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S U M M A R Y

In most geological instances, 2-D or 3-D fracture distributions are not available from field

data. We show here that when data relative to fractures are collected along a line such as a road

or a well, estimations can be given to the major geometrical properties of the corresponding

fracture networks, such as the volumetric density of fractures, their percolation character and

their macroscopic permeability. All these formulae are analytical and can be split into two

parts; the first one can be derived from the measured data, while the second one requires

some assumption on the lateral extension of the fractures and on their permeability. All these

techniques are applied to fractures located in the Baget watershed. They are also validated on

a granite block whose structure is fully known. Extensions are proposed for networks with

variable permeabilities and polydisperse fractures.

Key words: fracture network, geometry, line data analysis, percolation, permeability,

reconstruction.

1 I N T RO D U C T I O N

The macroscopic properties of a fracture network consist of its ge-

ometrical and topological properties (such as connectivity and per-

colating character), and of its transport properties (such as perme-

ability).

The main objective of this work is to show how a fracture network

can be characterized by data collected along a line. This line can be

located at the surface of the ground, but it can also be a well. Net-

works can be subsequently reconstructed according to these data and

the geometrical properties, namely connectivity and percolation, can

be estimated; moreover, transport properties such as permeability

can be determined as well. In other words, we wish to show that rela-

tively important overall information can be extracted from relatively

poor data.

Fractures are usually generated in a random way (e.g. Koudina

et al. 1998), whereas their positions and characteristics are likely

to depend on the geological features of the region under study. An-

other technique is stereological analysis which was used for instance

by Berkowitz & Adler (1998); the input data were traces collected

on a plane surface. In this work, we focus on fractures located in

the Baget watershed (in the southeast of France) which presents

the peculiarity of being karstified so that an analysis of the fracture

distribution could provide some hints of the drainage pattern of the

basin (Pistre et al. 1999); this means that the transport properties

of the fracture networks will be dependent, to a great extent, on

phenomena such as deposition and dissolution. Due to bad outcrop-

ping conditions, fractures are only visible along recently excavated

roads; hence, geometrical parameters of the fractures such as their

dips and strikes were mapped along these roads. These parameters

were then included into our network model. It should be stressed that

the karstified character will be studied in a different contribution.

This paper is organized as follows. Section 2 presents the major

theoretical considerations. After a few definitions, the volumetric

density of an event is determined as a function of measurable quan-

tities. Then, it is shown how the networks can be reconstructed

when the individual events are assumed to be randomly distributed

in space. The general percolation properties of these networks can

be derived from quantities such as the mean number of intersections

per event, which can be partly expressed in terms of the measured

data. The determination of the permeability of these networks is

presented and two general estimations are proposed: the first one

derived from percolation theory is valid close to the percolation

threshold, while the second one is valid for high densities. It should

be emphasized that many of these properties can be derived from

relatively straightforward analytical formulae whose simplicity is a

decisive factor for the applications.

Section 3 applies these concepts to the particular case of the Baget

watershed. After a detailed analysis of the line surveys, several types

of fracture networks are reconstructed; fractures may be of the same

size (monodisperse fractures) or of two different sizes (bidiperse

fractures), and each event can be composed of one or several parallel

fractures. Examples of networks are presented. Their percolation

properties are discussed as well as their flow properties.

The first part of Section 4 is devoted to the validation of the

methodology on a block of granite whose structure and properties
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918 S. Sisavath et al.

Figure 1. Notations: (a) intersection of the observation line L with a series of fractures; (b) intersection of a fracture with an observation line and the

corresponding intersection volume.

are known extensively (Ledésert et al. 1993; Gonzalez Garcia et al.

2000). In the second part of Section 4, it is first recalled how the

permeability of the individual fractures can be determined; the ap-

proach and the formulae presented in Section 2 are extended to net-

works with variable permeabilities, and applications to the Baget

watershed are detailed. Finally, the polydisperse character of the

fracture sizes is addressed; an extension of the classical Snow for-

mula is proposed.

Some concluding remarks end this paper.

2 T H E O RY

2.1 Definitions

Let us consider a line L (cf. Fig. 1a) which is crossed by fractures; the

line is parallel to the unit vector p. More generally, since these fea-

tures include single fractures, series of parallel fractures and possibly

faulted zones, these intersections are classified as events numbered

by f for which the position xf along the profile and the width wf

can be measured; wf is of course equal to zero when the event con-

tains a single fracture. In the opposite case, the event f contains n f,p

fractures which are more or less parallel with an average spacing df

with the obvious relation

w f = n f,pd f . (1)

In addition to this, the orientation of each fracture should be mea-

sured. Instead of the strike and dip angles, we use directly the unit

vector ni perpendicular to the fracture plane, which can be deduced

from the information above; the vertical component of these unit

vectors is taken as positive.

Another useful quantity is the spacing si between two successive

events i and i + 1 along L

si = xi+1 − xi . (2)

2.2 Spatial distributions and volumetric density

In the subsequent simulations, we aim at generating random realiza-

tions of fracture networks in agreement with the field observations.

To this end, it is necessary to know how many events of each type

are to be inserted in a given sample volume.

To determine this from the line surveys, we need to know the

density of a given event characterized by the subscript f . Suppose

that this event is a fracture of area Af and of normal nf . This fracture

intersects a segment of length L on a line parallel to p if its center

belongs to the cylinder of base Af and length L as illustrated in

Fig. 1(b). The volume of this cylinder is

V = L Af |p.n f |. (3)

If ρf is the number of such events per unit volume, the number

of intersections nf of this type of event with L is given by

n f = ρf L Af |p.nf |. (4)

Therefore, the average spacing sf between two intersections is given

by

sf =
L

n f

=
1

ρf Af |p.nf |
. (5)

Actually, this quantity sf is measurable along the profile L. It can be

used to express the volumetric density of the event f as

ρf =
1

L f Af

withL f = sf |p.nf |. (6)

This apparently formal decomposition has the great advantage of

dividing ρf into two terms, namely L f which is known from the

measurements along the line and Af whose value has to be hypoth-

esized. Such a decomposition will be used repeatedly in this paper,

and it can be considered as one of the major contributions of this

work.

Note that according to (5), 1/L f is also equal to ρf Af , i.e. to the

area of the event f per unit volume.

The main problem for the determination of ρf is the estimation

of the area Af . Here, it will remain an unknown quantity since data

collected along a line cannot give any information on their extent.

Note that when 2-D trace maps are available, these quantities can be

estimated after a stereological analysis (Berkowitz & Adler 1998).

2.3 Numerical reconstruction

It is useful to give some general information on the reconstruction

procedure which involves two steps.

First, the events are assumed to be Poissonian (a hypothesis sub-

ject to verification) and they are inserted at random locations: their

number results from the volumetric density ρf in (6) and from the

sample volume. Secondly, whenever it is relevant, each event is de-

composed into series of parallel fractures, the number and spacing

of which are deduced from the data w and d.

The first step of the generation follows the procedure of Huseby

et al. (1997). The generated samples are made up of cubic unit cells

of size L. In order to minimize size effects in the determination of

the network transport properties, periodicity conditions are applied,
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Geometry, percolation and transport properties of fracture networks 919

so that an infinite medium results from the juxtaposition of identical

unit cells.

The events and the fractures they contain are assumed to have

identical plane circular or polygonal shapes. Their size is quantified

by the radius R of the circumscribed circle.

2.4 Connectivity

Within the framework of Poissonian spatial distribution of the frac-

turation events, much can be deduced about the connectivity of the

network from the line survey data.

Recall firstly the definition of the exclusion volume Vex(1, 2)

of two objects f1 and f2 (Balberg et al. 1984). It is the volume

surrounding f1 in which the center of f2 must be located in order

for them to intersect. Note that the definition is symmetric, with

Vex(1, 2) = Vex(2, 1). Thus, if ρ i is the volumetric density of objects

fi, ρ i Vex(i , j) is the mean number of fi objects intersecting fj. By

simple summation, the total number ρ I of object intersections per

unit volume is

ρI =
1

2

∑

i

∑

j

ρiρ j Vex (i, j). (7)

For the sake of simplicity, we suppose that the fracturation events

can be regarded as plane convex polygons, i.e. that their width wf

is small compared to their extension. The argument can be easily

generalized to events with non-zero thickness, by modifying the

expression (8) below for the excluded volume.

It can be shown (Adler & Thovert 1999) that if the objects fi are

plane convex polygons, with areas Ai, perimeters Pi, and relative

orientations given by the angle γ i, j between their normal vectors,

the excluded volume is given by

Vex (i, j) =
sin γi, j

π
(Ai Pj + A j Pi ) with cos γi, j = ni · n j . (8)

By injecting (8) into (7), the density of intersections reads

ρI =
1

2

∑

i

∑

j

ρiρ j

sin γi, j

π
(Ai Pj + A j Pi ). (9)

However, ρ i is directly related to the volumetric area 1/L i by eq. (6).

Hence,

ρI =
1

2π

∑

i

∑

j

sin γi, j

L i L j

(

Pi

Ai

+
Pj

A j

)

. (10)

If the shapes and sizes of the various events are known, they can be

used in the fully general expression (10). Partial summations can

also provide more detailed statistics, such as the mean numbers of

intersections between specific events or families of events.

