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Metamaterials Inspired by
Modular Origami
Modular origami is a type of origami where multiple pieces of paper are folded into mod-
ules, and these modules are then interlocked with each other forming an assembly. Some
of them turn out to be capable of large-scale shape transformation, making them ideal to
create metamaterials with tuned mechanical properties. In this paper, we carry out a fun-
damental research on two-dimensional (2D) transformable assemblies inspired by modu-
lar origami. Using mathematical tiling and patterns and mechanism analysis, we are
able to develop various structures consisting of interconnected quadrilateral modules.
Due to the existence of 4R linkages within the assemblies, they become transformable,
and can be compactly packaged. Moreover, by the introduction of paired modules, we
are able to adjust the expansion ratio of the pattern. Moreover, we also show that trans-
formable patterns with higher mobility exist for other polygonal modules. The design flex-
ibility among these structures makes them ideal to be used for creation of truly
programmable metamaterials. [DOI: 10.1115/1.4038969]

Introduction

Recently, there has been a surge of interest in creating mechani-
cal metamaterials using origami which for certain origami patterns
could be folded into structures with unique mechanical properties
that are uncommon among existing conventional materials. Most of
the prior research on origami metamaterials mainly focus on stack-
ing layers of sheets folded by a crease pattern known as the Miura-
ori to obtain particular features such as a negative Poisson’s ratio
[1–6]. Currently, a few attempts have emerged using other origami
techniques. For instance, Johannes et al. reported a transformable
metamaterial utilizing a basic material unit made of paper strips
that has three degrees-of-freedom (DOF) and can deform into sev-
eral specific shapes [7]. Yang and Silverberg suggested a design
strategy using repetitive kirigami pattern for mechanical metamate-
rial [8]. By varying the geometrical parameters, the metamaterial is
able to form various shapes. These are inspiring directions to create
next-generation smart materials.

In this research, our attention is drawn upon creating two-
dimensional (2D) metamaterials inspired by the modular origami,
which is a type of origami where multiple pieces of paper are
folded into a module, and these modules are then interlinked with
each other, resulting in a structure that cannot be obtained by
stacking folded sheets. Most of the modular origami assemblies
are rigid structures, but some could be made transformable, i.e.,
they can shift from one configuration to another. Figures 1(a) and
1(b) show two such examples: a ball capable of being easily
pressed to a plane or clasp to a stick, whereas the other a cube
assembly that can be closely packed together or expanded to a
porous grid [7,9,10]. These two objects are essential mechanisms.
The transformable feature in both assemblies is particularly valua-
ble when the concepts are used to create programmable engineer-
ing metamaterials. Under external load such materials can be soft
initially when they undergo mechanism motions and become stiff
subsequently when the mechanism motions cease and modules are
compacted together [11]. If any other modules were used in places
of the polyhedron modules, e.g., the origami crash box [12], the
behavior of these structures could be tuned further so that they
may, for example, exhibit better energy absorption capacity. In
other words, the overall mechanical behavior of the structures can

be made responsive to external loading conditions. These struc-
tures and materials based on such structures can find their usage
in automotive, aerospace structures, and body armors.

The focus of this paper is on the geometrical aspect of the 2D
modular origami objects such as that shown in Fig. 1(b). This par-
ticular structure was first investigated by Ron Resch back in 1977
[13]. Inspired by its geometrical features, we have embarked on a
mission to investigate whether there are other transformable assem-
blies similar to the cube assembly. To do so, we have used a mathe-
matic technique known as tiling and patterns [14]. If the cubes and
voids in the cube assembly are treated as 2D shapes, the assembly
can be modeled as a tiling pattern in which both the modules and
voids are seen as tiles. Then, the cube assembly is regarded as an
edge to edge tiling of two shapes: squares and rhombuses. Different
from conventional tiling of two shapes, the shape of rhombic void
changes during the transformation (Fig. 1(b)).

To model the transformation kinematically, we treat the cubes
(or other shaped modules) as rigid bodies and the voids as planar
four-bar linkages (4R linkage). Hence, the assembly of nine cubes
could be treated as nine rigid bodies interlinked by four 4R link-
ages. Following this path, we can then analyze this type of assem-
blies using the theory of mechanisms [15–17]. Moreover, we
replace the cubes with quadrilaterals, and we are interested in the
mobility of assemblies with only quadrilateral modules connected
by 4R linkages. Our objective is to explore the transformable fea-
tures of these arrangements with different modules.

