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Geometry optimizations in the zero order regular approximation
for relativistic effects

Erik van Lenthe, Andreas Ehlers, and Evert-Jan Baerends
Afdeling Theoretisch Chemie, Scheikundig Laboratorium der Vrije Universiteit, De Boelelaan 1083,
1081 HV Amsterdam, The Netherlands

(Received 19 October 1998; accepted 2 February 11999

Analytical expressions are derived for the evaluation of energy gradients in the zeroth order regular
approximation(ZORA) to the Dirac equation. The electrostatic shift approximation is used to avoid
gauge dependence problems. Comparison is made to the quasirelativistic Pauli method, the
limitations of which are highlighted. The structures and first metal-carbonyl bond dissociation
energies for the transition metal complexesG®)s, O4CO);, and P(CO), are calculated, and

basis set effects are investigated. 1©®99 American Institute of Physi¢§0021-96069)30317-2

I. INTRODUCTION pling) is not bounded from below. One may nevertheless try
to diagonalize the Pauli Hamiltonian in a restrictedlence

In the present paper expressions are derived for thgpace. This is usually denoted as the quasirelativistic
evaluation of energy gradients of the zeroth order regulamethod® In order to avoid variational collapse in the QR-
approximation(ZORA) (Refs. 1-3 to the Dirac equation. pauli method, frozen cores have to be employed. Before en-
The regular expansion, which leads to the ZORA Hamil-tering the comparison with the present results and following
tonian, remains valid even for a Coulombic potential. This isup on the discussion of the use of frozen cores in the ZORA
in contrast to the expansion that leads to the Pauli Ham”'method, we discuss in Sec. V the stability problems of the
tonian, which is divergent for a Coulombic potential. 4 asirelativistic Pauli method in relation to the choice of
Harnmaﬁ‘_ already used the regular expansion, but called if)oih core orthogonalization functions and valence basis sets.
the modified partitioning of the Dirac equation. It was shown Recently, van Wiken® proposed a modification of the
in Ref. 5, that the ZORA Hamiltonian is bounded from be- ZORA method, which uses a model potential in the ZORA
low _for_ Coulombic _potentials_. Exact sqlutions for the hydro- kinetic energy operator. For this method, called ZORAP),
genic lons were given a_md in Ref. 6 it was shown that thene derived analytical expressions for the energy gradients.
sqaled ZORA energies in that case are exactly equal to thf"he purpose of the ZORMP) method was to eliminate the
Dirac energies. . . é:;auge dependence of the ZORA approach. However, we will

Bond energies can be calculated accurately with th Show that asmall gauge dependence problem still exists in

ZORA method using the electrostatic shift approximation_, . - )
. X ) : _this ZORA (MP) method, which is not present in the ZORA
(ESA), described in Ref. 6. With this method geometry op ESA method. Moreover, we will show that the analytical

timizations can be performed if bond energies for different . . :
geometries are compared. For diatomics this pointwise tracs (Pressions for the energy gradients following from the
ing of the energy surface is still manageable, but for pon-Z_ORA ESA.method are easier to evaluate than the expres-
atomic atoms it will be cumbersome. Therefore it is desirable®©NS following from the ZORAMP) method.
to have analytic expressions for the energy gradients. We A different yarlatlonally stable reIat|V|_st|c method devel-
present in Sec. Il of this paper the derivation of analyticOP&d for atomic and molecular calculations by H&sf_.fses
energy derivatives within the framework of the ZORA ESA the Douglas—Kroll transforma_tloH. A density-functional
method. Section IV discusses the use of a frozen core arffiPlémentation has been provided by Knappe anngbz
basis set requirements for ZORA calculations. with the implementation of analytical energy gradients by
In Sec. VI results of geometry optimizations are pre-Nasluzov and Rech'® These schemes rely on momentum
sented for a series of small moleculeiatomics employing ~ SPace evaluation of integrals and require the assumption of
the scalar relativisti¢cSR) ZORA method, i.e., without spin— completeness of the finite basis sets employed in practical
orbit coupling. The results are compared with results obcalculations. It is an advantage of the ZORA approach that
tained from a pointwise calculation of bond energies in thethe required matrix elements can easily be evaluated without
SR ZORA ESA method. The SR ZORA optimized geom- further approximations in schemes that rely on 3D numerical
etries have also been obtained fof®®D);, O4CO)s, and  integration, see, e.g., Refs. 14 and 15, making this method
Pt CO), and are compared with geometries obtained with avery straightforwardly applicable to molecules.
guasirelativistic method based on the Pauli Hamiltonian for ~ Our implementation of the analytical gradients for
the same compounds, both calculated in this work with variZORA is based on a modification of the implementation of
ous basis sets and published ohdssis well known that the  energy gradients in the nonrelativisfi¢’ and the quasirela-
Pauli Hamiltonian containing the first order relativistic cor- tivistic casé in the Amsterdam density function@ADF)

rection terms(Darwin, mass—velocity, and spin—orbit cou- program®1519
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In our calculations we will use density functional theory

(DFT), employing the usualnonrelativisti¢ density func-

van Lenthe, Ehlers, and Baerends

2

tionals for the exchange-correlation energy; local density

functionals (LDA) with gradient correction(GGC) terms
added, namely, the Becke correction for exchdhged the
Perdew correction for correlatidh.

Il. THE ZORA EQUATION

C

CTVIZ o P ey P ©a
CZ

QsrIVI=P- Gez—yy2P: (6b)

If, for example, SAPA is used fof[ V] then the same ap-
proximation has to be used fQ[V].

The ZORA equation is the zeroth order of the regular|)|, GEOMETRY OPTIMIZATIONS WITH ZORA
expansion of the Dirac equation. If only a time-independent

electric field is present, the one-electi@R) ZORA Kohn—
Sham equations can be written in atomic unfiss(~iV) as

(V+TIVDV;= &V, )
with
c? c?
TV]=0-p52, 0 P=P 52, P
C2
+ma-(VVXp), (2a)
C2
Tsr1VI=p- 22—y P (2b)
Here use is made of the identity,
(o-a)(o-b)=a-b+io-(axb) (3)

for the Pauli spin matricess. The effective molecular
Kohn—-Sham potentia¥ used in our calculations is the sum

of the nuclear potential, the Coulomb potential due to the
total electron density, and the exchange-correlation potential,

for which we will use nonrelativistic approximations. The
ZORA kinetic energy operator*®® depends on the molecu-
lar Kohn—Sham potential. The scalar relativig&R) ZORA

kinetic energy operatofag’, is the ZORA kinetic energy

In this section expressions are derived for the evaluation
of energy gradients in th€SR) ZORA case. Next, the imple-
mentation in the ADF program system is briefly discussed.

