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Geometry optimizations in the zero order regular approximation
for relativistic effects

Erik van Lenthe, Andreas Ehlers, and Evert-Jan Baerends
Afdeling Theoretisch Chemie, Scheikundig Laboratorium der Vrije Universiteit, De Boelelaan 1083,
1081 HV Amsterdam, The Netherlands

~Received 19 October 1998; accepted 2 February 1999!

Analytical expressions are derived for the evaluation of energy gradients in the zeroth order regular
approximation~ZORA! to the Dirac equation. The electrostatic shift approximation is used to avoid
gauge dependence problems. Comparison is made to the quasirelativistic Pauli method, the
limitations of which are highlighted. The structures and first metal-carbonyl bond dissociation
energies for the transition metal complexes W~CO!6, Os~CO!5, and Pt~CO!4 are calculated, and
basis set effects are investigated. ©1999 American Institute of Physics.@S0021-9606~99!30317-2#
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I. INTRODUCTION

In the present paper expressions are derived for
evaluation of energy gradients of the zeroth order regu
approximation~ZORA! ~Refs. 1–3! to the Dirac equation.
The regular expansion, which leads to the ZORA Ham
tonian, remains valid even for a Coulombic potential. This
in contrast to the expansion that leads to the Pauli Ham
tonian, which is divergent for a Coulombic potentia
Harriman4 already used the regular expansion, but called
the modified partitioning of the Dirac equation. It was show
in Ref. 5, that the ZORA Hamiltonian is bounded from b
low for Coulombic potentials. Exact solutions for the hydr
genic ions were given and in Ref. 6 it was shown that
scaled ZORA energies in that case are exactly equal to
Dirac energies.

Bond energies can be calculated accurately with
ZORA method using the electrostatic shift approximati
~ESA!, described in Ref. 6. With this method geometry o
timizations can be performed if bond energies for differe
geometries are compared. For diatomics this pointwise t
ing of the energy surface is still manageable, but for po
atomic atoms it will be cumbersome. Therefore it is desira
to have analytic expressions for the energy gradients.
present in Sec. III of this paper the derivation of analy
energy derivatives within the framework of the ZORA ES
method. Section IV discusses the use of a frozen core
basis set requirements for ZORA calculations.

In Sec. VI results of geometry optimizations are pr
sented for a series of small molecules~diatomics! employing
the scalar relativistic~SR! ZORA method, i.e., without spin–
orbit coupling. The results are compared with results
tained from a pointwise calculation of bond energies in
SR ZORA ESA method. The SR ZORA optimized geom
etries have also been obtained for W~CO!6, Os~CO!5, and
Pt~CO!4 and are compared with geometries obtained wit
quasirelativistic method based on the Pauli Hamiltonian
the same compounds, both calculated in this work with v
ous basis sets and published ones.7 It is well known that the
Pauli Hamiltonian containing the first order relativistic co
rection terms~Darwin, mass–velocity, and spin–orbit co
8940021-9606/99/110(18)/8943/11/$15.00
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pling! is not bounded from below. One may nevertheless
to diagonalize the Pauli Hamiltonian in a restricted~valence!
space. This is usually denoted as the quasirelativi
method.8 In order to avoid variational collapse in the QR
Pauli method, frozen cores have to be employed. Before
tering the comparison with the present results and follow
up on the discussion of the use of frozen cores in the ZO
method, we discuss in Sec. V the stability problems of
quasirelativistic Pauli method in relation to the choice
both core orthogonalization functions and valence basis s

Recently, van Wu¨llen9 proposed a modification of the
ZORA method, which uses a model potential in the ZOR
kinetic energy operator. For this method, called ZORA~MP!,
he derived analytical expressions for the energy gradie
The purpose of the ZORA~MP! method was to eliminate the
gauge dependence of the ZORA approach. However, we
show that a~small! gauge dependence problem still exists
this ZORA ~MP! method, which is not present in the ZOR
ESA method. Moreover, we will show that the analytic
expressions for the energy gradients following from t
ZORA ESA method are easier to evaluate than the exp
sions following from the ZORA~MP! method.

A different variationally stable relativistic method deve
oped for atomic and molecular calculations by Hess10 uses
the Douglas–Kroll transformation.11 A density-functional
implementation has been provided by Knappe and Ro¨sch,12

with the implementation of analytical energy gradients
Nasluzov and Ro¨sch.13 These schemes rely on momentu
space evaluation of integrals and require the assumptio
completeness of the finite basis sets employed in prac
calculations. It is an advantage of the ZORA approach t
the required matrix elements can easily be evaluated with
further approximations in schemes that rely on 3D numer
integration, see, e.g., Refs. 14 and 15, making this met
very straightforwardly applicable to molecules.

Our implementation of the analytical gradients f
ZORA is based on a modification of the implementation
energy gradients in the nonrelativistic16,17 and the quasirela-
tivistic case7 in the Amsterdam density functional~ADF!
program.18,15,19
3 © 1999 American Institute of Physics
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In our calculations we will use density functional theo
~DFT!, employing the usual~nonrelativistic! density func-
tionals for the exchange-correlation energy; local den
functionals ~LDA ! with gradient correction~GGC! terms
added, namely, the Becke correction for exchange20 and the
Perdew correction for correlation.21

II. THE ZORA EQUATION

The ZORA equation is the zeroth order of the regu
expansion of the Dirac equation. If only a time-independ
electric field is present, the one-electron~SR! ZORA Kohn–
Sham equations can be written in atomic units (p52 i“) as

~V1T@V# !C i5e iC i , ~1!

with

Tzora@V#5s•p
c2

2c22V
s•p5p•

c2

2c22V
p

1
c2

~2c22V!2 s•~“V3p!, ~2a!

TSR
zora@V#5p•

c2

2c22V
p. ~2b!

Here use is made of the identity,

~s•a!~s•b!5a•b1 i s•~a3b! ~3!

for the Pauli spin matricess. The effective molecular
Kohn–Sham potentialV used in our calculations is the su
of the nuclear potential, the Coulomb potential due to
total electron density, and the exchange-correlation poten
for which we will use nonrelativistic approximations. Th
ZORA kinetic energy operatorTzora, depends on the molecu
lar Kohn–Sham potential. The scalar relativistic~SR! ZORA
kinetic energy operatorTSR

zora, is the ZORA kinetic energy
operator without spin–orbit coupling. This operator can
used in cases where spin–orbit coupling is not important.
convenience we will refer to the~SR! ZORA kinetic energy
with T@V#.