The layout of the paper is as follows: First, we derive the geomet-
rical conditions under which the assemblies of quadrilateral modules
are transformable without overlap. Then, in second section, we ana-
lyze the orientation and duality of the assemblies during transforma-
tion. This is followed by a discussion on arrangements consisting of
more than two types of modules (different sizes or shapes). In partic-
ular, a special module with star shapes is presented, which can
greatly increase the folding ratio. The transformation principle of
this star assembly and the expand rate calculation are provided.
Finally, we demonstrate that there exist many more transformable
assemblies derived from early analysis, that leads to the conclusion
of the paper and thoughts on future work.

Transformable Tilings by Quadrilaterals

The arrangement shown in Fig. 1(b) consists of interlinked rigid
square modules forming a number of 4R linkages. Now, we
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replace each of the square modules with an arbitrary quadrilateral
whose side lengths are a, b, c, and d. A suitable geometrical con-
dition has to be imposed to the voids in order for the voids to van-
ish when the rigid modules are compactly packed together. This
geometrical condition is that the sum of two adjacent side lengths
must be equal to the sum of the other two side lengths. Under this
condition, there are a number of tiling possibilities, which we
shall discuss hereafter.

Example 1. First consider an arrangement of the rigid modules
shown in Fig. 2. This pattern is made of three shapes: the rigid
quadrilateral module and two quadrilateral voids: one with side
lengths a, a, c, and c and the other b, b, d, and d. The quadrilateral
modules can be closely packed once the voids vanish under this
circumstance, should the tiling pattern be transformable. The
angles for the quadrilateral module and voids are shown in Fig. 2.
Note that the two opposite angles of the voids, marked as a and
/1, are always identical because of the shape of the voids.

Next, we shall find the conditions under which this tiling is
transformable.

Geometrically there are

h1 þ h2 þ h3 þ h4 ¼ 2p

2/1 þ /2 þ /3 ¼ 2p

2aþ b1 þ b2 ¼ 2p

(2.1)

At each point where quadrilateral modules are connected, there
must be

h1 þ h3 þ /3 þ a ¼ 2p

h1 þ h2 þ /1 þ b2 ¼ 2p

h2 þ h4 þ /2 þ a ¼ 2p

h3 þ h4 þ /1 þ b1 ¼ 2p

(2.2)

Therefore, we have

h4 ¼ 2p� h1 � h2 � h3 (2.3)

/1 ¼ a (2.4)

/2 ¼ h1 þ h3 � a (2.5)

/3 ¼ 2p� h1 � h3 � a (2.6)

b1 ¼ h1 þ h2 � a (2.7)

and

b2 ¼ 2p� h1 � h2 � a (2.8)

The edge lengths are also related by the following relationships:

a ¼ sin h1 þ h2 þ h3ð Þ
sin h3

d sin h1

sin h1 þ h2ð Þ � c

� �

þ d sin h2

sin h1 þ h2ð Þ
(2.9)

b ¼ d sin h1 � c sin h1 þ h2ð Þ
sin h3

(2.10)

a sin
/3

2
¼ c sin

/2

2
(2.11)

and

b sin
b1
2

¼ d sin
b2
2

(2.12)

The latter two equations are obtained by considering the geometry
of the voids. Now substituting Eqs. (2.3)–(2.10) into Eqs. (2.11)
and (2.12), there are

Fig. 1 Modular origami models: (a) a snapology ball and (b) an interlinked cube assembly

Fig. 2 An arrangement of identical quadrilateral modules
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sin
h1 þ h3 þ a

2
sin

h1 þ h2 � a

2

sin h1

tan h3
sin h1 þ h2ð Þþ

sin h1 cos h1 þ h2ð Þ þ sin h2

2

6

4

3

7

5

¼
sin h1 sin

h1 þ h2 � a

2
�

sin h3 sin
h1 þ h2 þ a

2

2

6

6

4

3

7

7

5

�
sin

h1 þ h3 � a

2
þ

sin
h1 þ h3 þ a

2

sin h1 þ h2ð Þ
tan h3

þ cos h1 þ h2ð Þ
� �

2

6

6

6

4

3

7

7

7

5

(2.13)

If h1 þ h2 ¼ p and h1 þ h3 ¼ p, both sides of Eq. (2.13) become
zero regardless of a. This indicates that under this condition, Eq.
(2.13) holds for any a. In other words, a is not uniquely deter-
mined by h1; h2; and h3. That is to say, this assembly becomes
transformable if the quadrilateral modules are a parallelogram.
Note that the rigid modules can be a square, rectangle, or rhombus
for all of them that are parallelograms.