A. Derivation of energy gradients for the ZORA ESA
energy

The difference in energy between a molecule and its
constituting atomg¢fragment$ A, calculated according to the
(SR) ZORA ESA method, is

NECNE +OECC<~P|T[V]|\P>
2 a%4a|Ra—Rg 4 ! !
N
p(1)Z,

1 p(1)p(2)

occ

2 (DNTIV]|Of)

A ) |Ra—14]

N
+Exclp] -2 (

operator without spin—orbit coupling. This operator can be

used in cases where spin—orbit coupling is not important. For

convenience we will refer to th€SR) ZORA kinetic energy
with T[V].

In Ref. 22 it was observed that replacing the molecular
potential by the sum of the potentials of the neutral spherical

reference atom¥ g, in the kinetic energy operator is not a
severe approximation, thus

T[Vsal=T[V]. (4)

p™(1)ZA 1 p™(1)p™(2)
B |RA—T4] d1+§ff EV) did2
+ Exc[PA]) : 7)
with
p=2 Vi, (8a)
ph=2 (OPHTDf, (80)
]

W, is a molecular orbital, ant;l)iA is a fragment orbital. The
energy differencé\ EFSA was derived from the difference in
the scaledSR) ZORA total energies. Note the occurrence of

This procedure was called the sum of atoms potential apfe same operatdF[ V], containing themolecularpotential
proximation(SAPA). This has the advantage that when they, i, hoth the molecular and atomic “kinetic energy” terms.

ZORA Kohn—-Sham equations are solved self-consistentlyris is a consequence of the combined use of the scaled
(SCP using a basis set, one only needs fo calculate thgoRA method and the ESA approximation, cf. Ref. 6, and is
ZORA kinetic energy matrix once, instead of in every cycle crycia| for avoiding gauge dependency problems as well as
in the SCF scheme if the full molecular potential is used. - optaining numerically stable energy differences. In Ref. 6 the
An improved one-electron energy can be obtained bycaied ZORA total energy was found to be very accurate in

using the scaled ZORA energy expresSion

zora
Ei

scaled_

TRV ©

with

comparison with fully relativistic results.

Suppose the molecular potentiélpresent in the kinetic
energy operatof[ V] does not depend on the molecular or-
bitals ¥, , as it is the case for SAPA, for example. We will
call this potentialVy, (for SAPA Vi, =Vga). Now finding
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the orthonormal orbital®; which minimize the energy dif- ment orbitals that each match a corresponding molecular or-
ferenceAEFSA is equivalent to solving the molecular one bital ¥; which it very closely resembles. This molecular or-
electron ZORA equations, bital formed by a combination of fragment orbitals we call
_ ¢; . In the same way we can also make molecular orbitals
[VAHTIVR]Wi= €. © " from the valence fragment orbitals, but then it is no longer
An alternative is to first solve the one-electr®R) ZORA  guaranteed that there are molecular orbitéls that they
equation(1) self-consistently with a potenti®l in the kinetic  closely resemble. We have to remember that the number of
energy operator that does depend on the orbigls After-  occupied molecular orbitals may be different from the total
wards one can then fix this potential, and use this fixed porumber of occupied fragment orbitals. However, we will as-
tential Vs, in the kinetic energy operator in E(Z). One can  sume that the number of occupied deep core levels is the
then vary the orbital¥; in Eq. (7) to find the minimum, thus same.
without changing/j;, in the kinetic energy operator, which is In a linear combination of atomic orbitalE CAO) ex-
equivalent to finding the solutions of the ZORA one-electronpansion the ZORA molecular orbitals; can be expressed as
equations that were already solved. In this sense the ZORA sum over single atomic contributions
ESA energy is stationary with respect to orbital variations. N
The potentiaVy;, , however, still depends on the geometry of W= E WA (143
the molecule, which is important in the case of geometry ! ’
optimizations.
.In an atomic basis set expansion the ZORA_moquuIar PA=S C, it (14b)
orbitals ¥; are expressed as a sum over coefficients times
primitive atomic basis functiong,, each centered at one

particular nucleus As we did for¥; we expressp; as a sum over single

atomic contributionsﬁi’*. The molecular orbitalgh; are con-
v _E c 10 structed in such a way thaﬁf only has a contribution of one
< viXy: (10 of the fragment orbitaIQDJA on fragment A. This means that

o ) ] we can write
If we take the derivative of the energy difference Eg).with

respect to a nuclear displacemefy of nucleusA, we have
to take into account the change in the coefficiedis (indi- 2 E <¢A|T[V]|‘DA> E 2 (¢ |T[V]|¢iA>- (15
rect derivativé as well as the change in the atomic basis

functions y, themselveddirect derivative, due to the dis- The direct derivative of the kinetic energy difference Eq.
placement. We will now assume that we have solved thé13) with respect to a nuclear displacemedy of nucleusA
one-electron(SR) ZORA equation(9) with optimal coeffi- s

cientsC,; . As in the nonrelativistic case the indirect deriva- JATESA oce \IfA occ STV
=2 2{ G ATIVIN ) + 2 (W) o= W
i A

occ occ

tive can be transformed into a direct derivative

occ &AEESA 9C.. occ IXn !
Z 2 C X axyl = _2 26-I< >1 (11) oce ¢I
b A =2 2| TVl

where dW;/9X, represents the direct derivative ®#f, with
respect taX,, thus occ N o'?T[V]

o ; —EE< ¢i ¢.>. (16)

i Xv !
5. =2 Cuise (12 T |
ALY A The one-center contributions in this equation are

The kinetic energy operator in E¢7) is the same for  occ occ N TV
both the molecule and the constituting atoffiegments, E 2< |T[V]|\pA> +2 E < - q;iB>
and contains the molecular potential. This is the only differ- IXa
ence with a similar expression in the nonrelativistic case and o/ 5 pA occ N JTIV
it is important in the case of geometry optimizations, which _ 2<—'|T[V]|¢iA> _E E < P! [ ] P! >
we will now consider. T\ 0X T B

