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Abstract: Despite progress in the past decades, 3D shape acquisition techniques are still a threshold
for various 3D face-based applications and have therefore attracted extensive research. Moreover,
advanced 2D data generation models based on deep networks may not be directly applicable to
3D objects because of the different dimensionality of 2D and 3D data. In this work, we propose
two novel sampling methods to represent 3D faces as matrix-like structured data that can better fit
deep networks, namely (1) a geometric sampling method for the structured representation of 3D
faces based on the intersection of iso-geodesic curves and radial curves, and (2) a depth-like map
sampling method using the average depth of grid cells on the front surface. The above sampling
methods can bridge the gap between unstructured 3D face models and powerful deep networks
for an unsupervised generative 3D face model. In particular, the above approaches can obtain the
structured representation of 3D faces, which enables us to adapt the 3D faces to the Deep Convolution
Generative Adversarial Network (DCGAN) for 3D face generation to obtain better 3D faces with
different expressions. We demonstrated the effectiveness of our generative model by producing a
large variety of 3D faces with different expressions using the two novel down-sampling methods
mentioned above.

Keywords: geometry sampling; 3D face generation; depth-like map sampling; structured representation;
DCGAN

1. Introduction

With the rapid advancements of display equipments and growing network band-
widths, 3D data are becoming another popular media due to the fullness of realistic
information. On the other hand, nowadays 3D shape acquisitions either rely on expensive
equipment or require expert knowledge and skills. For this reason, 3D data acquisition
techniques remain a threshold for the broader application of 3D data.

3D shape synthesis techniques provide an alternative means for 3D data generation,
which can be useful for various purposes without copyright infringement [1,2]. Specifically,
3D synthetic faces can be broadly used in video games, beauty applications, virtual reality
and so on. However, although various synthetic approaches for 2D images and video have
been intensively studied, 3D shape synthesis remains a challenging task for the following
reasons: (1) A 3D shape is a set of 3D vertices in the space, comprising un-structured data,
compared to 2D images that can be stored in a structured 2D matrix. (2) A 3D shape is
sensitive to noises, while one or even a few outlier pixels may not be visually noticeable in
a 2D image.

This work is an extension of our published paper [3], the contributions are two-fold:
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• First, we propose two new sampling methods to represent 3D faces as a structured
matrix, which enables us to generate 3D shapes with deep networks. Specifically, they
are the geometry sampling method and the depth map-like sampling method.

• Second, we present a straight-forward unsupervised 3D face generative model, which
does not require any pre-processing steps such as the extraction of facial feature points
or pre-computing the correspondences.

The remainder of the paper is organized as follows. We first briefly review the state-of-
the-art in Section 2. Then, we present our geometric 3D face generation model in Section 3,
followed by results and discussions in Section 4. Finally, we conclude the work in Section 5.

2. Related Work

Although Deep Neural Network (DNN)-based data-driven synthetic methods have
been intensively studied in the computer vision field [4], it remains a challenging topic for
data-driven 3D shape generation. In this section, we first briefly review the 3D shape recon-
struction techniques in the computer vision domain. Then, we summarize the recent related
works on 3D shape representations and data-driven 3D shape modeling, respectively.