From Eqs. (2.4), (2.5), and (2.7), we have h1 þ h3 ¼ /1 þ /2,
and h1 þ h2 ¼ aþ b1. Hence, /1 þ /2 ¼ p and aþ b1 ¼ p
because h1 þ h2 ¼ p and h1 þ h3 ¼ p. This indicates that only
when the quadrilateral voids are made of parallelograms can the
tiling pattern be transformable. This conclusion prompts us to
consider arrangements with only parallelogram voids, which are
presented next.

Example 2. Consider now an arrangement with a set of nine
quadrilateral modules shown in Fig. 3(a). The central one is set as
a reference module. This is a tiling pattern made of five shapes:
the quadrilateral modules, two types of rhombic voids with side
lengths a and c, respectively, and two types of parallelogram
voids with side lengths b and d. The parallelogram voids are clas-
sified as two types because their angles could be different.

Now take a as an input, the following angular relationships can
be established geometrically:

h4 ¼ 2p� h1 � h2 � h3 (2.14)

/1 ¼ 2p� h1 � h3 � a (2.15)

/2 ¼ h1 þ h3 þ a� p (2.16)

g ¼ p� a (2.17)

b1 ¼ 3p� 2h1 � 2h3 � a (2.18)

b2 ¼ 2h1 þ 2h3 þ a� 2p (2.19)

c1 ¼ 2p� h1 � h3 � a ¼ /1 (2.20)

and

c2 ¼ h1 þ h3 þ a� p ¼ /2 (2.21)

Fig. 3 The second arrangement of identical quadrilateral modules: (a) mathematical model and assem-
blies consisting of (b) trapezium and (c) arbitrary quadrilateral modules
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The quadrilaterals units must not overlap with each other, so the
interior angles of the parallelogram voids are only allowed to be
between 0 and p. Applying /1; /2; b1; b2; g 2 ½0;p� to
Eqs. (2.15)–(2.19) yields

0 � a � p

p� h1 � h2 � a � 2p� h1 � h2

2p� 2h1 � 2h2 � a � 3p� 2h1 � 2h2

(2.22)

With further simplification we obtain the range of the quadrilat-
eral angles, which is

p � h1 þ h2 �
3

2
p (2.23)

Where this condition not met, the quadrilateral would overlap dur-
ing transformation. The parallelogram voids completely close
when a ¼ 0. If the rhombic voids close at the same time,
/1 ¼ 2p� h1 � h2 � 0 ¼ p, and thus

h1 þ h2 ¼ p (2.24)

This indicates that the assembly based on this arrangement can
only be compactly packed when two opposed edges in the quadri-
lateral are parallel to each other, i.e., the quadrilateral has to
become a trapezium. Figure 3(b) shows such a trapezium assem-
bly, whereas a general case consisting of arbitrary quadrilaterals is
given in Fig. 3(c) that cannot be close packed.

Example 3. The third arrangement is shown in Fig. 4(a). Again
only nine quadrilaterals are used, and the pattern consists of three
shapes: a quadrilateral and two parallelograms voids.

Geometrically the angular relationships are

h4 ¼ 2p� h1 � h2 � h3 (2.25)

/1 ¼ 2p� h2 � h3 � a (2.26)

/2 ¼ h2 þ h3 þ a� p (2.27)

g ¼ p� a (2.28)

b1 ¼ p� h1 þ h4 � a (2.29)

b2 ¼ h1 � h4 þ a (2.30)

c1 ¼ 2h4 � a (2.31)

c2 ¼ pþ a� 2h4 (2.32)

where a is treated as the input. Since /1; /2; b1;
b2; g; c1; c2 2 ½0; p�, applying it to Eqs. (2.26)–(2.32) gives

0 � a � p

h1 þ h4 � p � a � h1 þ h4

h4 � h1 � a � pþ h4 � h1

2h4 � p � a � 2h4

(2.33)

Fig. 4 The third arrangement of identical quadrilateral modules: (a) mathematical model and assemblies
made from (b) quadrilateral modules with two opposite right angles and (c) general quadrilateral modules

021001-4 / Vol. 10, APRIL 2018 Transactions of the ASME
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Further simplification of the above inequalities yields

0 � h1 þ h4 � 2p

jh1 � h4j � p

0 � h4 � p

(2.34)

In order to pack the modules compactly with this tiling pattern,
there must be b1 ¼ p; c1 ¼ p when a ¼ 0, which gives

h1 ¼ h4 ¼
p

2
(2.35)

Hence, the quadrilateral must have two opposite right internal
angles. Figure 4(b) shows such an example, and Fig. 4(c) is an
assembly made from general quadrilateral modules that cannot
fully pack.