In Ref. 22 it was observed that replacing the molecu
potential by the sum of the potentials of the neutral spher
reference atomsVSA in the kinetic energy operator is not
severe approximation, thus

T@VSA#'T@V#. ~4!

This procedure was called the sum of atoms potential
proximation~SAPA!. This has the advantage that when t
ZORA Kohn–Sham equations are solved self-consiste
~SCF! using a basis set, one only needs to calculate
ZORA kinetic energy matrix once, instead of in every cyc
in the SCF scheme if the full molecular potential is used

An improved one-electron energy can be obtained
using the scaled ZORA energy expression6

e i
scaled5

Ei
zora

11^C i uQ@V#uC i&
, ~5!

with
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Qzora@V#5s•p
c2

~2c22V!2 s•p, ~6a!

QSR
zora@V#5p•

c2

~2c22V!2 p. ~6b!

If, for example, SAPA is used forT@V# then the same ap
proximation has to be used forQ@V#.

III. GEOMETRY OPTIMIZATIONS WITH ZORA

In this section expressions are derived for the evalua
of energy gradients in the~SR! ZORA case. Next, the imple
mentation in the ADF program system is briefly discusse

A. Derivation of energy gradients for the ZORA ESA
energy

The difference in energy between a molecule and
constituting atoms~fragments! A, calculated according to the
~SR! ZORA ESA method,6 is

DEESA5
1

2 (
A,BÞA

N
ZAZB

uRA2RBu
1(

i

occ

^C i uT@V#uC i&

2(
A

N E r~1!ZA

uRA2r1u
d11

1

2 E E r~1!r~2!

r 12
d1d2

1EXC@r#2(
A

N S (
j

occ

^F j
AuT@V#uF j

A&

2E rA~1!ZA

uRA2r1u
d11

1

2 E E rA~1!rA~2!

r 12
d1d2

1EXC@rA# D , ~7!

with

r5(
i

occ

C i
†C i , ~8a!

rA5(
j

occ

~F j
A!†F j

A , ~8b!

C i is a molecular orbital, andF j
A is a fragment orbital. The

energy differenceDEESA was derived from the difference in
the scaled~SR! ZORA total energies. Note the occurrence
the same operatorT@V#, containing themolecularpotential
V in both the molecular and atomic ‘‘kinetic energy’’ term
This is a consequence of the combined use of the sc
ZORA method and the ESA approximation, cf. Ref. 6, and
crucial for avoiding gauge dependency problems as wel
obtaining numerically stable energy differences. In Ref. 6
scaled ZORA total energy was found to be very accurate
comparison with fully relativistic results.

Suppose the molecular potentialV present in the kinetic
energy operatorT@V# does not depend on the molecular o
bitals C i , as it is the case for SAPA, for example. We w
call this potentialVfix ~for SAPA Vfix5VSA!. Now finding
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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the orthonormal orbitalsC i which minimize the energy dif-
ferenceDEESA is equivalent to solving the molecular on
electron ZORA equations,

@V1T@Vfix##C i5e iC i . ~9!

An alternative is to first solve the one-electron~SR! ZORA
equation~1! self-consistently with a potentialV in the kinetic
energy operator that does depend on the orbitalsC i . After-
wards one can then fix this potential, and use this fixed
tentialVfix in the kinetic energy operator in Eq.~7!. One can
then vary the orbitalsC i in Eq. ~7! to find the minimum, thus
without changingVfix in the kinetic energy operator, which i
equivalent to finding the solutions of the ZORA one-electr
equations that were already solved. In this sense the ZO
ESA energy is stationary with respect to orbital variatio
The potentialVfix , however, still depends on the geometry
the molecule, which is important in the case of geome
optimizations.

In an atomic basis set expansion the ZORA molecu
orbitals C i are expressed as a sum over coefficients tim
primitive atomic basis functionsxn , each centered at on
particular nucleus,

C i5(
n

Cn ixn . ~10!

If we take the derivative of the energy difference Eq.~7! with
respect to a nuclear displacementXA of nucleusA, we have
to take into account the change in the coefficientsCn i ~indi-
rect derivative! as well as the change in the atomic ba
functionsxn themselves~direct derivative!, due to the dis-
placement. We will now assume that we have solved
one-electron~SR! ZORA equation~9! with optimal coeffi-
cientsCn i . As in the nonrelativistic case the indirect deriv
tive can be transformed into a direct derivative23

(
i

occ

(
n

]DEESA

Cn i

]Cn i

]XA
52(

i

occ

2e i K ]C i

]XA
UC i L , ~11!

where]C i /]XA represents the direct derivative ofC i with
respect toXA , thus

]C i

]XA
5(

n
Cn i

]xn

]XA
. ~12!

The kinetic energy operator in Eq.~7! is the same for
both the molecule and the constituting atoms~fragments!,
and contains the molecular potential. This is the only diff
ence with a similar expression in the nonrelativistic case
it is important in the case of geometry optimizations, whi
we will now consider.

The difference in the kinetic energy between a molec
and its constituting atoms~fragments! A, calculated accord-
ing to the~SR! ZORA ESA method is

DTESA@V#5(
i

occ

^C i uT@V#uC i&2(
A

N

(
j

occ

^F j
AuT@V#uF j

A&,

~13!

with F j
A the fragment orbitals. For deep core states

(A( jF j
A runs over fragment orbitalsF j

A , or with suitable
symmetry adaptation, over symmetry combinations of fr
loaded 13 Mar 2011 to 130.37.129.78. Redistribution subject to AIP licens
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ment orbitals that each match a corresponding molecular
bital C i which it very closely resembles. This molecular o
bital formed by a combination of fragment orbitals we c
f i . In the same way we can also make molecular orbitalsf i

from the valence fragment orbitals, but then it is no long
guaranteed that there are molecular orbitalsC i that they
closely resemble. We have to remember that the numbe
occupied molecular orbitals may be different from the to
number of occupied fragment orbitals. However, we will a
sume that the number of occupied deep core levels is
same.

In a linear combination of atomic orbitals~LCAO! ex-
pansion the ZORA molecular orbitalsC i can be expressed a
a sum over single atomic contributions

C i5(
A

N

C i
A , ~14a!

C i
A5 (

nPA
Cn ixn

A . ~14b!

As we did for C i we expressf i as a sum over single
atomic contributionsf i

A . The molecular orbitalsf i are con-
structed in such a way thatf i

A only has a contribution of one
of the fragment orbitalsF j

A on fragment A. This means tha
we can write

(
A

N

(
j

occ

^F j
AuT@V#uF j

A&5(
A

N

(
i

occ

^f i
AuT@V#uf i

A&. ~15!