Three-dimensional shape reconstruction is important to user interaction, auto pi-
loting, virtual/augmented reality, etc. Real-time integration of 3D objects into 3D real
environments has been used in several applications in the field of AR, including healthcare,
education, path planning, entertainment, and the military [5]. Among them, AR-enhanced
books in the field of education, where this natural interaction is conducive to children’s
learning and is effective in this respect, are impressive [6]. However, there is also a growing
interest in the application of 3D faces in the medical field and other fields. For example,
Chen et al. used augmented reality-based self-facial modeling to promote emotional ex-
pression and social skills in adolescents with autism [7]. To support inexpensive and fast
3D modeling for AR/VR applications, Avinash et al. solved the problem of reconstructing
complete 3D information of the face on a cell phone at a near real-time speed [8]. Izadi
et al. present a GPU-based pipeline to achieve 3D pose reconstruction in real-time by
using a low-cost handheld scanning depth camera, which is demonstrated with object
segmentation and user interaction [9]. In order to facilitate the learning-based algorithm for
3D shape reconstruction, Song et al. present a large-scale benchmark with 3D annotations
and 3D evaluation metrics of RGB-D images to develop an understanding of learning-based
3D scenes [10]. Similarly, Handa et al. present a dataset of RGB-D sequences with perfect
ground truth pose and the corresponding ground truth surface model that enables the
quantitative evaluation of the final map or surface reconstruction accuracy [11]. The work
in [12] provides one input image as a guide to "mold" a single reference model to reach a
reconstruction of the desired 3D shape, based on the assumption of Lambertian reflectance
and harmonic representations of lighting. To improve the efficiency of the learning methods,
Zhu et al. present an actor–critic model for fast-convergence learning that can be applied to
target-driven visual navigation [13]. In [14], the Recurrent Reconstruction Neural network-
based model learns to map images of objects to their underlying 3D shapes from a large
collection of synthetic data. Furthermore, Fan et al. present a learning paradigm with a
conditional shape sampler that is capable of predicting multiple plausible 3D point clouds
from an input image [15]. Recently, Garrido et al. presented a coarse-to-fine scheme for
3D face rigging from a monocular video [16]. They first computed a coarse-scale face
reconstruction with a novel variational fitting approach. Then, the fine-scale skin detail,
such as wrinkles, were obtained from video via shading-based refinement. By following
the similar coarse-to-fine scheme, Jiang et al. achieved 3D face reconstruction with a single
image with the fine details obtained using the photometric consistency constraints and
the shape-from-shading method. Deng et al. propose novel and accurate 3D face recon-
struction using complementary information from different images for shape aggregation
while considering low-level and perceptual-level information for supervision [17]. For
data-driven unconditional generative image modelling, the current state-of-the-art network
model is StyleGAN [18]. This model produces high quality image models by modifying
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the generators in the model architecture. Lu et al. generate a high-resolution face image
by attribute bootstrapping, i.e., with low-resolution input for a given attribute, based on
the CycleGAN network [19]. An alternative generator architecture for adversarial network
generation has been proposed by Karras et al. It facilitates automatic learning and unsuper-
vised separation of advanced attributes and random variation of the generated images to
achieve model generation [20].

Shape representations are fundamental to 3D models, as the 3D model’s primitives
are un-structured compared to the pixels of a 2D image in a matrix form. In the computer
graphics community, researchers have proposed a variety of classical feature descriptors
for 3D shapes. Recently, Soltanpour et al. summarized various local feature descriptors
for 3D face shape recognition [21], including Gaussian curvatures [22], radial curves [23],
and so on. A number of parameterization methods have been proposed to flatten 3D
shapes into 2D shapes, including the Mobiüs method [24], woven mesh fitting method [25],
and the geometry image/video method [26,27]. However, most of the existing 3D shape
representations are not directly applicable to data-driven 3D shape synthesis because they
are either un-structured [21], or irreversible in terms of the geometry properties [24,25],
and the geometry video requires extra operations for eyes/mouth removal [27]. In general,
it is known from previous descriptions [21,24,25] that the limitations of most methods lie in
their inability to handle data-driven 3D shape synthesis well, which can have an impact
on subsequent experiments and consequently on the results obtained. Thus, unstructured
representations can lead to an additional workload. Therefore, it is necessary for us to
propose novel structured methods.