The difference in the kinetic energy between a molecule occ N —— TV
and its constituting atom§ragments A, calculated accord- Y (—<\P- JT[V] ] > <¢ aT[V] & >
ing to the(SR) ZORA ESA method is T B7A | oxXg ' '

occ N occ
aT[V] aT[V]
ATEAVI=2 (WITIVIIY )= 30 20 (OfITIVIIOf), <‘PB > < ¢ $v))  an
(13

For valence orbitals each term in itself is very small, since
with ®* the fragment orbitals. For deep core states the ) )

ZAZjPj runs over fragment orbital@f, or with suitable i ¢ _ ¢ ﬂ
symmetry adaptation, over symmetry combinations of frag-  9Xs 2¢°—V  (2¢°=V)? dXg

(18
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is of orderc™?, which means that each term in Ha7) is of
orderc™2. Only for deep core levels these terms can be of
importance(see also the end of this sectjput for these
deep core level¥” is very close top!* and these terms will

van Lenthe, Ehlers, and Baerends

dAEFSA ¥ < ovh

d—XAZEi 2 (9_)(A|V+T[V]_6i|q,i>

N ZaZg(Xa—Xp)

cancel each other. We therefore neglect these one-center + E W
AT B

terms altogether and we are left with

GATESA ¢ N FA
~ 2{ ——|T[V]| ¥
aT[V]
Al g8
o] T o)
aT[V]| &
+2( w8 pe
< Y 9Xa cg,s '>)
occ N &‘l’f\

i B#A
A PA
=\ ¥ |T[V]|(9_XB

o N IT[V] aT[V]
+§i: BE;;A(<\PEA dXa  Xg

+2<\PF

=2 > <<aTA|T[V]|~IfF>

)

aTIVI| & ¢ )
C;AB \I’i> . (19

IXp

B#A

p(1)ZA(Xa—X1)
|RA— 1]

occ N (9T[V]
+§i‘, % <qf{* X \Ifi>, (22
since
e N1/ gwh 5 A Jw )
22> (<WAIT[V]I‘IM >—<\Ifi |T[VJ|&—XB>
occ 19\1,;6\ occ N &T[V]

-3 2 mam)+3 3 (v )
(23

Compared to a similar nonrelativistic expression there is
an extra term

S (w

i B

dT[V] qf->

X (24)

This term mimics the gradient of the interaction due to an
effective small component density, which would be present
if the Dirac equation was used.

We may compare Eq20) with a recently derived ana-

The matrix elements which include a derivative of the ZORAIyticaI expressions for the ZORA kinetic energy gradient in

kinetic energy with respect to a nuclear displacement will b
very small since they are of order 2 and involve two-

&he ZORA (MP) method by van Wien?

center integrals. We can therefore further approximate this ~ gTZORAMP) 2% [ A
expression by IX :Zi 2 ﬁxA|T[V]|‘Pi
occ
I?ATESA~ -~ % (<(9\PiA|T[V]|\I’B> +2 <‘Pi —(9;;[(\/] ‘l’i> (25
IXa T BZA |\ | IXa ! ' A
The major difference with the ZORA ESA methfske also
A ml’iB Eq. (23)] are one-center contributions
ATV ) |- (20 \
occ
gl ITLVI| & Al 9TV A
2 E lI,i Tow \I}i - \Pi Tow i '
. L T BZA IXp Xg

This expression is simple to evaluate and obeys the transla- (26)

tional invariance condition, which states that if the whole

molecule is translated, the total energy does not change. \#hich are present in the ZORMP) method, but which are
can compare this with the nonrelativistic expression for thehot present in the ZORA ESA method. These one-center

gradient of the kinetic energy

gTNR 2T [ opA
= _— NR .
IXp 2. 2 aXAT Vi)
occ N A B
=S S (20 e ) (o T )
T BZA |\ 0Xp ! ! IXg| |

(21)

The total derivative of the energy difference Ef). with
respect to a nuclear displacemety of nucleusA is

contributions can cause problems if the model potential on
atomA used in the ZORAMP) method has a finite value in
the core region of atonB, which depends on the distance
betweenA andB. In this case the ZORA kinetic energy of
the (deep core orbitals on atorB will depend on the actual
distance betweeA andB, even if thesddeep core orbitals

do not change shape. This is the gauge dependence problem
of ZORA, see also Ref. 6, which is solved if the ZORA ESA
method is used. In the ZORAVMP) method the model po-
tential of atomA is usually not so large at distances between
A and B which are in the order ofor larger thap typical
bond lengths betweeA andB. This means that in general
the errors in the optimized geometries and bond energies will

Downloaded 13 Mar 2011 to 130.37.129.78. Redistribution subject to AIP license or copyright; see http:/jcp.aip.org/about/rights_and_permissions



J. Chem. Phys., Vol. 110, No. 18, 8 May 1999 van Lenthe, Ehlers, and Baerends 8947

also not be so very large. A rough estimate of this error in thavhich means that we do not need to calculate the derivative
bond energy is the value of the electrostatic shifin the  of the potential in this expression. It is thus easier to evaluate
model potential due to atom at the position of atonB than the expression for the kinetic energy gradient in the
divided by Z? and multiplied by the kinetic energy of atom ZORA (MP) method, see Ref. 9, where one does need such
B, if atom B is the heavy atom, since derivatives of the potential.

