th

entry of an element (€ W(D) ; conversely if {1 yoeee s (L ET

then we write ( for the element of W(n) whose i'th entry is (i .

~

A projection on a Banach space E 1is an operator P € B(E) which is
idempotent : i. e. P2 =P . An orthogonal projection on a Hilbert
space ¥ 1is a projection P € B(¥) which is either self-adjoint or
a contraétion [Conw] .

Let A be an algebra. An algebra morm a on A is a norm which

is sub-multiplicative:
e(a b) < a(a) a(b) (a,bed).

In this case the pair (A4, @) 1is called a normed algebra. An
algebra A 1is wunitel if it possesses an identity 1 and e(1) =1 .
A linear map between unital algebras is called unital if it preserves
the identity. We shall call an algebra norm e¢ on A a *-algebra
* \somedric
norm (respectively C -morm) if there is an} involution on the
e-completion of A making it into a Banach *-algebra (fespectively
C*-algebra); if A was already a *-algebra it is usually assumed
that the involutions coincide.We shall G\Wt\\js aesume thabthe ’}\\la\u‘bdn s {sonebie
in o Banach % ~algebn., . ]
If E and F are linear spaces and B 1is an algebra, and if

S:E-B and T : F - B are maps such that
S(e) T(f) = T(f) S(e)

for each e€E and f € F, then we say that S and T have

commuting ranges (not to be confused with commutative ranges).
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The unitization A' of an algebra A is defined as follows: put
A =4 if A has an identity, otherwise let 4! be the algebra
obtained by adjoining an identity. In other words, if A does not
have an identity then A is the direct sum A ® € with the algebra

structure
(a,A) (b,u) = (‘@b + Ab+pa , dp)

for a,b e A and A,pe C. VWewrite a+ A1 for (a,A) e &£ . If
A is a C*—algebra there ié (see [Di] for example) a unique ¢ -norn
on A extending the original norm on A ; we call A! with this
norm the Gﬁ—unitization of A‘.

A two-sided contractive approzimate identity for a normed algebra
(4, a) is a net of elements (e,) in A such that e(e)) <1
for éach v , and such that if a € A then a e, and e, a both
converge to a .

The following result éhall be needed several times so we choose to

state it in this place:

1.1.1 PROPOSITION. et A be a normed algebra, and suppose I
is o two-sided ideal of A . If there erists a two-sided contractive
approzimate identity (ey) for 1 then for a € A the following
identities'hold:

sup { J|la b|| : be BALL(I) } = sup { |[b al| : b € BALL(I) }

sup { |[b a c]| : b,c € BALL(I) }

lim |la e || = lim, [le, af| = lin  Jle, & e ||



Proof. Let a be the expression on the left hand side. If

@ = 0 then certainly lin, [la e || = 0 ; thus for b e I we have

ba=1lim (ba)e, =0,

v
“and hence all the equalities hold.
Now suppose @« # 0 ; for b € BALL(I) we have

b all = Lin, [i(b a) e, < Tin fla e < a .

Let € >0 be given, and choose b € BALL(I) with |[la bl > e - € .
Thus

¢ - €< |lab] = lim Jle, (a b)]|

< lin, ll, afl = Lin, lin Jle, a el

I

Lin, fla ¢,
e

which shows that lim [le all and lim |la e |l exist and equal « .
Hence all the equalities except the last one have been established.

To see this last equality observe firstly that |le. a eVH <a for

v
each v . Notice that for ¢ and b as above

le, a e,b-abl<le ae b-e abf+ Hey ab - a b
<lle, b - bl flall + lle, a b - ab|
and the right hand side converges.to‘ 0 . Now
02 5, fle, a el > Lin, fle, ae, bl = a bl > e -,

which gives the last identity. O

For the remainder of this section the reader 1is referred to

[Di,Ta] for further details.
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1.1.2 COROLLARY. Let A be a C -algebra and suppose (ey) is a
two-sided contractive approrimate identity for A . The unique

*
C -norm on A eztending the original norm is given by
la + A 1] = sup { ab+ A bl : beBALL(A) } = lin fJae, +Ae)

whenever a € A and A e C .

The set of self adjoint elements in a *-algebra A shall be
denoted by As.a. . If A4 is a C*-algebra, we may define a cone 4,
in A4 consisting of the positive elements of A ; i. e. those
elements a € 4 for which one (and hence all) of the following

conditions hold:

b*b for some b e Ad |,

—~~

(S

N’
o
1]

b2 for some self-adjoint element h € 4 ,

—~
e
e

~—
[+V]

1l

(iii) a is self-adjoint and the spectrum o¢(a) of a in A is

contained in [0,0) ,

(iv) if A 1is represented faithfully on a Hilbert space ¥

then a is positive-definite as an operator on ¥ , i. e.
<aC7C>20 (CE”()

If & is a subset of a C*-algebra A then we write §_ for the
set of positive elements in A which also lie in § . If A is a
C*—algebra then one can always find a two-sided contractive
approximate identity for A consisting of positive elements of A .

If f 1is a linear functional on a C*-algebra A then we say f

is positive if f(4) C [0,0) .



1.1.3 PROPOSITION. For a linear functional f on a Cﬁ—algebra

A any two of the following three conditions implies the third:
(¢) f is positive,
(ii) f s contractive,

(iii) there is a two-sided contractive approzimate identity

(e,) for A such that f(e,) - 1.

Proof. The only part of this that does not follow from [Di]
Proposition 2.1.5 is the fact that together (iii) and (ii) imply (i).
To see this notice that any functional f on a C*-algebra A
satisfying (iii) and (ii) may be extended to a unital linear

functional f~ on the C*-unitization A of A, and
[t7(a + A 1)] = lim Lf(a e, +Ae) )l <lim flae, +Ael ,

for aed and ) eC . Corollary 1.1.2 now shows that f~ is
contractive. By [Di] 2.1.9 f°  is positive on A , and

consequently f is positive on A . 0

We call a linear functional satisfying the conditions of
Proposition 1.1.3 a state of A . The proposition would still be

true if the last condition was replaced by

(iii)"' for all two-sided contractive approximate identities (e,)

for A we have f(ey) + 1.

If 4 is a C-algebra let A (4) be the algebra of n x 1
matrices with elements in A . We shall usually use a capital letter
( e.g. A ) for an element of H (4) , and the (i,j) -coordinate of

that matrix shall be denoted by the same letter in lower case with



the usual i-j subscript ( e.g. aij ) . Sometimes we may have reason

to write a(i,j) for a If A is the trivial C -algebra €

ij
then we write XA for K (4) . We write €;; for the usual system
of matrix units in M o, and T for the identity element of Mo

Now M (4) has an obvious involution given by

o5 3) = [y 5]

for Ae A (4) . There is a unique way to make M (4) into a
C*—algebra: if A 1is faithfully represented on a Hilbert space ¥
then X (4) may be naturally identified with a closed *-subalgebra
of B(AM) .

We shall write ° for the transpose map

ﬂh(‘) - ﬂh(/o : [aij] H [aji]
This mapping has a norm bounded by n , and is a contraction (and
positive) if and only if A is commutative [Tm2], i. e. if and only
if A4 1is the C*—algebra CO(Q) of continuous functions converging

to zero at infinity on some locally compact Hausdorff space Q .

1.2 TENSOR PRODUCTS.

If E and F are linear spaces then we write E ® F for their
algebraic tensor product. If X is another linear space and
V- ExF-X 1is a bilinear map then we shall usually write ¢ for

the canonical linear mapping E ® F - X induced by ¥ , namely
P(e ® £) = ¥(e,1) (eeE,feF).

Conversely if ¢ is a linear mapping on E ® F then we write ¥

for the associated bilinear map.



If E , E2 , Ff{ and Fy; are normed linear spaces, and if

T. : E. - Fi (i = 1,2) are linear maps, then we write T; ® T, for

Et ®Ey - Ff ®Fy : ¢ ® e3 » Tie; ® Toey .

If o is a norm on E®F we will usually write E ®, F for the

a—éompletion of E®F . As usual o is called a cross norm if
a(e ® £) = [le]l |Ifll

for each e € E and f € F . There is (in a sense which we do not
specify here) a least and a greatest cross norm on E ® F , the
injecttve and projecttve tensor norms A . and 7 respectively.

These are defined by

A(Eh_ e @ f)) = sup { | S p(ey) ¥(E,) | : p € BALL(E) ,
p e BALL(F) } ;

and

y(u) = inf { 2%

L lleyll Il w = 52

-1 e ®f; )
The injective norm is so called because it has the following property
(injectivity): if E cFk and E, c F, then E ® E, is
contained isometfically in F, ®A Fy . |

‘Let E and F be normed linear spaces. Associated to each

*
bounded linear map T: E-F is a linear functional

p + E ®7 F - € given by
pe®f) =<T(e) ,f>  (eecE,felF).

*
This association gives an isometric isomorphism from B(E;F ) onto

the dual space of E ®7 F .



1.2.1  Definition. Following Grothendieck [Gr2] we define a
reasonable temsor morm e to be an assignment of a Banach space

E ®, F to each pair of Banach spaces ( E , F ) such that

(i) E ®, F is the completion of E ® F with respect to some cross

norm which we write e or H-Ha , and

(ii) if E , E» , F; and F, are Banach spaces, and if
T, : E; - F, (i=1,2) are bounded linear maps, then
Ty ® T, has a (unique) continuous extension T, ®, To

mapping E; ®a E, to F ®a F, such that

Ty &, Toll < NIToll T2l -

Thus a reasonable tensor norm may be regarded as a bifunctor from
the category of Banach spaces and bounded linear maps to itself
[Ca4,Mi]. Schatten [Sc] called a norm possessing property (ii) a
untform norm. This property allows us to 'tie' together the action
of the tensor norm in some coherent fashion; to rule out arbitrary
allocation of norms to different pairs of spaces.

Clearly X and 4 are reasonable tensor norms. Grothendieck in
his influential paper on the metric theory of tensor products
[6r1,6r2] produced a set of fourteen natural inequivalent reasonable
tensor norms, including A and 7 . We shall say that a reasonable
tensor norm e is an algebra temsor morm if whenever A and B are
Banach algebras then A ®, B is again a Banach algebra. In
[Cal,Ca4] Carne gave a characterization of algebra tensor norms, and
using this showed that of Grothendieck's natural norms only 7y , H' ,
Y\/ and \/7 are algebra tensor norms. The norm H' 1is of some

interest in the sequel; ‘it may be defined by the statement
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¢ € BALL((E ®;, F) ) if and only if there exists a Hilbert space

¥ , and contractive linear maps S : E= % and T : F o 7%, with
d(e ® £) = < S(e) , T(f) > (eeB,feF) .

If % and X are Hilbert spaces then we write % ® £ for the
(completed) Hilbert space temsor product [Ta] of % and K .If G¢ K, ek
then we somebives whte E@7) fog tha cpemtor 1> 9: g1 <8,1>5 .

If A and B are C -algebras then A ® B is a *-algebra with

the natural involution and multiplication

* * *
(a®b) =a ®b

and (a®b) (c®d) =(ac)e® (bd) ,

*
for a,c € A and b,d € B . There is a least and a greatest C -norm

*
on A® B, namely the injective (or spatial) C -norm and

! 10l
the projective € -mnorm ||| .~ respectively [Ta]. Both of these
norms are cross. If A and B are faithfully represented on

Hilbert spaces ¥ and X respectively then the norm may be

s
defined by identifying A ® B with a *-subalgebra of B(¥ ® £) in
the obvious way. This norm is independent of the specific Hilbert
spaces ¥ and X used to define it. The projective C*—tensor norm

. . n
is given on . _; a; ® bi € A®B by

n n
|52, e, @b, [l = sup { | 22 6(a) 7(b)) I} .
where the supremum is taken over all *-representations # and 7 of

A and B respectively on a Hilbert space 7% with commuting ranges.

Note that ]|-||min is injective: indeed if A , A , Bi and B,
* - .
are C -algebras, with Ai C Bi (i=1,2) , fchen Ay ® in A is a
*_
subalgebra of B ® in By .
A C*-algebra A is said to be nuclear if ||| i, = Il oB

A® B for every C*-algebra B . Note that finite dimensional
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C -algebras are nuclear; in particular Mﬁ is nuclear. If A4 1is a
' *
C*-algebra then A ® Mn , endowed with its unique C -norm, is
isometrically *-isomorphic to the space Mi(A) defined in 1.1.

*
We discuss C -tensor norms and nuclearity again in Section 4.1.



CHAPTER 2. GEOMETRY OF BANACH ALGEBRAS.

2.1 HERMITIAN ELEMENTS OF A BANACH ALGEBRA.

We refer the reader to [BoD1,BoD2,BoD3,BD] for details and a more
thorough treatment of the ideas contained in this section.

Let A be a unital Banach algebra. A continuous linear
functional f on A is said to be a state if |f|| = f(1) =1 . If
A is a unital C*—algebra then this coincides with the former
definition. We shall write S(A) for the set of states on A . For
a € A define the numerical range V(a) of a to be the compact

convex sub-set of the plane given by
V(a) = { f(a) : T € S(4) }

It is well known that V(a) contains the spectrum o(a) of a .

Define the numerical radius v(a) to be the number
v(a) =sup { |[A] : A € V(a) }

It is clear that r(a) < v(a) < ||al| , where r(a) 1is the spectral
radius of a . In fact v is a norm on A equivalent to the

original norm. Indeed is shown in [BoD1] Theorem 4.8 that
la™| < n! (e/n)" v(a)" (aed)

for n=1,2,... , and this inequality is best possible: there is a
Banach algebra (see section 2.3) where this bound is attained for

each n .



2.1.1 THEOREM. let h be an element of a unital Banach algebra.

The following three conditions are equivalent:
(i) V(b) cR ,
(ii) llexp (ith)f =1 (teR),

(iii) |1 + dth)l = 1 + o(t) (telR) .

2.1.2 Definition. An element h of a unital Banach algebra is
said to be Hermitian if one (and hence all) of the conditions of

Theorem 2.1.1 is met.

It may also be shown that if h is a Hermitian element of a
Banach algebra then V(h) is the convex hull of ¢(h) , and thus .

v(h) = r(h) . In fact more is true:

2.1.3 THEOREM [Sil]. If h s a Hermitian element of a unital
Banach algebra then t(h) = v(h) = ||k] .

We write H(A) for the real Banach space of Hermitian elements in
A, and we put J(4) = H(4A) + ¢ H(A) . The following proposition is
[BoD1] Lemma 5.8.

9.1.4 PROPOSITION. Let A be a wnital Banach algebra. Then
J(A) is a closed subspace of A , and the natural involution
J(A) - J(4) given by h+ i kwh -7k for h, ke HUA is well

defined and continuous.

It follows directly from the definitions above that if



T: A4 - A is a unital contraction between unital Banach algebras

then T(H(4)) c H(A) . We shall use this fact extensively in the

sequel.

2.2 GEOMETRICAL CHARACTERIZATIONS OF C*—NURMS.

The following deep result is crucial in what follows:

2.2.1 THEOREM (Vidav - Palmer). ILet A be a unitael Banach
algebra such that J(A) = A . Then A is a Oﬁ—algebra with‘respect

to the original norm and algebra structure, and the natural

involution of J(A) .

2.2.2 THEOREM. Let A be a 0ﬁ—qlgebra and let B be a Banach
algebra. Suppose T : A- B is a linear contraction with dense
range, mapping some two-sided contractive approrimate identity for A
to a two-sided contractive approzimate identity for B . Then there
exists an tnvolution on B such thet B is a Cﬁ-algebra and T s

involution preserving.

Proof. Let A, B and T be as above, and suppose (ey) and
(Te,) are two-sided contractive approximate identities in A and B
respectively.  Suppose firstly that A has an identity, then

e,=e 121 and T(e) - T(1) ; consequently

T(1) b = lin, T(e,) b =b = lin, b T(e,) = b (1)

for beB . Thus B has an identity and T is a unital

contraction, whence



T(4) = T(A(4)) + i T(A()) c K(B) + i H(B)

and so the last set is dense in B . Since H(B) + ¢ H(B) is always
closed (Proposition 2.1.4) it equals B . A application of the
Vidav-Palmer theorem (Theorem 2.2.1) now completes the proof.

Suppose now A has no identity; adjoin an identity in the usual
way to obtain a C*-algebra A . Let B' be the unitization of B .

Then B' becomes a Banach algebra with the norm

Ib+ &1y =swp{lby+&yll,yb+ &yl :yeBall(B) }

max { lim |[b Te  + ¢ Te |l , lim |Te, b + ¢ Te |l }

where the equality holds by Proposition 1.1.1.

Define a unital linear mapping

T": A& B :a+¢f1nTa+ 1.

Now lim || Ta Te, + ¢ Te, || = 1im || T(a e, + £ e)) |

IN

lim |fae, + e, |

fa+ &1

similarly lim || Te, Ta + {Te [ <[la+ 1| ; and so T7 is a
unital contraction. Clearly T~ has dense range, and the result now

follows from the first part. u]

L

2.2.3 REMARK. The author is indebted to J. Feinstein for
valuable discussions regarding the theorem above, and for the example

below.

2.2.4 EXAMPLE. Given the hypotheses of Theorem 2.2.2 we cannot

expect T to be surjective in general, even if T 1is injective. To



%
see this consider the following example. Let ¢ be the C -algebra
of convergent complex sequences, and consider the linear mapping

T:c-c given by
Tas=(a;,a)/2, ag/3 , ... ) + (lim a) (0,1/2,2/3,...)

[e0

for a= (a;)j_; € ¢ . It is clear that T 1is an injective unital

~

contraction; and the range of T 1is certainly dense in ¢ since it
includes all sequences with only a finite number of non-zero terms.
The mapping T 1is not surjective, because its range does not include

the convergent sequence (1, 1/2,1/3, ... ) .

However if the mapping of Theorem 2.2.2 is a homomorphism then it

is indeed surjective:

9.2.5 CORDLLARY. Let A be a  -algebra, let B be a Banach
algebra, and suppose 0 : A - B is a contractive homomorpﬁism. Then
6(4) possesses an involution which mekes it into a 0*-algebra
isometrically *-isomorphic to A | ker § , and 6 1S @

*-homomorphism onto 6(A) .

Proof. Without loss of generality take B to be the closure of
6(4) , and then @ satisfies the condition of Theorem 2.2.2. Thus
B is a C*-algebra and # is a *-homomorphism; the corollary now

follows from elementary C*-algebra theory ([Di] Corollary 1.8.3). o

We note in passing that [Di] Corollary 1.8.3 can be proven
directly from 2.2.2.

The following corollary shows that the C*-norms are minimal



amongst the algebra norms on an algebra.

2.2.6 CORDLLARY. Llet A be an algebra. Any algebra norm on A
dominated by a C -norm is itself o C*-norm, and the canonical
contraction between the two compleiions 18 surjective and involution

preserving.

2.3 THE EXTREMAL BANACH ALGEBRA GENERATED BY A HERMITIAN ELEMENT.

The results of 2.2 show that the C**algebras are extremal amongst
the Banach algebras: they have the smallest norms, and are
consequently the biggest algebras, in some sense. We consider in
this section another extremal object in the category of Banach
algebras.

We are concerned here with unital Banach algebras A which are
generated by a Hermitian element h , with |fh]| < 1 ; in other words
the set df polynomials in h is dense in A . We summarise this
situation by writing A = <h> . Let F be the class of such Banach
algebras. Via the Gelfand transform C[-1,1] may be regarded in
some sense as the largest algebra in F , with the smallest norm.
There is also in some sense a 'smallest' algebra A[-1,1] = <u> in
F , called the eztremal algebra generated by a Hermitian with
numerical range [-1,1] , and it may be identified algebraically with
a dense subalgebra of C[-1,1] . It has the 'largest' norm in the

following sense:

2.3.1 THEOREM. et B be a Banach algebre gemerated by a

Hermitian element h , with ||h|| <1 . Then there exists a umnique



contractive homomorphism 6 : A[-1,1] = B such that O(u™) = h* for
each n=0,1,2,... .

We delay the proof of this theorem for a little while. The
condition of Theorem 2.3.1 may be regarded as a universal property:
there can only be one algebra‘in F which possesses this property.
The mapping @ provided by Theorem 2.3.1 shall be called the
extremal homomorphism, and may be regarded as a functional calculus
for Hermitian elements of a Banach algebra. Note that the range of
6 is dense in B , and composing the extremal homomorphism @ with

the Gelfand transform gives the canonical restriction map
A[-1,1] - C(e(h)) .

Interest has been shown [Si2,Si3] in wusing this functional
calculus to understand Hermitian operators on Banach spaces; in
particular imner derivations in B(B(E)) given by a Hermitiam
operator on E , where E is a Banach space (see example below).
These objects are not very well understood, and if the functional
calculus is bicontinuous then this would give much information about

the structure of such operators.

2.3.2 EXAMPLE. Let % be a Hilbert space, and let T be a
positive linear contraction on % , with spectrum ¢(T) . The

*-derivation D on B(%) given by
D(S) =TS -ST (SeB(®)
is Hermitian, since.

1 = |lexp(itD) (I)



IN

llexp (4tD)]]

sup{|lexp(3tT) S exp(-itT)|| : S € BALL(B(%))}

<1,

using [BoD3] Proposition 18.8. It is easy to show that |[[Dj <1 ,

and so by 2.3.1 there exists an extremal homomorphism
6 : A[-1,1] = <D> .
It is shown in [KaS] that there is a bicontinuous homomorphism

7 : <D> - C(a(T)) ®7 C(e(T))

with M) = (z81-182)" |

for n=0,1,2... . Now C(a(T)) ®7 C(e(T)) is semisimple (see
[Tm1] or Chapter 4), and consequently so are <z ®1 -1®z > and
<D> . Thus in this case the extremal homomorphism 4 is a
monomorphism.