Summary and Discussion. A total of 56 tiling patterns of
quadrilaterals exist [14], but most of them are not transformable
even if parallelogram voids are introduced. By having parallelo-
gram or rhombic voids, we have found ten arrangements of arbi-
trary quadrilaterals that are transformable. Let the edge lengths of
a quadrilateral be a, b, c, and d, and express a rhombic void with
edge length of a as a4, and a parallelogram void with lengths of a
and b as a2b2. We obtain Table 1 that summarizes all transform-
able arrangements. The schematic diagrams of part of the arrange-
ments are also given in the table. Note that Example 1 section
discussed that earlier is a special case of the first transformable
type in the table, where the quadrilateral modules must be
parallelograms, i.e., a¼ c, b¼ d, and the voids parameters become
(a4), (b4), (a4), and (b4). Example 2 is actually type 3 in the table

which refers to an arrangement with two squares and two paralle-
logram voids. And Example 3 belongs to type 10 in the table
which has four parallelogram voids.

Alternative Shapes of Modules. The transformable assemblies
shown so far include only some specific quadrilateral modules.
One may wonder if they can be replaced by more general shapes,
e.g., shapes with curved edges. The answer is positive. The trans-
formable assemblies can accommodate such alternative modules
if the following two conditions are met: First, the corners of a
module at which the connections to its neighboring modules are
located must be identical to those of the original quadrilateral
module, and second, the edges of the alternative modules must
piece together when they are compacted folded. Two examples
that satisfy both conditions are given in Fig. 5.

To enable an alternative module to match with its identical
neighbors while retracted, its shape must have certain symmetry.
If the module is a mirror symmetry pattern, the assembly can only
close in one direction. For instance, the fan-shaped module shown
in Fig. 5(a) has mirror symmetry, the modules around the central
module are only capable of rotation anticlockwise about the cen-
tral module to 90 deg at most if we use the central one as a refer-
ence. At the fully expanded state, the mechanism cannot move
any further, because the edges of modules in the other direction
will collide with each other. However, if a module has rotational
symmetry, the assembly will be able to close in both directions as
demonstrated by the assembly of the propeller shaped modules in
Fig. 5(b), because the module has rotational symmetry. These
modules can transform to 180 deg and fold completely in both
directions. We have used the three-dimensional printed physical
models to validate these features.

Table 1 Arrangements of arbitrary quadrilaterals that are transformable

Number and shapes of the voids Type and parameters of the voids Schematic diagram of part of the arrangements

4 (1) (a4) (b4) (c4) (d4)

3 1 (2) (a2c2) (b4) (c4) (d4)

2 2 (3) (a2c2) (b4) (c2a2) (d4)
(4) (a2c2) (b2d2) (c4) (d4)

1 3 (5) (a2c2) (b2d2) (c2a2) (d4)

4 (6) (a2c2) (b2d2) (c2a2) (d2b2)

……

(7) (a2b2) (b2a2) (c2b2) (d2a2)

(8) (a2b2) (b2a2) (c2b2) (d2c2)

(9) (a2b2) (b2a2) (c2d2) (d2a2)
(10) (a2b2) (b2a2) (c2d2) (d2c2)

Journal of Mechanisms and Robotics APRIL 2018, Vol. 10 / 021001-5
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Fig. 5 Transformable assemblies made from alternative modules: (a) modules with mirror symmetry and
(b) modules with rotational symmetry

Fig. 6 Orientation of modules in a transformable assembly and its dual

021001-6 / Vol. 10, APRIL 2018 Transactions of the ASME
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Moreover, it is not necessary that all the modules must be iden-
tical. We shall discuss this in more detail later.