A
TIVHA]=TIVI+AQIVI=TIVI+ 52TVl (20 |y BasIS SET REQUIREMENTS IN THE FROZEN

. . . CORE APPROXIMATION
In Sec. VI we will attempt to quantify these errors in the

ZORA (MP) method for a real molecule. Note that in the In the ADF program suite the frozen core approximation
ZORA ESA method, presented in this article, these errorgs used routinely and can also be applied in the SR ZORA
due to the gauge dependence problem do not occur. method(not yet with ZORA including spin—orbit coupling
The frozen core approximation in its currently implemented
form'® employs a basis set of functionsy, (STO’s in our
casg that are explicitly orthogonalized onto théd frozen
core orbitals¢;°"®. The frozen core orbitals themselves are
The ADF progran®*>!9is designed to perform elec- usually represented in an extensive basis set of STO's that
tronic structure calculations on molecular systems. The oneare used in the separate atomic calculation in which the fro-
electron equations arising in the Kohn—Sham formulation okzen core orbitals are generated. A different representation of
density functional theory, are solved by self-consistent fieldhe core orbitals is however also possible, for instance by
calculations. In the calculations a Slater-type orb{&lr'O basis set free “numerical” atomic orbitals resulting from a
basis set is used. To solve the relativistic ZORA Kohn—Herman-Skilman type of numerical solution of the radial
Sham equations matrix elements have to be evaluated thdifferential equation for the atomic orbitals. The set of basis
differ from the ones occurring in nonrelativisiitR) theory.  functions X, is now transformed into a set of core-
A characteristic element of the methodology embodied in therthogonal functions,, by forming a linear combination of
ADF program suite is the calculation of the matrix elementseachy,, with a set of core orthogonalization functiogg™®,
of the effective one-electron KS Hamiltonian by numericalone for each core orbital,

B. Implementation

integration. The matrix elements of the ZORA Hamiltonian M
can als_o straightforwardly be evalu_ated by such numencal X=Xt E XﬁoreCkM. (30)
integration. In the SR ZORA equations the only difference k=1

arises in the calculation of the kinetic energy matrix. When
calculating bond energies, care has to be taken to obtaigrth
results that are corre¢in view of the gauge dependency of
the ZORA methogland numerically precisén view of the (Xul 69 =0. (31
limited precision of the numerical integratipmetails on the . . _/_ corg 4cor
the calculation of bond energies using the ZORA ESA_ <Xufgc%r%hﬁnzvgg?;?n;n?ct,?c;% _c:f))g;fijif;ns%tr?endmzﬁix
method can be found in Ref. 6. equaﬁiorﬁ

Our implementation of the analytical gradients for
ZORA is based on a modification of the implementation of C=—-RS™. (32
energy gradients in the nonrelativisfi¢’ and quasirelativis-

tic casé in the ADF program. The only difference between g|o ron orbitals is set up in the, basis. The core orthogo-

these methods is the calculation of the gradient of the kinetig,, i, a4ion functions may be considered to belong to the basis
energy. We implemented the gradient of the SR ZORA Ki-gey 1t they do not represent degrees of freedom, their coef-
netic energy according to E(RO). For the evaluation of the  qjents heing fixed by the orthogonality conditions. They are
potential in the “kinetic energy” operator we used the SUM a1y functions that describe accurately the core wiggles of
of atoms potential approximatiofBAPA), thus the valence orbitals. In fact, the exponents of the core or-
JOR c? thogonalization functions are optimized, along with those of
TéR [ Vsal=p- 22y P (28)  the valence basis functions, in atomic calculations, in such a
SA way that the “valence” plus “core” sets give an optimal
For SAPA we refer to Sec. Il and Ref. 22. The calculation ofgescription of thevalenceatomic orbitals, including their

the gradient of the full ZORA “kinetic energy,” which in-  core tajls. It should be recognized, however, that if a single

The coefficientsCy,, are determinel from the Nx M
ogonality conditions

The secular equation for the determination of the valence

cludes spin—orbit coupling, was not implemented. STO core orthogonalization function per core orbitaé.,
~ With the help of partial integration the SR ZORA ESA per core wiggle in the valence atomic orbjti not consid-
kinetic energy gradient is calculated [@g. (20)], ered a sufficiently accurate representation of the core
3 occ N PrATS | c2 owB wiggles, it is perfectly possible to incorporate into the set of
I | . . .
functions y,, very contractedcore basis functions so
= B;A <<aanxk\2c2—VSA Xy > Xu VETY type

as to improve the core part of the valence wave functions.
2B >) The core orthogonality conditions simply determine a fixed
|

a\IfiA| c? . e
- (299  number(equal to the number of core orbitalsf coefficients

Xy | 26—V

aXBan
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in the total basis set expansion, irrespective of how manyABLE I. Uranium scaled SR ZORA valence orbital energies in a.u. using
“valence” and “core” type basis functions it contains. As a e NR core description.

mattgr of fact,l given a total basis_ set, the_ results of the calF™ 5.qis set s 6p 5f 6d 7s
culations are independent of which functions are chosen as
the ones whose coefficients are to be fixed by the orthogd®PF IV —1600 -0827 -0126 -0076 -0.125

. " : ADF IV+1s115 -3, -0.724  0.009 —0.024 -0.231
nality conditions. We customarily choose, for reasons of nu- 3.605

merical stability, from the total basis set as the core orthogo-
nalization functions those that have maximum overlap with
the core orbitals, so the matr&above is as close as possible
to the unit matrix.

In general the NR core orbitals are not the same as scal
relativistic ZORA core orbitals, which are again different

from fully relativistic ZORA (including spin—orbit coupling uses NR core orbitals to orthogonalize upon in a SR ZORA

core orb.ltals. The basis set requirements for an accurate_ reR= culation. If we use the standard ADF IV basis @dple-C
resentation of the core part of the valence wave functions

. . valence basis setvith a frozen core including thedband all
will also differ whether one uses NR, SR ZORA or ZORA. e . 9
) . lower shells, the results still do not seem to be too [fwain-
In the NR case the core wiggles of the valence functions can . .
ared to the basis set frgénumerical”) all electron SR

accurately be described by the core orthogonalization fun ZORA results of Table Il However, if we add a d-type

tions, such that one does not need additional corelike basg_l_O with ¢ = 115 we see incipient variational collapse of the

functions to get an accuracy of a few milliatomic units. Onvalences orbital energies towardéalthough not yet any-
the other hand, in SR ZORA and ZORA one does need extra g . g Y y
) . . . where neara core orbital energy. This collapse is caused by
corelike basis functions, to get such high accuracy for the | ~.~. A
admixing of core character, due to the orthogonalization on

heavier gystems. This is due to the fact that the core Wig.gleRIR core orbitals, whereas one should have orthogonalized
of especially thes-type valence electrons do not behave Ilkeon SR ZORA core orbitals. The SR ZORA orbitals are in

Slater-type orblt_als near the nucleus, but more like DIraC'this case too different from the NR orbitals. This type of
type orbitals which are of the form

variational collapse, where valence levels acquire too low
P energies, is distinct from the variational instability of the
rr-cens, (33 pauli Hamiltonian to be discussed in the next section.