A particularly simple example is the situation where

T = L2[0;1] , and T is the multiplication operator
(Tf) (t) = t 1(t) (te[0,1])

defined for f € L2[0,1] . Whether the extremal homomorphism 6 is
bicontinuous or not in this case is an open problem, posed in 1971 at

the Aberdeen Conference on Numerical Range.

The extremal algebra  A[-1,1] can be constructed in many
different ways (see [Bo,Br,Si2]) , but we choose to highlight one
specific construction [CrDM] in terms of classical spaces of entire
functions (see also [Go]) which displays its interesting duality

structure and highlights a connection with derivations.



2.3.3  CONSTRUCTION. VWe merely sketch the construction, full
details may be found in [BoD2] or [CrDM], whose notation we follow.
We shall in fact construct a family of algebras A(K) , where K is
a compact convex subset of the plane containing more than one point.
We assume that K has been normalized so that K c BALL(C) ; and
either 0 is in the interior of K , or K = [e,1] , where

-1<a<0.

For (€ C put

w(¢) = sup { |exp(t ()] : t € K}

Let M(C) be the Banach algebra of regular Borel measures on the

plane, with convolution product. Put
KO ={pek) : fudpl <o} ,
a Banach algebra with respect to convolution and the norm
lell, = § wdlul
For x4 € #(C) define a function f” e C(K) by
£,(6) = f exp(C ) du(() (tek)
Put AK) = {feCK) :f=£ for some pe #(€) } , a Banach
space with the norm
£l = inf { flull, = £=1%,} .
Now fV*ﬂ =‘fV fﬂ (pointwise) and so A(K) is a subalgebra of
C(K) . _
The function wu(t) =t defined for t € K is in A(K) since
-1 -2 _
(2ri) " fpexp(¢t) (“d(=t

where I' is the unit circle in € . It is clear that the set of



elements of A(K) of form exp({ u) for (e ¢ spans a dense
subspace of A(K) , and thus A(K) is generated by u . The maximal

ideal space of A(K) is K , and consequently A(K) is semisimple.

We now proceed to examine closely the duality structure of AK) .
Since the first part appears explicitly in [CrDM] we merely sketch
the details, maintaining the notation of [CrDM] to avoid confusion.

Let E(K) be the Banach space of entire functions ¢ such that

Il = sup { [#(O]/a(¢) : (€C} <w,

and let EO(K) be the closed subspace of E(K) consisting of those
functions ¢ € E(K) with

[9(O1/w(C) -0 as [(] » .
When K = [-1,1] then E(K) is the Bernstein class [Go] of
functions. |

It is proved in [CrDM] that for £,€AK) and 9 eE(K) the
pairing
<t . 9>=[9¢d

is well defined and provides an isometric isomorphism

¥ : E(K) - AK) T3 P

where i¢(f) =<t , 9> (feAX))

Proof of Theorem 2.8.1. Suppose B = <h> . Define a map

6 : A[-1,1] - B : fﬂ R [ exp(¢ h) du(¢) .

Now for any state g on B and any ( € ( we have

llg(exp(¢ W) / w(Q) < llexp(¢ W)l / w({)



< exp([Re ¢]) / w(¢)
=1
Thus the function ¢ » g(exp(¢h)) is in B[-1,1) . If £ =0 then
g(J exp(C h) du(()) = J g(exp(¢ b)) du(()
=<1, glexp(- b)) >
=0
Since g was any state on B we see that v(6(f)) = 0 and

consequently H(fﬂ) = 0 . This shows that @ is a well defined
function. It is easy to see that 6@ possesses the other properties

that were promised. 0

For f € A(K) define a functional Fe on EO(K) by

Fe(9) =<1, 9> (¢eEyK) )

It is proved in [CrDM] that the mapping {f » Ff is an isometric
E 3
isomorphism of A(K) onto E (K) .
For ( € € the element exp({ u) of A(K) may be represented by

the discrete measure with unit mass at ( , and so

<exp (Cu) , 9> = 9(C) ($eEX) ) .

Let X :(C- B(EO(K)) be the group action of € on EO(K) by
translation: if (€ C and ¢ € EO(K) then

() 9) (m) = 4({ + n) (neC).

Let ¢ € E(K) , then for f, and fﬂ in A(K) we have

<f, %, 9>=[]9(C+mn) dv(n) du(() =< f,.0>

where ¢ 1is the element of E(K) given by



p(¢) = J (¢ + n) dv(n) ((eC)

We claim that if ¢ € E,(K) then ¢ € Ey(K) . To see this notice
firstly that

0(¢) = <£,, A(¢) ¥>

Now fu may be approximated arbitrarily closely in A(K) by finite
linear combinations of elements of the form exp(¢é u) for (e C,

and certainly

[<exp(§u) , A() ¢ > [/ w(Q) = [9(C+ &] [ w(()~0

as |(|-’oo.

We may now appeal to the following result:

2.3.4 PROPOSITION. ILet A be a unital Banach algebra and let =
be the right regular representation of A on itself. Suppose that

A satisfies the following two conditions:
. %
(i) there is a Banach space E with E = A, and

(it) the set of operators onm A* of the form w(a)* for a €A
leaves ﬁ , the canonical image of E in A* , tnvariant
(or, equivalently, that for each fized a € A and e € E
the functional

br<ba, e>
on A isin E).
Then there exists a unique isometiric homomorphism 74 : A - B(E)

such that w*(a)* = 7(a) for each ae€Ad . Also if € is the
mapping B(E) - A defined by



for T e B(E) , then ¢ s a unital projection ( identifying A and
m+(4) ), llell =1, and |

€(ST) = €(S§) o T ,

for S, TeB(E) . If A is commutative then 74x(A) is a mazimal

commutative subset of B(E) .

Proof. Define a mapping 7 : 4 - B(E) by

ra(a) e = (7(2) () ) =7(a) Iy
for a€ed and eeE . It is clear that 74 1s a contractive
unital homomorphism. By the Hahn-Banach theorem, for each a € A
there exists an element e € BALL(E) with <a,e>= lla]] , and

then

Ira@)]l > Imaa) e > [< 7(2) e, 15] = |< e

(¢°]

, a > = lall .

*
Thus 74 1is an isometry. By definition 74(-)

7(-) , and 74 1is
the only mapping with this property.
Defining € : B(E) » A as in the statement of the proposition we
see that
L= leTpll < llell <1,

and so |le]l =1 . For ae€ A and e € E we have

<e(re(a)) ,e>=<1, mv(d)e>=<a,e> ,

and SO € o Ty IA . Clearly

<e(ST) ,e>=<1,STe>=<e€(S) ,Te>=<e(§) oT,e> ,

for S, TeB(E) and e€ E. If A is commutative, and if S is
an operator on E in the commutant of 74(A) , then for any a € A

and e € E we have



<a,Te>=<1, 1) Te>
=<1, Tr«(a) e>
=< €(T) , m«(a) e >
=<e(T)a,e>
=<a, 1«(e(T)) e > ,

and so T = 74(e(T)) . al

There is a similar result for the left regular.representation.

If A and E are as in 2.3.4 then we can deduce as a corollary
of 2.3.4 that any mapping from A can be extended to a mapping on
B(E) . Indeed if F 1is any Bahach space, and a any reasonable

tensor norm, then
A ®, F ¢ B(E) ®, F

isometrically.

2.3.5 EXAMPLE. Let (X , p ) be a measure space, let A be
the space L*(X,u) of essentially bounded p-measurable functions on
X, and let E=L1(X,,) . Then by 2.3.4 we may identify A with a
subalgebra of B(E) , the commutant A' of A in B(E) equals 4,

and there exists a contractive projection from B(E) onto A4 .

Proposition 2.3.4 shows that the mapping 4 : A(K) - B(E,(K))
defined by

(1«(£,) 9) () = J 9(¢C + n) dv

(for £ e A(K) , ¥ € Ey(K) and (€ C ) is actually an isometric

homomorphism. Under this isometry it is clear that for ( € € the



element exp({ u) of A(K) corresponds to the translation operator
A(¢) . It is natural to ask which operator on Ey(K) corresponds to
the element u e‘A(K) . Recall that u = fﬂ where 4 was the
measure on the unit circle T given by

de = (2ri)7F ¢ 4

Thus
(e (W) $)() = (20) YL 9(C+m) /02 dy = '(C)
or in other words, 74(u) = is the operation of diffefentiation on
Eq(K) . Set my(u) =D .
If K={CeC:[¢] <1}, andwvedefine ¢ e Ey(K) by

9(¢) = (e ¢/ )" (¢ecC) ,

then we see that |
I 2 1 0%) (0)] = n! (e/n)®,

and hence A(K) is an algebra in which the extremal values mentioned
in 2.1 are attained.

Putting these results together we have:

2.3.6 THEOREM. The mapping 74 : A(K) - B(EO(K)) 1S a unital

isometric monomorphism, and
*
(i) 7%(+)  is the regular representation of A(K) on itself,
(1) w4(u) s the differentiation operator D on EO(K) ,

(iii) for each ( € C r4(exp(¢ u)) s the translation operator

A0

(iv) the map € : B(EO(K)) - A(K) defined in Proposition 2.3.4.



is ( after identifying A(K) and 74(A(K)) ) ¢ unital

projection with |¢]| =1, and
e(Tf) =€(T) £f=1 €T ,
for Te B(EO(K)) and f e A(K) ,

(v) 7«(A(K)) is a mazimal commutative subset of B(EO(K)) .

Thus A(K) may be simultaneously regarded as

(a) the closed subalgebra of B(EO(K)) generated by the translation

operators A({) for (e C ; and

(b) the closed unital subalgebra of B(EO(K)) generated by the

differentiation operator D .

We now return to the case K = [-1,1] . Consider the derivation

A on B(EO[—l,l}) defined by
A(T) =% (DT-TD) (T eB(E[-1,1]) ) .

It is easy to see (as in Example 2.3.2) that A is Hermitian, and
that ||All <1 . As usual let <A> be the unital Banach algebra

generated by A .

2.3.7 THEOREM. The eztremal map 6 : A[-1,1] = <A> is an

tsometric itsomorphism.

Proof. By 2.3.6 it clearly suffices to show that
IGg + Cu A+ oo+ (AN 2N+ ¢ D+ o+ ¢ DY

for (O,...,Cn € €. Let R be the isometric reflection
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(R 9)(O) = ¥(-O (PeEE) , Cel).
Notice that R has the property
A"(R) = R D"
for m=0,1,2,... , whence

IGg + ¢y A+ oo+ A2 NG+ ¢ A+ v+ ¢ A (R
=R (o + ¢ D+ .o+ (DY
=[l¢g + (¢ D+ -+ (DY o
We note that a similar calculation would show that A[-1,1] is

Banach algebra generated by the. |
isometrically isomorphic to the} inner derivation given by the

differentiation operator on E[-1,1] .



CHAPTER 3. THE MATRICIAL SUPERSTRUCTURE OF A C*—ALGEBRA.

In this chapter we explore the additional information about a
C*-algebra A that is obtained by considering the spaces of matrices
H (A ~over U . For instance for an element a of a unital
C*—algebra A it is true [Pn] that

flall <1 if and only if 1,81 is positive in M, (4) .
a 1 2

It is natural then to consider maps between C*—algebras which respect
the order and the norm of the associated spaces of matrices,
respectively the completely positive [St] and completely bounded
[Ar] maps. In 3.1 we discuss firstly the theory of completely
positive maps, giving some of our own proofs; and then multilinear
completely bounded maps and the Christensen-Sinclair representation
theorems.

In 3.2 we review quickly the theory of operator spaces and
completely bounded maps on operator spaces, and we discuss the sense
in which this is a generalization of classical functional analysis.
We also give a most illuminating proof (due to E. G. Effros) of the
celebrated Arveson-Wittstoek-Hahn-Banach theorem.

In 3.3 we define operator space temsor norms and discuss the
operator space Haagerup norm and its relationship with completely
bounded multilinear maps. We also introduce the symmetrized Haagerup
norm.  This corresponds to a variant of the notion of complete
boundedness; and to maps which have representations of Christensen-

Sinclair type, but with Jordan *-homomorphisms instead of the usual



*-representations.

3.1 COMPLETELY POSITIVE AND COMPLETELY BOUNDED MAPS.

A linear map T : A - B of C*-algebras is said to be positive if
T(4,) c B, (this implies in particular that T 1is *-linear); and

n -~ positive if the map

T, : M (A) - 4 (B) : [aij] - [Taij]

n
is positive. If T . is n - positive for each n € N then T 1is
completely positive [St]. If the maps T, are uniformly bounded

then T is said to be completely bounded and we put

1Tl = swp { IT,l :n el } .

We now collect together some facts which we shall need in the
sequel. We refer the reader to [Pn,Ta] for details and a more
thorough treatment. We do not dwell on the results on completely
bounded maps since these shall be revisited in 3.2. Throughout this

section A and B are C*-algebras, and T : 4+ B is a linear map.

3.1.1 THEOREM ([St,BD]. If A or B is commutative and

T: A- B is a positive linear map, then T is completely positive.

The following construction is fundamental. Let A4 be a
*
C -algebra, let % be a Hilbert space and let T : A- B(X) be a
completely positive linear mapping. On the algebraic tensor product

A® % we define a semi inner product by

<a®(,b®n>=<Tb a) ¢, 1> ,



for a,beAd and (, n €% . The complete positivity of T

ensures that < - , - > 1is positive semi-definite. Let
K={EtedoX:<¢, E>=0}

then it is not hard to show (see [KR] Theoreh 2.1.1) that ¥ is a
linear subspace of A ® ¥ ; write A & ¥ for the Hilbert space
completion of A ® ¥ / ¥ in the induced inner product. For a € 4
and ( € ¥ we shall write [a ® (] for the coset of a ® ( in

Aen ¥ .

3.1.2 THEOREM (STINESPRING). Let A be a C -algebra and let 7
be a Hilbert space. A linear map T : A- B(X) is completely
positive 1f and only if there exists a *-representation 7 of A on

a Hilbert space K , and an operator V € B(X,X) , such that

T(a) =V 7(a) V (aed)

In this case we can choose V with |V|| = HTH;é . Further, if A is
unital then 1 may be taken to be unital, and thus ||T|| = ||T(D)] .
If A aend T are unital then we may assume that K contains ¥ as

a subspace and T(-) = Py w(-)|w .

Proof. The sufficiency is obvious. Suppose that A 1is unital.
We merely sketch the proof of the necessity in this case, as it is
standard [Pn]. Let K be the Hilbert space A ®p ¥ defined
immediately above the statement of this theorem. For a € A define

7(a) : A®X -+ A®7F by

r(a) (b® () =(ab)®( ,

for be A, ( € ¥ . The complete positivity of T ensures that



r(a) extends to an operator on X , and then it is immediate that 7
is a *-representation of A on X . The operator V : ¥ - Kk is
defined by V ( = [1 e (] .. If T 1is unital then V is an
isometry. |

Now suppose A is not unital and let A be the C -unitization
of L. If (ey) is a two-sided contractive approximate identity for
A then ( T(e: e,) ) 1is a bounded net in B(¥) ; suppose E is a

cluster point of this net in the weak _. operator topology. Define an

extension T° of T to A by
T" (a+ A1) =Ta + AE ,

for a+ A 1e A . It is easy to show that T~ 1is completely

positive, and now the result follows from the first part. 0

3.1.3 COROLLARY. If T : A- B is completely positive then it
15 completely bounded, and “T”cb = ||T|| -

3.1.4 COROLLARY (Generalized Schwarz inequality). If T : A- B

is completely positive then
* * '
T(a) T(a) < [Tl T(a a) ,

for each a € A .

3.1.5 COROLLARY. LILet B be a Cﬁ—algebra, and suppose A 1S a
closed *-subalgebra of B . If X is a Hilbert space, and if
T:A-B() is a completely positive linear map, then T has an

extension to o completely positive map T : B - B(%) .

Proof. This follows immediately from 3.1.2 and [Di] 2.10.2. 0



*

3.1.6 THEOREM. If A is. a ( -algebra and ¢f P : A2 A is a
completely positive contractive projection, then there 1is a
multiplication on the range of P with respect to which, with the

*
usual norm and tnvolution, it is a ( -algebra.

Proof. Suppose A 1is represented on a Hilbert space % . Let
B = P(4) , then it is immediate that B 1is closed. If we canr show
that
P(P(a) P(b)) = P(P(a) b) = P(a P(b)) ,

for all a , b € A, then the contractive bilinear map
BxB-B: ( b1 , b2 ) » P(b1 b2)

is an associative multiplication. The statement of the theorem shall
then follow from Theorem 2.2.2, since P  preserves two-sided
approximate identities with respect to this multiplication on B .

Construct the Hilbert space K =4 ®p ¥ defined immediately
before Theorem 3.1.2. Define a map @ : A®%¥- A®F taking
a® ( to P(a) ® (. Now

B} < PRy Pay) ¢ s (0

*

<P @M PW) ¢,

1=t Pay) @ ¢ 101

where A =3% . a. ® e . ; thus by the generalized Schwarz inequality
3=1 % ® 13 &

1L, Pap) © % < < Py ) ¢, (5 = IEL; 8y @ ¢
i=1 1 i = n 22 i=1 “1 1 )
Thus @ extends to a contractive operator on K . Since § is also

an idempotent operator it is an orthogonal projection, and so
<Qae(],0pbeqg>=<Qae(], [berq]>

<[a®( ,Q[beg > ,



fdr ‘a,bed and ¢, n €% . In other words
<P(P(b) P(a)) (, mn>=<P(bP)) ¢, n>
=<P(P(d) a) ¢, n> ,

for a,bed and (¢, '€ ¥, which proves the result. ]

I believe the result above first appeared, with a different proof,
in [ChE1]. Our proof gives explicitly a Hilbert space on which the

*
C -algebra may be represented.Some of the ideas akosve are in [Hwil,

3.1.7 THEOREM [Pn]. If T : A- B is completely bounded then
there is a *-representation 7 of A on a Hilbert space K , and

operators U , Ve B(X,X) with ||U] ||V|| = ]|T||Cb , such that
X
T(:) =U () V

If A is unital them 17 can be chosen to be unital.

3.1.8 Definition [ChS1]. Let A , 4 be C -algebras, ¥

{5 e
a Hilbert space and let ¥ : A x ... x A -B(¥) be an m-linear

map. For each n € N define an m-linear map

the n-fold amplification of ¥ , by

_ n .. . .
wn(Ala'“,Am) - [Eil,...,im_1=1 T(Al(l,ll) L Am(lm_laJ))]i,j
for A1 € .41 s eee Am € Am . We say ¥ 1is completely bounded if

sup { ||lI!n|| :n €N} <w, and then we define ”'I'“cb to be this
supremum. In the case m =1 this coincides with the earlier

definition. The space CB(A1 X ... X Am;B(7()) of_éompletely bounded



maps A; x ... x A - B(¥) is a Banach space with the norm “'”cb .
If Al = ,,. = Am = A in the above, then the map ¥ is said to

* *
be symmetric if ¥ = ¥ | where ¥ 1is defined by

* * * X
¥ (ag,...a,) =¥(ag,...,a)

for agy...a € A .

The next result is a generalization of Theorem 3.1.7 to the
multilinear case.

_ . .

3.1.9 THEOREM [ChS1]. Let Al y eee s A be O -algebras, let ¥
be a Hilbert space; and let ¥ : A x ... x A - B(¥) be an m-linear
map. Then ¥ is completely bounded if and only if there are
*_representations Ty 5 eee s T of 11 Y eee Am on Hilbert

m

spaces 11 s eee Wm respeqtively, and operators Tk.e B(Wk,lk_l)

for 1 <k < m+l , where Ib = 1h+1 =%, such that

Y(aj,...,a ) =Ty m(aq) Ty ... Tpom () Tooq

for a; € Al yoeee s A € Am . In this case we can choose
T, ooo s Ty such thet [T ... [ ”T”cb .

If Al ) ey Am are unital then we can choose Ty 5 eee s Ty
unital.

The expression given for ¥ in Theorem 3.1.9 is called by some a
Christensen-Sinclair representation. The operators T, occuring in
the representation are sometimes called bridging maps.

Christensen and Sinclair also characterized the symmetric

completely bounded maps. We shall need the following:



3.1.10 THEOREM [ChS1]. et A be a Oﬁ-algebra and let ¥ be a
Hilbert space. If ¥ : A x U 5 B(¥) is a symmetric bilinear
completely bounded map them we can find a representation v of A
on a Hilbert space X , a contractive operator U : ¥ - K , and a

self-adjoint operator V on K with |V] = "i”cb , such th;t
¥(a,b) = U 7(a) V 7(b) U ,

for a ,bed. If A is unital then 71 may be chosen to be

wnital.
*
Let A and B be C -algebras. Define a positive function ||-[|,
on A® B by
) . * * .
lully = inf { 2 aga; 282 byb; [P:u=3t a @b},
Let u = E?=1 a; ® bi and v = E?zl c; ® di be elements of A ® B ,

without loss of generality we may assume that

X * X *
122, agail® = I8, by bo® and (BT cicilf® = =T, d dy) .

i=1
Then
n * * n L * n ¥
lw + vily < fl Biq 8y 8y + B ¢ c; u’é I'B5_4 b b+ E0 4. 4, ke
* *
PR R P

* * * *
12, agagll® 18D by byl s BTy eqerl® st d) 4yl
Thus |[|-[l, 1is sub-additive.
Let = and 6@ be *-representations of A4 and B respectively

on some Hilbert space ¥ , with commuting ranges. For

al,...,a,n'e A bl,...,b11 € B, and (, n € BALL(%)

| <8N w(ay) 60b) ¢, om> | T 160 ¢l 7(ag) 0 |



{2 ey 12yl ey 012

= { 2?:1 < 9(b: b.) ¢, (> ¥ { EILl < W(aia?) 0>

N * b oN %
<l I 1232 11l T b; by [
and thus ”'”max $I-ll, - This shows that ||-|l, is a norm.
We call ||-|l, the Haagerup tensor morm [EK]. Following the

custom we often write A ® B for the uncompleted normed vector
space ( A ® B , “'”h ) . This is an abuse of our earlier convention
and we hope it does not confuse the reader. The Haagerup norm is the
tensor norm corresponding to the notion of completely bounded

bilinear maps.