In the absence of such information, we suppose here that all the

fracturation events have the same shape and size, and thus, the same

area A and perimeter P. The density of intersections then reads

ρI =
P

π A

∑

i

∑

j

sin γi, j

L i L j

. (11)

On the other hand, the total volumetric density ρ of events, i.e.

the number of fractures per unit volume, is simply the sum of the

densities ρ i :

ρ =
1

A

∑

i

1

L i

. (12)

Moreover, the mean number ρ ′ of intersections per event, which

directly quantifies the connectivity of the network and will be used

hereafter as a dimensionless measure of the network density is

ρ ′ =
2ρI

ρ
=

2P

π

∑

i

∑

j

sin γi, j

L i L j
∑

i
1
L i

, (13)

where the factor 2 comes from the fact that an intersection neces-

sarily belongs to two different fractures.

A global effective exclusion volume Vex can be defined from ρ

and ρ ′, as

Vex =
ρ ′

ρ
=

2

π
AP

∑

i

∑

j

sin γi, j

L i L j

(

∑

i
1
L i

)2
. (14)

For an isotropic distribution of monodisperse objects, Vex = AP/2

(Adler & Thovert 1999).

As (6), all these formulae can be decomposed into a measurable

part and a part which has to be hypothesized.

2.5 Probability of percolation

It was shown in Section 2.4 that the connectivity depends both on

the density and size of the fractures. However, percolation is a topo-

logical property, and it is therefore desirable to quantify the event

density by an intrinsic, topological, dimensionless parameter.

The mean number of intersections ρ ′ defined by (13) is the ideal

quantity in this respect. It can be regarded both as a topological pa-

rameter, which directly measures the connectivity of the network,

and as a dimensionless density, since it is the mean number of ob-

jects per volume Vex (see eq. 14). It has been successfully used by

Huseby et al. (1997) to describe and unify the topological and geo-

metrical properties of isotropic fracture networks, and by Koudina

et al. (1998) for the flow properties of such networks. In the follow-

ing numerical results, it is directly measured on the reconstructed

samples as the ratio of the actual number of fracture intersections

NI to the number of fractures Nf

ρ ′ =
2NI

Nf

. (15)

The factor 2 is due to the fact that an intersection belongs to two

fractures.

Percolation is defined as the existence of a spanning continuous

path, where a fluid can circulate, across the medium. Percolation is

a crucial topological property which controls many geometrical and

transport properties of the network. This concept originated and was

closely studied in discrete sites or bonds lattices (see, e.g. Stauffer

& Aharony 1994), where the density of occupied (or conducting)

sites or bonds is measured by a probability (or concentration) p. In

large systems, percolation occurs when p exceeds a critical value

pc, known as the percolation threshold. For p close to pc, many

geometrical or transport coefficients are known to scale as power

laws of the difference p − pc, according to the standard form

X ∝ (p − pc)α. (16)

The quantity X may represent the correlation length, the fraction

of sites connected to the infinite cluster, or the transport coefficients

of the system. Different exponents are associated with the various

quantities, but each is generally believed to be universal, i.e. insen-

sitive to the details of the underlying lattice.

It is one of the great merits of the concept of excluded volume and

of the dimensionless density ρ ′, to allow for a transposition of the

C© 2004 RAS, GJI, 157, 917–934

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
5
7
/2

/9
1
7
/2

0
8
1
3
0
6
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



920 S. Sisavath et al.

on-lattice percolation theory in terms of p to continuous percolation

systems, with a formulation in terms of ρ ′. A survey of this topic is

provided by Adler & Thovert (1999). In particular, a critical density

ρ ′
c exists for a given class of continuous systems, which plays the

role of pc in lattice systems. For networks of randomly-oriented

fractures, Huseby et al. (1997) determined this percolation threshold

to be

ρ ′
c ∼ 2.26. (17)

Of course, this threshold is different for non-isotropic networks.

However, it provides an order of magnitude to which the estimation

(13) can be compared; it can be easily decided a priori if a given

fracture network is likely to percolate or not.

2.6 Flow properties

The flow properties of these networks can be studied by the methods

and numerical tools described by Koudina et al. (1998). The solid

matrix containing the fractures is assumed to be impervious.

Let us first consider a single fracture at a local scale characterized

by a typical aperture b0, which is assumed to be much smaller than

the lateral extent R of the fracture. Then, the flow of a Newtonian

fluid at low Reynolds number is governed by the Stokes equations.

At a scale L, which is intermediate between b0 and R, the flow is

governed by the Darcy equation

j = −
1

µ
σ.∇ p, (18)

where j and ∇ p are the locally averaged flow rate per unit width

[L2T −1], and the pressure gradient σ[L3] is the fracture permeabil-

ity tensor. The mass conservation equation reads

∇S . j = 0, (19)

where ∇ S is the 2-D gradient operator in the mean fracture plane.

Because of the classical Poiseuille law, the permeability σ of a

fracture is expected to be of the order of

σ ∼ σ0 =
b3

0

12
. (20)

The dimensionless fracture permeability σ ′ is defined by

σ ′ =
1

σ0

σ. (21)

Note that if electrical conductivity is addressed, the shape of (18)

and (19) remains the same: p should be replaced by the electric

potential ψ ; σ would be the fracture conductivity tensor.

It is known that natural fractures are more complex than plane

channels. However, the flow behaviour due to the complexity of

fracture geometry is not the focus of the present study. This topic was

specifically addressed by Mourzenko et al. (1995, 2001). In most of

this paper, σ is taken to be uniform over each fracture and generally

identical for all the fractures. A more complex estimation of the

fracture permeability will be given in Section 4.2: in addition some

calculations with non-constant fracture permeabilities are described

and discussed.

These equations must be supplemented with non-flux conditions

at the fracture edges and conservation (for the flux) and continuity

(for pressure) equations along the fracture intersections.

Any standard overall boundary condition can be applied to the

network. For instance, pressures or fluxes could be applied along

inlet and outlet lines drawn on fractures of the network. In the case

where the fracture network can be considered as statistically homo-

geneous at the field scale, which is assumed to be large with respect

to the lateral dimensions R of the fractures, a macroscopic pres-

sure gradient ∇ p induces an average flux vn , which is related to the

pressure gradient by Darcy’s law (Adler 1992)

vn = −
1

µ
K .∇ p. (22)

K is the network permeability tensor [L2]. For isotropic networks,

it is a spherical tensor

K = K I. (23)

Since the generated numerical samples are spatially periodic in the

present case, it is a simple matter to impose a macroscopic pres-

sure gradient ∇ p on the infinite periodic medium, and to derive the

corresponding components of K from the mean flux vn .

It is convenient to introduce a dimensionless permeability tensor

K
′
,

K
′ =

1

K0

K , K0 =
σ0

R
. (24)

Koudina et al. (1998) developed general numerical tools to solve

the local flow equations in fracture networks described by a 3-D

triangular mesh, and systematically investigated the flow properties

of the same class of random networks of plane fractures as Huseby

et al. (1997). They showed that the permeability varies as

K
′ = 0.0455(ρ ′ − ρ ′

c)1.57 (3.5 ≤ ρ ′ ≤ 20). (25)

Snow (1969) considered networks where all the fractures are in-

finite plane channels with an arbitrary orientation distribution. This

is equivalent to assuming that the whole surface of all the fractures

in the network may contribute to the flow and can be valid only

in the limit of very dense networks. For an isotropic network, the

permeability tensor is given by

K iso
Sn =

2

3
σS I, (26)

where S is the volumetric surface area of fractures, i.e. the inverse

of the length L f in eq. (6). This result is easily generalized for

anisotropic networks by introducing the fracture orientation distri-

bution, which yields a non-spherical tensor KSn

K Sn =
∫ ∫




σ (n)S(n)(I − nn) d2n, (27)

where 
 is the unit sphere and S(n)d2n is the volumetric surface

area of fractures with normal vector in the solid angle d2n around

n, with permeability σ (n).

For finite polygons, S can be expressed in terms of the surface

A and perimeter P of the polygons. Hence, the dimensionless per-

meability in Snow’s (1969) model network with the same surface

density is

K iso′
Sn =

4

3

R

P
ρ ′, (28)

where R/P is a shape factor, equal, for instance, to
√

2/8, 1/6, and

1/2π for square, hexagonal, and circular fractures, respectively. The

numerical calculations of Koudina et al. (1998) showed that (28) is

indeed a possible asymptote for networks of finite fractures with

very large densities.

This analytical approach can be applied to line data. If the nf,p

fractures representing each event f have identical size and shapes,
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Geometry, percolation and transport properties of fracture networks 921

Figure 2. Geological setting of the Baget area. A north–south cross-section of the surveyed area is displayed in the upper left. A geological map is also

displayed where the geological formations north of the Alas fault are not detailed.

and if the volumetric area of each event type is simply 1/L f , eq. (27)

can be rewritten as a sum over the events:

KSn = σ
∑

f

n f,p

L f

(I − nf nf ). (29)

It is remarkable that except for σ , all the quantities in (29) are again

geometrical parameters which are readily available from the line

surveys. In particular, no assumption regarding the size or shape of

the fracture is required since they are assumed to be infinite. As a

corollary, eq. (29) yields the same prediction of the permeability of

monodisperse and polydisperse networks.

This presentation of the flow properties can be summarized as

follows. The permeability of a given network can be determined in

three different ways: it can be numerically calculated by the tool

developed by Koudina et al. (1998); more conveniently, it can be

estimated by (25) or (29).

