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Geometry of Undecidable Systems
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Geometric properties of undecidable systems are numerically investigated. As an un-
decidable set, the halting set of the universal Turing machine is chosen, whose geometric
representation is shown to have a different structure on an arbitrarily small scale, and is
constructed non-uniformly in time. The set’s structure has a fractal boundary dimension
converging to the spatial dimension, which gives a geometric characterization of the unde-
cidability.

Unpredictability in deterministic dynamical systems has been understood in
terms of chaos. ‘Undecidability’, however, is a different concept from unpredictabil-
ity. A problem is undecidable if there is no algorithm (i.e., finitely described proce-
dure which is guaranteed to stop) to answer it. Although undecidability originated
in computation theory, it is the most fundamental problem in computation processes
and is also essential to understand the computational process in our brain and in
machines in general. Then it is natural to ask how such undecidability appears in
dynamical systems and how it is characterized. This class of problems is of general
interest in cellular automata, *) neural networks, DNA sequences, and dynamical sys-
tems theory in general. Furthermore, it is an interesting question whether there is a
new class of dynamical process, different from chaos, corresponding to undecidability.

To understand the nature of dynamical process with undecidability, we choose
the Turing machine (TM), introduced in 1936 as one of the computation models. 2 -4
The total state (instantaneous description) of a TM is completely determined by
specifying its internal state, its tape and the position of its head. If these three are
determined at one time, then these three at the next step are uniquely determined.
Thus a TM can be regarded as a deterministic dynamical system. Indeed there have
been some studies®:% in which a TM is embedded in some nonlinear dynamical
system (e.g., in Ref. 5), the TM’s internal state and tape are embedded in a two-
dimensional space, and the motion of the TM corresponds to an application of a
piecewise-linear map on that space). When we regard a TM as a dynamical system,
a halting state corresponds to an attractor.  Similarly a halting set (an accepted
language) of a TM corresponds to a basin of attraction.

In this paper we investigate halting sets of TMs, and in particular of universal
Turing machines (i.e., universal language, denoted as UL). By embedding a whole
initial tape into a pair of real numbers, the halting sets are mapped into a unit square
of a two-dimensional space. With these, we attempt to capture geometric proper-
ties of the halting sets to understand geometric aspects of undecidability. Instead
of ordinary approaches in computation theory, experimental approaches (numerical
calculations) from dynamical systems studies are adopted to shed new light on this
subject. We also explore a new type of dynamical systems property realized in TMs.
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With the above embedding, the geometric representation of the UL will be
shown to have different (i.e., non-self-similar) fine structures on an arbitrarily small
scale and is constructed non-uniformly in time, as is also seen in the long-time
tail in the halting time distribution, in contrast with the construction process of
ordinary fractals (i.e., transient chaos). The structure of the set is shown to have a
fractal boundary dimension asymptotically approaching two, or in other words, the
uncertainty exponent is zero, which is a geometric characterization of undecidability.
The relation between unpredictability and undecidability will also be discussed.

Given an arbitrary TM and an initial tape, the problem whether the TM starting
from the initial tape will halt or not is undecidable. Even if we choose a universal
Turing machine (UTM), the halting problem is still undecidable. The set of initial
tapes on which a UTM will eventually halt (i.e. a halting set of UTM) is called a
universal language (UL), which is known as a recursively enumerable set but not a
recursive set. %)

Now we briefly describe Minsky’s UTM, % which we mainly treat in this paper.
Minsky’s UTM has eight internal states including a halting state {ql,q2,...,q7,
halting state} and a bi-infinite tape with tape alphabet {y, 0, 1, A}. The symbol
‘0’ of the tape alphabet is also used as a blank symbol. The symbol ‘y’ is read by
the head of Minsky’s UTM at the beginning of computations.*) Though we mainly
treat Minsky’s UTM in this paper, it should be noted that treating a specific ‘U'TM
is equal to treating all TMs.

Now we explain the code which maps an initial tape of a halting set to a point
of a unit square of a two-dimensional space. Although we explain the code in
Minsky’s UTM’s case, similar codes exist for other TMs. First we transform the
tape alphabet {y, 0, 1, A} of an initial tape into {3, 0, 1, 2}, respectively. (Other
choices of transformation from a symbol sequence to a number meet with the same
results below.) Then we divide the initial tape into three parts, one cell which is
read by the head at the beginning of the computation (where the symbol ‘y’ was
written), and the right and left sides of the tape from this cell. Then we represent
the right and left sides of the tape by a pair of real numbers given by the base-4
expansions of decimals, respectively. Finally, this pair is put on a unit square, where
the right side of the tape corresponds to the horizontal axis, and the left side to the
vertical axis.**)

*) There are further restrictions on initial tapes to use Minsky’s UTM “properly”. Still, the
halting problem of Minsky’s UTM on the initial tapes which we treat in our paper, i.e., all bi-
infinite symbol sequences with ‘y’ at the center (which of course include “proper” initial tapes), is an
undecidable one. Since our main concern is dynamical and geometrical aspects of the undecidability
of the halting problem, we do not need to exclude tapes that do not use the TM properly.