3.1.11 THEOREM [EK]. lLet A and B bevéﬁ—algebras, and let ¥
be a Hilbert space. If ¥ : Ax B- B(X) 1is a completely bounded
bilinear map then the associated linear mab Y : A% B~ B(X) s
bounded, and then ol < ”w“cb . A4 bilinear functional
¥ : AxB-C is completely bounded if and only if the associated

linear functional ¢ on A ® B is bounded, and then

1¥llep = Nl -

3.2 OPERATOR SPACES.

The reader is referred in this section to [Ru] for further
details, also to [ER1,Ef2,Pn].

Let X be a linear space. Then for each n € N the linear space
H (X) of n xn matrices with entries in X is an M, - bimodule

_ in the obvious fashion. If A ¢ Mn(X) , and B € AQ(X) we may



define the direct sum A ® B in M£+m(X) by

CTA 0
A@B_[O B]

We write M m(X) for the linear space of n x m matrices with
b

entries in X . This is a left Mn - module and a right

Wy - module,, and may e denbdicd with o subspace o MMlnm}(m ih the dbviois way

3.2.1 Definition. Let X be a linear space, and suppose that
for each n € N there is a norm ”'”n specified on A (X) , such

that for all A, Be A (X) and A, , A, € A the two conditions

(i) A AA

I

o I < AL AL, A,

and (i1) | AeB |, = max { [Al, , Bl )

hold. Then we say that { ”'”n } is an I®-matricial structure for
X, and that ( X, [-]l; ) is an [®-matricial vector space. Often
we shall simply write X or (X, ||-]] ) for ( X, H-Hn ) if

there is no danger of confusion.

3.2.2 EXAMPLE. Let 7% be a Hilbert space, and suppose that X
is a linear subspace of 'B(¥) . Then X , together with the
attendant norms |-l on K (X) inherited from ‘B(W(n)) , is an
L*-matricial vector space. We call such an L¥-matricial vector space

(X, H-Hn ) an operator space.

Let Y be a linear subspace of an L¥-matricial vector space X .
Clearly Y is againr an L”-matricial vector space. One may also
verify [Ru] that X /Y is an L®-matricial vector space with respect

to the quotient matricial norms obtained from the identifications



LK Y) = (%) [ A (Y) .
Let (X, |-ll,) and (Y, |-l,) be two L*-matricial vector
spaces and suppose T : X - Y is a linear map. If there exists a

positive constant K such that

Ty )1, < K NAl,

for A € Ah(X) , then T is said to be completely bounded, and we
put ”T“cb to be the least such K which will suffice. If
”T”cb <1 then we say T 1is completely contractive. If T has an
inverse defined on its range, and if T and T are completely
bounded, then we say T is completely bicontinuous. If in.addition‘
T and T'1 are completely contractive then T is said to be a
complete isometry.

More generally we can défine completely bounded multilinear maps
of operator spaces by mimicking Definition 3.1.8. |

The following theorem due to Z-J. Ruan shows that all L®-matricial
vector spaces are operator spaces, and consequently provides an

abstract characterization of operator spaces.

3.2.3 THEOREM [Ru]. Let ( X, H-Hn ) be an L®-matricial vector
space. Then there exists a Hilbert space ¥ and a complete isometry

of X into B(X) .

3.2.4 COROLLARY. Let X be an operator space, and Y a linear
subspace of X . Then X /Y, with the quotient matricial norms, s

an operator space.



By the Bourbaki-Alaoglu Theorem ([Conw] Ex. 5.3.3) if E is a
normed linear space then there is a compaét Hausdorff space @ such
that E c C(2) isometrically. Now C(Q) ®) M, is the C*—algebra
H (C(?)) [Ta], and consequently giving the spaces H (E) =E ok
the injective tensor norm makes E into an operator space,
completely isometrically contained in the operator space C(Q)
Conversely, operator spaces contained completely isometrically in a
commutative C*—algebra may be described by the construction above.

In addition there is the following result:

3.2.5 PROPOSITION [Pn]. Let X be an operator space, let Q be
a compact Housdorff space, and let T : X - C(Q) be a bounded linear
map. Then T <ds completely bounded and “T”cb = ||T| -

Let INJ be the functor which takes a Banach space E to the.
operator space whose L*-matricial structure { H-Hn } is specified
by taking -l to be the injective norm on E ® A , and which
takes a bounded linear map T between Banach spaces to the same map
between the corresponding operator spaces. Then INJ is a full
embedding of the category of Banach spaces and bounded linear maps
onto a full subcategory of the category of operator spaces and
completely bounded maps.

Thus we may regard normed linear spaces as the 'commutative
operator spaces', or, conversely, regard the theory of operator
spaces and completely bounded maps as 'non - commutative functional
analysis' [Ef2]. Under this meta-transformation 'normed épaces' -
'operator spaces' the complex scalars become B(%) in some sense.

Often theorems from functional analysis carry over under this



transformation to theorems about operator spaces.

The piéce de résistance of this analogy is the following theorem,
the Arveson—Wittstock—Hahﬁ-Banach theorem, so called by analogy with
the ordinary Hahn-Banach theorem. Many proofs of this result have
appeared in the literature, each succeeding proof more elementary
[Pn]. The proof given here is due to E. G. Effros, and was presented
‘at the Durham International Symposium on Operator Algebras in 1987.

We give simpler proofs of his two lemmas{one o wii is due oeginaly bo RR.Smth).

3.2.6 THEOREM (Arveson-Wittstock-Hahn-Banach). let X be an
operator space which is contained in an operator space Y . Suppose
¥ is o Hilbert space and T : X - B(X) is a completely bounded
linear map. Then T ertends to a completely bounded map

T°: Y- B with [Ty = [Ty -

First we establish some notation. For the moment let 1 = C* ,
and write Wf for the Hilbert space dual to % . Let X be an
operator space, and let ( CB(X;M;) , H-ch ) be the Banach space of

completely bounded maps from X into Mh . Now the pairing
<T,(*®x®7;>=‘<T(x)n,§>
*
gives a duality between CB(X;A%) and ¥ ® X ® ¥, and thus defines
*
a semi-norm |- on ¥ ® X®% . In fact |||~ 1is a norm,
*
because if || EN_ (: ® x. ® 5. ||~ = 0 then in particular
1=1 *1 1 1
N
Eizlf(xi)<6i,é><ﬂ,ﬂi>=0 )

*
for each fe€eX and (, p € ¥, and consequently

Nk
125 ¢ @x @m; |y, =0



If W* ®@X @71 is the completion of T eXe ¥ in |||~ then
* ~ o~ %
(T eXe®) =CBX;A) .

If p is a positive integer, if A € Mb(X) ,and if (, g€ W(P) ,

~ ~

then define

* p *
¢ xAxp=3 54 (®ay

~

. ® n.
o

This is an element of % ®X®7% . If Ve ®X®7% then

certainly |[|V||- is dominated by the expression

. N N &
T, : : Jlo: V=X . x A j
inf {25 IG5 AN gt = Vo= B30 ¢5 < Ay <

410
(p:)
: : (. . J
AJ € ﬂbj(X) ; §J > 15 eX }
*
and so this expression defines a norm on ¥ ® X ® ¥ . Now the

Hahn-Banach theorem shows that this new norm is the same as ||-||~ .
*
Write Ve¥ ©X®7% as

N Cf

V=2%.
J=1 2]

x Aj x ?]J ,
. (Pj)
with A. e 4 (X) and (, , such that
J Pj =)
N
Y. . A. A< [V~ .
N NG TSI gl < V- + e

By adding (inp zero entries if necessary we may assume that
=Py Syy)
Py = ... = le( We may alSo assume without loss of generality that

HAjH =1 , and that ngH = ng" for each j =1,...,N. Define ¢

and N € I(pr) to be the concatenations of the gj and the Qj

respectively, and define a matrix A = Al ® ... 0 AN in M(pr)(X) .
Then V=¢ xAxg and [¢] [A] gl € IVll- + € . Thus we may as

~

well take N =1 in the infimum above. Now notice that by the next



lemma we can in fact take p = n for the representations considered

in the infimum.

3.2.7 LEMMA. If p2n, and if ny,...,m € ", then there

erists {1,...,§n e, and e unitary matriz U € Mb , with

= T Vg ¢

Proof of lemma. Let A be the p x p matrix with the g, as
rows (inserting zeroes in the last columns). Then by the polar
decomposition in finite dimensions we may write A = U (A* A);é ,
where U is unitary. Clearly (A* A);Q consists of an n x n block
in the top left hand corner and zeroes .elsewhere. Take 51""’5n
to be the first n rows of (A* A)lé (ignoring the last (p-n+1)

zero columns). o

Thus we have established for V € 1* é X é ¥ that

IVIl- = (gl AN gl = V= ¢ x Axqs Aes(X) 5 ¢, netDy.

Proof of Theorem 3.2.6. As usual [Pn] it suffices to prove the
theorem for all finite dimen§iona1'sub5paces F of % . For then
letting Tgp =Py T(-)lf , and extending to an operator T; defined
on Y , we obtain a bounded net of operators { T; } in B(X;B(%))
directed by the finite dimensional subspaces F of % . Now there
exists a sub-net convergent in the bounded weak topology [Pn] to a
limit which has the desired property.

Thus we may assume that % = €* . If we can show that

X~ - x ~ o~
T eXe@¥c¥% ®Y®7% isometrically then an application of the



ordinary Hahn-Banach theorem completes the proof. To this purpose
*»v -~
let Ve¥ ®X®7% be given, with -HVHW* oYeg<l- Thus we can
*
write V=¢ ®B, oy, with Bye 4 (V) and ¢, 7™ | such

~

that |I¢]l = [I7ll =1 , and HBOH <1 . Decompose ( as a direct sum
of n vectors (1,...,(n each in ¥ , similarly write
n=n09...87q . We can assume that Cl""’Cn are linearly

independent, for if they were not proceed as follows. Let A be the
matrix with columns (1,...,(n , and using the polar decomposition

and spectral theorem in finite dimensions write
A=T diag{Al,...,Ak,O,...,O} v ,

wvhere U and V are unitary and each Ai >0 . Let Ci be the'

i'th column of
(1+(n-k)€2) ™ U diag{dysee s hpo€sennrel V

wvhere ¢ is small enough to ensure (1+(n—k)62);é HBOH <1 . It is
not difficult to see that { 22:1 ”45”2 };é =1 , and that the (:
are linearly independent. If Ci = 2?=1 a5 (3 we have
2
g1l < (rakyedy®
*
and V=¢(' ® [53;] B0 ® 7 . Similarly we can assume 7,...,7,

are linearly independent.

¥ :Am( xAxg ; and

R
<

?
R

. *
Define 6y : K (X) - %

?

3 ~ *
by : HOY)-F eX®F:Br ( xBxyp.

These are isomorphisms of vector spaces, and the diagram below

commutes.



-Mh(X) inclusion Mh(Y)

CI

Y eXet——71 Y01
inclusion

><%

Now if  6y(Aj) = V  then we see that Ay = By , and so

”V”1* & X ® 7 < 1. This completes the proof. u!

3.3 OPERATOR SPACE TENSOR NORMS.

3.3.1 Definition. An operator space temsor morm a 1S an
assignment of an L®-matricial structure { e, } to the algebraic
tensor product X ®Y of X and Y , for every pair of operator

spaces X and Y , such that
(1) ¢; 1is a cross norm ,vand
(ii) if T, : X -V, and Ty : Xy Y, are completely bounded
linear maps then T1 ® T2 : X1 ® X2 - Y1 ® Y2 is completely
bounded with respect to the L*-matricial structures { e, } on
X1 ® X2 and Y1 ® Y2 , and

1T, @ Ty lly < Tl 1Tl

We sometimes write X ®, Y {for the operator space (X @Y , ay )
we shall not be too particular about whether the o, ~are completed
or not. The norm oy shall sometimes be called the commutatiive @

norm.

This is a very general definition of an operator space tensor




norm. One might possibly require, as an additional 'cross norm'

condition, that

A < Bl < AL 1B

whenever A e.ﬂh,p(X) and B € Mb’n(Y) ; wgﬁf%=4hz;p%. is defined to
be the matrix [Ep_; a;, ® bkj] in K (X®Y),|. If we did insist on
this condition there is a 'biggest' operator space tensor norm,
namely the operator space Haagerup tensor norm defined below. One
- might also require that there be a least operator space tensor norm,
the spatial operator space tensor norm ”'”min , also defined below.
In the light of Proposition 3.2.5 and the remarks after Corollary
3.2.4 the notion of an operator space tensor norm generalizes the
notion of a reasoﬁable Banach space tensor norm (Definition 1.2.1).
If X cB® and Y c B(X) are operator spaces one can define

the spatial operator space temsor norm on X®Y by giving

[
X ® Y the L®-matricial structure it inherits as a subspace of
B(* ® X) . This structure is independent of the specific Hilbert
spaces ¥ and X that X and Y were realized upon. Condition
(ii) of Definition 3.3.1 is verified in [Pn] Theorem 10.3.

We can also define the Haagerup operator space temsor morm [PnS].

Namely if U e X (X ®Y) define |[[U], to be the expression
. m S i
inf {2k=1”Ak” ”Bk“ :U=%_4 A xB , AL € Mn’p(x) , B € Mp,n(Y)}
= inf { ||A]] |IB|| : U=AxB , A€ Ah’p(X) , B e Mb’n(Y) },
where x is as defined above. It is not difficult to see that
”'”h > ”'”min , and thus ”'”h is a norm. It is easily checked [Ru]

that Gﬁxﬂﬂﬂ is an L%-matricial vector space and consequently an

*
operator space. If X and Y are contained in C -algebras A and



B respectively then one can write down an explicit complete isometry
of X® Y into the O -algebraic free product of A and B [ChSE].
The commutative Haagerup norm on C*—algebras is what was called the
Haagerup norm in Section 3.1.

One can easily check that the Haagerup tensor product is

associative; 1. e. if X1 , X2 , and X3 are operator spaces then
(Xp & Xy) & X3 = X; & (X & X3)

as operator spaces; thus there is no confusion in writing

X; & X & X3 .
*

Just as in the C -algebra case, the operator space Haagerup norm
is the 'correct' temnsor norm when considering completely -bounded
multilinear maps:

3.3.2 PROPOSITION. Suppose X

. , X are operator spaces.

1 b
If ¥ 1is a Hilbert space, and zf ¥ : X

m
g X e x X0 B(%) s an
m-linear map, then ¥ is completely bounded if and only if the
associated linear map 9 : X1 ® .- & Xm - B(X) is completely

bounded, and then we have

There - is a Christensen-Sinclair representation theorem for
completely bounded multilinear maps on operator spaces. For other
formulations of the representation theorem see [ChSE].

3.3.3 THEOREM [PnS]. Suppose Xp o oo Xm are operator

*
spaces, contained in wnital C -algebras A1 s eee Am respectively.



If ¥ is o Hilbert space and ¥ : X, x ... x X = B(¥) is a

completely  bounded m-linear map then there are unital

*-representations Ty s wee s Ty of Al s eee Am on Hilbert
spaces 11 s e Wh respgctively, and operators Tk € B(Wk,ﬂk_l)

for 1 <k < m+l , where 10 = 1h+1 =%, such that

1T e Tl = ey s

and such that

Y(xpyoeenxp) =Ty my(xq) Ty oo o7 (x0) T s

for xp €Xy, oo, X € X, -
The Haagerup norm is injective in the following sense:

3.3.4 THEOREM [PnS]. Suppose X, and X, are operator spaces,
contatned in operalor spaces Y1 and Y2 respectively.  Then

X1 & X2 ts contained as an operator Space in Y1 ), Y2 .

We now introduce a new tensor norm related to the Haagerup norm;
the class of associated multilinear maps having a Christensen-
Sinclair type representation, but with Jordan *-homomorphisms taking

the place of the usual *-representations.

3.3.5 Definition. Let X be an operator space, contained in a
C*-algebra A . Let A be the opposite C*-algebra of A (i. e. the
C*-algebra with the same Banach space structure and involution as A
but with the reversed multiplication), and write aw» a’ for the

identity map A - A° . It is easy to see that the transpose map



UK ()~ M (L)

n
is an isometric *-anti-isomorphism.

Define the symmetrized space of X to be the operator space
SYMX) = {xex°edo L :xeX}.

*
As an operator space this is independent of the particular C -algebra

A containing X .

3.3.6 Definition. Define the operator space symmetrized Haagerup
norm ”'”sh to be the L*-matricial structure on the tensor product
X®Y of two operator spaces X and Y  whose value on

Uek (XeY) is

10l = inf { max(JAILIAY) max(IBI,IBY) : U= 4 x B,
| Aed (X),Bed (V)}.

The sub-additivity is proven as for the Haagerup norm,” and it is
clear that “'”sh dominates the Haagerup norm, thus “'“sh is
indeed a norm. The commutative symmetrized Haagerup norm is given on

ueXe®Y by:

. % ‘ % % %
inf {max (120, x;x; Il IERL, o D% max (IZ2_ vyl IR, vivs)® :

_ vl
w=Ii g X @yi)
In fact we shall see next that it is unnecessary to explicitly
verify that ”'”sh is a norm. The crucial fact about the

symmetrized Haagerup norm is the following observation:

3.3.7 PROPOSITION. Zlet X and Y be operator spaces. The map
X o, Y- SYM(X) @ SYM(Y) defined by



x®yn (x0x°) @ (y oy

18 a complete isometry.
Thus we could have used Proposition 3.3.7 to define “'“sh .

3.3.8 Definition. Let X and Y be operator spaces, let L be
a Hilbert space and let ¥ : X x Y- B(£) be a bilinear map. We
shall say that ¥ is Jorden completely bounded if there is a

constant K > 0 with
[, (A,B)I| < K max{ JIA| , JIA®] } max { B, [BY)}

for all A€ Mn(X) and B e A (Y) . In this case we put “w”Jcb

" equal to the least such K which suffices.

3.3.9 Definition. Let X and Y be operator spaces , lef L
be a Hilbert space and let ¥ : X x Y - B(£) be a bilinear mapping.
We shall say that ¥ is Jordan representable if there exists a
Jordan representation of ¥ : i. e. if X and Y are subspaces of
unital C*-algebras A and B respectively, then there exist Hilbert
spaces ¥, ¥_ and K, , K_, unital *-representations 0+ and 7

+
of A and B on X, and K, respectively, unital
*-anti-representations # and 7. of A4 and B on ¥ and K
respectively, an operator R from W+ % to L , an operator S
fron £ ® K to ¥ @ 7%, and an operator T from £ to K, ek,

such that
¥(x,y) =R (6,0 )(x) S (r,@7)(y) T ,

foreach xeX ,yeVY.



In this case we put ”T"Jrep equal to the infimum of |[R|] ||S|| {|TI|

taken over all such Jordan representations of ¥ .

3.3.10 THEOREM. et X and Y be operator spaces, let L be a
Hilbert space, and suppose ¥ : X x Y 5 B(L) is a bilinear map. The

following are equivalent

(i) ¥ 1is Jordan completely bounded with ”T”Jcb <1,

(it) the linear operator X ®p Y - B(L) induced by ¥ s

completely contractive,

(iit) ¥ is Jordan representable with ”w“Jrep <1.

Proof. The equivalence of (i) and (ii) is easy, as is the fact
that (iii) implies (ii) .

Now suppose ¢ : X ®p Y - B(£) 1is completely contractive, and
suppose X and Y are contained in unital C*-algebras A and B
respectively. By Proposition 3.3.7 () induces a completely
contractive map  SYM(X) @ SYM(Y) - B(£) , and by Theorem 3.3.3
there exist unital *-representations 6 and of Ao L and
Be® B> on Hilbert spaces ¥ and K respectively, and bounded

linear operators R : ¥- L, S : X-%,and T : £- K, such that
b(x®y) =R Ox®x°) Sr(yey") T ,
for each x e X, yeY .A
Let ¥,  be the closure in ¥ of the subspace of ¥ spanned by
elements of the form f(a® 0) ( for ae A4, ( € ¥ . Similarly let

¥  be the closure in % of the subspace of % spanned by elements

of thé form A0 @ a’) ¢ for aed, (€% . Define a unital



*_representation 6, of 4 on ¥, by
6.(-) =P, 6(-®0 ,
L) =ty 6C 80y
and define a unital *-anti-representation of 4 on ¥ by

6.(-) = Pw- 8(0 ® .°)|1

It is easy to see that % =% ®% and 6=6 @6 . Define
subspaces X, and K_ of K , and representations =, and r_ in

an analagous fashion. We have for x € X and y € Y that

p(x®y) =R (,©0 )(x)S(r,®7)(y) T . O

It is clear that the results of 3.3.2, 3.3.3 and 3.3.4 above carry
over to the multilinear analogues of the symmetrized Haagerup norm
and the corresponding class of completely contractive maps. Thus we
get Hahn-Banach type extension theorems for a larger class of
multilinear maps than we had before.