Deep-learning-based 3D shape synthesis has become popular in the computer graphic
community in recent years [1,2]. For example, Li et al. proposed a learning-based facial
expression transfer method to drive an example model with the learned expression [28],
and Chen et al. applied a convolutional network for the synthesis of 3D cloth wrinkles [29].
In the computer vision community, there are two widely studied DNN models for 2D
image and video synthesis, namely the Variational Auto-encoder (VAE) [30,31] and the
Generative Adversarial Network (GAN) [32,33]. The GAN model contains a Generative
model and a Discriminative model. The Generative model keeps updating the generated
data until the discriminative model cannot distinguish the difference between the generated
data and the original training data. In [34], Radford et al. successfully integrate the GAN
model with the convolutional network for a Deep Convolutional GAN (DCGAN) model,
which significantly improves the potential of GAN for image synthesis. In [35], Jean et al.
incorporated the shape geometry properties to enhance the performance of DCGAN for
2D object generation. Both the VAE and GAN techniques apply the learned features to an
existing 3D shape [28,29]. In this work, we propose two DCGAN-based methods and use
structured data of human faces to directly generate synthetic 3D faces.

3. Geometry Sampling and 3D Face Generation

Figure 1 shows the overview of the proposed 3D face generation approach. In this
section, we first present two geometry sampling approaches for 3D face models, which
outputs two structured representations for an input 3D face. See details in Section 3.1.

3.1. Geometry Sampling Based on the Intersection

Given a 3D face F , the objective of geometry sampling is to obtain a matrix-like,
structured representation for any input 3D face. The geometry sampling approach is based
on two 3D face feature curves, i.e., iso-geodesic curves and radial curves [36]. Figure 2
shows the pipeline of our geometry sampling approach, which can be described in detail
as follows:
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1. Iso-geodesic curves. Given the detected nose tip O, an iso-geodesic curve contains a
sequence of the vertices on the face surface that have the same geodesic distance to
the nose-tip. We denote an iso-geodesic curve as follows:

Gi(d) = (vd
1, vd

2, . . . , vd
nd
), d ∈ [0, D], (1)

where nd denotes the total number of the vertices on the iso-geodesic curve G(d), and
D denotes the maximal geodesic distance from the nose-tip. In our experiments, we
set the same D so that it is large enough to cover the chin and the eyebrows for all the
faces. See an example of the iso-geodesic curve in Figure 2I.

2. Radial curves. We first align the 3D face model to the XOY plane. Then, we provide
the nose tip O, a radial curve contains a sequence of the vertices whose projections on
the XOY plane have the same angle as the X axis, i.e., ∠XOvi = θ. We denote a radial
curve as follows:

Rj(θ) = (vθ
1, vθ

2, . . . , vθ
nθ
), θ ∈ [0, 360), (2)

where nθ denotes the total number of vertices on the radial curve R(θ). See the
examples of the radial curves in Figure 2I.

3. Geometry sampling based on the intersections. Our objective with the geometry sampling
step is to sample the vertices on a 3D face and save them into a squared matrix of the
size 2R + 1, where R denotes the total number of the iso-geodesic curves. In order
to achieve averaged sampling, we compute the iso-geodesic curves G(d) with the
linearly increased d, i.e.,

d = k · (D/K), k = 1, . . . , K, (3)

where K denotes the total number of the iso-geodesic curves. Figure 2 depicts the
geometry sampling method based on the intersections between the iso-geodesic
curves and the radial curves, which can be described as follows:

(a) First, starting from the detected nose tip O, we assign it to the center of the
sampling matrix, i.e., M(K + 1, K + 1) = O.

(b) Then, we compute the r-th iso-geodesic curve, and 8K radial curves R(θ),
θ = t · 360

8K , t = 1, . . . , 8K.
(c) After that, by computing the intersections between the k-th iso-geodesic curve

and the newly computed 8K radial curves, we obtain 8k intersected vertices in
order, which can be stored into the k-th ring within the sampling matrix M.