**) There are three reasons for this specific choice of codes. First, there is a natural correspon-
dence between distance in the two-dimensional plane and the degree of the influence in the tape.
Indeed, the smaller bit corresponds to the cell on the tape farther from the initial ‘y’ position, and
it has a weaker influence on whether a TM halts. Second, this encoding is a finite procedure. If
description on the tape is finite, encoding is done in finite computation time. (Thus, this code
cannot do universal computation.) Third, this code is general. 7 If we consider a two-dimensional
piecewise-linear map which is equivalent to a TM, the geometric representation of its halting set by
this code is (one part of) the basin of the map.®
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The geometry of UL, acquired by using this code, has a different structure on an
arbitrarily small scale. If UL had a geometric structure only up to a finite scale (e.g.,
classical geometric sets like line segments and circular disks), we could use this fact to
decide whether a given point is included in UL, i.e., to answer the halting problem
of UTM. But that would contradict the undecidability of the halting problem of
UTM. Similarly if UL had a self-similar structure (i.e., the same structure) on an
arbitrarily small scale, like a Cantor set, it would again contradict undecidability of
the halting problem of UTM for the same reason. Hence the geometry of UL must
have different fine structures on arbitrarily small scales.

In the following, we numerically study the UL (the halting set of Minsky’s UTM).
Of course, it is impossible to take infinite time for the numerical calculations. Thus
we treat the set of initial tapes on which Minsky’s UTM will halt within a given
finite step n, denoted as UL(n).

To see the change in the structure, we study the time course of the construction of
UL. In Fig. 1, we have plotted three sets, U L(39), i.e., the set halted within 39 steps,
UL(52) \ UL(39), i.e., that halted between 40 and 52 steps, and UL(500) \ U L(52).
These time steps are chosen so that approximately the same number of points are
contained in each.

As is seen in Fig. 1, UL is constructed non-uniformly in time, in contrast with
uniform construction in ordinary fractals,® where it is possible to predict which
points will be included in, or excluded from the set during the construction of the
set with time. An example is the construction of the complement of the Cantor set,
i.e., the set of initial points which eventually leave the interval [0, 1] by the map
3z (x < 1/2), 3z — 2 (x > 1/2). However, when a set is constructed non-uniformly
in time, it is difficult to predict if a point is included in the set. Note that this
non-uniform construction of UL is a geometric aspect of the undecidability of the
halting problem of UTMs.

In the construction of the complement of the Cantor set, the fraction of the
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Fig. 1. The time course of the construction of UL. (a) UL(39), i.e., the set halted within 39 steps
(dots correspond to initial tapes halted within 39 steps). (b) UL(52) \ UL(39), i.e., that halted
between 40 and 52 steps. (c¢) UL(500)\ U L(52). Instead of random sampling of the tapes, initial
tapes on the grid point (47%,47°;) are examined (i.e., those with blank symbols(‘0’s) for cells
farther than 5 sites from the initial ‘y’ position), to show the temporal construction clearly.
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points which leave [0, 1] decays exponentially with time n when initial points are
scattered uniformly in [0, 1]. In general, the distribution of the transient time decays
exponentially for transient chaos.? On the other hand, in the case of our UL, the
fraction of the initial points halting with computation time n is found to decay
according to a power law or slower. !9 Thus the construction of UL is slower than a
transient process in chaos (i.e., the construction of ordinary fractal sets).

Now we study the dimension of UL. Since UL has positive Lebesgue measure
(i.e., a fat fractal), its box-counting dimension is the same as the dimension of the
space (i.e. Dg = 2). Thus, for studying the fine structure of UL, we investigate the
box-counting dimension of the boundary of UL (i.e. the exterior dimension 911) of
U L) numerically.

The definition of the box-counting dimension of a set S in N-dimensional space
is equivalent to Dg = N —lim¢_,0In V[S(¢€)]/ In€, where V[S(¢)] is the N-dimensional
volume of the set S(e) created by fattening the original set by an amount e. 9 Based
on this definition, we estimate the box-counting dimension of the boundary of UL
(the boundary dimension of UL).

Of course, we cannot treat UL directly since we have only a finite time for
numerical calculation. Instead, we investigate the boundary dimension of UL(n).
Then we survey the asymptotic behavior of the boundary dimension of U L(n) when
n is increased (to infinity).

The detailed procedure is as follows. First we choose a point (X, Y) in a unit
square of a two-dimensional space (i.e. a tape on which ‘y’ is written at the center)
at random. Then we perturb this point (X,Y) to (X + ¢, Y), (X,Y +¢) and
(X + ¢, Y +¢), where ¢ = 47¢ (i.e., we perturb the ith digit of the right side or left
side or both sides of the tape). Then we decide whether Minsky’s UTM, starting
from each of these four tapes (at the center), will halt within n steps or not (i.e.,
in UL(n) or not). If all four points are in UL(n) or none of them are in UL(n),
we regard there to be no boundary in the square (of length €) made from these four
points. Otherwise we regard that there is a boundary in the square. We repeat this
procedure for a large number of points and evaluate the fraction of squares with a
boundary, denoted as f(€), which gives the estimation of V[S(€)]. Varying €, we
obtain the scaling of f(¢) with €, and can evaluate N — Dy (i.e. 2 — Dy).