The commutative symmetrized Haagerup norm is discussed further in

Section 4.2.



CHAPTER 4. GEOMETRY OF THE TENSOR PRODUCT OF C*—ALGEBRAS.

Recall that when A and B are C*-algebras their algebraic
tenéor product A® B is a *-algebra in a natural way. TUntil
recently, work on tensor products of C*—algebras has concentrated on
C*-tensor norms; i. e. norms @ whiéh make the completion A ®, B
into a C*—algebra. The crucial role played by the Haagerup norm in
the theory of operator spaces and completely bounded maps has
produced some interest in more general norms (see for instance
Chapter 3, [KaS] and [It]). In this chapter we .investigate
geometrical properties of algebra norms on A ® B , as well as
discﬁsd@ some particular tensor norms and their geometrical.
relationships.

The theory of tensor products of Banach spaces following on from
A. Grothendieck's fundamental papers [Grl,6r2] studies so called

'reasonable' norms (see 1.2). These are norms o satisfying a

certain uniformity condition
e( ST (u) ) < [IS] eu) [T

for all bounded linear operators S and T between Banach spaces.

No C*-tensor norm is reasonable in this sense - to see this consider
*

the *-algebra M (A ) = M ® K on which all C -norms coincide; the

transpose map t, Mh - Ah is an isometry, however the map

t .
® Ikh tHy Opin A 2y Bin
can easily be shown [0k] to have norm n . 1In 4.1 we introduce a

uniformity condition appropriate to tensor norms of C*-algebras,



namely in the condition above we require the maps S and T to be
completely positive linear operaﬁors between C*-algebras; a norm @
which safisfies this condition shall be called completely positive
uniform. If A is a nuclear C*-algebra the canonical map
A® B- A® B is shown to be injective for all C*-algebras B and
tensor norms ¢ which are completely positive uniform.

In 4.3 and 4.4 we consider completely positive uniform algebra
tensor norms & . In Theorem 4.3.3 we prove that for éuch an @
either A® B is a C*-algebra for all C*-algebras A and B, or
A® B is never a C*-algebra unless A or B is €. To prove
this we use the characterizations of C*-norms that we established in
Chapter 3. It is shown in Theorem 4.4.2 that for a« as above there
~is actually a dichotomy for Hermitian elements: if A and B are
unital C*-algebras then the set of Hermitian elements in A ®, B is
either a spanning set or is as small as it could possibly be. Thus
for ¢ again as above, if we wish to calculate the Hermitian
elements of A ®, B for arbitrary C*—algebras A and B it
suffices to consider the first non-trivial temsor product £% ®, Ly

*
where {3 is the two dimensional C -algebra.

4.1 NORMS ON THE TENSOR PRODUCT OF C*—ALGEBRAS.

We begin with some results about C*-tensor norms. Good surveys of
the theory of C*—tensor norms and aspects of nuclearity may be found
in [La3,To].

Let A4 and B be unital C -algebras, and let PS(A ®, B) be the
set of positive states of A ®7 B, i. e. those states % for which

N _ . ]
$p(u u) > 0 for each u € A ®7 B . The GNS construction assigns in a



canonical fashion a cyclic *-representation Ty of 4 ®7 B on a

Hilbert space to each element ¢ € PS(A4 ®7 B)

We shall say a
subset T of PS(4 ®7 B) is sep@rating if

pp(-) = sup {  my() Il : 9T )

is a norm on A® B . We call a subset I' of PS(4 ®7 B) a ¢ -set

*
if it is convex, weak -closed and sepgrating, and for all ¢ € I' and
*
u€ A® B with ¢(uu) # 0 the state p defined by

p(v) = B vu) / @ u)

for ve A® B, is an element of T .

‘ *

4.1.1 THEOREM [EL). ILet A and B be uwnital C -algebras.
. .

There is a bijective correspondence between C -norms e on A®B

*
and C -sets T of PS(4 ®7 B) , given by a - Pa’, and T - op ,
where

r, = { ¢ € PS(4 ®7 B) : |y(u)| < a(u) forallue A®B} ,
and

op(u) = sup { $(w ) : peT ) (ued®B) .

If T = PS(4e B) then

op = ||-||max , whereas if T
% *
PS(4 ®7 B)n (4 ®B) then ap =

is

“.”min . .

Theorem 4.1.1 shows us that the set of C -norms on A ® B has a
*

natural lattice structure; if @y and @y are C -norms on A® B

then for ue A®B

e~ o (v) = max { a;(u) , ey(v) }
as one might expect.

The following three propositions are useful when attempting to



*
extend results about temsor products of unital C -algebras to the
non-unital case. We assume throughout this chapter that all

approximate identities are contractive.

4.1.2 PROPOSITION. et A and B be C*—algebras and let A®B
be their algebraic temnsor product. If (e, and (fu) are
two-sided approzimate tdentities for A and B respectively, then
(e, ® fu)‘ is a two-sided approzimate identity in A ®, B whenever

a 15 an algebra cross norm on A ® B .

Proof. Llet u € A ®, B and € > 0 be given, and suppose

n
e(u - 5,_; a;, ®b,) <¢/3. Then

=1
o(u - (e, @ f)) u) <23 + o(Z]_; a; ®b; - (e, ® f) Ti_q a; ®by)

IN

2¢/3 + 22:1 e(a; ® b, - (e, ® fﬂ) (a; ® b))
<€

for X > AO ,'p 2 ho say. Thus (ey ® fﬂ) is a left approximate
identity. A similar argument shows that it is also a right

approximate identity. u)

*

4.1.3. PROPOSITION. et A and B be ( -algebras with
approzimate identities (e ) ‘and (f”) respectively, and let A
and B' be the Cﬁ—unitizations of A and B respectively. If

ue A ®B  satisfies u (e, ® fﬂ) =0 forall X, p then u=0.

Proof. Suppose A and B are represented non-degenerately on
Hilbert spaces ¥ and K respectively. It is clear that (ey) and

(f”) converge in the strong operator topology to the identity maps



on ¥ and K respectively, and thus (e, ® fﬂ) converges in the
- strong operator topology on B(¥ ® £Y) to the identity map on
¥e k. Now A B is represented naturally on ¥ ® £ ; and for

(e¥, nek wehave

u(¢®r) = 1im(y’ﬂ)' u(e,®f,) ((8n)=0.

Thus u=0. ‘ 0

*
4.1.4. PROPOSITION. Let A and B be C -algebras, and let A
.
and B be their C -unitizations. If a is an algebra cross norm
on A®B then there is an algebra cross norm o on A ® B

eztending a , given by
¢ (u) =sup { a(uv) : ve A®B, e(v) <1} ,

for ne A @B . If a is an algebra *-norm then so is o , and
* , *
if a is a C -norm then o is the unique C -norm on A ® B!

extending a .

Proof. Let (ey) and (fﬂ) be positive two-sided approximate
identities for A and B respectively. From 1.1.1 we have the
identities

sup { e(uv) : ve A® B, a(v) <1} = 1imy,ﬂ a(u (e, ® fﬂ))

= 1imy,ﬂ e((e, ® fﬂ) u (e, @ fﬂ)) .

That a~(u) = 0 implies u = 0 follows from the first identity and

Proposition 4.1.3. The second identity. shows that @ is a
* *

*-algebra ( C - ) norm if « is a *-algebra ( C - ) norm. The

*
uniqueness of extension of C -norms is shown in [La2]. D



*

4.1.5. PROPOSITION. Let A and B be O -algebras. If e 1is a

Cwith igomebne involutica)
norm on A ® B such thet A ®, B is a Banach *—algebralwith respect
to the usual multiplication and involution then a 2 ”‘”min .
*
Proof. First suppose that A4 and B are unital C--algebras.
*

let ¢ € PS(Ae B) n({ e B)  be given, and write

y=30_ f eg ,with f,....,f €A and g,...,5, € B . Then
9| < 0 150 liggl) A() € (2 10 lesl) o) (uedeR),

and so ¢ may be extended to a functional on A ®, B such that
*

$(uu) 20 for all uwe A® B . Now since A® B is a Banach

~ *-algebra the remark after Corollary 37.9 in [BoD3] implies that ¢

is a state on A ®a B . Thus for u € A ® B we have

sup { $(uu)? : ¥ € PS(A ®, B) N L ®B) )

.

I

a(u*u);Q
a(u)

*
Now suppose A and B are arbitary C -algebras. Let 4! and

IN

* .

B! be the C -unitizations of A and B respectively, and let e
be the extension of a to a Banach *-algebra norm o~ on A © B
defined in Proposition 4.1.4. Now " 2 ||| ;, on A © Bt by the

first part, and the injectivity of implies that a 2

- > Il
on A®B. O

It would be interesting if was dominated by every algebra

“ ‘ ”min
norm.



4.1.6  THEOREM [Pn,Ta]. Let A , A, and B, , By be

172
" .

C -algebras, and let Ti : Ai - Bi be completely positive linear
maps (i = 1,2). If a is either

or then T1 ® T2

Illysy or Il

extends to a completely pogitive map Al ®, Ay - 31 ®, 32 . If
S: :+ A; - B, are completely bounded linear maps (i = 1,2) then

81 ® 82 extends to a completely bounded map

1 ®min SZ : Al ®min A? - Bl ®min 32 ’

with ”Sl ®min S2“cb = ”Slucb ”S2HCb

S

We shall want to regard a tensor norm as a bifunctor on the
category of C*—algebras, and we would like to tie together the way
that the norm acts on different pairs of C*-algebras, to rule out
~ arbitrary allocation of norms to different pairs of C*-algebras.
Theorem 4.1.6 would seem to suggest a uniformity condition involving

completely positive maps. Note that the norm does not

(-
behave well with respect to the tensor product of completely bounded

maps [Hu].

*
4.1.7 Definition. A tensor norm of ( -algebras e 1is an
assignment of a Banach space A ®, B to each ordered pair (4, B)

of C*-algebras such that

(¢) A4 ®, B is the completion of A ® B in some norm which

we write as a or “'“a ; and

(i7) On A ® B we have ) 34”'”0 <.

The second condition forces a to be a cross norm. Henceforth in

*
this chapter a 'tensor norm' shall mean a tensor norm of C -algebras.



A tensor norm e is called an algebra (respectively *-algebra,
0*-) tensor morm if a is an algebra (respectively *-algebra, C*-)
norm on A ® B for every pair of (*-algebras A and B . If e is
a *-algebra norm or ¢ -norm on A®B it is assumed that the

involution on A ®a B extends the natural involution.

4.1.8 Definition. A tensor norm o is said to be completely
positive uniform (or uniform if there is no danger of confusion) if
whenever Ti : Ai - Bi (i = 1,2) are completely positive linear
maps of C*-algebras, then T; ® T has an extension

T, ®0T2:A1 ®a.42"31 ®082

~ satisfying | Ty ®, Tz I < IToll Tl -

In some sense in view of 3.1.3 the notion of an operator space
tensor norm (Definition 3.3.1) generalizes the notion of a completely
positive uniform tensor norm.

Examples of completely positive uniform norms include and

11l s
”'”max (Theorem 4.1.6); the fourteen natural norms of Grothendieck
including A and the four algebra norms 7y , H' , 7\/ , and \/7 (see
section 1.2); and the comﬁutative Haagerup and symmetrized Haagerup
norms of 3.1 and 3.3 (the completely positive uniformity of these
norms follows from Corollary 3.1.3).

The definition of a completely positive uniform tensor norm may be
generalized to temsor products of operator systems [Pn] (i.e.
self—adjoint subspaces of C*-algebras containing the identity).

Given a tensor norm defined for pairs of unital C*-algebras one can

use the uniformity property as the defining condition for a norm on



tensor products of operator systems.

If o is a tensor norm, and if A and B are C*—algebras, then
we shall write €, for the canonical contraction A ®, B- A ®) B .
The situation when €, is injective is often of interest; for
example it is not hard to show that A ®, B is a- semisimple.
A*-algebra whenever @ ' is a *-algebra temsor norm with €,
injective. Indeed A ®, B is a *-semisimple A*-algebra if and only
if the canonical map A ®, B~ Ae B is injective; where m is the
greatest C*-norm on A ® B dominated by ¢ . This last statement
follows from [BoD3] Chapter 40 Corollary 11, because if p 1is a
C*—norm on A ®, B then p < e« by [Di] Proposition 1.3.7, thus e
dominates the greatest C*-norm on A ®, B . Note that by Proposition
4.1.5 there exists at least one C*—norm dominated by a .

A reasonable tensor norm of Banach spaces « is called nuclear
[Ca4] if the canonical map E® F-E® F 1is injective for all
Banach spaces E and F . The next proposition relates this notion

*
in some sense to the notion of nuclearity for C -algebras.

4.1.9 PROPOSITION. 4 Cﬁ—algebra A is nuclear if and only if
for all U*-algebras B , and all completely positive uniform tensor

norms « , the canonical map €y " A ®, B- A ® B is injective.

Proof.  Suppose the second condition holds. Let B be a

C*-algebra and choose The condition implies that the

o=l -
canonical surjection A ® nax B- A ®:y B  is one-to-one and
consequently an isometry.

Now suppose that A is nuclear. It was shown in [ChE2] that this

is equivalent to the existence of a net (T ) of completely positive



contractive finite rank operators on A converging strongly to the
identity mapping IA . Let B be a (ﬁ-algebra and e be a
completely positive uniform tensor norm.  Suppose u € ker €y
choose ¢ € (4 ®, B)* , and for each v put ¢y =g o (Tye IB)

The uniformity implies that the net (¢V) is uniformly bounded, and
since ¢,(u) - ¢(u) for u in a dense subset of A® B , we see
that ¢,- ¢ in the veak -topology on (48, B)" . Now each ¢,
factors through A& B since T, has finite raﬁk, and so

$,(u) =0 for each » . Thus ¢(u) =0 ; since ¢ was chosen

arbitrarily we see that u =0 . D

4.2 SOME SPECIAL TENSOR NORMS AND THEIR RELATIONSHIPS.

In this chapter we discuss the ordering of some of the norms we
have met, and the resulting geometry of the dual spaces. By the end
of the section we shall also have established exactly when any pair

of the norms and 7 are mutually equivalent.

A el o 1ol
If A isa C*-algebra then by definition A is nuclear if and only

is equivalent (equal) to on A®B for all

T -

*

C -algebras B . The other characterizations we shall obtain will be
of the following type: @ is equivalent to f on A ® B if and
only if either U or B satisfy some condition C . Firstly

however we establish some properties of the Haagerup norm.

4.2.1 PROPOSITION. The Haagerup morm is e completely positive
uniform algebra temnsor mnorm dominated by H' , and the map €p

defined above is always injective.



Proof. Let T be a self-adjoint operator on a Hilbert space ¥

and suppose Sl""’sn are bounded operators on ¥ . Then we have

I3, 8 TSTll=sup{]|%f_ <TSI(),S5()>]:lel<1}

IITl sup { B5_; | < S3(8) 5 S;(&) > | Ml <1}
= |7l || 25_; S; i Il -

IN

Thus if u = E?:l a; ® bi and v = EJ -1 %j ® ¥ are in the

algebraic tensor product of two C*-algebras, then

m }
vl < ol B0 apcpcarl® Il B0 vibibyysl
R N e L
and so || uv [ < llully IVl -

As we remarked earlier the completely positive uniformity follows
from Corollary 3.1.3. Propositidns 3.1.9 and 3.1.11 show that
Il < B .

Now suppose eh(u) = 0 and choose ¢ € (A& B)* . By 3.1.9 and
3.1.11 there exist Hilbert spaces ¥ and. X , elements ¢ ¢ ¥ and
n € X , a bounded operator T : ¥ - ¥ , and representations ¢ and

1 of A and B on % and K respectively, such that
p(a®b) =<f@a) Tab)n, (> ,

for every a € A and beB. Let (P) be a net of finite

dimensional orthogonal projections converging strongly to the

identity mapping on % , and define for each v a functional

¢V:a®bH<0(a)PVT7r(b)n,§>

on A ® B . By 3.1.11 the net (¢V) is uniformly bounded by

Tl 1€]l ll7ll and the proof is now completed as in Proposition 4.1.9.o



The fact that the Haagerup norm is an algebra norm and its proof
above is due to R. R. Smith. We note that |-}l is not a *-algebra
norm, to see this consider the following example [Ha3]: take A to
be the bounded operators on a Hilbert space ¥ and define a
contractive functional V(S ® T) = ¢(ST) on A & A, where ¢ isa
fixed state on B(¥) . For n € N take isometries wu; , ... , u

n
. . * *
in ¥ w1ﬁh 22:1 u; u; = Iy . Then I 22:1 u; ®uy ”h <1, however

n * %k n * %
I(Z52q us @) lly 2 V((EZy v;®05) ) =n.
This also shows that in general ||-[|;, 1is not equivalent to 7 .

The next results focus on the intimate relationship between the

three themes of equivalence of tensor norms, Grothendieck type

inequalities, and the representability of bilinear functionals.

4.2.2 THEOREM (Grothendieck's inequality [Pr3]). There ezists a
(smallest) universal conétant KG such that +f X and Y oare
locally compact Hausdorff spaces, and ¥ : CO(X) x CO(Y) - C isa
bounded bilinear functional, then there are probability measures PX

on X and WY on Y with

| ¥(£,8) | < Ko Il {Jx 1£12 Py(d0}® {Jy 1g1? Py(ay))®

for £ € Cy(X) and g e Cy(Y) .

It has been shown that 1.33807... < K5 < 1.4049... (the lower
bound is due to A. M. Davie (unpublished), the upper bound to U.
Haagerup [Ha4]). We note that the theorem is usually stated for
compact spaces, however by passing to the second dual (as in [Ha3])
we obtain the result as stated.

The next result appeared in [KaS], we provide a proof to



illustrate the principles involved.

4.2.3  COROLLARY. On the tensor product of commutative

U*—algebras we have
-0l € 7 € Kg Il -

Indeed the last line is a restatement of the Grothendieck inequality.

Proof. Let ¥ : Ax B - € be a bounded bilinear functional on

commutative C*-algebras A and B . For fl""’fn € A and

g(s--+,8, € B we have from 4.2.2 that
2, ¥ e ] < T [¥(ELg,)]
Ko 190 2, Uy 1512 Py(0))® {Jy lg;12 Py(dy))?
Ko 191 {2, Jx 1512 Pe(a0)® {21_) 1y 1g;1% Py(ay))?

N 2 N 2
Ko Il mh_y 12,02 1 st 1s,12 0

IN

I

IN

which proves the first assertion.

Suppose K 1is a constant such that 7y < K ”'“h on A® B for
commutative C*—algebras A and B . Then for every bilinear
functional ﬁ : A x B- € we have “w”cb <K J|¥] by 3.1.11. For
such ¥ there exist *-representations = and 6§ of A and B on
Hilbert spaces ¥ and K respectively , elements ( € BALL(X) and
n € BALL(¥) , and an operator T : £ - ¥ with ||TJ] < K ||¥|| , with

¥(f,g) =<r(f) TO(g) ¢, n> ,
for fed and g e B. Thus

ITh 1 6Ge) ¢ Il Il 2 (€) 7 |

Y i
K 19 < 8(1gl?) ¢, ¢35 <a(J£12) 7, 7 5%,

[¥(f,g)|

17N

IN



which is the Grothendieck inequality. | a)

4;2.4 THEOREM (Grothendieck-Pisier-Haagerup inequality [Ha3]).
Let A and B be CF—algebras and suppose ¥ : A x B - ( 1is a
bounded bilinear functional. Then there ezist states 91 and Pq
on A, and states ¢1 and ¢2 on B, such that for a € A and
b € B

¥(a,b)] < 8]l { py(a ) + py(aa) Y2 { B (b b) + fy(bb) }?

A calculation similar to the one after Proposition 4.2.1 shows
that this inequality is best possible (in the sense that if one could
replace ||¥|] by C ||¥]] in the inequality, for some universal

constant C , then C > 1).

*
4.2.5 THEOREM. 0On the tensor product of two C -algebras we have
H' <y <2 H' .

Indeed this statement is equivalent to the Grothendieck-Pisier-

Haagerup inequality, although the constants do not necessartly match.

Proof. The inequality is [Ha3] Proposition 2.1, again we give a
*
proof to illustrate the technique. Let A and B be C -algebras
with g fii.
and let ¥ : A x B~ C be a bounded bilinear functional| Theoren
4.2.4 implies the existence of states p; and  py on A , and

states ¢, and ¢, on B , such that for a€d and b€B

¥(a,b)| < { py(a a) + pylaa) 2 { 9,00 b) + gy(b b)) )}

Now define a semi inner product on A by



<a,b>= ¢1(b* a) + po(a b*) ,

for a, be d. Let ¥ be the Hilbert space completion of the
quotient

A/ {a:<a,a>=0}

in the induced inner product. Let X be the Hilbert space derived
similarly from B and ¢1 , ¢2 . The quotient mappings p : A - %
and q : B- K each have norm 2;ﬁ . The inequality above implies

that the bilinear form
¥xKk-C: (p(a), q(d) ) - ¥(a,b)

is well defined and contractive, thus there exists a contractive

*
operator T : ¥ - £ with

< T(p(a)) , a(b) > = ¥(a,b) .
This implies that the norm of ¥ as a functional on A4 &y, B 1is not
larger than 2 .