The direct derivative of the kinetic energy difference E
~13! with respect to a nuclear displacementXA of nucleusA
is

]DTESA

]XA
5(

i

occ

2K ]C i
A

]XA
uT@V#uC i L 1(

i

occ K C iU ]T@V#

]XA
UC i L

2(
i

occ

2K ]f i
A

]XA
uT@V#uf i

AL
2(

i

occ

(
B

N K f i
BU ]T@V#

]XA
Uf i

BL . ~16!

The one-center contributions in this equation are

(
i

occ

2K ]C i
A

]XA
uT@V#uC i

AL 1(
i

occ

(
B

N K C i
BU ]T@V#

]XA
UC i

BL
2(

i

occ

2K ]f i
A

]XA
uT@V#uf i

AL 2(
i

occ

(
B

N K f i
BU ]T@V#

]XA
Uf i

BL
5(

i

occ

(
BÞA

N S 2 K C i
AU ]T@V#

]XB
UC i

AL 1 K f i
AU ]T@V#

]XB
Uf i

AL
1 K C i

BU ]T@V#

]XA
UC i

BL 2 K f i
BU ]T@V#

]XA
Uf i

BL D . ~17!

For valence orbitals each term in itself is very small, sinc

]

]XB

c2

2c22V
5

c2

~2c22V!2

]V

]XB
~18!
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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is of orderc22, which means that each term in Eq.~17! is of
order c22. Only for deep core levels these terms can be
importance~see also the end of this section!, but for these
deep core levelsC i

A is very close tof i
A and these terms wil

cancel each other. We therefore neglect these one-ce
terms altogether and we are left with

]DTESA

]XA
'(

i

occ

(
BÞA

N S 2K ]C i
A

]XA
uT@V#uC i

BL
12K C i

AU ]T@V#

]XA
UC i

BL
12K C i

BU ]T@V#

]XA
U (

CÞA,B

N

C i
CL D

5(
i

occ

(
BÞA

N S K ]C i
A

]XA
uT@V#uC i

BL
2K C i

AuT@V#u
]C i

B

]XB
L D

1(
i

occ

(
BÞA

N S K C i
AU ]T@V#

]XA
2

]T@V#

]XB
UC i

BL
12K C i

BU ]T@V#

]XA
U (

CÞA,B

N

C i
CL D . ~19!

The matrix elements which include a derivative of the ZOR
kinetic energy with respect to a nuclear displacement will
very small since they are of orderc22 and involve two-
center integrals. We can therefore further approximate
expression by

]DTESA

]XA
'(

i

occ

(
BÞA

N S K ]C i
A

]XA
uT@V#uC i

BL
2K C i

AuT@V#u
]C i

B

]XB
L D . ~20!

This expression is simple to evaluate and obeys the tran
tional invariance condition, which states that if the who
molecule is translated, the total energy does not change.
can compare this with the nonrelativistic expression for
gradient of the kinetic energy

]TNR

]XA
5(

i

occ

2K ]C i
A

]XA
UTNRuC i&

5(
i

occ

(
BÞA

N S K ]C i
A

]XA
UTNRUC i

BL 2K C i
AUTNRU]C i

B

]XB
L D .

~21!

The total derivative of the energy difference Eq.~7! with
respect to a nuclear displacementXA of nucleusA is
loaded 13 Mar 2011 to 130.37.129.78. Redistribution subject to AIP licens
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dXA
5(

i

occ

2K ]C i
A

]XA
uV1T@V#2e i uC i L

1 (
BÞA

N
ZAZB~XA2XB!

uRA2RBu3

2E r~1!ZA~XA2x1!

uRA2r1u3
d1

1(
i

occ

(
B

N K C i
AU ]T@V#

]XB
UC i L , ~22!

since

(
i

occ

(
BÞA

N S K ]C i
A

]XA
uT@V#uC i

BL 2K C i
AuT@V#u

]C i
B

]XB
L D

5(
i

occ

2K ]C i
A

]XA
uT@V#uC i L 1(

i

occ

(
B

N K C i
AU ]T@V#

]XB
UC i L .

~23!

Compared to a similar nonrelativistic expression there
an extra term

(
i

occ

(
B

N K C i
AU ]T@V#

]XB
UC i L . ~24!

This term mimics the gradient of the interaction due to
effective small component density, which would be pres
if the Dirac equation was used.

We may compare Eq.~20! with a recently derived ana
lytical expressions for the ZORA kinetic energy gradient
the ZORA ~MP! method by van Wu¨llen,9

]TZORA~MP!

]XA
5(

i

occ

2K ]C i
A

]XA
uT@V#uC i L

1(
i

occ K C iU ]T@V#

]XA
UC i L . ~25!

The major difference with the ZORA ESA method@see also
Eq. ~23!# are one-center contributions

(
i

occ

(
BÞA

N S K C i
BU ]T@V#

]XA
UC i

BL 2 K C i
AU ]T@V#

]XB
UC i

AL D ,

~26!

which are present in the ZORA~MP! method, but which are
not present in the ZORA ESA method. These one-cen
contributions can cause problems if the model potential
atomA used in the ZORA~MP! method has a finite value in
the core region of atomB, which depends on the distanc
betweenA andB. In this case the ZORA kinetic energy o
the ~deep! core orbitals on atomB will depend on the actua
distance betweenA andB, even if these~deep! core orbitals
do not change shape. This is the gauge dependence pro
of ZORA, see also Ref. 6, which is solved if the ZORA ES
method is used. In the ZORA~MP! method the model po-
tential of atomA is usually not so large at distances betwe
A and B which are in the order of~or larger than! typical
bond lengths betweenA and B. This means that in genera
the errors in the optimized geometries and bond energies
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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also not be so very large. A rough estimate of this error in
bond energy is the value of the electrostatic shiftD in the
model potential due to atomA at the position of atomB
divided by 2c2 and multiplied by the kinetic energy of atom
B, if atom B is the heavy atom, since

T@V1D#'T@V#1DQ@V#'T@V#1
D

2c2 T@V#. ~27!

In Sec. VI we will attempt to quantify these errors in th
ZORA ~MP! method for a real molecule. Note that in th
ZORA ESA method, presented in this article, these err
due to the gauge dependence problem do not occur.