In Table Il we see the results for different basis sets if
where 77 does not have to be an integer. For ST@'ss an  we use the correct orthogonalization on SR ZORA core or-
integer. bitals. These results can be compared with the given numeri-

In the SR ZORA case the frozen core approximation cartally calculated all electron SR ZORA results. The standard
be implemented in the same way as in the NR case, becauggR) ADF IV result is not very accurate. As expected, the
one can use the same single group symmetry. The changasdition of an extra &-type STO with/= 115 now does not
one has to make are in order of importance the followinglead to variational collapse. The accuracy on the other hand
The description of the core orbitals should come from SRis still not high. We therefore have optimized the basis set,
ZORA atomic calculationgwe generally use a SR ZORA both the core orthogonalization functions and the other basis
version of an atomic STO basis set progjain the case of functions, to the valence SR ZORA orbitals. This optimized
heavy atoms, the STO basis set in this atomic calculatiomelativistic basis set, denoted BASREL, is of the same size as
cannot be kept identical to the NR STO basis set, but shouldhe ADF IV basis set. The results using basis set BASREL
for high accuracy, be reoptimized and extended with extra&how a large improvement, especiallyee the & orbital
core basis functions for the reasons indicated above. Thenergy if one also adds an extrasitype STO with ¢
basis sets for these atomic calculations, in which(trezen  =450. This enlarged basis set is able to give orbital energies
core orbitals are expressed also in the molecule, do not regvith an accuracy better than 0.01 atomic units. We also give
resent variational degrees of freedom in the SCF moleculafesults using an extratype STO with =150, which does
calculations and need not be restricted for reasons of connot change the results much, showing that the wiggle of the
putational economy. The usually smaller basis sets for th&R ZORA valence p-orbital can already be described to
molecular calculations are generated by optimizing them for
the valence orbitals only. It is oftefie., for light elements
sufficient to use one contracted basis function for each COreaBLE II. Uranium scaled SR ZORA valence orbital energies in a.u. using
wiggle of the accurately calculated SR ZORA valence or-the SR ZORA core description.
bital. The number of these functions is then equal to the

to add only one extrasttype STO with large exponertto
aqret an accuracy of a few milliatomic units in the atomic
orbital energies.

In Table | we show, for the U atom, the effects if one

number of core orbitals, and they can be used as the core Basis set 8 o o 6d s
orthogonalization functions of the basis set. The “valence” Numerical —1.738 —0.830 —0.105 —0.064 —0.136
basis functions are of course optimized for the description of\DF IV —1.537 -0.821 —0.169 —0.084 —0.121
the outer parfvalence regionof the valence orbitals. For the APF IV +1s 115 —1.593 ~0812 ~0.156 ~0.079 ~0.125
heavier atoms one also should add corelike basis functiongASREL ~1677 0831 ~0.117 ~0.069 ~0.131
ASREL+ 1s 450 ~1.735 —0.823 —0.106 —0.065 —0.135

which are able to describe the core tail of the valence orbitalgasreL+ 1s 450+ 2p 150 —1.735 —0.823 —0.106 —0.065 —0.135
more accurately. In the SR ZORA case it is usually enough
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TABLE Ill. Uranium scaled ZORA valence orbital energies in a.u. using the SR ZORA core description.

‘Basis set 81/ 612 6Pz 5fs)2 5f7 6ds), 6ds, 7Sy
Numerical —-1.718 —-1.068 —-0.741 —-0.104 —-0.074 —-0.071 —-0.054 -0.134
BASREL —-1.668 —1.057 —-0.737 —0.121 —-0.095 —-0.075 —-0.061 —0.129
BASREL+ 1s 450 —1.725 —1.048 —-0.729 —-0.110 —0.084 —-0.071 —-0.057 —-0.133

BASREL+1s 450+2p 150 —1.714 —-1.138 —0.733 —0.098 —-0.072 —-0.070 —0.056 —0.133

reasonable accuracy without an extra core like basis fundheory, where the expectation value of the Pauli Hamiltonian
tion. with the nonrelativistic wave function is used. Snijders and
If one wants to use the frozen core approximation in theBaerend¥' proposed a method for the calculation of relativ-

ZORA case(including spin—orbit couplingone should or- istic effects in a perturbative procedure, where also first order
thogonalize the basis functions on ZOR#spin—orbit effects in the change of the density are taken into account. In
coupledY;n ) core orbitals, which is notyey) implemented  the numerical atomic calculations of Ref. 24 the correct
in the ADF program system. One might wonder if using aboundary conditions were taken into account and no varia-
SR ZORA core description would not be sufficient, since onetional collapse can occur. This method, denoted first-order
expects the ZORA orbitals not to be very different from SRPauli(PAULI FOPT), has been implemented and appliet?
ZORA orbitals. In the spherical case for light atoms, thein the molecular ADF program, i.e., using STO basis sets.
spin—orbit split(ZORA) eigenfunctiondj=I1+1/2 andj=1  The FOPT treatment implies diagonalization of the Pauli
—1/2) have almost the same radial behavior as the SR4amiltonian in subspaces ¢fjuasi) degenerate level. It
ZORA orbitals, the difference is then only in the spin andproved advantageous to apply this diagonalization in the full
angular part. For closed shell cores then there is no differspace of valence and virtual levels resulting from a frozen
ence whether one uses full ZORA or SR ZORA orbitals,core calculation in the standard double-zeta or triple-zeta
because they span the same space. For heavier atoms, Whefeo pasis set€2” This so-called quasirelativisti©R) pro-
spin-orbit coupling is important, this is no longer true. The cequre, which partially takes into account higher order ef-
radial behavior for the eigenfunctions in a Coulomb potentiakects, has become the standard procedure in relativistic ADF
near the origin can be quite different for SR ZORA or ZORA caculations. It has been observed empirically that variational
orbitals. Especially the ZORA,,,-orbital differs from the collapse does not occur with the standard NR ADF basis