Now let A4 and B be C*—algebras and suppose 7y <KH' on
A® B for some positive constant K . Let ¥ : Ax B-C be a
contractive bilinear mapping, then there exists a Hilbert space ¥ ,
and bounded linear maps S : A+ % and T:B-% with
ISIl IIT)l < K , such that

¥(a,b) = < S(a) , T(b) > |,

for aed and b € B . An application of [Ha2] Theorem 2.2

completes the proof. o

The norm whose equivalence with 7 corresponds exactly to the

Grothendieck-Pisier-Haagerup inequality, with the right constant, is



given on u€ A®B by
. N * N * N * N *
b inf{(I5_, agaill + By azag)® (N, byl + 15N, b
_ N
u=23_,a; ®b.}.
We now consider the commutative symmetrized Haagerup norm of

3.3.6, which by a similar argument to that of 4.2.1 may be shown to

be an algebra norm.

4.2.6 PROPOSITION. Let A and B be Cﬁ—algebras, and suppose

¥: AxB-C isabilinear map. The following are equivalent
(i) ¥ is symmetrically completely bounded with [¥llgep €15

(i1) the linear functional on A ®h B corresponding to ¥ 1is
- coniractive;

(111) we may write
¥(ab) =< (4,0 0)(@) T (1,0 1)(b) (, 1> ,

for all ae€d and be€eB; where 0. and T, are *-

+
representations of A and B on Hilbert spaces X, and K+
respectively, 6_ and 7_ are *-anti-representations of A
and B on Hilbert spaces ¥ and K respectively,

T:X@k -7% ©%_ isa contractive operdtor, and

¢ € BALL(K, ® £) and 7 € BALL(Y, ® ¥) ;

(iv) there exist states ¢ and oo on A, states ¢ and 9

on B, and real numbers s and t in [0,1] , such that
[8(a,b)| < {sp1 (2 a)+(1-5)g2 (a2 )} {t9s (b'b)+(1-t) g (bb")}®

for all ae€d and beB.



Proof. The equivalence of (i) and (ii) and (iii) follow from
Theorems 3.3.10 and 3.2.5. It is clear that (iii) implies (iv), and

that (iv) implies (ii). o

: *
4.2.7. PROPOSITION. On the temsor product of any two C -algebras

we have
I ligh €782 IMllgy » and ll-llgy € B <201 llgy

moreover the constant 2 1s best possible in each inequality.

Proof.' The Grothendieck-Pisier-Haagerup inequality and
Proposition 4.2.6 shows that
Il SE <7 <2y, -
Now suppose that H' <K “’“sh for some constant K >0, to

complete the proof it is sufficient to show that K > 2 . Let n e N

be fixed, put % = 2™l and et {ek}ﬁgil be an orthonormal basis
for % . Form the exterior (or wedge, or alternating [Lg], or

1 ¥ , which are complex

antisymmetric) product spaces A" ¥ and AMF
vector spaces of the same dimension. Let N be the binomial
coefficient (%40) .

Define for k =1,...,2n+41 linear maps a : ALY 5 ARty given

by
Ay ( 61 Ao N ) = e NEg Ao N E ( fl,...,ﬁn et) .
Now A™ has a natural inner product which can be written as
CE Ao ANE Mg A A > = det [< & »m]

for {1,...,§n s Wqs-eeally € ¥ . That this Hermitian sesquilinear

form is positive-definite is most easily seen with reference to the



basis

. (which is orthonormal with respect to this form). Similarly we can

define an inner product on A7 such that

{e A... Ne; }s :

is an orthonormal basis for An+1

¥ , and such that the inner product
is independent of the specific orthonormal basis {e } that was
chosen. With respect to these inner products one may verify that
2n+1 * 2n+1 _* _
i1 3 gy = (n+1) IAn+11 and Ii7;7 ay g = (n+l) IAnw .
* n, ,n+l C 1
Let A be the C -algebra B(A™¥,A"" %) , considering A ¥ as

being identified with A"*1

¥ via some explicit isomorphism, and let
E be the subspace of A spanned by {ai} . Now A may also be

regarded as a Hilbert space with the Schmidt class inner product [Ri]
*
<a,b>=Trd a) (a,bed).

Write  ||-]ls for <., - >? . It is not hard to see that
{ N 2 } forms an orthonormal basis for E with respect to this
inner product. Let P : A - E be the orthogonal projection onto E.

with respect to < - , - > . We make the following claims:
(i) N2 lle] = lel, for eck,
(ii) if e # 0 then the rank of e equals N , and
(ii1) [P(a)ll € llal for a e A .

Identities (i) and (ii) may be seen by first verifying them in the
case e =a; , and then observing that the basis free nature of the

inner product allows this assumption. Identity (iii) follows because



if P(a) = e then

*
N ||e||2 =<e,e>=<e,a>=tr(ae)
* *
< |la e|| rank(a e)
< llell lall rank(e)
<N flefl flall

and so |le|| < |la] .

Define a linear map T : A - C2n+1 by

T(a)

-1 * 2n+1
N© (Tr(ay a) )i
for a € A . Identities (i) and (iii) above assert that ||T|| <1 .

Write < -, - > for the bilinear form

C2n+1‘x C2n+1 - € giving

the duality of C2n+1

¥ : A® A- C by

with itself, and define a functional

$(a®b) = <T(a) , T(b) > (a,bed).

It is clear that ¢(a, ® a ) =1, and that ¢ is contractive with
respect to the H' norm. Thus

2n+1 2n+1

el = (3520 9oy @ ap) | < K Il BT oy @ ayllgy < K (o)

and since n was chosen arbitarily we see that K > 2 . n)

The construction above is due to U. Haagerup and was communicated
to the author by A. M. Davie. |

It is shown in [KaS] that one can represent every bounded bilinear
map ¥ :AxB-C with |¥ <% in the form quoted in (iii) of
Proposition 4.2.6 - this is merely the equivalence of 7 and
”'”sh . From this it follows that if A4 , By , 42 and B, are

¢ -algebras, and if A C B, (i=1,2) , then © 4 CB o B



as sets (but not isometrically), since bounded bilinear functionals
* *
on C -algebras extend to containing C -algebras (using [Di] 2.10.2).
The following result asserts that the class of C*—algebras

satisfies Grothendieck's conjecture [Pr3].

*
4.2.8 THEOREM. Let A and B be ( -algebras. The projective
norm v 15 equivalent to the ¢njective morm X on A® B if and

only if A or B 1is finite dimensional.

Proof. If 7y 1is equivalent to A on A ® B, then H-Hh is
certainly equivalent to A on A®B . Let 4; and B, be maximal
abelian *-subalgebras of A and B respectively; since A and
|-, are both injective (1.2 and Proposition 3.3.4) we have that
”'”h is equivalent to A on A ®.B1 . This implies by 4.2.3 that
v and A are equivalent on A1 ® B1 , and so Ay or B, 1is finite
dimensional [Pr1]. This implies by [KR] Exercise 4.6.12 that A or

B #s finite dimensional. O

A more direct proof of 4.2.8 is given in Section 6.1 . Ve note in
passing here that if n and m are positive integers with n < m

o 0
then on Qn ® Qm we have
75(211)}“,
%-

and the best constant in this inequality is not smaller than n
The first statement follows directly from an inequality of Littlewood
(sometimes called Khintchine's inequality) [Ka], the second we give a

proof of in Section 6.1.



4.2.9 THEOREM [Wn]. et A and B be Cf—algebras. The norms

A and are equivalent on A® B if and only if the norms A

1l

and are equivalent on A® B if and only if either A or

(.
B satisfies the following condition: there exists a positive integer
n such that all irreducible represestations have range with

dimension not greater than n .

4.2.10 THEOREM. Let A and B be C -algebras. The following

are equivalent:
(¢) A or B is commutative,

(i2) the norms )X and agree on A ® B , and

Il 50

(i37) A is an algebra norm on A ® B .

Proof. The equivalence of (i) and (ii) is shown in [Ta] Theorem

*
IV.4.14 for wunital C -algebras and follows in general by the
unitization technique of 4.1.4. That (ii) implies (iii) is trivial.

That (iii) implies (ii) follows from Proposition 4.1.5. D

4.3 COMPLETELY POSITIVE UNIFORM ALGEBRA NORMS.

We now apply some of our results from Chapter 2 to investigate the

X *
geometry of the tensor product of C -algebras. The next result
states that C*-tensor norms are minimal amongst the algebra tensor

norms.

4.3.1 PROPOSITION. Let A and B be C"-algebras. Then any

algebra norm o on A® B which is dominated by ”'“max is a



C*-norm, and then the canonical contraction A ® ax B- A ®, B s

surjective.
Proof. Apply Corollary 2.2.6. u]

4.3.2 REMARK. If A and B are C*-algebras then whenever
A ®) B is a Banach algebra it is a C*—algebra by Proposition 4.3.1,

and so X coincides with Thus we obtain another proof

el s -
that (iii) implies (ii) in 4.2.10.

4.3.3 THEOREM. let a« be a completely positive uniform algebra
. %
tensor norm, which is a C -norm on A ® By  for some pair of

% %
non-triviel C -algebras Ay and By . Then a is a C -tensor norm.

Proof. Let A “and By be as above; let ¢ and ¢' be two
different states on Ay , and let ¢ and ¢' be two different

states on By . Define two positive contractions
Jit Ao - 85 2 aw (p(a),p'(a))

and Jo: Bo = &5 bw (4(b),¥' (b)) .

Since J; and Jo have commutative ranges they are gompletely
positive by 3.1.1, and it is easily checked that they are surjective.
By Proposition 1.1.3 they each preserve two-sided approximate

identities. The uniformity implies that the map
Jy ®aJ2 :Ao®aBo—»Q°2°®aQ°2°
is contractive and it certainly is surjective. Moreover it clearly

preserves a two-sided approximate identity, and so Theorem 2.2.2



‘implies that (3 e (5 is a C*-algebra. Note that the induced
involution on (£% ®, 29 is the usual one.

Now let A4 -and B be two unital C*—algebras, and choose
a € (Ball 4), and b€ (Ball B), . Consider the positive unital

contractions
X, - 07 = A (b1,62) » & a + & (1-a)

and Xt 80 B (b,6) p &b+ & (1-D) .

Since L9 is commutative these maps are completely positive by

3.1.1, and so Xy ® 1 is a unital contraction by the uniformity.
Thus Xy ® Xp ( (1,0) ® (1,0) ) =a®b is Hermitian and we

conclude that A, . § B, , cH(4e B) .

Now (As.a. § Bs.a.) = (4® B)s.a. as real spaces, thus the set

(As.a,. ;’Bs.a.) +i (As.a. §Bs.a.)

is dense in A ®, B , and consequently
H(A ®, B) + ¢ H(A ®, B) = A ®, B

(using Proposition 2.1.4).  Applying the Vidav - Palmer theorem
(Theorem 2.2.1) we find that A ® B is a C*-algebra.

Suppose now that A and B are arbitrary C*—algebras and let
(e,) and (fﬂ) be positive two-sided approximate identities for A
and B respectively. Let A and B' be the unitizations of A
and B respectively, and let o~ be the extension of a to

A ® B defined in Proposition 4.1.4. The maps
A-A:anr ey a e and B-B:bwr fﬂ b fﬂ

are completely positive contractions, and so by the uniformity



a~ <a on A ®B' . Proposition 4.3.1 now shows that a- is a
C*-norm. Since 4 ®, B is embedded isometrically in A ®&~ B! we

find that o is a C*-normon A ® B . o

The proof above leads to the following characterization of
C*-norms in terms of values on linear combinations of four elementary

tensors:

4.3.4 PROPOSITION. Let A and B be unital C -algebras. An
algebra norm a on A®B is a Of-norm if and only if for each

a € (BALL A), , b € (BALL B), and ¢&,..,64 € C, we have
+ +

| éla®b+ fra®l+ {31@b+ 101 |
< max{| &y +€o+&a+by| ;| Ea+&a| ;| €3+ 1€al}

Note that we do not require a to be uniform here.

Proof. Suppose that the condition 1is satisfied, and let
a € BALL(4), and b € BALL(B), be {fixed. Define a map

. ' 2
¢a,b : ngz -+ A ®, B taking an element (uij)i,j=1 to

B @® b + pyo a® (1-b) + oy (1-a) @ b + foo (1-a) ® (1-b)
The condition of the proposition says precisely that ¢a,b is
contractive, and since it is certainly unital we see that
¢a,b(ell) =a®b is Hermitian. The argument used in Theorem 4.3.3
shows that a is a C*-norm.
Now suppose that e is a C*-norm, and choose a € BALL(4), ,

b € BALL(B), . Then certainly a < |||l .. - The map

Y o)
Xa ®max Ap ¢ QZ ®max Q2 - A4 ®max B



defined in Theorem 4.3.3 is contractive, and composing it with the

natural contraction A ® ax B- A ®, B we obtain ¢a,b . 0

4.4 THE HERMITIAN DICHOTOMY.

Let a be an algebra tensor norm and suppose A and B are

unital C*-algebras. Since the maps
AaA®aB:aHa®1 and B+ A® B:bnil®b
are unital contractions we see that

As.a.® l+1e Bs.a.c H(4 ®a B) .

We call the set on the left hand side the t¢rivial Hermitians of
A ®, B . It is not hard to prove that if a € As.a. and b € Bs.a.
then

a(a®1+1®b) =inf {fla-t|+|b+t]:teR)

for any cross norm a ; however we shall not use this fact.

It is clear from the above that for an algebra tensor norm o the
real dimension of the Hermitians in £ ®, 0¥ is either 3 or 4 .
The dimension is 3 if and only if every Hermitian element h

considered as a real valued function on {0;1}2 , satisfies
h(0,0) + h(1,1) = h(1,0) + h(0,1) .

In the previous section we saw that a uniform algebra tensor norm was
a C*-tensor nornm (and consequently always gives rise to a spanning
set of Hermitians) if and only if dim H(L% ®, L¥) =4 . We shall
show that if dim H(LY ®, £9) =3 then A ®, B commonly has only
the trivial Hermitia.ns.Iﬁ‘"’u‘“ﬂ“emﬁ}‘0““(&@{'”&’4*«;6“{&8 the following

example shows:



4.4.1 EXAMPLE. Consider {3 ® £3 , which may be identified

algebraically with £%x3 , with the cross norm

M1 2 13
K21 H22 U223

31 H32 [33

= 11 H12 ) s ili=
fax { “[#21 ﬂ22”'7 ’ |”1J| 1,] 1,2,3 } )

where we consider the top left square as an element of (€% ®7 Ly .
This is a  Banach algebra isometrically isomorphic t0
. . 1 .
(LY ®, €3) @ ¢ . Thus its dual space is (&5 e, €5) @ &5 , and it
is not hard to show that the set of Hermitian elements 1is

H((L5 ®, £3)) ® H(Cy) , an 8 dimensional space.

Let @ be an algebra tensor norm; for C*~a1gebras A and B let

€, be the canonical contraction A ®a B- A ®A B as before. Put

Z,(4,B) = H(J ®, B) nker e, ,

a closed subspace of H(A ®, B) . Often Z,(4,B) = {0} as is the
case when A or B is finite dimensional, or (by Proposition 4.1.9)
when A or B is nuclear and e 1is completely positive uniform.

Also if A and B are commutative then €, is just the Gelfand
transform, and since norm equals spectral radius on Hermitian
elements (Theorem 2.1.3) we have Z(4,B) = {0} .

4.4.2 THEOREM. lLet o be a completely positive uniform algebra
tensor norm which is not a C*—tensor norm. If A and B are unital
C*-algebras then H(A ®, B) is the real direct sum of the trivial
Hermitians and Z&(A,B) . If in addition A or B is nuclear we

obtain only the trivial Hermitians.

Proof. By the observation at the beginning of this section



H(LY ®, £?) is trivial. Suppose v , ¢ € S(4) and
v, ¥' € S(B) , and define J; and J, as in Theorem 4.3.3. Choose
u € H(4 ®, B, then J1 ®, J2 (u) 1is Hermitian in- 0y ®, 23 and by

the remark at the beginning of this section

<p@gp+p' @y, eu>=<p®yY +9p' @Y, €u> (*)

The following argument is given in [KaS]:
Now let ¢ € S(4) , o € S(B) be fixed and define unital

contractions
P%:A@aB—»A:a@ngbo(b)a

and Q, : 48 B-+B:a®bwng(a)b

90
Put h = P¢O(u) and k = Q¢O(u) - < po®go , €U >v1 . These are
Hermitian and for ¢ € S(A4) and ¢ € S(B) we have

<p®y, ea(u-h®1-1®k) >=<K p® Y, €0 > - p(h) - 9(k)

<ga®zé,eau>-<¢®¢0,eau>-<¢0®¢-¢0®¢0,eau>
=0

by (*) . Recall that a continuous linear functional on a C*-algebra
may be written as a linear combination of four states; this shows
that ea(u-h®1—1®k) = 0 and so u-h®1-18k € zZ, -

The last statement of the theorem follows from Proposition 4.1.9.o

4.4.3 REMARK. The conclusion of the theorem remains true if A
and B are unital Banach algebras provided that J; ®,J2 is a
contraction and the dimension of H(£7 ® 03) is 3 ; indeed 4 ® B
does not even have to be an algebra so long as H(A ®, B) 1is taken

to be the obvious set.



Finally, as examples we compute the Hermitian elements for some

tensor norms we have encountered:

4.4.4 EXAMPLE. Grothendieck's natural algebra preserving norms
7s 7\/> \/7 and H' : These norms are all equivalent by Theorem 4.2.5
and [6r2] Théoréme 7 Corollaire 2. Haagerup [Ha3] showed that €
is always injective and consequently 67\/ , e\/7 and H' are
injective too (indeed egr is always injective for Banach spaces
[Cad]). Since these are reasonable algebra norms and mo C*-tensor
norm can be reasonable in Grothendieck's sense, Theorem 4.4.2 implies

that these four norms always give only the trivial Hermitians.

4.4.5 EXAMPLE. The Haagerup and symmetrized Haagerup norms: it
was shown earlier that “'"h is not a *-algebra temsor norm so by
Theorem 4.4.2 and Proposition 4.2.1 we obtain just the trivial
Hermitians. Since ||l is equivalent to v Theorem 4.4.2 implies

that ”'”sh gives only the trivial Hermitiams.



CHAPTER 5.
TRACIALLY COMPLETELY BOUNDED HULTILINEAR MAPS ON C*-ALGEBRAS.

In this chapter we define the class of tracially completely
bounded multilinear maps, and investigate some related geometrical
questions. This class includes all completely bounded multilinear
maps on C*—algebras. The author was led to this definition in an
attempt to build invariance under cyclic permutation of variables
into the assignment ¥ - ¥ the standard n—foid amplification of a
multilinear map (Definition 3.1.8). This was in order to create a
class of maps which would be suitable for a 'completely bounded'
cyclic cohomology theory [ChS2,Con]. We explain our motivation in
more detail in 5.1.

In section 5.2 we show that every bounded bilinear map of
C*—algebras ¥ : Ax B-B(%) is tracially completely bounded, and
indeed

el < el < 2 9,
where lr”tcb is the norm appropriate to the space of tracially
completely bounded maﬁs. The norm on A ® B which corresponds to
the class of tracially completely bounded functionals is a completely
positive uniform *-algebra tensor norm equivalent to the projective
norm, and in general not equivalent to the Haagerup norm. We also

show that the least constant that suffices in the inequality

90l < K [

is not smaller than 4/r . The inequality of the previous line is

somewhat akin to the Grothendieck-Pisier-Haagerup inequality (Theorem



4.2.4).

Finally, we give an example of a trilinear bounded map which is
not tracially completely bounded, and make some comments on the
possibility of a Christensen-Sinclair type representation theorem for
tracially completely bounded maps.

The work described above had been completed when the author
obtained a copy of [It]. In his paper Itoh introduces a new
definition of complete boundedness for linear maps A - B* , where A
and B are C*-algebras. If T : 4- B* we may consider the

associated bilinear functional T~ defined by
T"(a,b) = < T(a) , b > (aed,beB) .

Itoh's completely bounded maps are the same as the bilinear tracially
completely bounded maps via the correspondence T - T~ , except for a
slight twist which arises from the ambiguity in the definition of the
duality of Mz and M . Our results give alternative proofs of the
theorems in [It]. In addition, the proof of Theorem 5.2.2 shows that
every bounded operator T : A - B* is completely bounded in Itoh's

sense; and indeed

1T < Tl g < 2 1T
where we write ”’“cbd for the completely bounded norm defined in
[It]. Thus the temsor morm |-~ of [It] is in fact equivalent to

the projective norm. The proof of Theorem 5.2.6 can be also be
modified fractionally to show that the least constant that suffices

in the inequality ||T||,q < K [IT]l is not smaller than 4/7 .



5.1 DEFINITIONS AND MOTIVATION.

Let A be a C*—algebra and let K (4) be the C*-algebra of n x n

matrices with entries in A . Define the 'normalised trace'

. . -1 ¢n
T, P M (A4 Arn T XA

This a contractive mapping. We reserve the symbol Tr for the trace
map defined on the trace class operators on a Hilbert space [Ri].

Now let A1 s een Am be C*—algebras, and let % be a Hilbert
space. Suppose ¥ is an m-linear map A1 x ooox Ao B(%)

Define for each n € N the m-linear map
V' U () x e x M (A) - B(T)
by V'=7 o¥

where in is the n-fold amplification of ¥ defined in 3.1.8 .

Written explicitly this is :

1 m -1 o0 n 1 2 m
Wn(X s vee X)) = T B LB L ¥(xy s XY L, X s ),
11-1 1m—1 iy,19° Tig,1g 1,14
where X! ¢ H (4;) for i=1,....m.
We say ¥ 1is tracially completely bounded if
sup { [T :neN}<w
and then we write 190l o1 for this supremunm. Write

TCB(A1 X ... 0% lm;B(W)) for the Banach space of tracially completely
bounded m-linear maps A; x ... x A - B(%) , with the norm ”'”tcb .
It is clear that if ¥ is completely bounded then it is tracially

completely bounded and

¥l < 1l g < ¥y,

Thus



OB(Ayx. .. xA sB(1)) € TB(Ayx....xA ;B(H)) € B(dyx...xd ;B(¥)) .