In Fig. 2, the log-log plot of f(e) of UL(n) with € is shown for several values
of n. It can be fit as f(e) ~ €220 for small ¢, from which one can obtain 2 — Dg
for each n. Figure 3 displays the log-log plot of 2 — Dg versus the computation
time n. It shows that 2 — Dy of the boundary of UL(n) approaches zero roughly as

n~3 with the increase of the computation time n. In other words, when we increase
n, the box-counting dimension of the boundary of UL(n) approaches two, which is
the same as the dimension of the space. Thus we can expect that the box-counting
dimension of the boundary of UL is two. '

Here we briefly refer to the uncertainty exponent o (= N — Dy). 9).11) Suppose
there exists a set A in a certain N-dimensional space and our ability to determine
the position of points has an uncertainty €. S denotes the boundary of A. If we have
to determine whether a given point belongs to A, the probability f(e) of making a
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Fig. 2. Log-log plot of f(e) (the fraction of Fig. 3. Log-log plot of 2 — Dy (uncertainty ex-

squares with a boundary) of UL(n) and
the halting set of ‘broken’ Minsky’s UTM
(changing q7 as a new halting state to Min-
sky's UTM), with e for several values of

ponent a) of UL(n) versus the computation
time n, obtained from Fig. 2. It approaches
zero roughly as n~3 with the increase of
the computation time n.

computation time n. The slope of f(e) of
U L(n) becomes smaller with the increase of
n, while that of the halting set of ‘broken’
Minsky’s UTM does not show such asymp-
totic behavior with the increase of n.

mistake in such a determination is proportional to V[S(e)]. Thus, if the box-counting
dimension of the boundary S is Dy, f(e) is proportional to €Y ~00 (= ¢*). If a is
small, then a large decrease in € leads to only a relatively small decrease in f(e).
Thus « is called an uncertainty exponent.

The above result indicates that the uncertainty exponent of the boundary of
UL(n) becomes smaller with the increase of computation time n (i.e., decrease of
mistake in determination of U L(n) is more difficult). The result that the uncertainty
exponent of the boundary of UL is zero (i.e. Dy = 2) indicates that the probability
of making a mistake (V[S(¢)]) does not depend on €. This result is reasonable, since
unlike chaotic behavior, the undecidability of the halting problem of UTM exists
even if descriptions are known exactly. Thus the undecidability is explained from
the viewpoint of the uncertainty exponent, i.e. the boundary dimension.

The boundary dimension of UL of other UTMs is also two. Since UTMs can
imitate each other, the geometric representations of UL for any UTMs contain each
other, and each has the same boundary dimension, two.

As a contrast, we study the boundary dimension of halting sets of TMs which
are not UTM. In Fig. 2, the fraction of the boundary is also plotted for the halting
set of a ‘broken’ Minsky’s UTM, as an example of not UTM. A ‘broken’ Minsky’s
UTM is defined by changing one of ql,...,q7 as a new halting state to Minsky’s
UTM. Because this TM has the same (number of) internal states and tape symbols as
Minsky’s UTM, it is appropriate as a contrast study. We have again investigated the
boundary dimension of the ‘broken’ Minsky’s UTM for several values of computation
time n. Unlike the case of Minsky’s UTM, f(e) of the ‘broken’ Minsky’s UTM shows
no asymptotic approach of a to zero with the increase of n. Thus, the boundary
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dimension Dy is estimated to be less than two even in the limit of n — oo. In
terms of the uncertainty exponent, unlike UL, the probability of making a mistake
(V[S(€)]) can be decreased to any amount, in principle, by a decrease in €. This
result indicates that not all halting sets of TM satisfy the condition the boundary
dimension is equal to the space dimension, and also that our result for the boundary
dimension of UL is not based on the property of our specific choice of the code.
Unpredictability in the context of chaos and undecidability are quite different
concepts. They have not been treated in parallel from the same viewpoint. How-
ever, in terms of the boundary dimension (uncertainty exponent), they can be treated
together. Unpredictability in the context of chaos is equivalent to the boundary di-
mension of basin of attraction satisfying N — 1 < Dy < N, where the probability of
making a mistake can be decreased to any amount in principle by decreasing €. How-
ever, when the boundary dimension Dy = N, the probability cannot be decreased.
As we have seen, undecidable sets belong to this case. Hence undecidability belongs
to a general class of unpredictability not necessarily having chaotic instability (i.e.,
the class of boundary dimension Dy > N —1, i.e. the boundary with a fine structure).
To sum up, we have characterized the geometric feature of undecidability as the
boundary dimension converging to the space dimension. Details on geometric and
dynamical systems features, as well as possible relationships with models of analog
computation 12*) and riddled basin structure '3 will be reported elsewhere. 1)
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*) Note, however, in their formulation in Ref. 12), a fractal set (like a typical Julia set) is also
undecidable, in contrast with our conclusion. We emphasize here the difference of our inclusion of
precision, as is typically seen in the importance of the uncertainty exponent.
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