3 F I E L D DATA

3.1 Geological setting

The Baget watershed (see Fig. 2) is located inside the north Pyrenean

zone that was highly deformed during late Cenomanian to Tertiary

Pyrenean orogeny induced by the transpressional strike-slip mo-

tion of the Iberic and European plates along the north Pyrenean

fault (see Choukroune 1992, for a review paper on the tectonics of

the Pyrenees). Our study concerns the karstified part of the basin

consisting of a slice of alternating metamorphic Jurassic to Creta-

ceous dolomites, limestones and calcareous marls, dipping 70◦ to

90◦ southwards under the slaty Albian–Cenomanian Ballongue fly-

sch, remnant of a Cretaceous pull-apart basin opened during strike-

slip motion along the Pyrenean margin (Johnson & Clarence 1989).

The Baget drainage basin is limited to the north by the Alas ver-

tical fault, a satellite of the north Pyrenean fault, running mainly

west–east. The original stratification is easily seen at the outcrop as

ubiquitous open discontinuities running mainly east–west. The same

direction is also recognized as the cleavage direction in Ballongue

flysch and so produces a major source of anisotropy. A second dis-

continuity direction is recognized from satellites images, running

170◦N to 10◦N (Debroas 1987). The present state of stress of the

basin is poorly constrained. Goula et al. (1999) proposed that the

regional main (compressive) stress is N–S in the eastern Pyrenees

from an inversion of focal mechanisms and striation data. However,

the world stress map of Reinecker et al. (2003) exhibits only sparse

and highly dispersed data around the Baget area. Souriau & Granet

(1995) and Souriau et al. (2001) proposed that a rigid block cen-

tered around St Gaudens and bordering westward the Baget drainage

basin, could explain the lack of seismicity in this area. Hence, the

local stress field around the Baget area can only be deduced from lo-

cal field work. Due to metamorphism, matrix porosity is reduced to

less than 1 per cent (Mangin 1974) and voids consist in dissolution

caves and in an open fractures and joints. Several caves have been

recognized on both sides of the Baget valley. Two of them have been

mapped: La Péreyre to the north and St Catherine to the south of

the valley. However, the underground drainage system of the Baget

valley is far from being completely explored.

Finally, it is worth noting that the river is oriented east–west,

a direction which is likely to be followed by most underground

waters.

3.2 Line surveys

Open cracks orientation and extension have been mapped along

three roads: these line surveys correspond to sub-horizontal profiles,

C© 2004 RAS, GJI, 157, 917–934
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922 S. Sisavath et al.

referred to as P1, P2 and P3, oriented 110◦, 70◦ and 120◦ clockwise

from the north, with lengths 700 m, 200 m and 100 m, respec-

tively. In addition, fractured zones consisting in series of subparallel

cracks have been characterized by their width and their mean crack

spacing.

Some data collected in the La Péreyre and St Catherine cave

system have not been included in this survey, but they were used to

check the consistency of the data set.

The characteristics of all the recorded events are summarized in

Table 1. The x- and y-axes of coordinates are set in the S–N and

E–W directions, respectively, and z is vertical and oriented upward.

Recall that the vertical component of the unit vectors n is taken as

positive.

Table 1. Fracturation event characteristics from the line surveys: P and x are the profile number and the location along the profile; L f is the total corrected

profile length according to formula (31); n is the normal vector to the event plane; w is the event width along the profile and d is the typical spacing of fractures

within the event (d = 0 denotes an isolated fracture); L t is the apparent trace length (+ indicates that the traces were truncated by the outcrop boundaries); and

Fis the family that the event belongs to. All distances are in metres.

P x L f n w d L t F

1 1 5 806.31 −0.1632 −0.9254 0.3420 10.00 0.50 1.00 1

2 1 85 858.06 0.1736 0.9848 0.0000 1.00 0.50 2.00 + 1

3 1 145 838.36 0.0000 1.0000 0.0000 10.00 0.20 2.00 + 1

4 1 155 858.06 0.1736 0.9848 0.0000 7.00 0.20 2.00 + 1

5 1 180 838.36 0.0000 1.0000 0.0000 20.00 1.00 2.00 + 1

6 1 200 526.37 0.0560 −0.6403 0.7660 2.00 0.50 2.00 + 2

7 1 205 858.06 0.1736 0.9848 0.0000 3.00 0.50 2.00 + 1

8 1 218 858.06 0.1736 0.9848 0.0000 1.00 0.50 2.00 + 1

9 1 230 254.40 0.4924 −0.4132 0.7660 3.00 1.00 2.00 + 3

10 1 245 838.36 0.0000 −1.0000 0.0000 50.00 2.00 2.00 + 1

11 1 290 93.80 0.6040 −0.2198 0.7660 10.00 ∼0.10–1.00 ∼0.10–2.0 3

12 1 295 838.36 0.0000 −1.0000 0.0000 50.00 1.00 2.00 1

13 1 300 489.44 0.1664 −0.6209 0.7660 5.00 1.00 2.00 + 2

14 1 320 509.85 0.1116 −0.6330 0.7660 5.00 1.00 2.00 2

15 1 335 858.06 0.1736 0.9848 0.0000 30.00 ∼1.00–2.00 1.00 1

16 1 345 316.32 −0.2500 0.4330 0.8660 20.00 ∼0.10–2.00 5.00 0

17 1 350 858.06 0.1736 0.9848 0.0000 10.00 1.00 2.00 + 1

18 1 370 627.30 0.0668 −0.7631 0.6428 10.00 1.00 2.00 2

19 1 385 521.57 0.3237 −0.6943 0.6428 10.00 2.00 2.00 2

20 1 450 484.63 0.3830 −0.6634 0.6428 10.00 0.50 2.00 2

21 1 470 314.10 −0.8627 −0.0755 0.5000 138.00 0.50 2.00 + 0

22 1 515 128.70 0.4330 −0.2500 0.8660 0.00 0.00 10.00 3

23 1 545 858.14 0.2588 0.9659 0.0000 2.00 0.50 2.00 + 1

24 1 555 858.14 0.2588 0.9659 0.0000 2.00 0.50 2.00 + 1

25 1 570 128.70 0.4330 −0.2500 0.8660 0.00 0.00 60.00 3

26 1 590 639.80 0.3971 −0.8517 0.3420 10.00 1.00 2.00 0

27 1 600 838.36 0.0000 1.0000 0.0000 10.00 0.10 1.00 1

28 1 625 544.64 0.5390 −0.7698 0.3420 50.00 2.00 4.00 + 0

29 1 675 544.64 0.5390 −0.7698 0.3420 10.00 1.00 1.00 0

30 2 15 838.36 0.0000 1.0000 0.0000 5.00 0.05 5.00 + 1

31 2 45 858.14 0.2588 0.9659 0.0000 30.00 0.50 5.00 + 1

32 2 70 409.72 −0.2500 −0.4330 0.8660 2.00 0.50 2.00 0

33 2 75 462.28 0.9397 0.3420 0.0000 0.00 0.00 10.00 4

34 2 80 323.62 1.0000 0.0000 0.0000 40.00 0.50 5.00 + 4

35 2 110 323.62 1.0000 0.0000 0.0000 10.00 0.50 5.00 + 4

36 2 115 462.28 0.9397 0.3420 0.0000 0.00 0.00 10.00 4

37 2 132 509.85 0.1116 −0.6330 0.7660 3.00 1.00 2.00 + 2

38 2 155 462.28 0.9397 0.3420 0.0000 0.00 0.00 5.00 4

39 2 185 362.86 0.2868 −0.4967 0.8192 5.00 1.00 10.00 + 2

40 3 35 858.06 0.1736 0.9848 0.0000 30.00 0.10 2.00 + 1

41 3 50 396.59 −0.0868 0.4924 0.8660 2.00 1.00 1.00 0

42 3 60 323.62 1.0000 0.0000 0.0000 20.00 0.10 1.00 + 4

43 3 60 858.06 0.1736 0.9848 0.0000 20.00 0.10 1.00 + 1

44 3 60 419.18 0.0000 −0.5000 0.8660 20.00 1.00 2.00 + 2

45 3 100 323.62 1.0000 0.0000 0.0000 10.00 0.10 2.00 + 4

46 3 100 396.59 0.0868 −0.4924 0.8660 0.00 0.00 10.00 2

The orientational distribution of the events is shown in Fig. 3.

The orientations were measured with a 5◦ resolution, but they were

slightly randomized in Fig. 3 in order to distinguish events with

identical orientations. Only very limited information regarding the

event extensions can be gained from the present line surveys, since

the observed trace lengths are very often truncated by the boundaries

of the outcrop along the roads as shown in Table 1.

Fig. 3 clearly shows that the events can be categorized into

four main families, which are referred to hereafter as F1 to F4 (see

Table 1). Two of them (F1 and F4) are sub-vertical, and roughly in the

E–W and N–S directions, whereas F2 and F3 have a slope of about

40◦–50◦. In addition, a few events do not belong to any of the four

families. They are denoted by zeros in the last column of Table 1.
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Geometry, percolation and transport properties of fracture networks 923

East  (y<0) 

South (x<0) 

North (x>0) 

West  (y>0) 

Figure 3. Orientation of the fracturation events in Table 1. Symbols corre-

spond to the position of the vector n on the unit sphere. Families 1, 2, 3 and

4 are denoted by �, ◦,♦ and ∇, respectively. The line spacing is 10◦ for the

radial angle and 5◦ for the inclination.

F1 results from the original stratification and from the strike- slip

motion that characterizes the Pyrenean orogeny. A direction near

10◦N close to F4 has been observed during unpublished microtec-

tonic works of Mangin and Paredes in the Baget basin. In addition,

F1, F2 and F4 are observed in the La Péreyre and St Catherine

caves together with numerous cracks of different orientations that

are not observed at the surface, and which could be related to the

mechanical heterogeneity induced by the cave itself.