B. Implementation

The ADF program18,15,19 is designed to perform elec
tronic structure calculations on molecular systems. The o
electron equations arising in the Kohn–Sham formulation
density functional theory, are solved by self-consistent fi
calculations. In the calculations a Slater-type orbital~STO!
basis set is used. To solve the relativistic ZORA Koh
Sham equations matrix elements have to be evaluated
differ from the ones occurring in nonrelativistic~NR! theory.
A characteristic element of the methodology embodied in
ADF program suite is the calculation of the matrix eleme
of the effective one-electron KS Hamiltonian by numeric
integration. The matrix elements of the ZORA Hamiltoni
can also straightforwardly be evaluated by such numer
integration. In the SR ZORA equations the only differen
arises in the calculation of the kinetic energy matrix. Wh
calculating bond energies, care has to be taken to ob
results that are correct~in view of the gauge dependency o
the ZORA method! and numerically precise~in view of the
limited precision of the numerical integration!. Details on the
the calculation of bond energies using the ZORA ES
method can be found in Ref. 6.

Our implementation of the analytical gradients f
ZORA is based on a modification of the implementation
energy gradients in the nonrelativistic16,17 and quasirelativis-
tic case7 in the ADF program. The only difference betwee
these methods is the calculation of the gradient of the kin
energy. We implemented the gradient of the SR ZORA
netic energy according to Eq.~20!. For the evaluation of the
potential in the ‘‘kinetic energy’’ operator we used the su
of atoms potential approximation~SAPA!, thus

TSR
ZORA@VSA#5p•

c2

2c22VSA
p. ~28!

For SAPA we refer to Sec. II and Ref. 22. The calculation
the gradient of the full ZORA ‘‘kinetic energy,’’ which in-
cludes spin–orbit coupling, was not implemented.

With the help of partial integration the SR ZORA ES
kinetic energy gradient is calculated as@Eq. ~20!#,

(
k51

3

(
i

occ

(
BÞA

N S K ]2C i
A

]XA]xk
U c2

2c22VSA
U]C i

B

]xk
L

2K ]C i
AU c2

2 U ]2C i
B L D , ~29!
]xk 2c 2VSA ]XB]xk
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which means that we do not need to calculate the deriva
of the potential in this expression. It is thus easier to evalu
than the expression for the kinetic energy gradient in
ZORA ~MP! method, see Ref. 9, where one does need s
derivatives of the potential.

IV. BASIS SET REQUIREMENTS IN THE FROZEN
CORE APPROXIMATION

In the ADF program suite the frozen core approximati
is used routinely and can also be applied in the SR ZO
method~not yet with ZORA including spin–orbit coupling!.
The frozen core approximation in its currently implement
form18 employs a basis set ofN functionsxm ~STO’s in our
case! that are explicitly orthogonalized onto theM frozen
core orbitalsfk

core. The frozen core orbitals themselves a
usually represented in an extensive basis set of STO’s
are used in the separate atomic calculation in which the
zen core orbitals are generated. A different representatio
the core orbitals is however also possible, for instance
basis set free ‘‘numerical’’ atomic orbitals resulting from
Herman–Skilman type of numerical solution of the rad
differential equation for the atomic orbitals. The set of ba
functions xm is now transformed into a set of core
orthogonal functionsx̄m by forming a linear combination o
eachxm with a set of core orthogonalization functionsxk

core,
one for each core orbital,

x̄m5xm1 (
k51

M

xk
coreCkm . ~30!

The coefficientsCkm are determined18 from the N3M
orthogonality conditions

^x̄muf l
core&50. ~31!

Using the overlap matricesSkl5^xk
coreuf l

core& and Rm l

5^xmuf l
core& one obtains for theC coefficients the matrix

equation

C52RS21. ~32!

The secular equation for the determination of the vale
electron orbitals is set up in thex̄m basis. The core orthogo
nalization functions may be considered to belong to the b
set but they do not represent degrees of freedom, their c
ficients being fixed by the orthogonality conditions. They a
usually functions that describe accurately the core wiggle
the valence orbitals. In fact, the exponents of the core
thogonalization functions are optimized, along with those
the valence basis functions, in atomic calculations, in suc
way that the ‘‘valence’’ plus ‘‘core’’ sets give an optima
description of thevalenceatomic orbitals, including their
core tails. It should be recognized, however, that if a sin
STO core orthogonalization function per core orbital~i.e.,
per core wiggle in the valence atomic orbital! is not consid-
ered a sufficiently accurate representation of the c
wiggles, it is perfectly possible to incorporate into the set
functionsxm very contracted~core type! basis functions so
as to improve the core part of the valence wave functio
The core orthogonality conditions simply determine a fix
number~equal to the number of core orbitals! of coefficients
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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in the total basis set expansion, irrespective of how m
‘‘valence’’ and ‘‘core’’ type basis functions it contains. As
matter of fact, given a total basis set, the results of the
culations are independent of which functions are chosen
the ones whose coefficients are to be fixed by the ortho
nality conditions. We customarily choose, for reasons of
merical stability, from the total basis set as the core ortho
nalization functions those that have maximum overlap w
the core orbitals, so the matrixS above is as close as possib
to the unit matrix.

In general the NR core orbitals are not the same as sc
relativistic ZORA core orbitals, which are again differe
from fully relativistic ZORA ~including spin–orbit coupling!
core orbitals. The basis set requirements for an accurate
resentation of the core part of the valence wave functi
will also differ whether one uses NR, SR ZORA or ZOR
In the NR case the core wiggles of the valence functions
accurately be described by the core orthogonalization fu
tions, such that one does not need additional corelike b
functions to get an accuracy of a few milliatomic units. O
the other hand, in SR ZORA and ZORA one does need e
corelike basis functions, to get such high accuracy for
heavier systems. This is due to the fact that the core wig
of especially thes-type valence electrons do not behave li
Slater-type orbitals near the nucleus, but more like Dir
type orbitals which are of the form

r h21e2zr , ~33!

whereh does not have to be an integer. For STO’sh is an
integer.

In the SR ZORA case the frozen core approximation c
be implemented in the same way as in the NR case, bec
one can use the same single group symmetry. The cha
one has to make are in order of importance the followi
The description of the core orbitals should come from
ZORA atomic calculations~we generally use a SR ZORA
version of an atomic STO basis set program!. In the case of
heavy atoms, the STO basis set in this atomic calcula
cannot be kept identical to the NR STO basis set, but sho
for high accuracy, be reoptimized and extended with ex
core basis functions for the reasons indicated above.
basis sets for these atomic calculations, in which the~frozen!
core orbitals are expressed also in the molecule, do not
resent variational degrees of freedom in the SCF molec
calculations and need not be restricted for reasons of c
putational economy. The usually smaller basis sets for
molecular calculations are generated by optimizing them
the valence orbitals only. It is often~i.e., for light elements!
sufficient to use one contracted basis function for each c
wiggle of the accurately calculated SR ZORA valence
bital. The number of these functions is then equal to
number of core orbitals, and they can be used as the
orthogonalization functions of the basis set. The ‘‘valenc
basis functions are of course optimized for the description
the outer part~valence region! of the valence orbitals. For th
heavier atoms one also should add corelike basis functi
which are able to describe the core tail of the valence orbi
more accurately. In the SR ZORA case it is usually enou
loaded 13 Mar 2011 to 130.37.129.78. Redistribution subject to AIP licens
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to add only one extra 1s-type STO with large exponentz to
get an accuracy of a few milliatomic units in the atom
orbital energies.