SR ZORA p-orbital, because it has a mild singularity near gets \yhile the QR procedure still offers significant improve-
the origin. We can perform the ZORA calculation with bas'sment over PAULI FOPT for heavy elements. In general

functions orthogonalized on SR ZORA core orbitals and i, ever there are significant limitations on basis set choice

vestigate how large the error becomes. In Table Il the '€ the QR Pauli method, as can be seen as follows.

sults are given using the BASREL basis set. The accuracy is First of all one may run into variational stability prob-

gg'frzo]srlltghg]g?gyv\fi?r: ;264;')0':52?&\(’:;trﬁr:ie;ﬁri;a?gviz lems easily when including the core electrons in the SCF
the resul%lsp Now we still do not have pri)blems wi?h Varia_treatment(all-electron calculations These problems with
tional colla.pse becaussorbitals are not affected by spin— variational collapse are reducébut not necessarily absent,
orbit coupling, and the ZORA and SR ZOR#orbitals are see belowwhen the frozen core approximation is used. It is
very close(the only difference is due to difference in the kpown that the PAULI.FOPT apprommaﬂon, using .expec.ta-
SCF potential If we add an extra @-type corelike STO tion values of the Pauli Hamiltonian for nonrelativistic orbit-
als, will improve the orbital energies. The QR Pauli method

with (=150 the use of a frozen SRp2core orbital rather : o ) ,
than the proper @y, orbital, shows up in a variational sta- typically also uses nonrelativistic valentnd virtua) orbit-
als as basis. The nonrelativistic basis sets use one core or-

bility problem, the &,,, orbital energy is now 0.1 a.u. too 71> : X )
low. This result will get worse if we add more corelike thogonalization function per core orbital to orthogonalize on
p-type STO's. the accurately calculated nonrelativistic core orbitals. The
These results demonstrate the level of accuracy obtairfOr® orthogonalization functions are optimized to the core
able within the various procedures that can be adofidR] wiggles of the nonrelativistic valence orbitals. With good
SR or full ZORA frozen cores; special relativisticeopti- valence basis sets, the nonrelativistic solutions will be accu-
mized basis sets; introduction of extra corelike basis func-rately described and a good performance of the PAULI
tions]. We conclude that the use of SR ZORA core orbitalsFOPT as well as QR Pauli is expected. An example of this,
and special relativistic basis sets, with one extsacbre calculations on the neutral Uranium atom, can be found in

function, represent a good Compromise of efficiency and acRefS. 26 and 28. If we calculate the U atom, USing a standard

curacy. basis, the so called ADF IV withdfrozen core, we obtain
—1.30 a.u. for the NR 6 orbital energy, and-1.57 a.u.

V. THE PAULI HAMILTONIAN AND THE and —1.75 a.u. using FOPT and the QR method, respec-

QUASIRELATIVISTIC METHOD: FROZEN CORES tively. This can be compared with the relativistic Dirac result

AND VARIATIONAL STABILITY of —1.72 a.u., showing that the QR method improves upon
The Pauli Hamiltonian in general poses no problems fothe FOPT result considerably. The general observation was
bound electrons if one uses it in a first order perturbatiormade in Ref. 27 that for elements upZe- 80 PAULI FOPT
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TABLE IV. SR ZORA (ESA) GGC optimized bond lengths, in angstroms for some diatomic systems,
obtained from pointwise calculations and from analytical calculated geometry gradiepis.the difference in
r. between these methods.

I Au, Bi, HI AuH TIH IF TIF TH PbO  PbTe

Pointwise 2.697 2517 2655 1.625 1.535 1931 1.940 2126 2.872 1939 2.629
Analytical 2.699 2518 2.656 1.625 1.537 1.929 1.941 2127 2874 1939 2.629
Arg 0.002 0.001 0.001 0.000 0.002—0.002 0.001 0.001 0.002 0.000 0.000

is accurate enough, while for heavier systems the QR methodl. RESULTS AND DISCUSSION
is needed.

However, the stability problems of the QR Pauli become In this section we test our imple.mentation of the calcu-
apparent when we consider basis set variation. A first ex!tion of the analytical energy gradients for SR ZORA on

ample is changing the core orthogonalization functions. InSOme small molecules using density functional theory. The

stead of using the STO's which are optimized to the Coreusual (nonrelativistig density functionals for the exchange-

wiggles of the valence functions, we could use STO’s Opti_correlatlon energy are used; local density functiorfal3A)

mized to the core orbitals, in the sense of having maximu with gradient correctioGGC) terms added, namely the

: . . . mBecke correction for exchangeand the Perdew correction
overlap with the core orbital. With such core orthogonahza—for correlatior: g

tion functions(still one per core or_bitalwe now g(_et in the In Ref. 29 results are given of all-electron density func-
NR case—1.24 a.u. for the § orbital energy. This some- ;a1 cajculations of bond lengths for a number of diatom-
what higher energythan the—1.30 a.u. quoted aboyean e |n Table IV these results, that were obtained by point-
be expected for a basis set which cannot describe the cogise calculations of bond energies, are compared with the
wiggles of the valence orbitals as accurately as before. HoWegy|ts that were obtained from calculations that use the ana-
ever, in the QR method we now already have problems rejytical geometry gradients. In the present calculations the
lated to variational collapse, the 6rbital energy in this case same large basis sets were used as in Ref. 29. These basis
being —3.75 a.u., which is far too low. The success of thesets are triple: in the core and quadruplkein the valence

QR method thus quite heavily depends on the choice of theith at least three polarization functions added. For the
core orthogonalization functions. A second example is to enheavier atoms, these basis sets contain extrantl 20 STO

large the standard ADF IV basis set with an extra STO in thdunctions, in order to describe the core orbitals accurately.
basis which is corelike, for example &-type STO withx  The difference in the calculated bond lengths between the
=40. In the NR calculation the $energy is then still pointwise and analytical calculations is 0.002 A at most.
—1.30 a.u., the difference being less than 0.0001 a.u. witemall differences of this order were already reported in non-
respect to the calculation without this corelike function.relativistic calculations using the ADF program, see Ref. 16.
Again this could be expected since the basis set was akeatﬁpssible causes that were cited are related to features of the
quite optimal and a corelike function is certainly not able toADF methodology that limit the numerical precision, such as

improve much upon this. In the QR calculation, however, thdn€ density fitting procedure for obtaining the Coulomb po-
6s orbital energy now becomes 485 a.u., showing the tential and the numerical integration for Hamiltonian matrix

drastic effect of variational collapse. In fact, it is possible to€/€Ments. Since our present method only modifies the calcu-
obtain any orbital energy by variation of the corelike basisIatlon of the kinetic energy gradient in comparison with the
functions nonrelativistic case, a similar level of precision could be ex-