3.3 Data analysis

3.3.1 Spatial distribution

For the sake of the subsequent simulations, it is important to de-

termine whether the fracturation events are spatially correlated. Al-

though the data set is too limited for a detailed analysis, some infor-

mation can be obtained from the 13 events of family F1 on profile

P 1. The spacings si between successive events i and i + 1 have an

average 〈s〉 = 43.3 m and a standard deviation σ s = 48.6 m. Recall

that if the events are Poissonian, i.e. without any spatial correlation

(see Kingman 1993), the spacing between their intersections with a

scan line obeys an exponential probability law proportional to exp

(−s/〈s〉), with 〈s〉 = σ s (Adler & Thovert 1999). In the present case,

σ s is slightly larger than the mean spacing, which indicates that the

events are slightly more clustered than in a random distribution.

The variogram of the spacing can be defined as the average (Long

& Billaux 1987)

γs(n) = 〈(si − si+n)2〉. (30)

For a Poisson distribution, the spacings are uncorrelated and γ s is

constant and equal to 〈s〉2. The variogram γ s is plotted in Fig. 4 for

family F1 in profile P 1. Deviations from 〈s〉2 are observed. However,

they are due in most part to the small size of the statistical data set.

For instance, if the spacing between the last observed event and the

end of the profile is included in the calculation, the deviations are

significantly reduced. In addition, this calculation does not take into

account the very different widths of the various events.

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

n

γs
 (n) / σ

2

s

Figure 4. Variogram (30) of the spacings of the intersections of events from

family F1 with profile P 1 without (– – ◦ – –) or with (· · · ◦ · · ·) inclusion

of the part of the profile following the last observed intersection. The thick

solid line corresponds to uncorrelated event locations.

No definite intercorrelation was found either between the event

width and location, or spacing.

Therefore, in the absence of any conclusive evidence of spatial

correlations, it is assumed in the following that the event location

and other characteristics are uncorrelated.

3.3.2 Volumetric density

The volumetric density of each of the 46 events in Table 1 is given

by (6), where Af ( f = 1 to 46) is the event area and L f is given

by an obvious extension of (6) in order to take into account the

measurements along the three profiles

L f =
∑

j=1,3

L j |p j .nf |, (31)

where L j and p j ( j = 1, 2, 3) are the length and orientation of profile

Pj, respectively. The length L f is the reduced total length of profile

in the direction normal to each event and is given in Table 1.

It is worth noting that although families F1 and F2 yield the most

numerous events in the data set, this is mainly due to their favourable

orientations relative to the profile axes. In the directions normal to

their mean planes, the four families have similar frequencies, with

21, 21, 26 and 18 intersections per kilometre of profile for F1 to F4,

respectively.

Some information can be given on the area Af . In addition to the

event extensions compiled in Table 1, complementary observations

in a quarry in the same area showed that the traces of the fractures

generally extend throughout a 25 m high subvertical wall. Moreover,

it is believed that joints along the E–W direction, i.e. parallel to

the main regional tectonic feature in the Pyrénées, have a larger

extension than along the S–N direction. These indications will be

used as guidelines in the simulations.

3.4 Numerical reconstruction

Numerical samples of fractured rock are stochastically generated

according to the two-step procedure described in Section 2.3. The

cell size is generally equal to L = 600 m.
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924 S. Sisavath et al.

The events and the fractures they contain are assumed to have

identical plane circular or polygonal shapes circumscribed by circles

of radius R. In the absence of precise experimental information, two

simple cases only are considered here: in the first case, all events

have the same size R; in the second case, the events are oriented

E–W with the exception of events 34 and 35 that have a size RM

twice as large as the Rm of the other events. The larger events are

essentially those in family F4, and events 11 and 21. Hereafter,

these two cases are referred to as monodisperse and bidisperse,

respectively.

It is important to note that the assumption about the size in the

second case is in agreement with large scale geological observation,

since only F1 and F4 are observed on satellite images or on regional

geological maps.

Given the size and shape of an event f , and thus its area

Af , the volumetric density ρf results from (31) and the num-

ber nf to be inserted in the unit cell is ρf L3. A number of

events equal to the integer part of nf is inserted first, and then

an additional one with a probability equal to the fractional part

of nf . According to the discussion in paragraph 3.3.1, they are

placed with their centers at random locations, without any spatial

correlation.

Various values of R have been considered, from 25 m to 100 m.

In the second step, each event is replaced by series of n f,p paral-

lel fractures, with the same size and shape, and their centers evenly

distributed on the normal axis of the event. n f,p can be derived

from the width w and fracture spacing d of the event, according

to (1). Since this can yield up to 300 fractures per event, f = 40,

n f,p , for instance for, was rescaled by a constant factor so that it

does not exceed a maximal value 1 + nmax. This is done by in-

troducing a factor β, equal for all the events, in the definition of

n f,p:

n f,p = 1 + Int

(

wf

βdf

)

, β =
300

nmax

. (32)

In order to check that the numerical samples actually comply with

the field observations, 500 random realizations were generated, and

line surveys were simulated through them. The scan line is 500 m

long, oriented 120◦ clockwise from north, in a horizontal plane at

z0 = L/4 in the samples. The intersections with each type of event

were recorded and averaged over the 500 realizations.

Monodisperse networks of circular events were considered first.

Examples of trace maps in a horizontal section are shown in Fig. 5,

with the events represented either by single fractures or by series of

parallel fractures. The number n f,i of event intersections with the

scan line was checked in the first type of network. It is compared

to the value expected from the scan line length, orientation and

from the event parameters L f and nf in Fig. 6. The agreement is

quite satisfactory. Note that the statistical error bar is of the order

of
√

n f,i (1 − n f,i )/500 ∼ 0.02.

Fig. 7 shows examples of bidisperse networks. In this case, the

event radius is RM = 100 m for those oriented in the W–E direction,

and Rm = 50 m for the others. All other parameters are identical to

the previous case, except for the number of events, since it depends

on their size (see eq. 6). The comparison of the mean numbers of

event intersections with the scan line in the simulated networks with

the expected values was as good as in the monodisperse case.

For illustration, Fig. 8 shows a 3-D view of a bidispersed recon-

structed sample, with RM = 50 m for the W–E events, Rm = 25 m

for the others, and L = 200 m. The events are represented by single

hexagonal fractures.

0
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0123456

(a)

0
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4
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0123456

(b)

Figure 5. Trace maps obtained in an horizontal section through monodis-

perse reconstructed samples. The cell size is L = 600 m and the event radius

R = 100 m. The events are represented by single fractures in (a) and as series

of fractures in (b). The solid lines correspond to the traces of the events which

intersect the 120◦N, 500 m long scan line (thick solid line). Traces in dotted

lines do not intersect the scan line. Distances are in R units, i.e. 1:100 m.

3.5 Connectivity

The connectivity can now be easily quantified by the formulae de-

rived in Section 2.4. The sums in (11) and (12) can be directly cal-

culated from the line survey data, without any hypothesis regarding
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Figure 6. Mean number of event intersections with a 500 m long, 120◦N

scan line (see Fig. 5a). The abscissae correspond to the event number given

in the first row of Table 1. Data in (a) correspond to the average over 500

monodisperse reconstructed samples, with L = 600 m, R = 50 m. Data in

(b) are the expected values resulting from the field data.

the event size and shape. They are equal to

∑

i

∑

j

sin γi, j

L i L j

= 8.081510−3 m−2
∑

i

1

L i

= 0.1078 m−1. (33)

The mean number ρ ′ of intersections per event is thus expressed as

ρ ′ =
2ρI

ρ
= 0.0477P, (34)

where P in the last equality is expressed in metres. This result shows

that the assumption made for the event shape in the modelization

has little influence on the connectivity, since, with R in metres, (13)

yields

ρ ′ = 0.300R(discs), ρ ′ = 0.286R(hexagons),

ρ ′ = 0.270R(squares). (35)

The global effective exclusion volume Vex can be derived from (14)

Vex =
ρ ′

ρ
= 0.4424AP, (36)

a value which is slightly smaller than AP/2 obtained for isotropic

networks.

Hence, the present anisotropic distribution of the event orienta-

tions tends to decrease the connectivity, in terms of mean number of

connections per event given the global volumetric density, with re-

spect to the isotropic case. However, this is only a global statement,

which does not take into account the fact that events belonging to
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Figure 7. Trace maps obtained in a horizontal section through bidisperse

reconstructed samples. The cell size is L = 600 m and the event radius

RM = 100 m for those oriented W–E, and Rm = 50 m for the others. The

events are represented by a single fractures in (a) and as series of frac-

tures in (b). The solid lines correspond to the traces of the events which

intersect the 120◦N, 500 m long scan line (thick solid line). Traces in

dotted lines do not intersect the scan line. Distances are in RM units, i.e.

1:100 m.

C© 2004 RAS, GJI, 157, 917–934

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
5
7
/2

/9
1
7
/2

0
8
1
3
0
6
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



926 S. Sisavath et al.

−2

−1

0

1

2

3

−2

−1

0

1

2

3

−2

−1

0

1

2

3

X

Y

Z

Figure 8. Example of bidisperse reconstructed sample, with RM = 50 m for the W–E events, Rm = 25 m for the others, and L = 200 m. The network contains

434 events represented by single fractures. Coordinates are in RM units, i.e. 1:50 m. The density ρ′ of the network is equal to 7.60.

the same family are unlikely to intersect, whereas events from fam-

ilies F1 and F2, which are nearly orthogonal, have a much greater

probability of intersection.