In Table I we show, for the U atom, the effects if on
uses NR core orbitals to orthogonalize upon in a SR ZO
calculation. If we use the standard ADF IV basis set~triple-z
valence basis set! with a frozen core including the 5d and all
lower shells, the results still do not seem to be too bad@com-
pared to the basis set free~‘‘numerical’’ ! all electron SR
ZORA results of Table II#. However, if we add a 1s-type
STO withz5115 we see incipient variational collapse of th
valences orbital energies towards~although not yet any-
where near! a core orbital energy. This collapse is caused
admixing of core character, due to the orthogonalization
NR core orbitals, whereas one should have orthogonali
on SR ZORA core orbitals. The SR ZORA orbitals are
this case too different from the NR orbitals. This type
variational collapse, where valence levels acquire too l
energies, is distinct from the variational instability of th
Pauli Hamiltonian to be discussed in the next section.

In Table II we see the results for different basis sets
we use the correct orthogonalization on SR ZORA core
bitals. These results can be compared with the given num
cally calculated all electron SR ZORA results. The stand
~NR! ADF IV result is not very accurate. As expected, t
addition of an extra 1s-type STO withz5115 now does not
lead to variational collapse. The accuracy on the other h
is still not high. We therefore have optimized the basis s
both the core orthogonalization functions and the other b
functions, to the valence SR ZORA orbitals. This optimiz
relativistic basis set, denoted BASREL, is of the same size
the ADF IV basis set. The results using basis set BASR
show a large improvement, especially~see the 6s orbital
energy! if one also adds an extra 1s-type STO with z
5450. This enlarged basis set is able to give orbital energ
with an accuracy better than 0.01 atomic units. We also g
results using an extra 2p-type STO withz5150, which does
not change the results much, showing that the wiggle of
SR ZORA valence 6p-orbital can already be described

TABLE I. Uranium scaled SR ZORA valence orbital energies in a.u. us
the NR core description.

Basis set 6s 6p 5 f 6d 7s

ADF IV 21.600 20.827 20.126 20.076 20.125
ADF IV11s 115 23.605 20.724 0.009 20.024 20.231

TABLE II. Uranium scaled SR ZORA valence orbital energies in a.u. us
the SR ZORA core description.

Basis set 6s 6p 5 f 6d 7s

Numerical 21.738 20.830 20.105 20.064 20.136
ADF IV 21.537 20.821 20.169 20.084 20.121
ADF IV11s 115 21.593 20.812 20.156 20.079 20.125
BASREL 21.677 20.831 20.117 20.069 20.131
BASREL11s 450 21.735 20.823 20.106 20.065 20.135
BASREL11s 45012p 150 21.735 20.823 20.106 20.065 20.135
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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TABLE III. Uranium scaled ZORA valence orbital energies in a.u. using the SR ZORA core description

‘Basis set 6s1/2 6p1/2 6p3/2 5 f 5/2 5 f 7/2 6d3/2 6d5/2 7s1/2

Numerical 21.718 21.068 20.741 20.104 20.074 20.071 20.054 20.134
BASREL 21.668 21.057 20.737 20.121 20.095 20.075 20.061 20.129
BASREL11s 450 21.725 21.048 20.729 20.110 20.084 20.071 20.057 20.133
BASREL11s 45012p 150 21.714 21.138 20.733 20.098 20.072 20.070 20.056 20.133
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reasonable accuracy without an extra core like basis fu
tion.

If one wants to use the frozen core approximation in
ZORA case~including spin–orbit coupling! one should or-
thogonalize the basis functions on ZORA~spin–orbit
coupledYjmj

! core orbitals, which is not~yet! implemented
in the ADF program system. One might wonder if using
SR ZORA core description would not be sufficient, since o
expects the ZORA orbitals not to be very different from S
ZORA orbitals. In the spherical case for light atoms, t
spin–orbit split~ZORA! eigenfunctions~j 5 l 11/2 andj 5 l
21/2! have almost the same radial behavior as the
ZORA orbitals, the difference is then only in the spin a
angular part. For closed shell cores then there is no dif
ence whether one uses full ZORA or SR ZORA orbita
because they span the same space. For heavier atoms,
spin-orbit coupling is important, this is no longer true. T
radial behavior for the eigenfunctions in a Coulomb poten
near the origin can be quite different for SR ZORA or ZOR
orbitals. Especially the ZORAp1/2-orbital differs from the
SR ZORA p-orbital, because it has a mild singularity ne
the origin. We can perform the ZORA calculation with bas
functions orthogonalized on SR ZORA core orbitals and
vestigate how large the error becomes. In Table III the
sults are given using the BASREL basis set. The accurac
not so high~notably for the 6s-orbital!, we therefore add an
extra 1s-type STO withz5450 like before, which improves
the results. Now we still do not have problems with var
tional collapse becauses-orbitals are not affected by spin
orbit coupling, and the ZORA and SR ZORAs-orbitals are
very close~the only difference is due to difference in th
SCF potential!. If we add an extra 2p-type corelike STO
with z5150 the use of a frozen SR 2p core orbital rather
than the proper 2p1/2 orbital, shows up in a variational sta
bility problem, the 6p1/2 orbital energy is now 0.1 a.u. to
low. This result will get worse if we add more corelik
p-type STO’s.

These results demonstrate the level of accuracy obt
able within the various procedures that can be adopted@NR,
SR or full ZORA frozen cores; special relativistic~reopti-
mized! basis sets; introduction of extra corelike basis fun
tions#. We conclude that the use of SR ZORA core orbit
and special relativistic basis sets, with one extra 1s core
function, represent a good compromise of efficiency and
curacy.