In the QR method implemented in ADF, the variational pected. Since the differences are so small we may conclude
collapse can thus be avoilzied by carefull choosin the bas;tgat the analytical calculation of the kinetic energy gradient
P y y 9 the ZORA ESA method, Eq20), gives results which are

o . T
set; the core Iorthogonallz?tu_)n_ fqnctl()lns ShOUIS_ b(le Opt';mieﬁﬂ very good agreement with those obtained with a point by
to core wiggles of nonrelativistic valence orbitals and t €point tracing of the energy.

valence basis set should not contain too contracted functions Recently, geometry optimizations were performed by

and not be too extensive. The standard ADF frozen corgan wiillen, Ref. 9, who uses the ZORMP) method. Re-
basis sets fulfill all these requirements. Using these basis segg|ts for some diatomics showed reasonable agreement with
the QR method can then be a very usefiid cheapmethod  resylts that were obtained with the ZORA ESA metfidthe

for estimating relativistic effects. However, it is not possibleremaining differences in the results of the two methods can
to investigate basis set effects, since enlarging the basis maye explained partly by the use of different basis sets, but we
yield unreliable resultfsee Sec. )l The SR ZORA and think that also a part of the deviations is due to the gauge
ZORA method have been developed with the purpose t@lependence problems of the ZORMP) results, which were
have efficient yet variationally stable relativistic methodsalready explained at the end of Sec. IIl. Let us consider the
that will allow one to obtain high accuracy by using ex- example of AuH for a more quantitative analysis of these
tended basis sets. problems. In the ZORAMP) method the kinetic energy of
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the (deep core orbitals on Au will depend on the actual space. The metal f4electrons were unfrozen in the ¢}
distance between Au and H even if thédeep core orbitals metal frozen core basis sets. For the metals new STO basis
do not change shape. In this case the main effect comes frosets were created. The exponents of these STO's were fitted
the part of the molecular model potential that is due to the Ho numerical scalar relativistic ZORA orbitals. Basis set IV is
atom in the region of the Au nucleus, where fldeep core  double< for 5s,5p, triple- for the valence orbitals [6s),
orbitals have some value. In Ref. 9 the molecular modeblnd it has one g function. In basis g€V a 5f polarization
potential is constructed in such a way that distant atoms déunction is added. For C and O the basis sets IV and V that
not contribute, but in the AuH molecule the H atom is still soare used here in the SR ZORA calculation are the same as
close to the Au atom, that a non-negligible contribution re-the standard ADF nonrelativistic basis sets. The QZD basis
mains, which is larger if the atoms are closer. The resultingsets for carbon and oxygen are quadrupler the valence
electrostatic shift in the molecular model potential in theorbitals (2,2p) plus one polarization function. These basis
region of the Au nucleus will lower the ZORA kinetic en- sets are given in Ref. 36, where also basis set superposition
ergy of the (deep core orbitals. In the case of the exact errors for these basis sets in the(@D)g and Mn,(CO)4q
solution of the hydrogen atom the sum of the nuclear poteneomplexes have been investigated. Comparing the SR ZORA
tial and Coulomb potential of the electron density at 1.535 Acalculations we conclude from Table V that the results of the
is approximately—0.11eV. A simple estimate of the gauge frozen core calculations compare very well with our largest
dependence error in the energy, see the end of Sec. Il A, isalculations, the all electrotae calculations. The different
this value of—0.11 eV divided by 22 and multiplied by the  basis sets all give optimized bond lengths within 0.01 A of
kinetic energy of the electrons of the gold atom each other, and FBDE's within 0.5 kcal/mol of each other. If
(=22000a.u.). We then obtain a value-60.065 eV for the for the metal the d frozen core with basis set V is chosen,
gauge dependence error in the energy. If we do the santée results are in even better agreement with our largest cal-
exercise at a AuH distance of 1.52 A, we obtain a value otulations, the all electron calculations; within 0.2 kcal/mol
—0.069 eV for this error. Since this gauge dependence errdor the FBDE and within 0.001 A for the bond lengths.
is larger at shorter distances it will also have an effect onthe We also performed pointwise calculations of the bond
calculated bond length. The total error of this gauge depenenergy to obtain the optimal metal—carbon distance. For each
dence problem in the ZORMVIP) method can now be esti- compound these were determined in all-electron calculations
mated for AuH as an increase in the bond energy in the ordeand in one of the frozen core calculations. The optimized
of 0.07 eV and a decrease in the bond length in the order dfond distances of these pointwise calculations were always
0.01 A. In Ref. 9 the ZORAMP) results for AuH indeed within 0.002 A of the analytically calculated distances. This
showed a higher bond energy of 0.06 eV, and a shorter bonaigain confirms that the analytical calculation of the kinetic
length of 0.02 A, compared to the ZORA ESA results. Al- energy gradient in the SR ZORA ESA method, according to
though this is close to our estimate of the error due to théeq. (20), is in good agreement with the SR ZORA ESA
gauge dependence problem in the ZORWP) method, one  method for the pointwise calculation of the bond enétdy.
also has to take into account that different basis sets werdne pointwise calculation the CO distance was kept at the
used, which may be partly responsible for the differencesoptimized bond length of the analytical calculation.
Also for other diatomics the gauge dependence problem will  In Table V we also show the results of the optimized
result in a too short bond length, and a too large bond engeometries obtained from quasirelativisf@R) calculations,
ergy. These errors will probably not be large, but they can baising the ADF program. Using the standard ADF basis sets
avoided completely if the ZORA ESA method is used, sincelV for the atoms, very good results were obtained for the
this method was designed to solve the problem of gaugeptimized bond lengths, if the results are compared with the
dependence, see also Ref. 6. On the basis of the presentS® ZORA ESA resultddeviations less than 0.01)AFB-
analysis, a possible remedy for the gauge dependence probE’'s appear to be overestimated by 3-5 kcal/mibd—
lem in the ZORA(MP) method is to construct a model po- 30%). However, if we enlarge the basis set for carbon and
tential such that the electrostatic shift in the model potentiabxygen to quadruplé-(QZD), variational collapse occurs,
due to an atom in the regions of other atoms is zero. and especially the calculated FBDE is completely wrong.
Next we test our implementation of the calculation of The origin of this variational collapse in the QR method of
analytical gradients in the SR ZORA ESA method in a cal-the Pauli Hamiltonian was explained in Sec. V. This example
culation of the structures of some polyatomic moleculesagain shows the limitations on the use of this QR method if
namely, the heavy transition metal compoundgC@)e, larger basis sets are used. This implies that the QR method
09CO)s, and P{CO),, since these have been studied exten-only gives satisfactory results for moderate size basis sets,
sively before’*°-3513|n Table V results are given for the and one cannot obtain the basis set limit. Moreover, one
optimized metal-carbon distance and the first metal-cannot use an all electron basis set for the heavy atoms in
carbonyl bond dissociation energiyBDE). order to test the frozen core approximation, since variational
We performed frozen coréc) and all electror(ag cal-  collapse would occur. On the other hand, as we have seen in
culations, using different sizes of basis sets on the atoms. Ihable V, in the SR ZORA ESA larger basis sets are not a
the frozen core calculations thes Jorbitals of carbon and problem, and one can study the convergence of the results to
oxygen were kept frozen. In the largest core j4for the  the basis set limit, and it is possible to test the frozen core
metal centers, the orbitals up[tkr],4d,4f were kept frozen, approximation using all electron basis sets. FACP), we
the subvalence §5p shells being retained in the variational tested the remaining basis set error in the all-electron calcu-
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TABLE V. Optimized metal—carbon bond lengthéM—-CO) in angstroms and the first metal—carbonyl bond
dissociation energie§-BDE) for W(CO)g, OJCO)s, and P(CO),.