Also if ¥ is a linear map, then ¥ is tracially completely bounded
if and only if it is bounded, indeed ”q“téb = ||¥]] in this case.
Notice that the explicit expression for ¥" is invariant under

cyclic permutation of the indices il""’i Thus if p is the

.
'cyclic permutation of variables' map

(po¥) (a,aq,.. 8, 1) = ¥(aq,...,a;)

then p o ¥' = (po¥)™ . This is not the case for the map v

indeed as remarked in the introduction, the original motivation for
the definition of ¥" was that it had this property. We give some
further motivation below.

Let n €N be fixed. We wish to consider functors a from the

class of multilinear maps

A x ... x A~ B()

1
*
(for all me N, Ai C -algebras, ¥ a Hilbert space) to the class

of multilinear maps
Mh(A1) X ... X Mh(Am) - B(%)

(for all me N, A C*-algebras, ¥ a Hilbert space). The only

1
sensible such functors a would seem to be those satisfying the

following condition (*) : For each me N, for all C*-algebras

Al,...,Am , for all Hilbert spaces ¥ , and for all m-linear maps

¥ A x ... x A - B(¥) , ve have

(a ¥)(a; ®e;

. ... ,a ® e.
11,31’ ’m

. = Q. . .. T(a, ,...,a)
13 S CRPERERTE " 1 m

for a; € Al e 5 8 € Am . Heﬁe a is a complex

iljl""’imjm

*
number which is independent of the particular C -algebras



Al s eee s Am , Hilbert space ¥ , or mapping ¥ .
We shall want to consider functors a as above which also satisfy

the normalizing condition (**) :
(a ) (x®In)=f(x) (x€ed)

for linear functionals f on a C*¥algebra A .

Suppose A is a C*—algebra, and let ( CT(A) , b ) be the cyclic
cohomology cochain complex [Con]. It is easy to show by mathematical
induction that, subject to the conditions (*) and (**) above, there

is only one functor a such that the following diagram commutes

) —2— ety —>— 2 2

.| . | .|

S () 2 et () 2 Eu ) >

for all C*—algebras A , and that is the‘functor ¥ - ¥"  defined in
the beginning of this section. It is not surprising then that this
functor appears in various guises in Hochschild and cyclic cohomology
theory (e. g. the Dennis map [Ig]; the cup product # Tr [Con]).

Thus if there was a useful representation theory for tracially
completely bounded maps, perhaps similar to the representation of
Theorem 3.1.9 for complétely bounded maps, then the tracially
completely bounded maps would be an appropriate setting for a
'completely bounded' cyclic cohomology theory (see [ChS2,Con]). We

make some comments on representations in 5.3.



5.2 THE BILINEAR CASE.

Throughout this section A and B are C*—algebras and ¥ 1is a

Hilbert space. Define a semi-norm ”'“tcb on A®B by

inf { % 1A% B¥) ;o= 2 a7t ) k _® bk }
k=1 k=1 i,j= =1

ky 1k N -1 k k
inf { Sh_ A 8K : w = o7l sl et 815 @ b5 )

as can be seen by building larger matrices of fixed size Hﬁzl n(k)
made up of the smaller matrices repeated sufficiently many times

along the main diagonal.

5.2.1 PROPOSITION. The seminorm ”°“tcb defined above on A® B

ts actually a completely positive uniform *-algebra tensor mnorm

satisfying

Il < Dellggy < 1L
If 4 ® cb B is the completion of A ® B with respect to HoHth
then - B(4 e ., BiB(Y)) is  isometrically  isomorphic  to

TCB(A = B;B(%)) .

Proof. To show that ”'”tcb is a norm it suffices to show that
. N -1 k
Il € Wl - Write u = zk_1 ol g j_1 as; ® b?l , then
N % k ¥k ok
ol € Bg 070 sE syt @ )T B el L o5 el
ko ky* ky* ok
S ENTSNION n’é I (8" BY) |
N ok ek
P TU N
and thus [l < -ll,qp -
Now if u,ve Ade@B ,with u=3_ o'z L kJ ® b?i and
vV = 2E=1 -1 22 5=1 ck. ® d?l , then we have



_ N -2 ¢ k 1 k 1
i A L H N
Consequently letting A ecl and B*e D! be the matrices in

. k 1 ko4l
M2 () given by [aj5 00 15 ) (5,9 224 [P35 9q 1(3,p),(5,0)

respectively we have

N k 1 k 1
v gy <3 g N A% et | B el |
N k k N 1 1
<Oy R Ry 2, ety iy
and so || u v ”tcb < ”u”tcb ”V"tcb . Thus ”’”tcb is an algebra

norm. The complete positive uniformity follows from 3.1.3, and the

other statements of the proposition are obvious. o

In fact the proof above shows that ”'”sh < ”'”tcb , where |||l g
is the commutative symmetrized Haagerup norm of 3.3.6. Notice that
by the last statement of Proposition 5.2.1 there is no need to

attempt to consider “’“tcb as an operator space tensor norm.

5.2.2 THEOREM. et ¥ : Ax B- B(¥) be a bilinear map. Then
¥ s tracially completely bounded if and only if it is bounded and

then

¥l < el o < 2 19

Thus the norm ”'”tcb is equivalent to the projective norm.

Proof. The necessity is clear. Suppose ¥ 1is bounded. If £
is a linear functional on B(¥) then f o ¥" = (fo¥)" , and the
Hahn-Banach theorem allows us to assume without loss of generality
that ¥ is a bilinear functional. By the Grothendieck-Pisier-

Haagerup inequality (Theorem 4.2.4) there. exist states b1 and ¢



on A, and states ¢1 and ¢2 on B, such that

* * ;@ * | * ;@
19(a,b)| < ¥ { o (a @) + pplaa) 2 { g (b b) + gy(d b) }2
for ae€ed and beB . Using this and the Cauchy-Schwarz
inequality we obtain for each A € kh(l) and B € KA (B) that

¥ (4,B)] <

VAN
=
—
—
—
-
~~
[+V]
(S
[Py
o
—
-
~—

I

LR ¢1<alJ a;5) + pylag; agp) )2
{90555 big) + dylby b3p) 12

I

RLREAC aﬁj a;;) + pp(El i) alJ a1J> %
{ ¢1(21 ,J=1 31 le) * ¢2(21 ,J=1 Jl b ) }%

—1
IO 155 o gy g 0 008y oy a5 }:
{008} 5y byg byg I+ I8h 5y bys b3 1)

el {lir (A" )+ llr (A A Y2 {llr (B B)| + nrn<B B[}
LA A+ AN [ YE(NB B+ BB |)*

I

IN

IN

2 |1l Nl 1B 0

IN

5.2.3 REMARK. If A and B are commutative we can use

Corollary 4.2.3 to improve the inequality to

19l < lel < ¥y, < KE e s

where Kg is the complex Grothendieck constant.

5.2.4 REMARK. The complete positive uniformity of “'”tcb
together with the results of Chapter 4 now inform us that if A and

B are unital C*-algebras then

H(A ®

b B) = (4®1) © (1©B).



If A4 and B are any two C*-algebras then A B is a

* *
- semisimple A -algebra and never a C -algebra unless 4 or B is C.

5.2.5 COROLLARY. ZFvery bounded limear map T : A - B* s
completely bounded in the sense of [It], and ||T||cbd <210 -

Let Ktcb be the least constant such that

el < K ¥l

for all C*—algebras A and B , all Hilbert spaces 7% , and every
bounded bilinear map ¥ : A x B - B(¥) . The theorem above asserts
that 1 < Ktcb < 2 . The next theorem gives a better lower bound for
Ktcb )

5.2.6 THEOREM. The constant Ktcb ts not smaller than 4/t .

We shall need two lemmas and some notation. Both lemmas are well

known, but we include a sketch proof of the first for completeness.

5.2.7 LEMMA. For each € > 0 there exists 6 > 0 such that

-1 n 65 .k
|}(2n) J[O,Zw)n | 2j=1 r; e | 46y ... df -7/ 2] <e
whenever Tyy... T, are positive numbers, each smaller than & ,
such that 23:1 r? =1

Proof. For n = 1,2,.. let gnl s eee 0nn be independent

random variables, each uniformly distributed on [0,27) ; and let

r r_ be fixed positive scalars with

nl > **° ° “mn



1 2
2j=1 nj - 1,
and sup { rnj :1<j<n}-0 as n-w.

- _ 0n;j
For j =1,...,n put an = rnj e’ ’n

2;é SIl converges, by the Lindeberg form of the central limit theorem

- vl .
and SIl = Ej:l an ; then
(see [Bi] for example), to the standard complex normal distribution
with density ¢ . Thus given f : € - € continuous and bounded, and
€ >0 , there exists a positive number § such that if L RTINS

n

are positive numbers each smaller than & , and E?=1 r% = 1 , then

1(20) ™ | (28 B et ) a0, ... a8, - f fob | < €

~[0,27) J
To see this notice that the converse leads to a contradiction. The

lemma will now follow after an appropriate choice of f . u)

We endow Mh with the inner product

_ ol
<A,B>—Ei’j:1aijE
*
=Tr(AB) |,
and write ||-||o for the associated norm. The group #(n) of n x n
unitary matrices inherits a topology from ( Mo I-lla ) with

respect to which it is a compact, and thus unimodular, topological
group. Let P- denote the normalized Haar measure on #(n) , writing
dP(U) as dU as usual. Let Ti;5 denote the (i,j) coordinate
function on #(n) , namely

7350 = vy (Ued()) .

We need the following facts, proofs of which may be found in [HR] .



5.2.8 LEMMA. For i, j, k and 1 idn {1,...,n} we have the

following orthogonality relations:

. — -1
1/(n2-1) if itk and j#1
2/(n%+4n) if i=k aend j=1

(ii) Jy(n) lfij|2 IWk1|2 dU

1/(n%+n) otherwise. .

For any A € Mh we have

(111) Sy | <A, U> |2 U= n [All3

%
Proof of Theorem 5.2.6. Let A be the C -algebra of continuous
complex valued functions on #(n) . Define a bilinear functional

¥: Ax A-C by

¥(1,8) = [y(n) « y(m) £(0 8() < U, V> dU Qv

Lemma 5.2.8 (iii) gives

*

| € ([r35) L Iry5]) [ =™ ) | <UL V> |2 AUy

= n-l N

whereas

NCrslll = 0 [ ey 1 7 1 1= 1
Thus we see immediately that
Kep 21/ (o ll¥ll)
The remainder of the proof of the theorem is the calculation of an
asymptotic lower bound for the right hand side of this inequality.

Let f , g € BALL(4) be fixed. By the Riesz representation

theorem there exists W € Ah such that



<UL N> = fyy <U, Vog) dv (Ueuk ).
Now |W[IF =< W, W> < j”(n) | <W, V> | dV < |W]le c, o
where c, is defined by |
c, = sup { Iﬂ(n) | <A, U> | dU:Aed , Az <1}
Thus we see that |[|W||o < c, - Using the definition of W we have

| ¥(f,g) |

| Ju) < U ¥ > £(U) v |

J”(n) | <U, W> | dU

IA

Wz <,
2
<c

Since f and g were arbitrary elements in BALL(A) we conclude
that |¥|| < ¢ .

To complete the proof it suffices to show that given € > 0 , we
have | |

11;é c, < 15 [ 2+ ¢

}for n large enough. To that purpose let € > 0 be given, and choose
6 >0 as in Lemma 5.2.7.

Now suppose A is an arbitrary element of M, » with J[lAll2 =1 .
Let Al,...,An_ be the eigenvalues, in increasing order, of the
positive definite square root |A| of A A . Thus

05,\15...5/\11

Put A = diag{d;,...,A;} . TUsing the polar decomposition and
spectral theorem in finite dimensions we can find unitary matrices .

V1 and V2 such that
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A=V, [A] and Vo [A] Vy =‘A .

By the invariance of Haar measure it follows that
Juy 1 <A U> 1 U= fyoy [ <A, U>|dU

= Jumy | Zig Ap vy 1 AU (2)
A direct application of Lemma 5.2.7 will fail here if some of the A
are too large. To avoid this possibility we spread each large Ai
over its own column in A ; to retain independence of the columns we
eliminate some of the smaller Ai . More specifically, let C be
some large positive number, to be chosen later, and suppose s is

the smallest positive integer with
A 2C/af (3)

If An <C/ n’é the proof will be substantially easier, we leave it
to the reader to prune the argument below in this case.

From (1) we have immediately that
n-s+l=4{)2C/2%) <a/C . (4)
Write [-] for the 'integer part of' function :
[x] =max { n =0,1,... : n < x } (x20)

(not to be confused with the square bracket matrix notation).

We now define some integers: mg_y =0,

m, = [n’é Ad + 4 [n;é Al (i=s,...,n ) ,

1

and put m = m . By (1),(4) and the Cauchy-Schwarz inequality it

follows that

m < n;é Egzs Ai < n;é (n-s+1);é <n/C . (5)

Thus if C > 3 then (4) and (5) give
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s-m>n /2 . (6)
Now from (1) we see that

A2 <1 _ ¢St 1

2 2 .
_m+1 /\i S 1 - (S-m‘l) /\m 3

2
m
and so by (6)

2 -1

Ay $(s-m) <2/ . (7)
By Lemma 5.2.8 (iii) and the Cauchy-Schwarz inequality

v Sy | By Ay ugs 1 A0S0 { Sy 1 TRy A w12 a0 )

- (2, 0
< m;é Am
<(2/¢)k (8)

using (5) and (7). ,
Let (ek)ﬂ:1 denote the usual orthonormal basis of €% . Let V

" be an operator on (" such that

(i) Ve =¢ for k = (m+1),...,(s-1) ,

(i1) Ve [n% /\k]_;Q (émk IR emk) for k =s,...,n,
v -1

(iii) ( Ve, )ﬂzl is an orthonormal basis for (" ;
this forces V to be unitary. ,
Let Xi = Ai / [naé ,\i];ﬁ for i=s,...,n . By the invariance of
Haar measure we have
b n
n Jﬂ(n) | Z5_pe1 Ay 4y | AU
- 1? Jﬂ(n) | Tr ( diag{0,...,0,A  4,---5A } U) | dU

0 Jay | T (diag{0,...,0,0 4., A} UV ) | dU



- S- 1 % n m; % ~
- IZ/(Il) | 21 =m+1 /\1 ull * 2i:s Ej;mi_1+1 n /\1 ulJ | dU . (9)

In what follows if an integrand is not specified it shall be the
integrand on the right hand side of (9).

Define the following random variables on #(n) :

rii(U) = 22 A, Juy,l (i=m,...,5-1) ;

rij(U) - % X- Iuij' (i=s8y...,0, j= m_q+l,.oome )
and A(U) = { E1 m+1 (U)z + E1 =s EJ =m._;+1 rij(U)2 }% ’
where 0 = 22=m+1 ’H

From (1) and (8) it follows that if C > 4 then
h<or <1 L (10)
Now let @ be the set of matrices U in &4(n) such that

r. (U <o, i

m+l,...,s-1

and rij(U) <6, i=8,..,0,]j= m_q+1,..,m;
We may split up (9) into jQ + jQ, , where Q' 1is the complement of
Q@ in #4(n) . Using Fubini's theorem and the invariance of Haar

measure, one may replace this integrand by

2n)™ 5571 petfi gD g

i6;
[0,27)F = 17ml 1L i=s"j=m;_;+1 71 e’ | do,...dd

m
and so by Lemma 5.2.7,

Jg ¢ g ( w%/2 +€)Adcdl

I

(/2 + € ) { fo 42 dU Y%, by Cauchy-Schwarz and (10)

w%/2 +€

IN

using Lemma 5.2.8 (i). This together with (2) and (8) proves the

theorem providing we can show that IQ, is small.  Now by



Cauchy-Schwarz and Lemma 5.2.8 (i) again,
Jgr € ¢ P@")"

< {P(Ak)+ESTE P(r,. A > 6/2)430

P(r;; A > §/2)}%.

i= s J-m 1+1

Using Chebychev's inequality and Lemma 5.2.8 (i) we see that

P(A<k) = P((1-A2)2 > 9/16)

I

2 fyy (1 -2 a2 + A% au

2 [ ) 2t au - 17

Expanding A% and applying Lemma 5.2.8 (ii) yields
n2/(n2-1) + o % n/(n+1) [(zs_;+1 V) (0-2)/(u-1) +
(22 0Y (1/[n? 4,01/ (e1)))

< n?/(n2-1) + 16 C*/n + 16/(C-1)

fua) % qu

by (3) and (10) .
By Chebychev's inequality and Lemma 5.2.8 (ii) we obtain
P ( Jugl >0 6/2 0% 4y ) < 128 ¢t/(st @)
for i=m+1,...,s-1 ; also for i =s,...,n, and j = m._q+1,..0m;
4 4
P ( Juggl > 08 (% 2, 0%@* 0,) ) <128 0%/ (61 % 1,2)
Thus we have finally,
2 4 4 -4 %
Jor € {2/(n*-1) + 32 C*/n + 32/(C-1) + 128 C*/(6 n) + 128 § */(C-1)}
and so by choosing first C , and then n , large enough we can ensure

n? Juy | <A U> | dU< /2 + €

This completes the proof of the theorem. u]
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5.2.9  REMARK. The proof above shows that the convolution
operator

C(#(n)) » L(#(n)) : £ n Tr *

has a norm which is asymptotically bounded above by /(4 n) .

5.2.10 REMARK. The construction above was on a commutative

*
C -algebra. Thus in the commutative case one has that the best

constant lies between 4/r and Kg .. Is this constant equal to
Kg ? In the general case is Kip =27

'5.2.11 REMARK. This construction origihated in Grothendieck's
construction [Gr2] yielding a lower bound for his constant; however
there are some additional complications here which we had to
overcome. I am indebted to A. M. Davie for suggesting this approach.
A. M. Davie has modified Grothendieck's comstruction to improve the
lower bound for Grothendieck's constant (unpublished); if one adapted
this in the way the Grothendieck comstruction is adapted in the
theorem above one should be able to improve the lower bound 4/r for
Ktcb :

5.2.12  COROLLARY. The least constant which suffices in the

inequality

1Tl yq < K ITI

for all Cf—algebras A and B, and all linear maps T : A = B*
(where II-Hde is the completely bounded nmnorm of [It]) is not
smaller than 4/7 .
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Proof. Almost identical to the proof above, but now define

Vo) dUdv . 0

<TI(f) , g> =) £(0) g(V) (] 54 vy; V51

5.3 REPRESENTATION OF TRACIALLY COMPLETELY BOUNDED MAPS.

The results of the previous section might lead the reader to
suppose that tracially completely bounded maps are just bounded maps
in another guise. The first example below shows that the situation

is more complicated than this.

5.3.1 EXAMPLE. A bounded trilinear map that is not tracially
completely bounded. Let % be the infinite separable Hilbert space,
" with orthonormal basis (e, )nelN . Define a trilinear functional
¥ :B(H) x B xBM) -C: (R,S,T)n<R S Th e , e >,
t

where is the transpose map relative to (e, ) . It is clear
that ¥ is bounded, however if X = [ e ® e, ]?,j=1 then
K= XX 2= [eyee;] [e;oe;] |
= 06T g oq ]l
=1 ,

whereas

-1 ' ' :
T#(X,X,X) =1 E?,j,k=1 < (e; @ ej) (ej ® e ) (e ®e;) (e), e >
-1
=1 E?,j,k:l < (ei ® ei) (el) ; €2
=1

Thus ¥ is not tracially completely bounded.
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5.3.2 PROPOSITION. et 11 R S 1 Cﬁ—algebras. Define

m
an m-linear functional ¥ : Al X ... X Am - C by

¥(aj,...,a;) = Te(Ty 6;(a;) ... T 0 (a)) ,

where Tr is the trace on a Hilbert space ¥ , where 01 s eee 0m

are *—representatiohs of .41 s eee Am respectively on ¥ , and
where for i = 1,...,m the Ti are in the von Neumann - Schatten
p; class [Ri], where 1 < p; S o and E?zl 1/p; =1 . Then ¥ s

tracially completely bounded and

9l < Tyl - Tyl
Koreover, every completely bounded m-linear functional

A x .. x A, = € may be written in this form.

Proof. Let ¥ be of the form described above.  Then if

A, € 4 (4) for i=1,...,m we have

n
WAL ) =T o8 (A, ., A)

r (D), (T, @ 1) (6), (&) .. (T, 1) (6. (A)))

! Tr(n) ((Ty ® 1) (6;),(Ap) - (T, ®I) (6),(4)) »

where Tr(n) is the trace map on W(n) . Thus by well known von

Neumann-Schatten class inequalities [Ri] .
¥ (A, ey AL

2T @ Tl 1D, () (e L) o (T @ 1) () ()l

I

IN

a2 106 AN Ty @ 1) .. (T e T) (6,), (),
Py Py

proceeding in this manner we obtain eventually

TR IRl R L Y R L N LY T



Now suppose that ¥ : Al X ... Am - € is completely bounded.