(d) By repeating the steps (b)-(c) until k = K, we can obtain the full sampling
matrix M.
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Figure 1. Overview of the proposed 3D face generation approach. The double-headed arrows denote
the facial data flow and the single-line arrows denote the processing flow. First, we adapt the 3D point
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cloud faces to the deep neural network using the proposed geometry/depth-like map sampling
method. With the random input z, the Generative and Discriminative adversarial networks repeti-
tively update the generated 3D face, until it is recognized as ‘real’. The generated 3D point cloud
model is further smoothed for the final 3D face mesh. Note that both the Generative and Discrim-
inative Networks comprise a fully-connected layer and 3 transpose-convolution layers, but in the
reverse order. Detailed specifications are described in Section 3.3.
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Figure 2. The pipeline of our geometry sampling method. (I) The original 3D face, with the detected
nose-tip, the iso-geodesic curve, the radial curves, and the sampled vertices. (II) The sampled vertices
are stored in a structured matrix. (III) Geometric sampling after structured representation and 3D
faces obtained after training.

Figure 2III shows the sampled face from the original face shown in Figure 2I. Note
that we extract more samples from the larger iso-geodesic curves, which is important so as
to keep the visual facial features in the regions further from the nose tip. Additionally, the
sampled vertices can be represented by a structured matrix.

3.2. Geometric Sampling of the Depth-like Map

For a given 3D face, the features of the frontal face have little overlap, so we propose
a sampling method named depth-like map, which is suitable to sample 3D faces and can
represent the features of 3D face shapes well.

We first establish the coordinate system for 3D faces. The positive direction of the Z
axis is set as the 3D face orientation, where the nose tip is the maximum point on the Z axis.
The direction of the X axis is the same as the central axis of the face (left and right dividing
line), and the point projected on the XOY surface by the nose tip is set as the coordinate
origin. The main idea of sampling is to cover the face with a regular grid and measure each
cell in a face grid with an average depth. Since there are differences in the position of the
five senses for the aspect ratio of different human faces, we should adjust it to the same
aspect ratio to make the positions of the five senses similar.

In this paper, we represent the total grid number with a fixed value M. Then, traversing
the point cloud on a 3D face to find the maximum and minimum values on X and Y axis,
we denote them as xmax, xmin, ymax, ymin and calculate the minimum vertex of cell (i, j)
as follows.

Sx
i = xmin + i ∗ (xmax − xmin)/M, i = 0, 1, . . . , M

Sy
j = ymin + j ∗ (ymax − ymin)/M, j = 0, 1, . . . , M

(4)

where Sx
i and Sy

j represent the minimum coordinate in the X-axis and Y-axis of cell (i, j),
respectively. The average depth value z of cell (i, j) can be denoted as follow.

z̄(i,j) =
∑n

k=1 zxk ,yk

n
, xk ∈ [Sx

i , Sx
i+1], yk ∈ [Sy

j , Sy
j+1] (5)

where n is the number of points in the cell (i.j). The size of the sampled matrix is M×M× 1.
Note that the depth-like map only has depth data and the grid data needs to be determined
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by users when restoring the 3D point cloud later. Since the aspect ratio of the 3D face is
different, in particular, we set an average value of 2.5:3 for point cloud restoration, which is
an appropriate ratio by counting the aspect ratio of faces in the database. The pipeline of
the depth-like map is shown in Figure 3.

Figure 3. The pipeline of our depth-like map sampling approach. (I) The original 3D face with
the regular grid. (II) The sampled depths are stored in a structured matrix. (III) Depth-like map
after sampling. The following line shows the results of the different expressions after sampling the
depth-like map.