Method M C, O r(M-CO) FBDE kcal/mol
W(CO)s
SR ZORA (4 )H)Iv (1s)IV 2.070 44.6
SR ZORA (4)Iv (1s)QzD 2.069 44.4
SR ZORA (4 )V (1s)IV 2.068 44.6
SR ZORA (ad)v (1s)IV 2.062 45.0
SR ZORA (aeV (aeV 2.061 44.9
QR (4f)Iv (1s)IV 2.066 48.0
QR (4f)IV (1s)QzD 2.049 64.0
DFT DKH (Ref. 13 2.063 46.9
DFT DPT (Ref. 35 2.060 46.1
QR (Ref. 30 2.049 43.7
[CCSOT)//IMP2] RECP(Refs. 31, 32 2.060 48.0
Experiment(Refs. 37, 38 2.058 46-2
09CO)5 axial equatorial
SR ZORA (4 )Iv (1s)IV 1.974 1.959 375
SR ZORA (4)Iv (1s)QzD 1.973 1.958 37.3
SR ZORA (4 )V (1s)IV 1.970 1.955 37.6
SR ZORA (Md)Vv (1s)IV 1.967 1.951 37.7
SR ZORA (aeV (agV 1.966 1.950 37.5
QR (4f)Iv (1s)IV 1.968 1.949 42.9
QR (4f)Iv (1s)QzD  2.017 1.757 1915
DFT DPT (Ref. 35 1.964 1.949 37.5
QR (Ref. 30 2.000 1.975 34.7
[CCSOT)//IMP2] RECP(Refs. 33, 34 1.963 1.945 42.9
Experiment(Refs. 39, 40 1.990 1.943 (30.9
P{(CO),
SR ZORA (4 )Iv (1s)IV 1.975 14.8
SR ZORA (4 )Iv (1s)QzD 1.976 14.5
SR ZORA (4 )V (1s)IV 1.973 14.7
SR ZORA (4d)v (1s)IV 1.967 14.7
SR ZORA (aeV (aeV 1.967 14.5
QR (4f)Iv (1s)IV 1.959 19.0
QR (4f)Iv (1s)QzD 1.874 8.2
DFT DPT (Ref. 35 1.963 12.4
QR (Ref. 30 2.012 15.7
[CCSOT)//IMP2] RECP(Refs. 33, 34 1.966 12.1
Experiment B L

lations, using basis sets of the size that were already used method includes higher order relativistic effects than the

the calculation of the bond lengths of the diatomics. UsingPauli Hamiltonian. Comparison to the previous QR Pauli re-

these large basis sets the optimized platinum—carbon borsllts of Li et al*® shows good agreement in general, with

length is 1.964 A and the FBDE is 14.3 kcal/mol. Theselargest differences with the presga® SR ZORA results of

results are very close to those obtained with the all electro®.05 A for the Pt—C distance and 2.8 kcal/mol for the

basis set V; they only differ 0.003 A in the optimized bond Os—CO FBDE. The results for WO)g of the scalar relativ-

length and 0.2 kcal/mol in the calculated FBDE. istic DKH method, which also contains higher order relativ-
In Table V our results are compared with recent resultgstic effects, are in close agreement with the SR ZORA re-

that were obtained using the leading order of the relativisticsults.

direct perturbation theoryDPT),3® and for W(CO)¢ with re- In Table V our results are also compared wéth initio

sults of the Douglas—Kroll-Heg®KH) (Ref. 13 method, results at thg CCSOT)//MP2] level of theory using relativ-

using the same density functional as in the present work. Thistic effective core potentialSRECP.31~3* Again these re-

leading order of the relativistic DPT without spin—orbit cou- sults agree well with our results, with largest differences of

pling means that only the well known mass—velocity term0.005 A for the equatorial Os—C distance and 5.4 kcal/mol

and Darwin term of the Pauli Hamiltonian were included. for the Os—CO FBDE.

The results for the bond lengths and FBDE's are in very

satisfactory agreement with our results. The bond length

agree within 0.004 A, while the FBDE exhibits a Iargest%“' CONCLUSION

deviation of 2.1 kcal/molfor P{CO),). It should be noted Expressions have been derived for the evaluation of en-

that different basis sets were used and that the ZORArgy gradients in the ZORA ESA method and were imple-
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