3.6 Probability of percolation

The numerical tools applied in this Section were originally devised

by Huseby et al. (1997), who gave a full description of the theoretical

framework and methods in use. Since, they have been significantly

improved in terms of computational efficiency, but without any ma-

jor change in the main features.

Let us insist again on the fact that the main focus of this paper is the

analysis of the connectivity as it is controlled by the dimensionless

density ρ ′; the role of the individual fracture permeability will be

briefly addressed in Section 4.2.

The percolation of the reconstructed samples was investigated

for hexagonal fractures, with circumscribed disc radius R. As pre-

viously mentioned (see eq. 35), the particular choice of the fracture

shape has a limited influence on the network connectivity: more

important is the size of the events, since it directly conditions the

volumetric density ρf , which corresponds to the intersection spacing

(or volumetric area) observed on the field.

The probability of percolation � p of these networks was studied

as a function of the density ρ ′ and of the relative sample size L/R,

since it is well-known that close to the percolation threshold, many

properties of the medium, including � p , are size-dependent (Fisher

1971); instead of the sudden transition to percolation at the threshold

of infinite systems, the probability of percolation of finite systems

gradually increases from zero to one, as ρ ′ increases. The transition

becomes sharper as the system size increases.

Percolation was studied along the x (S–N) and y (E–W) directions

assuming periodic boundary conditions in all directions. Recall that

because of the orientation of the Lachein river, flow is likely to be

east–west in the karstified limestone. The relative cell size L/R was

varied from 4 to 16, and the density ρ ′ was gradually increased. The

variations of ρ ′ can be interpreted either as variations of the event

size R with the field data kept unchanged (see eq. 13, with P = 6R

for hexagons), or as variations of the density for a constant size, with

all the lengths L i multiplied by a common coefficient in eq. (13). A

number N = 500 of random realizations were generated for each

value of the parameters, and the probability of percolation � p was

defined as the fraction of percolating configurations.

The critical density ρ ′
Lc is defined as the value for which � p(ρ ′)

is equal to 1/2. It is determined by fitting the data for � p(ρ ′) with
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Geometry, percolation and transport properties of fracture networks 927

Table 2. Parameters of the fitted scaling laws 38.

Configuration nmax Direction ρ′
c b ν

Mono 0 X, Y, Z 2.254 3.8165 0.854

Mono 10 X, Y, Z 3.004 5.5085 0.940

Bi 0 X 1.951 2.7567 1.068

Bi 0 Y 1.984 4.5424 0.888

Bi 0 Z 2.026 5.2961 0.839

Bi 10 X 3.014 9.1854 0.883

Bi 10 Y 3.117 8.5922 0.932

Bi 10 Z 3.031 8.7533 0.913

an error function of the form (Stauffer & Aharony 1994; Reynolds

et al. 1980):

�p(ρ ′) =
1

√
2π

∫ ρ′

−∞

1

�L

exp

{

−
[

ξ − ρ′Lc

2�L

]2
}

dξ, (37)

where �L and ρ ′
Lc are fit parameters. Such a function provides an

excellent fit to the data obtained for monodisperse and bidisperse

networks with the presence or absence of parallel fractures.

Once �L and ρ ′
Lc have been evaluated for several values of L, the

asymptotic value of the density ρ ′
c for infinite systems can be derived

from the two scaling relations (Fischer 1971; Charlaix 1986):

ρ ′
Lc − ρ ′

c ∝ L−1/ν �L ∼ bL−1/ν . (38)

Plots of ρ ′
Lc as a function of �L were extrapolated to zero in order to

find ρ ′
c. Similarly, the critical exponent ν was obtained by plot-

ting �L as a function of L/R. The data obtained are summarized in

Table 2.

The results for monodisperse samples, with fracturation events

represented by a single fracture, are shown in Fig. 9(a), where the

sharpening of the transition to percolation as L/R increases is clearly

visible. The critical density ρ ′
c as �L → 0 was found to be ρ ′

c =
2.254, which is close to the result ρ ′

c ≃ 2.26 of Huseby et al. (1997)

for randomly-oriented fractures. In view of (13), the fracturation in

the Baget basin has a density ρ ′ ∼ 2.4 if the event size is R ∼ 8.3 m.

Since trace lengths much longer than this value have been observed

many times when the outcrop geometry allowed for it, i.e. in the

quarry or when the traces were roughly parallel to the roads, the

connectivity of the fracture network is probably very large and it

percolates.

It is nevertheless interesting to investigate the percolation in this

low-density range, in order to assess the influence of size polydis-

persity and of the width of the fracturation events.

Fig. 9(b) shows results obtained with bidisperse networks. The

percolation was checked in the x (S–N) and y (E–W) directions. The

latter is parallel to the largest events and to the river, with a radius RM ,

whereas the former is in the orthogonal direction. The cell size L/RM

was varied from 4 to 8, causing the same sharpening of the transition

to unit percolation of probability as in the monodisperse case.

Recall that the fracturation is not only bidisperse, but also

anisotropic, since the largest events are all aligned in the E–W direc-

tion. The critical densities ρ ′
Lc measured along the two axes are in-

deed slightly different; they are equal to 2.17 (S–N) and 2.10 (E–W),

for L/RM = 8. However, this might result, at least partly, from dif-

ferent size effects in the x and y directions. The asymptotic values

found as �L → 0 (Table 2) are indeed very close in all the directions.

They were respectively ρ ′
c = 1.951 and 1.984 in the x and y direc-

tions. In any case, both values are smaller than for the monodisperse

case. This means that this anisotropic polydispersity improves the

efficiency of event connections to ensure global percolation.
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Figure 9. Probability of percolation Pp in the x direction as a function of the

density ρ′, for monodisperse (a) and bidisperse (b) networks of fractures. The

data are averages over 500 random realizations. In the bidisperse networks

(b) the size RM of the east–west fractures is twice the size Rm of the others.

The symbols ♦, ◦, ∇ and � correspond to cell sizes L/R = 16, 12, 10 and

8, respectively in (a), and to L/RM = 8, 6, 5 and 4 in (b).

The previous calculations were repeated for fracturation events

with non-zero width, represented by series of up to nmax parallel

fractures, according to the observed event width wf .

In this situation, the network connectivity can be quantified by

two dimensionless densities, namely the mean number ρ ′
e of inter-

sections per event, and the mean number ρ ′
p of fracture intersections

per fracture. If all events are single fractures, ρ ′
e = ρ ′

f . If wf > 0,

ρ ′
e can be easily estimated from the field data by modifying (8), as

noted in Section 2.4. On the other hand, it is difficult to generalize

the argument in Section 2.4 to predict ρ ′
p , since it only applies for

objects without spatial correlations. In the reconstructed samples,

ρ ′
p is determined according to (13), and ρ ′

e is determined likewise,

by considering that two events are intersecting if they contain a pair

of intersecting fractures.

In addition, two different percolation criteria can be introduced.

One may assume that all the fractures within an event are mutually
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928 S. Sisavath et al.

connected: this may represent a situation where the whole event is

a high permeability region. On the other hand, one may consider

that the series of parallel fractures are unconnected, because they

are separated by layers of intact rock. Then, a cluster of overlapping

events may actually not contain a spanning cluster of connected frac-

tures. The latter point of view was adopted here, and the percolation

probability is analyzed in terms of the density ρ ′
p . The subscript p is

omitted in order to simplify the notations, but it should be remem-

bered that ρ ′ stands for ρ ′
p .

Size effects are much stronger than for networks of single frac-

tures: substantial variations of ρ ′
c still take place between L/R = 12

and L/R = 16, for the monodisperse case, and between L/RM =
6 and L/RM = 8 for the bidisperse case. Therefore, the asymptotic

value ρ ′
c (�L → 0) were estimated for networks containing series of

parallel fractures. For a monodisperse configuration, we found ρ ′
c =

3.042, which is a much larger value than the results found when we

did not consider parallel fractures. For the bidisperse configuration

with parallel fractures, we found ρ ′
c = 3.014 and 3.117 in the x and

y directions. These densities are clearly larger than the result ρ ′
c ∼ 2

obtained when the events are represented by a single fracture. This

is an expected result, since ρ ′ is evaluated from the total number

of fracture intersections. When two series of parallel fractures in-

tersect, many fracture intersections, which are largely redundant for

the network percolation, are created. The number of such intersec-

tions is roughly a quadratic function of the number of fractures in

the series, whereas the total number of fractures is a linear function.

Thus, ρ ′ should increase roughly linearly with the size of the series.

This is confirmed by the data in Fig. 10, which summarizes the

results for large cell size L/R = 16 for monodisperse networks

and L/RM = 8 for bidisperse networks. The fracturation events are

represented by a single fracture, or by series of up to nmax = 10 or

20 parallel fractures. The corresponding curves for � p are shifted

towards larger densities ρ ′, i.e. larger numbers of intersections per

fracture, when the size of the series increases; furthermore, the shift

for nmax = 20 is about twice the shift for nmax = 10.

3.7 Flow properties

The flow equations described in Section 2.6 were solved in the net-

works listed in Table 3. The unit cell size L was varied from 200 to

600 m and the event size R from 25 to 100 m. In addition, monodis-

perse and bidisperse size distributions and various values of nmax

were considered. As usual, in the bidisperse cases, the size RM of

the events in the E–W direction is twice as large as the size Rm of

the others. Finally, the dimensionless fracture permeability σ ′ was

generally taken constant, equal to unity, but in some cases, it was

set equal to unity for the events in the E–W direction and to 1/2 for

the others. This last case is discussed in Section 4.