Orientation and Duality

So far, we have found a family of transformable assemblies.
However, applying the Kutsbach criterion [18] to these assemblies
yields no positive number. For instance, for the nine module
assembly, the mobility m is

m ¼ 3ðn� j� 1Þ þ
X

j

i¼1

fi ¼ 3ð9� 12� 1Þ þ 12 ¼ 0 (3.1)

where n, j, and fi are number of modules, the number of joints,
and the degrees-of-freedom of each joint, respectively. This indi-
cates that the assembly is actually an overconstrained mechanism,
and the existence of mobility in it is due to the special geometry.

Intuitively the existence of mobility can be illustrated using the
example shown in Fig. 6. When the modules are rotating anti-
clockwise around the central module, point B is moving away
from A, which results in D getting closer to C but simultaneously
apart from E. Accordingly, F is closer to G, but H moves away
from G. In turn, I moves toward J, K is farther apart from J, and L
is closer to A. The entire motion of four interlinked 4R linkages
are synchronized with 1DOF. It can be shown that all of the trans-
formable assemblies have only 1DOF.

It is also interesting to note that the orientations of the modules
may alter when they rotate around each other. To examine it, we
mark each module with an arrow as shown in Fig. 6 with all the
arrows pointing upward at the start when the modules are closely
packed. While rotating anticlockwise around the central module,
the directions of the arrows on those modules that are not directly
connected to the central module remain unchanged, indicating
they translate without any rotation. The rest of the modules turns.
In the fully opened configuration, the arrows on the translating
modules remain the same, whereas the turning modules have
rotated by 90 deg. In the final configuration, the modules are
closely packed together again. The turning modules have now
rotated by 180 deg, while the translating modules never change
their orientations. The orientation variation is a particularly useful
feature as it could be used to design programmable acoustic or
electromagnetic metamaterials. The switch between geometric
states could be used to alter the wave directions [19].

While the orientation changes with motion, the dual shape of
the tiling pattern remains the same no matter how it transforms.
Two patterns are called a dual to each other if it is possible to set
a one-to-one correspondence between the modules, edges, and
vertices of the first tiling and those of the second one [20]. The
way to draw a dual of an arrangement is to connect the center of
each module with those of its neighbor’s. Take the arrangement
given in Fig. 6 as an example. It can be shown that the dual of this
tiling with square modules is the same as itself. The dual of a

Fig. 7 Paired modules based on the arrangement of type 1: (a) jigsaw puzzle pair and (b) pair of square modules with
different sizes

Journal of Mechanisms and Robotics APRIL 2018, Vol. 10 / 021001-7
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transformable tiling is a basic topology feature can be used to dis-
tinguish the tiling from others.

Paired Modules

Earlier we touched upon the alternative shapes of the modules,
e.g., those shown in Fig. 5, but all the modules are kept identical.
It is however to have paired modules that can satisfy the two con-
ditions set in the Alternative Shapes of Modules section.

Figure 7 shows two examples of paired modules that is based
on type 1 of Table 1. Figure 7(a) is a jigsaw puzzle-paired module
where shapes A and B are called a pair, and the parameters of
type 1 pattern are given as a¼ b¼c¼ d. Draw lines between each
of the four connection points of either of the two modules, and the
original shapes of the modules are obtained. The motion of the
pattern is exactly as same as that of the type 1. Despite that the
two modules forming the pair have different shapes, they bit into
each other in the fully compact configuration.

Mathematical tiling shows that there exist tiling patterns con-
sisting of two similar quadrilaterals of different sizes. We can also
produce transformable assemblies with two types of modules with
different sizes. The example shown in Fig. 7(b) is a tiling pattern
of two types of square tiles: one big and one small. The squares
are connected according to type 1. Because of the different edge
length, the voids are parallelograms instead of rhombuses. When
the pattern is fully expanded, the parallelogram voids become
rectangles instead of squares. Its dual is the same as the type 1
(Fig. 7(b)), so the motion of this pattern is also the same as previ-
ously discussed.

The concepts of having paired modules or similar modules of
different sizes can be merged to produce assembly with unique
features. For instance, if we use a special pair of modules, one
being a four-pointed star whereas the other of a square, a tiling
pattern shown in Fig. 8(a) is obtained based on the type 1. The
star and square modules form a grid once fully open, and the for-
mer tightly surround the latter when fully folded. This has resulted
in a transformable tiling pattern with an expansion ratio much
greater than that of the one made from square modules. The
expansion ratio is calculated as follows.