By 3.1.11 and 3.1.9 we can find *-representations #1 yoeee s T of
A1 s eee s Am on Hilbert spaces o, o Wm respectively, with
11 ='1m , bridging operators‘ T1 s e Tm*1 ,and ( , p € 11 ,
such that

¥(ag,...,a,) =< m(a) Ty oo T { Tnag) €5 n>

CChEST
It is easy and standardkto adapt this representation so that a single

Hilbert space is involved. Thus we may write
w(al,...,am) = Tr ( wl(al) T T mfay) (C@n) ),

for a; € A1 yoeee oy A € Am . 0

Perhaps it is possible to represent every tracially completely
bounded functional in the form described in the proposition. This
interesting class shares certain characteristics with the tracially
completely bounded maps, for instance the trace Tr allows one to
cyclically permute the variables, just as one may cyclically permute

the indices (see remark in Section 5.1) in the expression for ¥" .
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CHAPTER 6. SUBALGEBRAS OF C -ALGEBRAS.

In this chapter we consider Banach algebras which are isomorphic
to a subalgebra of a C*—algebra. The history of this subject
probably began in the 1960's, with the study of §-algebras. A
Q-algebra is a commutative Banach algebra isomorphic to a quotient of
a uniform algebra - the term is due to Varopoulos. B. Cole proved
[Wr2] that such an algebra is isomorphic to a subalgebra of B(%)
for some Hilbert space ¥ . Many people have observed subsequently [®el
that his proof actually shows that a quotient of a subalgebra of a
C*-algebra is again a subalgebra of a C*—algebra.

In 1972 A. M. Davie [Dal] gave a necessary and sufficient
condition for a Banach algebra to be a {-algebra, and shortly
afterwards N. Th. Varopoulos [Va3] gave a characterization of Banach
algebras which are isomorphic to a subalgebra of a C*—algebra. Both
proofs used properties of certain tensor norms; and Both produced
surprising examples of algebras which were {-algebras or isomorphic
to subalgebras of C*-algebras, and algebras that were not.
Subsequently T. K. Carne [Ca3] gave a proof of Varopoulos's result
which displays more prominently the role of tensor norms (see also
[Ca2]). A. M. Tonge [Tn1,Tn2] has produced other interesting results
concerning the relationship with.certaiﬁ tensor norms.

In Section 6.1 we review some of the topics mentioned above in
more detail. 1In Theorem 6.1.5 we show that if A and B are
C*—algebras, and if e 1is either the projective, H' , or Haagerup
tensor norm, then A ®, B is not isomorphic to a subalgebra of a

*
C -algebra, unless A or B 1is finite dimensional. As a corollary
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to the method of the proof we obtain some estimates on how far the .
projective tensor product of two finite dimensional C*—algebras is
from being a éubalgebra of a C*-algebra. We show that the Haagerup
tensor product of two operator spaces is represented isometrically on
the space B(%) of bounded operators on some Hilbert space, and that
in a sense the Haagerup tensor product of two subalgebras of
C*-algebras is isometrically isomorphic to a subalgebra of B(B(T)) .

In 6.2 we consider operator spaces which are also Banach algebras.
Following the characterization of operator spaces [Ru]. as
'L®-matricial vector spaces' researchers in this area became
interestéd in an abstract characterization of such ‘'matricial
operator algebras' [PnP]. The author was made aware of this problem
in conversations with E. G. Effros and V. I. Paulsen in 1987; and
subsequently worked on the characterizations described in 6.2.with
.A. M. Sinclair.

It is easy to see that a completely bounded multiplication on an
operator space satisfies Varopoulos's criterion, and consequently
such a space is isomorphic to a subalgebra of a (ﬁ—algebra. The
difficulty lies in obtaining a 'complete isomorphism'. We study some
examples which illustrate some of the problems if there is no
identity of norm 1 for the algebra. Theorem 6.2.6, which was found
by A. M. Sinclair, gives a characterization in the presence of an
identity of norm 1 . We give some necessary and sufficient
conditions in the general case, however these are not as desirable as
one might wish. As a corollary we are able to generalize the
aforementioned result of Cole to the operator space situation.

In [PnP] Paulsen and Power define three 'complete operator algebra

tensor norms', and make some comments on the development of a theory
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- of such norms. It is to be hoped that the characterizations above

might play a role in this development.

6.1 OPERATOR ALGEBRAS.

6.1.1 Definition. We say a Banach algebra A is an operator
algebra if there exists a Hilbert space ¥ . and a bicontinuous

monomorphism of A4 into B(%) .

6.1.2 REMARK. Suppose that A is a Banach algebra with identity
e , |lef >1, and suppose that 4 : A4 - B(¥) is a bicontinuous
homomorphism. Let K be the closed linear span in ¥ of 6(A) (%) .
We obtain by restriction a bicontinuous homomorphism 64~ : 4 - B(K) ,

with ¢7(e) = I and [|67] < 18] , but now

R e R O R L .

6.1.3 THEOREM (Cole [Wr2]). Let A be an operator algebra, and
suppose 1 s a closed two-sided ideal in A . Then A/ 1 s an

operator algebra.

The following result of Varopoulos [Va3,Ca3,Tn2] gives a

characterization of operator algebras:

6.1.4 THEOREM. 4 Banach algebra A is an operator algebra if

and only if the following condition is satisfied:

There is a constant K > O such that if f € BALL(A*) , and ¢f 1

1S @ positiue integer, then there exists a Hilbert space ¥



elements (¢ and n in BALL(X) , and linear maps Tl”“’T of A

n
into B(X) , each bounded by K , such that

<t ay ... o8y > =< Tl(al) e Tn(an) C,n> ,

for a;,...,a €4d.

Proof. We prove the necessity only, the reader is referred to
[Va3] or [Ca3] for the sufficiency. Let A be an operator algebra,
let X be a Hilbert space, and let 6 : A - B(X) be a bicontinuous

homomorphism. Suppose f € BALL(A*) , then
g) = £ (871 (s)) ( se Oh)

defines a bounded linear functional on #(A) , with |g|| < Hﬂ'ln .
| wibh g~ i=agH.
Extend g to a functional g~ on B(X) [. By Proposition 3.2.5 g~

is completely bounded and Hg””cb =|lgll . Thus by 3.1.7 there exists
a Hilbert space ¥ , a *-representation r of B(X) on ¥ , and ¢

and 7€ ¥, such that ¢ ol < 167} and
<f,a>=g0) =<(6a) (,n> ,
for a € A . Thus
<t ap...a > =< [lCl lnll 7(8(ap)) ... 7(8Ca)) It ¢, lal ™t g

for ayy...,a € A , and so the condition of the theorem is met. n]

Let a be a Banach space tensor norm. We say a Banach algebra A

is an e-algebra if the map
| A®_A—>A:a,1®a2t-»a1a2
is continuous with respectto the & norm on A0 .

The necessity proof given in Theorem 6.1.4 above shows that every
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operator algebra is an H'-algebra, a result which appeared first in
[Ch]. Tonge [Tn2] showed that every /H'-algebra is an operator
algebra, where /H' 1is a related tensor norm. In [Ca2] Carne shows
that if @ is a Banach space tensor norm such that the class of
operator algebra coincides with the class of e-algebras then o is
equivalent to H' ; then he constructs an H'-algebra that is not an
operator algebra. Recall that for C*-algebras the norms 9 and H'
are equivalent (Theorem 4.2.5), and thus it is clear that every
C*-algebra is an H'-algebra. The following theorem shows that the
H'-tensor product of two infinite dimensional C*—algebras is never an

0peratdr.algebra. I do not know if it is ever an H'-algebra.

6.1.5 THEOREM. Suppose a 1is either the projective tensor norm,
the Haagerup mnorm or the H'-tensor morm. If A and B are
*
C -algebras, then A ®, B is an operator algebra if and only if A

or B is finite dimensional.

We shall need the following lemma, which the author was unable to
find in the literature, although most of the ideas appear in [DS].
The proof given may not be the most direct one, however later we

shall need somer of the details contained in this particular proof.

- 6.1.6 LEMMA. Suppose A and B are commutative 0*—algebras,
and ¥ is o Hilbert space. let p and o be non-trivial bounded
homomorphisms from A and B  respectively into B(X) with
commuting ranges. Then there ezists an invertible operator T on ¥

with
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-1 2 112
ITIENIT1 < 81 Hloll™ el

such that if p~(-) = T p(+) 1 and o7(-) =T o(-) T thea p”

and o~ are *-representations of A and B respectively on ¥ .

Proof of lemma. First noticé that because of the existence of
contractive approximate identities for C*-algebras lloll and
llell > 1 . Suppose A and B are isometrically isomorphic to CO(X)
and  Cy(Y) , for locally compact Hausdorff spaces X and Y
respectively. Suppose ( , 7 € ¥ . By the Riesz representation

theorem the functional on Cy(X) given by

fr<pd) ¢, 0>

defines a regular Borel measure e oM X, and

a1 ol NSH il -

We now define a regular bounded B(¥) - valued spectral measure

(c. f. [Hd]) E by

< E(B) C y .2 = ”C,W(B) ’

for Borel sets B of X . This is not a spectral measure in the
sense of [DS] since E(X) is not necessarily Iy . The important
thing here is that E(B) 1is an idempotent in B(%) for Borel sets

B of X . We now have the following identity:

<p) Chm>=<fy 1) Bldx) ¢, n>=fxy fdp. 0,
for f € CO(X) and ¢, ne¥.
Similarly we can find a regular bounded B(%) - valued spectral
measure F on Y , and an associated family of regular Borel

measures v such that
¢n 1 nex



<o(® ¢, n>=<Jygly) Fdy) ¢, n>=fygdr, ,
for g € CO(Y) and ¢ , n € ¥ . Using these identities one may
verify that
E(B) F(C) = F(B) E(C) ,

for Borel sets B and C of X and Y respectively.
Consider the family & of operators of the form Iy - 2 EB) .

This family is bounded by the constant 3 ||p|| ; and since
2
( Iy - 2 E(B) )

(Iy- 2E®B) ) (L - 2EB,) )

I

1
I, - 2B(B AB) ,

where A is the usual set theoretic symmetric difference, we see
that & is a bounded group of operators on % . Similarly the
family F of operators on % of form Ly - 2 F(C) , for Borel sets
C of Y, forms a bounded group in B(%) . Then, since & and ¥
commute, we see that & F ‘is a group of operators on ¥ bounded by
the constant 9 ||p| |lo| -

We now have recourse to a theorem of Wermer [DS], which states
that if § is a group of operators on a Hilbert space, which is
bounded by the constant M , then there exists an invertible operator |
T on the Hilbert space, with ||T| HT_1H < M2, such that every
operator S in § is similar via T to a unitary operator. Thus

in our case there exists an invertible operator T on % , with
-1 2 2
ITH T < 81 [loll® Hlell®

such that for Borel sets B and C of X and Y respectively,

there exists unitary operators UB and VC with

T (I,-2E@B) )T =Ty and T (L -2F0) )T =V,



Now U% =1, and so U= U; = [51 ‘;'thus T E(B) T is the
orthogonal projection % (Iy + Ug) . Similarly T F(C) Tl is an
orthogonal projection. |
Defining p~ and ¢~ by
() =T p() T and o 7() =T 0() T,
we see that p~ and ¢~ are homomorphisms of - CO(X) and CO(Y)
respectively into B(%) . The B(%¥) - valued spectral measures

corresponding to p~ and ¢~ are in fact orthogonal projection

valued, and hence p~ and ¢~ are *-homomorphisms. o

If, in the statement of the lemma above, p (or ~¢) was
contractive, then the proof would imply that it is a *-homomorphism

already, in which case one could improve the bound on ||T|| HT_1H .

6.1.7 COROLLARY. Suppose { S, };.; and T& }jEJ are
families of idempotents in B(X) such that

: (i€l andjeld),

(i6) S5 8 =T T =0 (if ig#iy ed jy#dy) s ond

(i47) if a € BALL(LY) then %_; o S;

and 2ﬁ=1 o Tj are

k k
bounded independently of n or the choice of a , {in} or
{jn} °
Then  there is a  positive  constant C such  that

I 2ﬁ,1=1 ] Siij1 | € Cmax { [eq] : 1<k , 1<n }

for all sequences {aij} of complez numbers.
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Proof of corollery. The result follows either by the methods of
the proof of 6.1.6 or by an elementary argument directly from the

statement, after defining two homomorphisms from Qi into B(¥) . ©

Proof of Theorem 6.1.5. The sufficiency is clear. - For the
necessity we suppose A and B are infinite dimensional, and that
6 :A® B-B(¥) is a bicontinuous homomorphism. Choose a maximal
abelian *-subalgebra (henceforth a 'masa') in 4, which we may take
to be CO(X) , for some locally compact Hausdorff space X ;
similarly find a masa CO(Y) in B. Now X and Y are infinite
spaces, since masa's of infinite dimensional C*—algebras are infinite
dimensional ([KR] Exercise 4.6.12). If a was the Haagerup norm
then the injectivity (Theorem 3.3.4) would enable us to assume
without loss of generality that A and B are commutative.

Write p and ¢ for the induced homomorphisms from CO(X) and
Co(Y) into B(¥) . Since p and ¢ have commuting ranges we find
ourselves in the situation of Lemma 6.1.6, and may choose E , F and
T as in the lemma. Here |T|| |IT°1| < 81 [|4]* .

Since X is locally compact we can choose a sequence { f } in
Ball(CO(X))+ , and a sequence { oy } in the maximal ideal space of
CO(X) (evaluation at points in X ), such that

f. £.=0 (i#3),
i fj > = 5ij

By the Hahn-Banach theorem we may extend each 5n to a contractive

and <6

functional p, on A . Choose sequences { g } and { ¢ } in B
and B similarly.

Let a positive integer N be given. For { Wik }g,k=1 , a double



sequence in [0,27) , we have

N 15k N 105k
2j,k=1 e H(fj ® gk) = 2j,k=1 e JX fj(x) E(dx) JY gk(Y) F(dy).
Choose for k =1,...,N sequences { fkm Yooy and gkm Ypey Of
positive simple functions comverging uniformly to f, and g
respectively from below. For fixed m € N we have

W,
B e Oy £ (9 B(@) Jy g (v) F(d)

o1 N Wi 1 1
=17 (5] oy e T Uy £ (0 B(@) T T fy g (v) By T T

and this last expression is bounded by HT'1H ITIl , using the fact

that if P ., P are orthogonal projections onto mutually

15 -
orthogonal subspaces then

n

I E? 1 Ai Pi | = max {IA1|""’|AHI} R

for Al,...,An € € . Thus in the limit as m - o we obtain

N Zh)Jk 1 4
125 g e OCE; @ g | < ITTHIT < 81 6]
Now let [11jk]l§,k:1 be a unitary matrix with ]ujkl - Nk . for
example let

1 = N2 exp (27 (5-1)k/N)

Define a functional

_oN
V7 ket Yk % 0
on A ®, B. Nowif aed and b e B then

|[V(a ® b) |

I

N _
| 2j,k=1 Uik Wj(a) ¢k(b) |

(2 1o 2 32 5w 0)12 32



<N flall [ibll

Thus if @ =y then [V <N . If e =H' then Theorem 4.2.5 gives
IVl <2N. If ¢ = I-ll, » then Theorem 4.2.3 gives (V|| < Ko N
(recall we -are assuming in this case that A and B  are

commutative).

. W ok
However, if we choose Wy such that U € = N °, then

N Wy N Wl 1
VI 2 IV 1oy e feegpl /Iy e 67 6k @ gl
~1y-1 \3/2 4
> 17T N2 s et
which is a contradiction, since N was chosen arbitrarily. u]

The construction above gives a direct proof of Theorem 4.2.8:

6.1.8 COROLLARY. The tensor morms 7y and A are equivalent on
. .
the tensor product A® B of two ( -algebras if and only if A or

B is finite dimensional.

Proof. If vy is equivalent to A on A®B then 1y is

equivalent to , and so A ®7 B is an operator algebra. An

11l
application of Theorem 6.1.5 concludes the proof. u!

Suppose A is an operator algebfa, and that 4 : A- B(¥) is a
bicontinuous homomorphism. By Remark 6.1.2, if A possesses an
identity then the associated unital homomorphism @~ satiéfies the
condition ”0~_1” >1 . Notice of course that in any case
161 1674 > 1 5 thus if (6] <1 then 61 > 1, and if &Y <1
then [|4]] > 1. .



6.1.9 Definition. Let A be an operator algebra. Define the
non-ezrpansive distance ng(A) of A from an operator algebra to be

the following expression:
inf {]|6]] 671): bicontinuous homomorphisms 6 : A - B(¥) , 67| > 1}.

Define the contractive distance dﬁA(A) of A from an operator
algebra to be the same expression, except now the infimum is taken

over all contractive bicontinuous homomorphisms 6 : A4 - B(%)

Finally, define the ezpansive distance dgA(A) of A from an

operator algebra to be:

inf{||6|| : bicontinuous homomorphisms 6 : A - B(¥) with H0_1H < 1}

The next results gives some idea of how far the projective tensor
*
product of two finite dimensional C -algebras is from being a

subalgebra of some B(%) .

6.1.10 COROLLARY. For n , me€ N , with - n < m, we have
3-1 n1/8

I

e e, 1) < 2 n)t
371 al/8 ¢ a8 © 12) , and

1<ds (16 0®) /0% < 2% .
0A 'n "9 "m

[aN

Proof. Let A = Qi , let B = Q: , and suppose that 7% is a
Hilbert space and that 6 : A ®7 B - B(%) is a bicontinuous
homomorphism. Proceeding as in the proof of Theorem 6.1.5, we obtain
the inequality:

n > (81 107 ert) T o3/

Thus



lop o7l > 817t o% |

and so dﬂi(l ®7 B) and dﬁA(A ®7 B) both exceed 371 ,1/8
If # was contractive, then by the remarks after Lemma 6.1.6 we

actually obtain the inequality Hﬁ'ln > n% , which implies that

& (e 1) 3 n®

L 7 'm

Indeed in this case it is easy to see that

0(200 ® Qoo) - Qoo ® 0

n 7 m n A m
isometrically.
On the other hand, it is well known (see remark after 4.2.8) that
. - w [ 0] [o 0] [0 0] . .
the canonical contraction Qn ®7 Qm - Qn ®) Qm has an inverse with

norm dominated by (2 n)% . 0

6.1.11 COROLLARY. If A and B are U*—algebras, with A

finite dimensional and B infinite dimensional, then
-1 5. 1/16
a4 e, B >3 (din /16

dipe B 237 (din HYI6 iad

(A4

dip(4 @ B) > (din 04

[AV4

Proof. Let A and B be as above, suppose 7% 1is a Hilbert
space and suppose 6 : A ®7 B - B(¥) 1is a bicontinuous homomorphism.

Write

where Dyyevesly € N , and put m = Dy 4.t Dy We proceed as in

the proof of Theorem 6.1.5, but now choose fl,...,fm of the theorem

to be the 'diagonal elements'



of A . Ve obtain
m> (81 (67" oyt w32 |
and thus |
lo1* 17" > 17t w > 8171 (aim )1/

The case when §# is contractive follows as in the last corollary. o

It is shown in Theorem 4.2.1 that the Haagerup tensor product
A& B of two C*-algebras A and B is a Banach algebra. In
addition, by the same theorem, there is a natural faithfil
representation of A ® B on a Hilbert space. However by Theorm
6.1.5 we know that U4 ® B is never an operator algebra, unles A
or B is finite dimensional. Earlier Paulsen and Power [PoP had
notic‘ed that there can exist no isometric homomorphism of 18 B
into the bounded operators on a Hilbert space. It is interesting to
note that there often exist bicontinuous homomorphisms into B(B(¥))

for some Hilbert space ¥ (see [KaS]).

6.1.12 THEOREM. Suppose that X and Y are operator spaces
contained in 0*-algebras A and B , and suppose that
( AU » Py s 7(U ) and BU R KU ) are the universal
representations of A and B respectively. There s an naturil

1sometry
6 : X ® Y- B(B(?(U ® L’U))

given by
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62 ® b)(T) = (py© 0)(a) T (0 @ o) (b) |
for T eB(¥;e Ly .
If we give A ® B the multiplication
(a®b)o(c®d) =(ac)e®(db) ,

for a,ced and b,de B, then A ® B is a Banach algebra with
respect to o , and with respect to this multiplication

0: A8 B- B(B(?(U ® L) s an isometric homomorphism.

Proof. Clearly @ is contractive. Let u € X ® Y be fixed,
with Hu”h =1 . By the Hahn-Banach Theorem there is a contractive

linear functional f on X ®h Y with
<t ,u>=1

By 3.3.3 there exists unital *-representations # and 7 of A and
B on Hilbert spaces ¥ and K respectively, a contractive linear

operator T : £ - % , and ( € BALL(X) and 7 € BALL(¥) , such that
fxey) =<dx) Try) ¢, n> ,
for xeX,yeY.

Now since 4 and 1 are subrepresentations of 2 and ™0

respectively we may write
fx®y) = <py(x) T' y(y) ¢" 5 n' >
for some T' € BALL(B(KU,WU)) , ('€ BALL(KU) , N € BALL(WU) . Now

let S be the operator on WU ® KU which equals T' on KU , and
which annihilates WU . Then

16(w) (S)II 2 [< 6(u)(S) (0@ ¢'), (' ®0) > |



and so 6 is an isometry.
That A ® B is a normed algebra with the multiplication o
follows as in 4.2.1. The other statements of this proposition are

obvious. u)

6.2 MATRICTAL OPERATOR ALGEBRAS.

In this section we investigate some of the themes of 6.1 in the

context of operator spaces.

6.2.1 Definition. Let ( X , ”'”n ) be a norm-closed operator
space, and suppose X 1is also an algebra with multiplication m .
We write such a space as a triple ( X, H-Hn ,m) ,or (X,m),
or even X when there is no danger of confusion. We say that
(X, “'”n , m ) is completely bicontinuously isomorphic to an
operator algebra if there exist a Hilbert space ¥ , and a completely

bicontinuous map 4 : X » B(¥) with

B(m(x,y)) = 6(x) 6(y) (x,yeX).