As in the previous Section, it was considered that parallel fractures

belonging to the same event are mutually unconnected. Thus, when

nmax >1, the network permeability is analysed in terms of the density

of fractures, and ρ ′ stands for ρ ′
p .

As shown in Table 3, these samples generally contain ca Nf =
500–1000 of fractures. A 3-D view of one of these samples is dis-

played in Fig. 8.

The permeability can be evaluated first according to the model

elaborated by Snow (1969) (see eq. 27). It is known that this model is

valid only in the limit of very dense networks (Koudina et al. 1998),

but in view of the dimensionless densities ρ ′ in Table 3, it can be

expected to apply reasonably in the present case. This property is due

to the fact that the number of intersections per fracture ρ ′ increases

linearly with the fracture density; when ρ ′ is large, each fracture
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Figure 10. Probability of percolation Pp of monodisperse (————) and

bidisperse (– – – –) networks, in the x (S–N, a) and y (E–W, b) directions,

as a function of the density ρ′. The data are averages over 500 random

realizations. In bidisperse networks, the size RM of the east–west fractures is

twice the size Rm of the others. The cell size is L/R = 16 (monodisperse) or

L/RM = 8 (bidisperse). The events are represented by series of up to nmax =
10 (◦) or 20(�) parallel fractures, or by single fractures (∇).

behaves as if it were of infinite extension which is precisely the

conditions for the application of the Snow formula.

It should be recalled that (29) yields the same result for the perme-

ability of monodisperse and poydisperse networks. For instance, the

events that are twice as small in the bidisperse model are four times

more numerous (see eq. 6), in order to comply with the observed

value of L f , and their volumetric area is unchanged.

In view of eq. (32), KSn can be written as

KSn = σ
∑

f

1

L f

[

1 + Int

(

nmaxwf

300 df

)]

(I − nf nf ), (39a)

≈ σ
[

∑

f

1

L f

(I − nf nf )

+ nmax

∑

f

1

L f

Int

(

wf

300 df

)

(I − nf nf )
]

. (39b)

The two sums in (39b) are equal to

∑

f

1

L f

(

I − nf nf

)

= 0.0719





1.064 0.046 −0.178

0.046 0.996 0.230

−0.178 0.230 0.939



 m−1,
(40a)
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Geometry, percolation and transport properties of fracture networks 929

Table 3. Permeability calculations: (a) corresponds to monodisperse samples; the effects of the bidispersivity are considered in (b); and the effect of

multiple parallel fractures in the events are studied in (c). The cell and event sizes, L and R or RM , are given first, in metres. Column Cfg describes the

configurations, with monodisperse (M) or bidisperse (B) size distributions, and fracture permeabilities either constant (U) or set according to the fracture

orientation (V). nmax is the maximum number of parallel fractures in the events. Nf , ρ and ρ′ are the number of fractures, the density in fractures per

R3 volume, and the dimensionless density, respectively. K is the dimensional mean permeability, with K/σ in m−1, and K
′

is the dimensionless mean

permeability. ki is the normalized diagonal component of the permeability tensor, ki = Ki i /K . Subscript Sn refers to Snow’s model (27).

L RM Cfg nmax Nf ρ ρ′ kx ky kz
102 K

σ
K

′
k Sn,x k Sn,y k Sn,z

102 K Sn
σ

K
′
Sn

(a)

1 200 25 M,U 0 532 1.04 7.15 1.09 1.03 0.93 2.68 0.67 1.07 0.99 0.94 7.20 1.80

2 300 37.5 M,U 0 802 1.57 10.9 1.04 1.00 0.95 3.89 1.46 1.07 1.00 0.94 7.23 2.71

3 200 50 M,U 0 136 2.13 14.7 1.10 0.94 0.96 4.68 2.34 1.07 0.98 0.94 7.36 3.68

4 400 50 M,U 0 1066 2.08 14.0 1.06 1.01 0.94 4.62 2.31 1.06 1.00 0.94 7.22 3.61

5 300 75 M,U 0 201 3.14 21.6 1.09 0.97 0.95 5.59 4.19 1.06 1.00 0.94 7.25 5.44

6 600 100 M,U 0 899 4.16 28.2 1.05 1.01 0.94 5.90 5.90 1.06 1.00 0.94 7.21 7.21

(b)

1 200 25 M,U 0 532 1.04 7.15 1.09 1.03 0.93 2.68 0.67 1.07 0.99 0.94 7.20 1.80

2 200 50 M,U 0 136 2.13 14.7 1.10 0.94 0.96 4.68 2.34 1.07 0.98 0.94 7.36 3.68

3 200 50 B,U 0 434 6.79 7.60 0.99 1.07 0.95 3.28 1.64 1.07 0.99 0.94 7.18 3.59

4 200 50 B,V 0 434 6.78 7.60 0.91 1.15 0.96 2.12 1.06 0.96 1.08 0.96 4.46 2.23

5 300 37.5 M,U 0 802 1.57 10.9 1.04 1.00 0.95 3.89 1.46 1.07 1.00 0.94 7.23 2.71

6 300 75 M,U 0 201 3.14 21.6 1.09 0.97 0.95 5.59 4.19 1.07 1.00 0.94 7.25 5.44

7 300 75 B,U 0 655 10.2 11.5 1.01 1.04 0.94 4.48 3.36 1.07 1.00 0.94 7.24 5.43

8 300 75 B,V 0 655 10.2 11.5 0.92 1.11 0.97 2.84 2.13 0.95 1.08 0.97 4.51 3.38

(c)

1 200 25 M,U 0 532 1.04 7.15 1.09 1.03 0.93 2.68 0.67 1.07 0.99 0.94 7.20 1.80

2 200 25 M,U 5 768 1.50 10.3 0.94 1.08 0.98 4.80 1.20 0.96 1.02 1.03 10.4 2.60

3 200 25 M,U 10 1065 2.08 14.0 0.91 1.08 1.01 6.96 1.74 0.89 1.01 1.09 14.4 3.60

4 200 50 M,U 0 136 2.13 14.7 1.10 0.94 0.96 4.68 2.34 1.07 0.98 0.94 7.36 3.68

5 200 50 M,U 5 192 3.00 20.6 0.97 1.04 0.99 7.22 3.61 0.95 1.03 1.02 10.4 5.20

6 200 50 M,U 10 264 4.13 27.6 0.92 1.09 0.99 9.66 4.83 0.89 1.03 1.09 14.3 7.14

7 200 50 B,U 0 434 6.79 7.60 0.99 1.07 0.95 3.28 1.64 1.07 0.99 0.94 7.18 3.59

8 200 50 B,U 5 577 9.02 11.5 0.90 1.08 1.02 5.84 2.92 0.96 1.02 1.03 10.5 5.18

9 200 50 B,V 0 434 6.78 7.60 0.91 1.15 0.96 2.12 1.06 0.96 1.08 0.96 4.46 2.23

10 200 50 B,V 5 577 9.02 11.5 0.80 1.15 1.05 3.90 1.95 0.81 1.13 1.08 6.88 3.44

∑

f

1

L f

Int

(

wf

300 df

)

(

I − nf nf

)

= 0.007985





0.682 −0.054 0.132

−0.054 0.980 0.054

0.132 0.054 1.338



 m−1. (40b)

The mean permeability K Sn over the three axes (one third of the

trace) is given by

K Sn ≈ σ (0.0719 + 0.007985nmax) m2. (41a)

The corresponding dimensionless value is

K
′
Sn ≈

RK Sn

σ
= R(0.0719 + 0.007985nmax). (41b)

However, it should be noted that the insertion of additional fractures

in the events, i.e. the increase of nmax, also modifies the anisotropy

of the network permeability tensor, since the two contributions in

eq. (40) have different anisotropies.

Again these different formulae make a clear distinction between

the geometric properties that are related to measured quantities, and

the individual fracture permeabilities that could be obtained by a

different set of measurements. Note that variable fracture perme-

abilities σ can easily be accounted for by keeping σ f under the

summation in (29).

The permeabilities obtained from (29) are given in Table 3, for

all the investigated cases. The data may slightly differ from (39–41),

because KSn was evaluated on the actual random realizations, instead

of from the data in Table 1, but the differences are always small,

both in magnitude and anisotropy: slight differences only occur for

the sample containing the smallest number of fractures (136), and

they are due to statistical fluctuations. Table 3(b) shows that K Sn is

identical for monodisperse and bidisperse networks, and the data in

Table 3(c) for nmax > 0 illustrate the increase in mean permeability

and the change in the anisotropy induced by the fracture series.

The permeabilities K calculated by solving the 3-D flow equa-

tions for monodisperse networks are given in Table 3(a). The two

calculations performed for R = 50 m (ρ ′ ≥ 14) in cells with sizes

L = 200 and 400 m yield similar results. This agrees with the ob-

servation of Koudina et al. (1998) that effects of cell size on the

permeability of periodic fracture networks vanish when ρ ′ ≥ 4 and

L/R ≥ 4. Hence, (4R)3 samples are large enough to obtain a rep-

resentative value of the network permeability. As expected, K is an

increasing function of the network density, quantified by ρ or ρ ′. It

appears that the model (29) overestimates the permeability, which

is natural since it assumes that the whole fracture area fully con-

tributes to the flow. However, the error is only of the order of 20–25

per cent for very connected networks (ρ ′ ≥ 20), which is a fair result,

considering that the model (29) does not require the solution of any

flow equation. Moreover, the anisotropy of K is very close to that

of KSn, even for the smallest density.