V. THE PAULI HAMILTONIAN AND THE
QUASIRELATIVISTIC METHOD: FROZEN CORES
AND VARIATIONAL STABILITY

The Pauli Hamiltonian in general poses no problems
bound electrons if one uses it in a first order perturbat
 to 130.37.129.78. Redistribution subject to AIP licens
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theory, where the expectation value of the Pauli Hamilton
with the nonrelativistic wave function is used. Snijders a
Baerends24 proposed a method for the calculation of relati
istic effects in a perturbative procedure, where also first or
effects in the change of the density are taken into accoun
the numerical atomic calculations of Ref. 24 the corre
boundary conditions were taken into account and no va
tional collapse can occur. This method, denoted first-or
Pauli~PAULI FOPT!, has been implemented and applied14,25

in the molecular ADF program, i.e., using STO basis se
The FOPT treatment implies diagonalization of the Pa
Hamiltonian in subspaces of~quasi-! degenerate levels.14 It
proved advantageous to apply this diagonalization in the
space of valence and virtual levels resulting from a froz
core calculation in the standard double-zeta or triple-z
STO basis sets.26,27This so-called quasirelativistic~QR! pro-
cedure, which partially takes into account higher order
fects, has become the standard procedure in relativistic A
calculations. It has been observed empirically that variatio
collapse does not occur with the standard NR ADF ba
sets, while the QR procedure still offers significant improv
ment over PAULI FOPT for heavy elements. In gener
however, there are significant limitations on basis set cho
in the QR Pauli method, as can be seen as follows.

First of all one may run into variational stability prob
lems easily when including the core electrons in the S
treatment~all-electron calculations!. These problems with
variational collapse are reduced~but not necessarily absen
see below! when the frozen core approximation is used. It
known that the PAULI FOPT approximation, using expec
tion values of the Pauli Hamiltonian for nonrelativistic orb
als, will improve the orbital energies. The QR Pauli meth
typically also uses nonrelativistic valence~and virtual! orbit-
als as basis. The nonrelativistic basis sets use one core
thogonalization function per core orbital to orthogonalize
the accurately calculated nonrelativistic core orbitals. T
core orthogonalization functions are optimized to the c
wiggles of the nonrelativistic valence orbitals. With goo
valence basis sets, the nonrelativistic solutions will be ac
rately described and a good performance of the PAU
FOPT as well as QR Pauli is expected. An example of th
calculations on the neutral Uranium atom, can be found
Refs. 26 and 28. If we calculate the U atom, using a stand
basis, the so called ADF IV with 5d frozen core, we obtain
21.30 a.u. for the NR 6s orbital energy, and21.57 a.u.
and 21.75 a.u. using FOPT and the QR method, resp
tively. This can be compared with the relativistic Dirac res
of 21.72 a.u., showing that the QR method improves up
the FOPT result considerably. The general observation
made in Ref. 27 that for elements up toZ580 PAULI FOPT
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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TABLE IV. SR ZORA ~ESA! GGC optimized bond lengthsr e in angstroms for some diatomic system
obtained from pointwise calculations and from analytical calculated geometry gradients.Dr e is the difference in
r e between these methods.

I2 Au2 Bi2 HI AuH TlH IF TlF TlI PbO PbTe

Pointwise 2.697 2.517 2.655 1.625 1.535 1.931 1.940 2.126 2.872 1.939 2
Analytical 2.699 2.518 2.656 1.625 1.537 1.929 1.941 2.127 2.874 1.939 2.
Dr e 0.002 0.001 0.001 0.000 0.00220.002 0.001 0.001 0.002 0.000 0.000
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is accurate enough, while for heavier systems the QR me
is needed.

However, the stability problems of the QR Pauli becom
apparent when we consider basis set variation. A first
ample is changing the core orthogonalization functions.
stead of using the STO’s which are optimized to the c
wiggles of the valence functions, we could use STO’s op
mized to the core orbitals, in the sense of having maxim
overlap with the core orbital. With such core orthogonaliz
tion functions~still one per core orbital! we now get in the
NR case21.24 a.u. for the 6s orbital energy. This some
what higher energy~than the21.30 a.u. quoted above! can
be expected for a basis set which cannot describe the
wiggles of the valence orbitals as accurately as before. H
ever, in the QR method we now already have problems
lated to variational collapse, the 6s orbital energy in this case
being 23.75 a.u., which is far too low. The success of t
QR method thus quite heavily depends on the choice of
core orthogonalization functions. A second example is to
large the standard ADF IV basis set with an extra STO in
basis which is corelike, for example a 1s-type STO withl
540. In the NR calculation the 6s energy is then still
21.30 a.u., the difference being less than 0.0001 a.u. w
respect to the calculation without this corelike functio
Again this could be expected since the basis set was alre
quite optimal and a corelike function is certainly not able
improve much upon this. In the QR calculation, however,
6s orbital energy now becomes2485 a.u., showing the
drastic effect of variational collapse. In fact, it is possible
obtain any orbital energy by variation of the corelike ba
functions.

In the QR method implemented in ADF, the variation
collapse can thus be avoided by carefully choosing the b
set; the core orthogonalization functions should be optimi
to core wiggles of nonrelativistic valence orbitals and t
valence basis set should not contain too contracted funct
and not be too extensive. The standard ADF frozen c
basis sets fulfill all these requirements. Using these basis
the QR method can then be a very useful~and cheap! method
for estimating relativistic effects. However, it is not possib
to investigate basis set effects, since enlarging the basis
yield unreliable results~see Sec. VI!. The SR ZORA and
ZORA method have been developed with the purpose
have efficient yet variationally stable relativistic metho
that will allow one to obtain high accuracy by using e
tended basis sets.
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VI. RESULTS AND DISCUSSION

In this section we test our implementation of the calc
lation of the analytical energy gradients for SR ZORA
some small molecules using density functional theory. T
usual~nonrelativistic! density functionals for the exchange
correlation energy are used; local density functionals~LDA !
with gradient correction~GGC! terms added, namely th
Becke correction for exchange20 and the Perdew correctio
for correlation.21

In Ref. 29 results are given of all-electron density fun
tional calculations of bond lengths for a number of diato
ics. In Table IV these results, that were obtained by po
wise calculations of bond energies, are compared with
results that were obtained from calculations that use the a
lytical geometry gradients. In the present calculations
same large basis sets were used as in Ref. 29. These
sets are triple-z in the core and quadruple-z in the valence
with at least three polarization functions added. For
heavier atoms, these basis sets contain extra 1s and 2p STO
functions, in order to describe the core orbitals accurat
The difference in the calculated bond lengths between
pointwise and analytical calculations is 0.002 Å at mo
Small differences of this order were already reported in n
relativistic calculations using the ADF program, see Ref.
Possible causes that were cited are related to features o
ADF methodology that limit the numerical precision, such
the density fitting procedure for obtaining the Coulomb p
tential and the numerical integration for Hamiltonian mat
elements. Since our present method only modifies the ca
lation of the kinetic energy gradient in comparison with t
nonrelativistic case, a similar level of precision could be e
pected. Since the differences are so small we may conc
that the analytical calculation of the kinetic energy gradie
in the ZORA ESA method, Eq.~20!, gives results which are
in very good agreement with those obtained with a point
point tracing of the energy.