3.3. 3D Face Generation via DCGAN

After completing the geometric sampling of the 3D faces using the above methods,
the sampled face dataset needs to be fed into the neural network for training to generate
virtual 3D faces. Now that we have obtained the geometry sampling for all the 3D faces
in the training set, we proceed to train a 3D face generative model using deep networks.
For this work of generating 3D faces, a commonly used network model is the adversarial
generative network model, and in [32], Geoodfellow et al. proposed a GAN model that
contains two deep networks, i.e., a generator (G) and a discriminator (D).The training of
the two networks is a mutual game process, and the GAN model works in such a way that
the G model continuously updates the output until the D model is unable to distinguish
the generated output from the training data. Recently, in [34], Radford et al. proposed a
DCGAN model, which is an improvement and extension for GAN in processing image
data, and tried to combine GAN with a convolutional neural network with good results.
The performance of the GAN model is improved by the following network settings:

• Apply the transposed convolutions for G and the stride convolutions instead of the
pooling layers.

• Apply the fully Convolutional Networks instead of the fully connected hidden layers.
• Apply the ReLU activation [37] for all the convolution layers and the tanh activation

for the output layer in G, and apply the LeakyReLU activation [38,39] in D.
• Apply the batch normalization [40] in both G and D.

The DCGAN model replaces the fully connected layer with a convolutional network,
uses transposed convolution (deconvolution) in the generator G, replaces the pooling layer
with a convolution layer with steps, and uses a batch normalization layer in both the
generator G and the discriminator D. This makes the training process more stable and
reduces the number of epochs required for training, in some cases halving the original
number of epochs or even less, and reduces the generalization error.

In the depth-like map sampling method, the input data format for DCGAN is a
1× 65× 65 matrix for a single channel. During the training process, the discriminator
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loss D_loss often decreases rapidly and eventually tends to 0. However, the generator
loss G_loss is difficult to decrease. This is because the discriminator is too strong and
overwhelms the generator and makes it difficult to learn. Therefore, the initial generator
learning rate G_lr is set to 0.0002 and the discriminator learning rate D_lr is set to 0.0001
during training, and the discriminator is updated after three epochs, while the generator is
updated normally with a 1:3 ratio of training times. This setting makes the training process
more stable.

For different expressions, the parameter settings will be slightly changed. Take the
‘Happy’ face as an example, where the visualization change of the 3D face during the
training process is shown in Figure 4. At the 10th epoch, a clearer face can be seen and
the expressions can be distinguished. After training is completed, the 100-dimensional
noise is input to the generator, and the output matrix is also 1× 65× 65, which needs to be
restored to the point cloud of 3D faces. The structure of the DCGAN network based on this
sampling method is shown in Figure 5. The top is the network structure of the generator
and the bottom is the network structure of the discriminator.

1 epoch 2 epochs 5 epochs 10 epochs

Figure 4. The generated 3D faces with different training epochs.

Figure 5. Structure of DCGAN network with depth-like graph sampling.

Figure 6 shows the generated ‘Happy’ and ‘Surprise’ faces with the proposed 3D face
generative model. Our experiments for the training and the generated results are presented
in detail in Section 4.
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Figure 6. The generated 3D faces with ‘Happy’ and ‘Surprise’ expressions using our approach.

Unlike 2D images, the smoothness of a 3D shape surface can be easily tainted by noise
while a noisy pixel in a 2D image is, most often, hardly noticeable. For this reason, we
can easily foresee that the generated 3D face of point clouds requires a post-processing
step (e.g., smoothing). A number of previous efforts have been focused on 3D shape
reconstruction from dense point clouds [41–43]. Unlike in previous works, our generated
models are sparse and contain (2K + 1)2 points. In our implementation, we apply the linear
interpolation method to fit a smooth surface for the obtained 3D points. An example of the
generated 3D face of point clouds and its smoothed surface is shown in Figure 7.

Figure 7. Surface fitting of the generated 3D face as the point cloud.

4. Results and Discussion

In our experiments, the two geometric sampling methods and the DCGAN model were
implemented with Matlab and Python, respectively. All the experiments were conducted
on an off-the-shelf desktop with an Intel Core with 3.4GHz CPU and 16GB memory.