The various determinations of the mean permeability are plotted

in Fig. 11 as functions of the dimensionless network density ρ ′. For

ρ ′ > 10, K increases quasi-linearly with the density. The predic-

tion of (29) yields another straight line, parallel to the former, but

shifted vertically. Finally, the result (25) of Koudina et al. (1998)

C© 2004 RAS, GJI, 157, 917–934
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Figure 11. Dimensionless mean permeability K
′

of monodisperse net-

works as a function of the density ρ′. Data correspond to the numerical

solution of the 3-D flow equations (– – ◦ – –), to the prediction (29) (—

—–), and to the result (25) of Koudina et al. (1998) for isotropic net-

works (· · ·♦ · · ·). Data are for: monodisperse networks without parallel

fractures (– – ◦ – –), monodisperse networks with parallel fractures (nmax

= 5, +; and nmax = 10, �), bidisperse networks without parallel fractures

(×).

for isotropic networks is also presented for comparison. It is in good

agreement with the present calculations for small and intermediate

densities, but it seems to increase at a faster rate for large densities.

The numerical results for bidisperse networks are given in Ta-

ble 3(b). They give rise to several observations.

Consider first the pairs of cases in lines (2, 3) and (6, 7) in the

Table 3(b) , which have identical size L, radius RM , constant fracture

permeability σ , but are either monodisperse or bidisperse. Since the

volumetric areas of each type of event are identical, (29) results in

the same permeability tensor K Sn. However, the actual calculations

yield different permeabilities for the monodisperse and bidisperse

cases. K is smaller in the bidisperse networks. This is mostly due to

a lesser connectivity, with ρ ′ twice as small as in the monodisperse

case. The permeability anisotropy is also different in the monodis-

perse and bidisperse cases, with an increase of the permeability in

the y direction, parallel to the longer fractures, which is not predicted

by the model (29).

Consider next the pairs of cases in lines (1, 3) and (5, 7) in Ta-

ble 3(b), which have identical size L, constant fracture permeabil-

ity σ , but different radii RM , so that their dimensionless densities

ρ ′ are roughly equal. Again, the volumetric areas of each type of

event are identical and (29) results in identical permeability tensor

K Sn. However, the mean permeabilities K from the solution of the

flow equations are again different in the monodisperse and bidis-

perse cases. K is now larger in the bidisperse networks. The tensor

anisotropies are also different, though in a lesser respect than in the

previous comparison.

Thus, as expected, Snow’s model (29) poorly succeeds in account-

ing for the effect of size polydispersity.

The numerical results for monodisperse and bidisperse networks

where the fracturation events are represented by series of parallel

fractures are given in Table 3(c). In all cases, the presence of parallel

fractures increases the permeability of the networks.

The two sets of lines (1–3) and (4–6) in Table 3(c) are series

of identical cases, except for increasing values of nmax, equal to

0, 5 and 10. Accordingly, the number Nf increases, by factors of

about 3/2 and 2. Since Snow’s model (29) supposes perfect con-

nectivity, K Sn increases roughly in the same proportions, although

the anisotropy of K Sn changes according to (39). However, the frac-

ture connectivity, quantified by the number of intersections per frac-

ture ρ ′ also increases with nmax. For the first set (lines 1–3), ρ ′

increase from 7.15 to 10.3 and 14.0; therefore, the calculated per-

meabilities K increase in a larger proportion than Nf , by factors

about 1.8 and 2.6 for nmax = 5 and 10, respectively. For the second

set (lines 4–6), ρ ′ is always large (14.7–27.6), and its increase has

very little effect. Accordingly, K increases by the same factor as Nf .

Although the addition of parallel fractures in some of the events

increases the permeability, the increment is smaller than when the

same number of fractures is added by changing the density of events.

Compare for instance line 6 in Tables 3(a) and (c). The two samples

have nearly equal densities ρ and ρ ′; however, K is 22 per cent

larger when the fractures are evenly distributed among all the event

types (nmax = 0), than when many of them are concentrated in a few

types of events (nmax = 10). This is illustrated by the plot of K
′

as

a function of ρ ′ in Fig. 11, for nmax = 5 and 10, in comparison with

the data for nmax = 0 in Table 3(a).

The anisotropy of the permeability tensors also varies when nmax

increases. The x direction (N–S) is the most favourable to the flow

for nmax = 0, and becomes the least favourable for nmax = 10.

Conversely, the y direction becomes preferential. This last feature

is unexpected, in view of (40b), which shows that the additional

fractures are oriented mostly parallel to the z-axis. Accordingly,

the anisotropy of K Sn moves from the x to the z direction as nmax

increases. The different behaviour of K is probably due to the fact

that the series of fractures parallel to z help in connecting other ones

oriented parallel to y.

Two general remarks can be made to conclude this Section. They

will also make a useful transition to the next Section.

The macroscopic permeability of fracture networks depends on

many geometrical parameters, including the size, shape and ori-

entation distributions of the fractures, and in the present case on

the existence of regularly spaced parallel series. A full description

should account for all of these parameters. However, it appears that

a great part of their influences can be summarized by the dimension-

less density ρ ′, as was already shown by Koudina et al. (1998) for

isotropic networks, as indicated by the good agreement observed

in Fig. 11 between the present calculations and the result (25) of

Koudina et al. (1998).

Even though Snow’s model (29) fails to account accurately for

the effect of size polydispersity and of the presence of series of par-

allel fractures, it still provides a reasonable estimate of the network

permeability, considering its low computational cost, including the

influence of non-uniform fracture permeability. Of particular in-

terest is the fact that, aside from the fracture permeability, it only

requires a few geometrical parameters which are readily available
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Geometry, percolation and transport properties of fracture networks 931

from line surveys, without need for any assumption regarding the

size and shape of the fractures.

4 VA L I DAT I O N A N D E X T E N S I O N S

This Section is devoted to the validation and the extension of the

previous results.

4.1 Validation

There are not many examples in the literature where the fracture

network is perfectly known and where the previous technique can be

validated. However, recently we have studied a sample of fractured

granite (Gonzalez Garcia et al. 2000).

This study was conducted on a block of dark grey Hercynian

granite from La Peyratte, Deux-Sèvres, France. It is fine-grained

(1–2 mm long crystals) and is crosscut by numerous fractures sur-

rounded by discoloured alteration haloes. The primary acquisition

was undertaken by Ledésert et al. (1993). The granite block (about

52 × 35 × 36 cm3) was sawed into nine parallel plates, 4 cm in

thickness. Trace maps were drawn from the nine sections, by vi-

sual examination of the alteration zones, due to the circulation of

hydrothermal fluids (Fig. 12). Three examples of these traces are

given in Fig. 12. The fracture pattern appeared to be composed of

two main families A and B, at about ±30◦ inclination angle from

the vertical axis. These two sets are associated with one horizontal

fracture (fracture number 16, in Fig. 12).

This block and its properties were extensively studied by Gon-

zalez Garcia et al. (2000). For our purposes here, this paper can be

summarized as follows. The block of volume V = 0.066 m−3 con-

tains Nf = 90 fractures which are present in more than one plane.

This network possesses NI = 214 fracture intersections. Two basic

quantities can be derived from these numbers, namely the volumetric

fracture density ρ and the dimensionless fracture density ρ ′:

ρ =
Nf

V
= 1364 m−3, ρ ′ =

2NI

Nf

= 4.76. (42)

Moreover, the total fracture area is equal to S = 2.05 m2; an es-

timation of the lateral extension of the fractures can be made by

assuming that they are equal discs of radius R. Then, S = Nf π R2,

and R is found to be equal to 0.085 m.

The transport properties of the block were also analysed. Using

the methodology explained in Section 2.6, the Darcy equation was

solved in the real network. The following dimensionless results were

obtained along the three axes:

Knu,xx = 0.66, Knu,yy = 1.89, Knu,zz = 0.26, (43)

where the permeabilities are made dimensionless by the factor σ/R,

where R is the previous value of the radius when the fractures are

assumed to be circular.

Let us now apply the line analysis detailed in Section 2.1 to this

granite sample. More precisely, as seen in Fig. 12, we have selected

three of the nine planes and measured the number of intersections

either along the horizontal or the vertical axis: in the former case,

one has a total of nh = 44 intersections for a total length Lh = 3 ×
0.52 m = 1.56 m; in the latter case, one has nv = 18 intersections

for a total length Lv = 3 × 0.35 m = 1.05 m.

For the sake of simplicity, we shall now assume that the fracture

network is made of an isotropic distribution of monodisperse discs

of radius R with a volumetric density ρ. (4) can be generalized in a

straightforward way. The total number nt of intersections between

Figure 12. Three of the nine successive trace maps. The traces of two

fractures (1 and 16) are indicated in each section. (Reprinted with permission

from Ledésert et al. 1993).

a line of length L and this network is given by

nt =
π

2
ρL R2. (44)

Since the excluded volume of discs is equal to π2 R3, the dimen-

sionless density ρ ′ can be derived as

ρ ′ = 2πnt

R

L
= 2π (nh + nv)

R

Lh + Lv

. (45)

It is straightforward to make a numerical application of this formula:

ρ ′ = 12.7. (46)

This quantity should of course be compared to (42). It can also be

compared, and with a better agreement to the prediction ρ ′ =πRS/V

= 8.3, based on the global fracture area, but the latter requires a

knowledge that can only be obtained from 2-D or 3-D data.