Recently, geometry optimizations were performed
van Wüllen, Ref. 9, who uses the ZORA~MP! method. Re-
sults for some diatomics showed reasonable agreement
results that were obtained with the ZORA ESA method.6 The
remaining differences in the results of the two methods
be explained partly by the use of different basis sets, but
think that also a part of the deviations is due to the gau
dependence problems of the ZORA~MP! results, which were
already explained at the end of Sec. III. Let us consider
example of AuH for a more quantitative analysis of the
problems. In the ZORA~MP! method the kinetic energy o
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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the ~deep! core orbitals on Au will depend on the actu
distance between Au and H even if these~deep! core orbitals
do not change shape. In this case the main effect comes
the part of the molecular model potential that is due to the
atom in the region of the Au nucleus, where the~deep! core
orbitals have some value. In Ref. 9 the molecular mo
potential is constructed in such a way that distant atoms
not contribute, but in the AuH molecule the H atom is still
close to the Au atom, that a non-negligible contribution
mains, which is larger if the atoms are closer. The result
electrostatic shift in the molecular model potential in t
region of the Au nucleus will lower the ZORA kinetic en
ergy of the ~deep! core orbitals. In the case of the exa
solution of the hydrogen atom the sum of the nuclear pot
tial and Coulomb potential of the electron density at 1.535
is approximately20.11 eV. A simple estimate of the gaug
dependence error in the energy, see the end of Sec. III A
this value of20.11 eV divided by 2c2 and multiplied by the
kinetic energy of the electrons of the gold ato
('22 000 a.u.). We then obtain a value of20.065 eV for the
gauge dependence error in the energy. If we do the s
exercise at a AuH distance of 1.52 Å, we obtain a value
20.069 eV for this error. Since this gauge dependence e
is larger at shorter distances it will also have an effect on
calculated bond length. The total error of this gauge dep
dence problem in the ZORA~MP! method can now be esti
mated for AuH as an increase in the bond energy in the o
of 0.07 eV and a decrease in the bond length in the orde
0.01 Å. In Ref. 9 the ZORA~MP! results for AuH indeed
showed a higher bond energy of 0.06 eV, and a shorter b
length of 0.02 Å, compared to the ZORA ESA results. A
though this is close to our estimate of the error due to
gauge dependence problem in the ZORA~MP! method, one
also has to take into account that different basis sets w
used, which may be partly responsible for the differenc
Also for other diatomics the gauge dependence problem
result in a too short bond length, and a too large bond
ergy. These errors will probably not be large, but they can
avoided completely if the ZORA ESA method is used, sin
this method was designed to solve the problem of ga
dependence, see also Ref. 6. On the basis of the prese
analysis, a possible remedy for the gauge dependence p
lem in the ZORA~MP! method is to construct a model po
tential such that the electrostatic shift in the model poten
due to an atom in the regions of other atoms is zero.

Next we test our implementation of the calculation
analytical gradients in the SR ZORA ESA method in a c
culation of the structures of some polyatomic molecul
namely, the heavy transition metal compounds W~CO!6,
Os~CO!5, and Pt~CO!4, since these have been studied exte
sively before.7,30–35,13In Table V results are given for th
optimized metal–carbon distance and the first met
carbonyl bond dissociation energy~FBDE!.

We performed frozen core~fc! and all electron~ae! cal-
culations, using different sizes of basis sets on the atoms
the frozen core calculations the 1s orbitals of carbon and
oxygen were kept frozen. In the largest core (4f ) for the
metal centers, the orbitals up to@Kr#,4d,4f were kept frozen,
the subvalence 5s,5p shells being retained in the variation
loaded 13 Mar 2011 to 130.37.129.78. Redistribution subject to AIP licens
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space. The metal 4f electrons were unfrozen in the (4d)
metal frozen core basis sets. For the metals new STO b
sets were created. The exponents of these STO’s were fi
to numerical scalar relativistic ZORA orbitals. Basis set IV
double-z for 5s,5p, triple-z for the valence orbitals (5d,6s),
and it has one 6p function. In basis set V a 5f polarization
function is added. For C and O the basis sets IV and V t
are used here in the SR ZORA calculation are the sam
the standard ADF nonrelativistic basis sets. The QZD ba
sets for carbon and oxygen are quadruple-z for the valence
orbitals (2s,2p) plus one polarization function. These bas
sets are given in Ref. 36, where also basis set superpos
errors for these basis sets in the Cr~CO!6 and Mn2~CO!10

complexes have been investigated. Comparing the SR ZO
calculations we conclude from Table V that the results of
frozen core calculations compare very well with our larg
calculations, the all electron~ae! calculations. The different
basis sets all give optimized bond lengths within 0.01 Å
each other, and FBDE’s within 0.5 kcal/mol of each other
for the metal the 4d frozen core with basis set V is chose
the results are in even better agreement with our largest
culations, the all electron calculations; within 0.2 kcal/m
for the FBDE and within 0.001 Å for the bond lengths.

We also performed pointwise calculations of the bo
energy to obtain the optimal metal–carbon distance. For e
compound these were determined in all-electron calculati
and in one of the frozen core calculations. The optimiz
bond distances of these pointwise calculations were alw
within 0.002 Å of the analytically calculated distances. Th
again confirms that the analytical calculation of the kine
energy gradient in the SR ZORA ESA method, according
Eq. ~20!, is in good agreement with the SR ZORA ES
method for the pointwise calculation of the bond energy.6 In
the pointwise calculation the CO distance was kept at
optimized bond length of the analytical calculation.

In Table V we also show the results of the optimiz
geometries obtained from quasirelativistic~QR! calculations,
using the ADF program. Using the standard ADF basis s
IV for the atoms, very good results were obtained for t
optimized bond lengths, if the results are compared with
SR ZORA ESA results~deviations less than 0.01 Å!. FB-
DE’s appear to be overestimated by 3–5 kcal/mol~10–
30 %!. However, if we enlarge the basis set for carbon a
oxygen to quadruple-z ~QZD!, variational collapse occurs
and especially the calculated FBDE is completely wron
The origin of this variational collapse in the QR method
the Pauli Hamiltonian was explained in Sec. V. This exam
again shows the limitations on the use of this QR metho
larger basis sets are used. This implies that the QR me
only gives satisfactory results for moderate size basis s
and one cannot obtain the basis set limit. Moreover, o
cannot use an all electron basis set for the heavy atom
order to test the frozen core approximation, since variatio
collapse would occur. On the other hand, as we have see
Table V, in the SR ZORA ESA larger basis sets are no
problem, and one can study the convergence of the resul
the basis set limit, and it is possible to test the frozen c
approximation using all electron basis sets. For Pt~CO!4 we
tested the remaining basis set error in the all-electron ca
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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TABLE V. Optimized metal–carbon bond lengthsr (M–CO) in angstroms and the first metal–carbonyl bo
dissociation energies~FBDE! for W~CO!6, Os~CO!5, and Pt~CO!4.