The start and square are defined by parameters a and a. The
fully expanded length can be obtained as

lE ¼
ffiffiffi

2
p

aþ 4
ffiffiffi

2
p

a sin
a

2
(4.1)

When fully packed without any voids, the length becomes

lPS ¼ 4a sin
a

2
þ a sin

a

2
1� tan

p� a

2

� �

(4.2)

Thus, the expansion ratio is

r ¼ lE

lPS
¼

ffiffiffi

2
p

þ 4
ffiffiffi

2
p

sin
a

2

4 sin
a

2
þ sin

a

2
1� tan

p� a

2

� � (4.3)

Because a 2 ½ðp=2Þ;p�, the maximum and minimum values of r
are 0:5þ

ffiffiffi

2
p

and
ffiffiffi

2
p

, respectively. If we replace the star module
with a square, as shown previously in Fig. 7(b), then a becomes p
(denoted by ao), the expanded length is 5

ffiffiffi

2
p

a, and the packaged
length lPO in Fig. 7(b) becomes

lPO ¼ 4a sin
aO

2
þ a sin

aO

2
1� tan

p� aO

2

� �

¼ 4aþ a ¼ 5a

(4.4)

The expansion ratio then is

rO ¼
ffiffiffi

2
p

(4.5)

Therefore, for the paired square tiling pattern, the expansion ratio
is fixed to

ffiffiffi

2
p

, but using the star tiling pattern, the expansion ratio
is tuned by varying the thickness of the star arm. The value of r in
star tiling and paired square tiling is given in Fig. 8(b). It can be
concluded that, the “slimmer” the star is, the larger the expansion
ratio. This star and square design can be adopted to other types of
transformable arrangements.

Other Transformable Assemblies

The paper so far confines to assemblies made from quadrilateral
modules and their alternatives, each of which has four connection
points. However, there are also mathematical tiling patterns that
are made from shapes other than quadrilaterals. Some of these can
also be used to engineer 1DOF transformable assemblies provided
that the voids are kept as 4R linkages. For example, the 3636 tiling
pattern with hexagons and triangles shown in Fig. 9(a) can be
made to a transformable assembly if the rhombuses are made as
voids and the triangles and hexagons as modules. It contains
rhombus voids. The tiling pattern with triangle, hexagon and

Fig. 8 Comparison between an assembly with paired modules and that with square modules:
(a) parameters of two assemblies and (b) their respective expansion ratios
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trapezium shapes in Fig. 9(b) can also be made to a transformable
assembly if we insert rhombus and treat the triangles, hexagon,
and trapeziums as modules.

If the transformation is the main design objective whereas the
number of DOF is less of a concern, other shaped voids could be
used. The triangle tiling pattern shown in Fig. 9(c) has voids
which are 6R linkages, each of which has 3DOFs. The assembly
would have many DOFs. An assembly based on the tiling pattern
shown in Fig. 9(d) would also have many DOFs, because the
voids are either 4R or 6R linkages.

Conclusion

Inspired by the modular origami, we have discovered a family
of transformable planar structures that can be used to construct
mechanical metamaterial. Utilizing the mathematic tiling patterns
coupled with mechanism theory, we manage to greatly expend the
family of the transformable assemblies. Our achievements are
summarized as follows:

(1) A family of 1DOF transformable assemblies consisting of
quadrilateral modules are found, which has brought much
diversity to known transformable arrangements.

(2) It has been found that during the transformation, the orien-
tation will be changed, and the size of the dual varies to
reflect the overall dimension change of tiling patterns.

(3) It is found that the identical quadrilateral modules could be
replace by alternative or paired modules, which maintains
the ability of transformation and compact folding. Paired

modules in different sizes and shapes are also discussed in
detail. A special type of star module that has a larger
expandable ratio is provided.

(4) Tentatively, we have also discussed transformable tiling
patterns using other polygons and discussed them according
to the planar linkages inhibited within the patterns.

Despite that our attention here is paid on 2D patterns, they can
be conveniently placed one on top of another to form transform-
able three-dimensional metamaterials just like the retractable
structures outlined in Ref. [18]. In the on-going research, we are
exploring the transformable tiling patterns that include more
shapes, may not be completely packaged and have multiple DOFs
to complete the classification of all transformable patterns. More-
over, we have been working on the exact design of modules that
could provide favorable mechanical properties after the transfor-
mation ceases. Real metamaterials based on our findings are under
construction as well.
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