In this case we say that ( X, H-Hn , M) 1s a matricial operator

algebra if 6 is a complete isometry.

Notice that just as in the operator algebra situation, we may
assume completely bicontinuous homomorphisms of complete operator
algebras with identity are unital; but again the norm of the inverse

mapping may change.



We would like to characterize matricial operator algebras,
preferably up to complete isometry, but also up to complete
bicontinuity. Clearly a necessary condition is that the
multiplication m is completely bounded. Indeed, if X is an
operator space, and if 6 : X - B(¥) is a completely bicontinuous

linear mapping onto a subalgebra of B(¥) , then defining

n(x,y) = 671(6(x) 6(y))

for x,y € X , we obtain a completely bounded multiplication.
6.2.2 THEOREM. If X <4s an operator space, and if m s a

completely bounded multiplication on X , then X , with the

multiplication m , is an operator algebra.

Proof. By Theorem 3.3.3 the multiplication m satisfies the

condition of Theorem 6.1.4. ' o
The preceding theorem shows that 'H-Hh - matricial algebras',
whatever this means, are operator algebras. The following two

examples show that a completely bounded multiplication is not

sufficient for a completely isometric characterization.

6.2.3 EXAMPLE. Let X be an operator space, realized on the
‘ *
Hilbert space % , and choose f € BALL(X ) . Define

m(x,y) = f(x) y ,
for x,y € X . Then m is a completely contractive and

associative multiplication. The algebra ( X , m ) has no identity

unless X is one dimensional. If f is the zero functional then



(X, m) is indeed a matricial operator algebra, via the complete

isometry 6 : X - Hy(B(%)) given by

09 = [ § 5 ]

On the other hand, if X is the C*—algebra Ly , and if

t((A49)) =4y
for (A1549) € &5 , then there is no isometric imbedding
6 : X~ B(¥) . For if there were, and 6((1,0)) =P , 6((0,1)) =T,
then P is a contractive idempotent and consequently an orthogonal

projection onto a subspace of % . The relations

PT=T,T2=TP=0
give
A P+ dg T = { g1+ 12 0%,
which is a contradiction.
A completely bicontinuous representation 0 : X Hy(B(%)) of any
multiplication m of the type above, given by a functional f , can

also be written down explicitly, namely

8(x) = f(x())I,l (x - é(x)I,’l )

6.2.4 EXAMPLE. Let n be a positive integer or « , and let
ﬂh be the C*-algebra of bounded operators on (" . With respect to
the usual basis of (® we regard elements in K~ as infinite
complex matrices. Consider the Banach algebra [Va3] ( Ho oy o),

where o 1is the Schur product

AoB=[a.. b ] (A,Bek ).

ij "ij
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With respect to the usual matriciai norms on ﬂh the Schur
multiplication can be shown to be completely contractive. However if
6 : ﬂh - B(¥) 1is a contraction, and a homomorphism with respect to
o, then { H(eij) } is a double sequence of orthogonal projections
onto mutually orthogonal subspaces of % , and hence
| 22,j=1 Aij 0(eij) | = sup { |Aij| :1<¢i,j<n} .

Thus # could not be an isometry.

0f course if n < o and if @ is the map taking a matrix A to
an 102 x n2 matrix with the aij on the main diagonal then 6 is a
homomorphism with respect to o , and ||f]] <1, Hﬂ’ln <n . In the
case n < o the multiplication o has an identity of norm n . It
is difficult to imagine a homomorphism @ from ('ﬂh , © ) into
B(¥) with |4 ”9-1” <K, where K is independent of n , however
some such homomorphism must exist, since the condition of Theorem
6.1.4 shows [Va3] that M~ 1is an operator algebra, and of course Hy

is algebraically embedded in M; in a natural way.

6.2.5 EXAMPLE. Let A be a subspace of B(%) , and suppose
there is an operator V € BALL(B(¥)) such that AV Ac A . Then we
may define a bilinear mapping m : A x A+ A by

m(a,b) =a Vb ,
for a,b €4 . It is clear that m 1is a completely contractive
multiplication. The map 8 : A - Ho(B(T)) defined by
¥k
e(a)= ayV a.(I'VV)
0 0

is a completely isometric homomorphism with respect to the
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multiplication m .
More generally if X is an operator space, if § is a completely
bicontinuous linear mapping X - B(X) , and if 4(X) V 6(X) c (X) ,

then defining

n(x,y) = 671(0(x) V 8(y)) (x,y €X)

we obtain a completely bounded multiplication. One can construct, as
in the last paragraph, a completely bicontinuous homomorphism from

(X,n) into My(B(K)) .

Examples 6.2.3 and 6.2.4 above suggest that the absence of a
completely isometric homomorphism into B(¥) could be attributed to
the lack of an identity of norm 1. This is in fact the case as the

following theorem, found by A. M. Sinclair, shows:

6.2.6 THEOREM. lLet X be an operator space with a completely
contractive multiplication m , and suppose there is an identity e
for m, and el =1 . Then (X, m) is a matricial operator

algebra.

Proof. Suppose X is a subspace of B(%) for some Hilbert space

¥ . Let L be the self-adjoint subspace of Ho(B(¥)) consisting of

elements of the form [ 0* X } , where x and y are in X .

y 0
Define a multiplication m™ on L by

m~({0* le’[O* xz}“[o T
Y1 0 Y9 0 m(Y2>Y1) 0

for X{ s X9 5 ¥y and yo € X . It is easy to see that m” is



symmetric (Definition 3.1.8). Also [ 0* € J is an identity for L
e 0 o
of norm 1. Further, the map taking an element x in X to the

element [ 8 3 ] of L is a complete isometry. Thus to prove the

statement of the theorem we may assume without loss of generality
that X is self-adjoint in B(¥) , and that m is symmetric.

Let A Dbe the C*—élgebra generated by X in B(%) , and let
( AU , Ty Ky ) be the universal representation of A . Now since
Tyom: X x X = B(WU) is a completely contractive bilinear map, it
induces a completely contractive map X ® X - B(WU) . By the
injectivity of the Haagerup norm (Theorem 3.3.4) and the
Arveson-Wittstock-Hahn-Banach Theorenm (Theorem 3.2.6), the linear map
induced by Tyom extends to a completely contractive map
§:Ae A-B(Ly) . Then

"=k g+ )
induces a  symmetric  completely contractive bilinear map
Ax A-B(¥y) . The Christensen-Sinclair representation theorem
(Theorem 3.1.10) allows us to choose a Hilbert space K , a unital
‘*-representation 7 of A on X , an operator U; € BALL(B(%,X)) ,
and a self-adjoint operator #; in BALL(B(X)) , such that
n(a®b) = U 7(a) V, 7(b) U, ,

for a,bed.
Since 7 1is a sub-representation of a there exist an operator

U and a self-adjoint operator V in BALL(B(WU)) such that
*
(WU m) (a-,b) = U Z'U(a) V WU(b) U ( a 5 b € X ) .

Without loss of generality, and for notational simplicity, we can

replace X with ,wU(X) , X with TU , and m with Ty © M DOW



m(a,b) =U aVbU (a,beX) .
Define an operator ¥ in B(B(%)) by
* 1 n
<¥(OS) ¢, n>=LIM<U) SU ¢, n> ,

for SeB(¥) and (, pe ¥ ; vhere LIM is a Banach limit on £%
(see [Conw]). By the properties of Banach limits ¥ is completely
positive. Also if A, B € AL(X) then

U e 1) *u (4,8)" n (A,8) (Ue I )

n n’ n\’ n
Z F k+1 * * k+1
€U e1)! B (VeI )A A(VeI)B (Uel)

<2 (0 e )R BT B (Ve 1)k

and thus

* 2 % .

¥ (m (A,B) m (A,B)) < [AI” ¥ (B B) . (1)
* * _

Also B B=m(e®I ,B) m(ee®l),B)

* *

<(U @ In) B B (U® In) ,

and hence inductively, for k = 1,2,... we have

% % k % k
B B<({U I) B B((U®I)
n n
Thus it is clear that
* *
B B[ Tn(B B) . (2)

Now following the construction before Theorem 3.1.2 define a semi

inner product on X ® ¥ by
%
<a®(,be®np>=<¥%b a) ¢, >

Let X be the Hilbert space which is the completion of the quotient
of X®7% by the subspace

"{ueXe¥:<u,u>=0}
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with respect to the induced inner product. We shall write [u] for
the coset of an element ue X®7%.

For a,,'bl,...,bn € X and (1,...,(n € ¥ we have

By e 06 T w0 G

*
E?,j=1 <¥(m(a,b;) m(ab;)) ¢; (>

*
<¥ (m(ae® e;1,B) m (a® e1oB) ¢, ¢>

where B = 22:1 b, ® e;; . Thus, by (1) we see

*
< iy ma,by) @ ¢, B m(a,by) @ (> < laf® < ¥ (B B) ¢, ¢>

2 n n
= llall” < Zj_y by @ ¢ Ty by ® G5 >
This inequality allows us to define a mapping 6 : X - B(X) by
6(a) ([b @ ¢]) = [n(a,b) ® (]
for a , beX ad (¢ in ¥ . It is clear that 4 1is a
contractive homomomorphism. ‘Indeed the matricial counterpart of the

calculation above shows that # 1is completely contractive. Also if

Ae h(X) , it ¢ e BALL ™) and if ¢ is the vector in

BALL(K(D)) whose i'th component is [e ® (i] , then

9 9
18, (012 > 11 6.(4) (&) |

ol n n

TEiog < Fjag 245 @05 By 2450 G50

_ gl *

=33 k=1 <@g 255 G >

=< in(A* A) ¢, ¢>

*
2<Ah AC, (>

=<A¢,A (>

using (2) . Thus (1§, (A)ll, 2 IlAll, and consequently § is a
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complete isometry. u)

If X is an algebra with respect to a multiplication m we shall

write m” for the extension of m to X ® € given by
1"(2@ A,b®u) = (mab) +Ab+pa)ey ,

for a ,beX and ), p € C. Vith this multiplication X & C

has an identity, namely 0 & 1 .

6.2.7 COROLLARY. Llet X be an operator space with a completely
contractive multiplication m . Then ( X , m ) 4s a matricial
operator algebra if and only if there ezists an I[®-matricial

structure { |-[ } for X @ C such that
G) A=W, (Aea®),
(¢5) | 0®1 | =1 , and

(i¢9) the multiplication m™ on X © C eztending m is

completely contractive.

The following result generalizes Theorem 6.1.3:
6.2.8 COROLLARY. et A be a matricial operator algebra, and
suppose 1 is a closed two-sided ideal in A . Then A/ 1 with

the quotient matricial norms is a mairicial operator algebra.

Proof. VWe may assume without loss of generality there exists a
Hilbert space ¥ such that A is a subalgebra of B(¥) . Now apply
Corollary 6.2.7. D



6.2.9 REMARK. The condition in Corollary 6.2.7 is less than
desirable, but unfortunately we have not been able to improve on it.
It would be of interest if one could obtain a proof mimicking the
construction of Varopoulos giving the sufficiency in Theorem 6.1.4.
Varopoulos uses Theorem 6.1.3 to construct a contractive monomorphism
from a concrete operator "algebra onto the algebra satisfying the
condition of 6.1.4. However for this to succeed in our case we

require an operator space version of the open mapping theorem.

The next result ‘informs us that we can assume - that the
multiplication has an identity if we are interested only in a

completely bicontinuous representation.

6.2.10  PROPOSITION. et X be an operator space with a
completely contractive multiplication m .  Then there exists an
I®-matricial structure on X © C such that the natural eztension m”
of m to XeC is completely contractive, and the canonical

embedding of X in X ® C is completely bicontinuous.

Proof. Define an L®-matricial structure on X ® € by
Ao h | =max { AL, AL}

for A e M (X) and A€ M . With respect to this structure m™ is

completely bounded, with |m”|cb = k , say. Then

|1,
defines a new L¥-matricial structure on X ® ¢ with respeét to which
m~ 1s completely contractive. Note that the identity of X & (

does not have norm 1. O
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6.2.11 REMARK. Let X be an operator space, represented on
B(%) , with a completely contractive multiplication m , and suppose
there exists an identit& e for m, |leff 21 . Let A be the
C*-algebra generated by X in B(¥) . Then following the proof of

6.2.6 we can assume X self-adjoint and m symmetric and write
r(n(a,b)) = U 7(a) V 7(b) U (a,beX)

for some Hilbert space ¥ , some representation = of A on % ,
and some operator U and self-adjoint operator V in B(%) . If
these objects can be chosen such that |[(V 7(e) U)"| is bounded
unifofmly by some positive constant K , then ( X , m ) is
completely bicontinuously isomorphic to an operator algebra. In fact
in this case there exists a Hilbert space K , and a unital
completely bicontinuous and completely contractive linear mapping @

from X into B(X) , which is a homomorphism with respect to m .
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7. APPENDIX.

7.1 Definttion. A non-trivial inverient subspace of an operator
T on a Banach space X is a proper closed linear subspace E of X
such that E # {0} and T(E) c E . The subspace E is said to be
hyperinvariant for T if E is an invariant subspace for every

operator on X that commutes with T .

Throughout what follows the set [0,1) is taken to be identified
in the usual\way as a topological'group with T, the unit circle in
the complex plane. In this appendix we give a sufficient condition
for an operator on L2[0,1) composed of a multiplication operator
and a translation to possess an invariant subspace. In fact all that
follows is valid for IP[0,1) , 1 <p < w .

More specifically, let a be a fixed number in [0,1) and let ¢
be a fixed non-zero continuous function on [0,1) . This implies

that ¢(0) = p(1) . Define an operator T on L2[0,1) by
Tf(x) = p(x) f(x + a) ( x e [0,1))

for each f € L2[0,1) . Here addition is modulo 1 of course. Thus

if M¢ is the multiplication operator on L2[0,1)

HE(x) = p(x) 1(x) (x€f[0,1)),
and if Sa is the translation operator

Saf(x) = f(x + a) (xe€e [0,1)),

then we have
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This operator is related to a class of operators introduced by
Bishop as candidates for operators possibly not possessing invariant
subspaces. Subsequently almost all of these have been shown by A. M.

Davie [Da2] to have hyperinvariant subspaces.

7.2 Defisition. An irrational number £ is called a Liouville
number if for each natural number n there exist integers p and q

with q > 2 such that

¢ - p/q| < q"

One can [0x] show that the set of Liouville numbers is demse in R
but has s-dimensional Hausdorff (and consequently also Lebesgue)
measure zero for all s > 0 .

We shall need the following theorem:

7.3 THEOREM (Wermer [Wrl1,CoF]). et X be a Banach space and
suppose R is an invertible operator on X satisfying the following

two conditions:

(i) the spectrum of R contains more than one point, and

(ii) I°

Nn=-c0

log IR™l / (1 + n?) < w

Then R possesses a non-trivial hyperinvariant subspace.

The result we give below asserts that the operator T defined
above possesses an invariant subspace provided that e is not a
Liouville number and provided that ¢ is sufficiently smooth. For a

bounded function g : [0,1) » € the modulus of continuity wg of g



is defined to be

wg(8) = sup { |g(x) - g(x')| = [xx'| <61} ,

for 6 >0 . This is an increasing function of &6 > 0 . Note that
Uy is not quite the usual modulus of continuity [Zy] since the
subtraction above on [0,1) is modulo 1 ; however if g(17) = g(0)
then wg ‘is bounded above and below by a constant multiple of the
usual modulus of continuity.

Suppose g is a fixed non-vanishing complex valued function on
[0,1) , with g(0) =g(1") , such that g and g'1 are bounded.
Let w, Dbe the modulus of comtinuity of g . Notice that if

g
|x - x'"| <t then

8] < g1 + uy(e)

and consequently

| Log(lg(x)1/lgx")1) |
log(1 + flg™ll, ug(t))
<7, wg(t)

Thus it is clear that the modulus of continuity of log|g| is

| loglg(x)| - loglg(x")| |

I

dominated by a constant multiple of the modulus of continuity of

gl -

7.4 THEOREM. let a € [0,1) . Let ¢ be a fized non-vanishing
continuous complex valued function on [0,1) ( with ¢(0) = p(17) ).
The operator T on L2[0,1) defined by

Tf(x) = p(x) f(x + @) (xe€e[0,1)) |,

where the addition is modulo 1 , possesses an invariant subspace



provided thet a is not a Liowville number and provided that the

modulus of continuity w of ¢ , or even of log|lp| , satisfies
1
Io w(t) /tdt < o

If, in addition, @ 1is irrational then T possesses a hyperinvariant

subspace.

. Proof. If @ 1is rational then we do not need the smoothness
condition for ¢ : if a = p/q , for some p,q € N , then the space
of functions which are zero on alternate intervals of length (2q)*1
is ar invariant subspace for T .

Assume henceforth then that e« is irrational, and put 9% = log|g| .
By the remark immediately before the statement of the theorem we may
as well assume the integral condition holds for the modulus of

continuity w of ¢ . If n is a non-negative integér and we put
-1 ,ck
o= HEzO'(Sa ?)
then we have T' =M o S* and so |T%| = |l¢.|| . Similarly if n
wn a nN"w
is a negative integer we have ||V = ”@;1”w . Thus as n -
-1 «n-1 ok
log ITM| / n = sup { (7" Z 25 S,(#) (x) @ x € [0,1) }
1
~f, ¥ dt
by the uniform ergodic theorem (see [Pa] 1.1), if not by more

elementary considerations. We may conclude from this that r(T) ,

the spectral radius of T , satisfies

r(T) = exp(J, ¢ dt)

If M is the unitary multiplication operator on L2[0,1) given

by
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ME(x) = 27 £(x) (xe€[0,1)),
for f € L2[0,1) , then it is easy to see that
T- 2™ 1= 2y r )y !

for any X € € . This shows that the spectrum of T 1is invariant
under rotation by e2wia , and so certainly contains more than one
point. Indeed it is easy to see that the spectrum ¢(T) is the
circle of radius r(T) , centred at 0 , but we shall not explicitly

~ need this fact. Normalize the operator T by setting

R=r(T) 1T
This is equivalent to scaling ¢ by a constant.
For a bounded function g : [0,1) - € let us write D(g,n) for

the discrepancy

. - 1
D(g,n) = sup { | (a7 By 0 g)(x) - J gdt | :xe[0,1)}
We now appeal to Wermers Theorem (7.3 above) to deduce that the

operator R has a non-trivial hyperinvariant subspace if

-1
Tooq 0 sup { (n Ek 0 g)(x) - j gdt : x € [0,1) } <
for g=¢ and g = -9 . Ve may rewrite this condition as

2 0l D) <o . (*)
Now since a is not a Liouville number by elementary number

theory (see [Da2]) there exists K , N € N such that if n 1is a

positive integer greater than N then there exists p , q € N, with

p and q coprime, such that both

1/K

n <gqg<n

IN
£

and le - p/q]



138

hold. For such n we may write n =rq + s , for some non-negative

integers r and s , with s < q . We obtain
- - 1
0! Bg #(x + ka) - ¥ dt |

R P k)] ¢ 10T - ra) T B8 e+ ke +

|(r4>’ 4 $0c + ka) - 9 il
zmm>wh+|@@4 4! $(x + ka) - f ¢ dt |

-1 or-1 -1 oq-1 . ! "
r 2j=0 | a" By #(x + jae + ke) - Io pdt | + 0(n ) .

IA

As an integer a rumns from 1 to q , the number a p/q assumes
each of the values 0 , 1/q , ... , (q-1)/q in some order (modulo 1
of course). Since |a ¢ - a p/q| ¢ q—l the following assertion is

clear: for each x € [0,1) there is a partition of [0,1) into

disjoint intervals I0 s ey Iq_1 each of length q'1 such that
each of the q numbers x , x + ¢, ... , x + (qg-1) e« may be
associated with a unique interval I0 s eee s Iq_1 respectively

which it lies within a distance of q 1 from.
By the mean value theorem we may for each k = 0,...,(q-1) choose

fk € Ik such that
|Ik|—1 IIk ¥ dt = ¢(£k)
Then | ¥(x + ka) - IIkI'1 IIk Y dt | < w(2/q) ,

where w is the modulus of continuity of ¢ , and so

I

o7 525 90x + ko) - (v el <o BTG IGe s ko) - q g 6 atl

< w(2/q)

Thus for any x € [0,1) we see that



139

S a7 Bl 60+ Gaa s ka) - S g dn | < w(2/q)
and so
D(¥,0) < w(2/q) + 0(n™%)
<w@n V% L oa™ .

Consequently (*) is satisfied if

Zr-q n1 w(2 n‘l/K) <

which proves the theorem after an application of the integral test of

elementary undergraduate analysis. : o

7.5 REMARK. It would be of interest if one could enlarge the set
of numbers @ or the set of functions ¢ for which the result
holds. It is probably possible to use the method of [Da2] to extend

this result to the case when ¢ is permitted to assume the value O .

For s >0 let A, be the Holder class [Zy]: the class of those
bounded complex valued functions g on [0,1) for which there
exists a constant C > 0 such that the modulus of continuity w of

g satisfies

w(8) < C &° (6§20)

7.6 COROLLARY. The operator T defined above possesses an
tnvartent subspace if a is not a Liowville number and if the
function ¢ , or even log|ly| , is in the Holder class AS for some

s>0.
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Proof. If ¢ € A then log|p| € A, , by the remark above
s s

Theorem 7.4. Thus if either ¢ or log|p| is in A, for some

s >0 and if w is the modulus of continuity of log|p| then
1
Io w(t) /tdt < o

An application of Theorem 7.4 completes the proof. | D
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