Method M C, O r (M–CO) FBDE kcal/mol

W~CO!6

SR ZORA (4f )IV (1s)IV 2.070 44.6
SR ZORA (4f )IV (1s)QZD 2.069 44.4
SR ZORA (4f )V (1s)IV 2.068 44.6
SR ZORA (4d)V (1s)IV 2.062 45.0
SR ZORA ~ae!V ~ae!V 2.061 44.9
QR (4f )IV (1s)IV 2.066 48.0
QR (4f )IV (1s)QZD 2.049 64.0
DFT DKH ~Ref. 13! 2.063 46.9
DFT DPT ~Ref. 35! 2.060 46.1
QR ~Ref. 30! 2.049 43.7
@CCSD~T!//MP2# RECP~Refs. 31, 32! 2.060 48.0
Experiment~Refs. 37, 38! 2.058 4662

Os~CO!5 axial equatorial
SR ZORA (4f )IV (1s)IV 1.974 1.959 37.5
SR ZORA (4f )IV (1s)QZD 1.973 1.958 37.3
SR ZORA (4f )V (1s)IV 1.970 1.955 37.6
SR ZORA (4d)V (1s)IV 1.967 1.951 37.7
SR ZORA ~ae!V ~ae!V 1.966 1.950 37.5
QR (4f )IV (1s)IV 1.968 1.949 42.9
QR (4f )IV (1s)QZD 2.017 1.757 191.5
DFT DPT ~Ref. 35! 1.964 1.949 37.5
QR ~Ref. 30! 2.000 1.975 34.7
@CCSD~T!//MP2# RECP~Refs. 33, 34! 1.963 1.945 42.9
Experiment~Refs. 39, 40! 1.990 1.943 ~30.6!

Pt~CO!4

SR ZORA (4f )IV (1s)IV 1.975 14.8
SR ZORA (4f )IV (1s)QZD 1.976 14.5
SR ZORA (4f )V (1s)IV 1.973 14.7
SR ZORA (4d)V (1s)IV 1.967 14.7
SR ZORA ~ae!V ~ae!V 1.967 14.5
QR (4f )IV (1s)IV 1.959 19.0
QR (4f )IV (1s)QZD 1.874 8.2
DFT DPT ~Ref. 35! 1.963 12.4
QR ~Ref. 30! 2.012 15.7
@CCSD~T!//MP2# RECP~Refs. 33, 34! 1.966 12.1
Experiment ¯ ¯
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lations, using basis sets of the size that were already use
the calculation of the bond lengths of the diatomics. Us
these large basis sets the optimized platinum–carbon b
length is 1.964 Å and the FBDE is 14.3 kcal/mol. The
results are very close to those obtained with the all elec
basis set V; they only differ 0.003 Å in the optimized bon
length and 0.2 kcal/mol in the calculated FBDE.

In Table V our results are compared with recent resu
that were obtained using the leading order of the relativi
direct perturbation theory~DPT!,35 and for W~CO!6 with re-
sults of the Douglas–Kroll–Hess~DKH! ~Ref. 13! method,
using the same density functional as in the present work.
leading order of the relativistic DPT without spin–orbit co
pling means that only the well known mass–velocity te
and Darwin term of the Pauli Hamiltonian were include
The results for the bond lengths and FBDE’s are in v
satisfactory agreement with our results. The bond leng
agree within 0.004 Å, while the FBDE exhibits a large
deviation of 2.1 kcal/mol~for Pt~CO!4!. It should be noted
that different basis sets were used and that the ZO
 to 130.37.129.78. Redistribution subject to AIP licens
in
g
nd

n

s
ic

e

.
y
s

t

A

method includes higher order relativistic effects than
Pauli Hamiltonian. Comparison to the previous QR Pauli
sults of Li et al.30 shows good agreement in general, wi
largest differences with the present~ae! SR ZORA results of
0.05 Å for the Pt–C distance and 2.8 kcal/mol for t
Os–CO FBDE. The results for W~CO!6 of the scalar relativ-
istic DKH method, which also contains higher order relat
istic effects, are in close agreement with the SR ZORA
sults.

In Table V our results are also compared withab initio
results at the@CCSD~T!//MP2# level of theory using relativ-
istic effective core potentials~RECP!.31–34 Again these re-
sults agree well with our results, with largest differences
0.005 Å for the equatorial Os–C distance and 5.4 kcal/m
for the Os–CO FBDE.

VII. CONCLUSION

Expressions have been derived for the evaluation of
ergy gradients in the ZORA ESA method and were imp
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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mented in the ADF program. The approximations made
the derivation were validated by the very close agreemen
the bond lengths that were obtained by pointwise calcula
of bond energies with the bond lengths that were obtai
from calculations that use the analytical geometry gradie
It was shown that these analytical expressions are easi
evaluate than the expressions following from the recen
developed ZORA~MP! method, and that they do not hav
the gauge dependence problem that still exists in the ZO
~MP! method.

In contrast with a quasirelativistic~QR! method based on
the Pauli Hamiltonian previously implemented in the AD
program, in the SR ZORA ESA method it is possible
study the convergence of the optimized bond lengths
bond energies with respect to the basis set limit, and one
test the frozen core approximation using all electron ba
sets. It was explained why and when in the QR meth
variational collapse occurs.

The structures and first metal–carbonyl bond disso
tion energies for the transition metal complexes W~CO!6,
Os~CO!5, and Pt~CO!4 were calculated with the SR ZORA
ESA method and smooth convergence of the results w
respect to the size of basis set were obtained. Compari
have been made to results of previousab initio calculations
at the@CCSD~T!//MP2# level of theory using relativistic ef-
fective core potentials, with QR Pauli DFT calculations, w
DPT density functional calculations, and with Dougla
Kroll–Hess density functional calculations. No major d
crepancies between these calculations have been found
though occasionally differences of several hundredths o
Å and several kcal/mol were observed.
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