Let us evaluate the dimensionless permeability of this equivalent

network. We can either use the percolation, like formula (25), or the

isotropic Snow formula (28) expressed for discs to obtain the two
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932 S. Sisavath et al.

following evaluations denoted by K ′
p and K ′

S :

K ′
p = 1.9, KS = 2.7, (47)

values that have to be compared to the average one-and-a-half of the

three values given by (43).

Let us now summarize and critically evaluate our findings. It is

seen that the dimensionless density is overestimated by a factor

slightly smaller than 3. Despite this difference, the permeability

estimations are excellent since permeability is at most overestimated

by a factor 2.

The difference between (42) and (46) is at least partly due to trun-

cation effects. As seen in Fig.12, many fracture traces are truncated

by the sample boundaries, and quite a few of them probably intersect

out of these boundaries. These intersections are not accounted for in

NI , and therefore, ρ ′ in (42) is underestimated. Similarly, some frac-

ture intersections within the sample have not been detected because

of the relatively large spacing of the section planes. These effects

have a much smaller influence on the intersection count along a

profile which is basically a measurement of the odometric surface

area and thus on the prediction of Snow’s formula (28).

During the course of these comparisons, one should have in mind

the considerable experimental and numerical labor necessary in

Gonzalez Garcia et al. (2000) and the straightforward character of

the application of the line analysis which yields results in no time

within a factor 3 for the dimensionless density and within a factor

2 for permeability.

The comparison could be made more precise by using formulae

such as (29).

4.2 Extension to variable surface permeabilities

Let us come back to the problem of determining the surface per-

meability σ of the fractures. Note that the flow behaviour due to

the complexity of a fracture’s microscopic geometry, is not the fo-

cus of the present study. For practical purposes, we can summarize

previous works by Mourzenko et al. (1995, 2001). If the fractures

are viewed as homogeneous above some length, three major quanti-

ties are necessary to characterize them. The first one is the fracture

aperture bo as already used in (20). In order to be more precise, one

needs to know more about the statistical organization of the frac-

tures. Generally speaking, a fracture can be considered as two rough

surfaces put one on top of one another: the heights Z (r ) of these

surfaces are distributed according to a Gaussian law with zero mean

and variance σ 2
h . Another statistical ingredient is the correlated char-

acter, or not, of the two surfaces. Finally, one needs to characterize

the statistical organization within each fracture: this is usually done

by the covariance CZ (u) of the heights within the surfaces which is

defined as

CZ (u) = 〈Z (r )Z (r + u)〉, (48)

where the brackets denote the statistical average over the surface.

Very often, this covariance can be characterized by a Gaussian vari-

ation:

CZ (u) = σ 2
h exp

[

−
u2

l2

]

, (49)

where l is a characteristic length.

Master curves were given by Mourzenko et al. (1995) in order

to estimate more precisely the fracture permeability as functions

of bo, σ h and l. Of course, this more precise estimation requires

more knowledge on the structure of the fractures than the simple

estimate (20).

It may also happen that the fracture characteristics depend on its

orientation. This can occur when the apertures depend for instance

on some regional orientation of the external stresses. Let us give a

few examples of how the previous approaches can be generalized to

such a case.

First, it should be noticed that the inclusion of a variable fracture

permeability does not present any difficulty in the numerical ap-

proach presented by Koudina et al. (1998). Each fracture is meshed

by triangles whose size is smaller than a typical size δ, which is

chosen by the user; typically, this size is smaller than R/5 if R is

an order of magnitude of the lateral extension of the fractures. A

different permeability can be assigned to each triangle.

Secondly, it should be noticed that the Snow formula (27) is valid

when the surface permeability depends on the orientation n. It is

also possible to include the case where fractures with the same

orientation have different permeabilities.

Thirdly, a whole series of calculations is conducted when the

fracture permeability is set equal to unity for the events in the E–W

direction and to 1/2 for the others. This specific study was motivated

by the geological setting as detailed in Section 3.1.

In this situation, (cases V in Tables 3b and c), K Sn decreases

and the anisotropy is modified, with an increase of the permeability

along the y-axis, which corresponds to the E–W direction.

Moreover, consider the pairs of cases in lines (3, 4) and (7, 8) in

Table 3(b). They differ only by the fracture permeabilities, which are

either constant and set equal to unity (case U), or set equal to unity

for the events in the E–W direction and to 1/2 for the others (case

V ). The permeability is of course smaller in the latter case, since σ

is equal or smaller than in case U , whereas the network geometry is

identical. Moreover, the permeability anisotropy in the y direction,

i.e. the direction of the fractures with a large permeability, is further

increased. It can be noted that the model (29) correctly predicts the

decrease in mean permeability and the change in anisotropy due to

the variations of σ , although it failed to account for the effect of

geometrical polydispersivity.

Finally, the four last lines in Table 3(c) compare bidispersed sam-

ples, with constant or variable fracture permeability, and nmax = 0

or 5. They give rise to the same remarks as the other previous tests.

Since the connectivity is intermediate (ρ ′ = 7.6 for nmax = 0), K

increases by a larger factor (about 1.8) than the number of fractures

Nf (4/3) or the density ρ ′ (3/2), whereas K Sn increases by about

3/2. Again, the x direction becomes the least favourable to the flow.

However, the permeability anisotropy is now shifted towards the z-

axis, instead of the y-axis. The prediction (29) is in fair agreement

with this trend. For instance, the shapes of the tensors K and K Sn in

the last line of Table 3(c), which corresponds to bidisperse networks

with non-uniform fracture permeabilities and series of parallel frac-

tures for some of the events, are in remarkable agreement.

In order to conclude this Subsection, it can be said that any extra

information can be used without any difficulty to estimate more

precisely the permeability of the fracture networks.

4.3 Extension to polydisperse networks

This is obviously an important issue since it has been seen in many

circumstances that the observed networks have sizes which are dis-

tributed according to power laws. This important property was first

noticed by Segall & Pollard (1983) and it has been confirmed in

many subsequent works. The probability density h(R) of the frac-

ture radius R is given by

h(R) = αR−a, (50)

where the exponent a is usually ranging between 1 and 3.
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In principle, it is contradictory to utilize a complex fracture size

distribution when measurements are only performed along a line.

This is the basic reason why we did not want to extend the numer-

ical applications too much in this direction; hence, we restricted

ourselves in Section 3 to bidisperse networks which represent only

a small complication with respect to the monodisperse case; more-

over, this bidisperse character is related to the general properties of

the fractures in this region which is characterized by discontinuities

running east–west.

However, it may be that one has extra information on a given

fracture field which has only been measured along a line: this in-

formation, which can come from an outcrop where trace distribu-

tions have been measured (Berkowitz & Adler 1998), may indicate

a strong polydispersity that may or may not be symbolized by the

power law (50). This information can be utilized to make the previ-

ous predictions more realistic.

First, it is not difficult to generalize the analysis made in Sec-

tion 2.2. (4) is valid for fractures of a given direction and a given

radius. If one considers fractures with a given unit normal n, one

has to simply add up the contributions of the various sizes weighted

by the probability density (50).

Secondly, it is not difficult to generalize the numerical calcu-

lations relative to the percolation threshold and the network per-

meability for this situation. It should be mentioned here that such

calculations are currently made in a systematic way and that general

results and master curves will be soon published.

For the time being, one can provide the reader with a simple

extension of the Snow formula (28). If the fracture sizes follow the

power law (50), the total volumetric area S is given by

S =
∫ RM

Rm

ρ Ap(R)h(R) d R = ρ〈Ap〉, (51)

where Rm and RM are the minimal and maximal radii of the discs,

respectively. Ap is equal to π R2.

This expression can be introduced into (27) and it yields

K iso
Sn =

2

3
ρσ 〈Ap〉. (52)

It is also possible to account in (51, 52) for a correlation between

the size R and the permeability σ of the individual fractures:

K iso
Sn =

2

3
ρ〈σ Ap〉, 〈σ Ap〉 =

∫ RM

Rm

σ (R)Ap(R)h(R) d R. (53)

5 C O N C L U D I N G R E M A R K S

Macroscopic properties such as the volumetric densities and the per-

colation properties of a fracture network, can be estimated from a

line survey provided that the orientation of the fractures are recorded.

One of the major merits of these estimations is to provide analytical

expressions where the measured and assumed quantities are clearly

distinguished. For instance, the percolation character (or not) of the

network can be estimated if the lateral extensions of the fractures are

known: such quantities cannot be derived from the line data them-

selves, but can be obtained from other sources such as measurements

on an outcrop.

Another important quantity which can be estimated is the macro-

scopic permeability; of course, this necessitates the creation of an

assumption (or possibly measurements or estimates) of the individ-

ual fracture permeability and of the lateral extensions of the frac-

tures. Whatever the formula used (see 25 and 29), it can be entirely

expressed in terms of measured quantities.

This approach has been validated on a granite block whose struc-

ture is known. Its connectivity and permeability properties are sat-

isfactorily estimated by the proposed approach. One can also ap-

preciate with this example, the drastic reduction in the amount of

work required to fully calculate these properties, compared to the

one necessary for the present technique.

Several extensions to variable fracture permeabilities and poly-

disperse networks are also proposed.

This work will be continued in several ways. The properties of

these anisotropic polydisperse networks composed of a series of

parallel fractures require a complete study. Moreover, the initial

motivation of this study, which was the evolution of these karstic

fields under the influence of dissolution, will be completed.
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