In order to evaluate the proposed 3D face generative model, we experimented with the
‘BU-3DFE’ dataset from Binghamton University [44]. This face dataset contains 100 subjects
(56 females and 44 males with various ethnicities); the raw data are cleaned to remove those
that are incomplete, irregular or not of reasonable size. After that, each of cleaned datum
performs 7 different expressions, as shown in Table 1.
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Table 1. The timing statistics (in seconds) of geometry sampling and training for each set of facial
expressions from the ‘BU-3DFE’ dataset.

Facial Expressions Geometry Sampling 1 epoch 5 epochs 10 epochs

Angry 73.2 35.4 164.2 348.2
Disgust 69.9 35.2 163.0 345.8

Fear 70.5 39.3 163.5 356.5
Happy 74.7 40.4 163.5 355.0
Neutral 77.0 38.1 164.0 353.1

Sad 73.8 35.3 166.6 333.8
Surprise 79.9 35.7 167.6 323.8

Given that the computational cost can increase exponentially with the number of
iso-geodesic curves, K, we set K = 29 by balancing the quality of the 3D face model and
the computational costs. This results in a dimension of M as 59. That is, each sampled face
contains 592 = 3481 vertices. Table 1 shows the averaged per-mesh timings of the geometry
sampling of the training faces with different expressions. On average, it took about 74.2 s
to sample a face with around 8000 vertices. Furthermore, several sampled faces are shown
in the top row of Figure 8. As can be seen, although the smoothness of the sampled faces
was disturbed, the images are sufficient to observe visual facial features. More importantly,
the sampled faces can be represented with a structured matrix.

HA DI FE SU

Figure 8. The sampled faces (top row) and the generated faces by using our approach (bottom row),
for the ‘Happy’ (HA), ‘Disgust’ (DI), ‘Fear’ (FE) and ‘Surprise’ (SU) expressions.

Table 1 shows the training timings of the DCGAN model with different numbers of
training epochs for different expressions, which is increased linearly and the timing of each
epoch is in the range of [35.2 40.4]. As an example for the ‘Happy’ face, Figure 4 shows
the intermediate progress of the proposed generative model. Starting with a matrix of
random noises, the generative model gradually improves the quality of the output, until
we obtain a 3D face reasonably close to the faces in the training dataset. As can be seen in
Figure 4, we can obtain an easily recognizable ‘Happy’ face using the generative model
based on 10 epochs of training. In Figure 9, more ‘Happy’ 3D faces are generated by the
DCGAN model. The first row of Figure 9 shows 3D face data resampled from the original
database, the second row shows the new regenerated faces by the generator, and the third
row shows the generated 3D faces from different angles. We can easily observe the facial
components from the figure. In some of the generated results, although the details of the
eyes are not very clear, we can still recognize the facial expressions. The main features of
the ’Happy’ expression are the prominent cheekbones and the upturned corners of the
mouth. The ’Surprise’ expressions in Figure 10 are characterized by a widened mouth,
sometimes accompanied by an increase in the range of the eye sockets.
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Figure 9. Training faces and generated faces with happiness.

Figure 10. Training faces and generated faces with surprise.
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The bottom row of Figure 8 shows the generated 3D faces using our approach.
From this figure, we can easily observe the facial components including the nose, mouth,
cheek, etc.

Table 2 shows the sampling time with the depth-like map sampling method, as well
as the training time with DCGAN using the above sampled input data. We take the same
seven expressions in Table 1; by comparison, both the sampling time and the training time
are more efficient with this method. Likewise, it can also generate 3D face results with
different expressions, as shown in Figure 11.

Table 2. Sampling time and training time for depth map-like method.

Facial Expressions Geometry Sampling 1 epoch 5 epochs 10 epochs

Angry 0.447 1.762 8.774 16.558
Disgust 0.537 1.519 8.250 15.936

Fear 0.523 1.661 8.106 16.632
Happy 0.465 1.628 7.891 16.022
Neutral 0.448 1.764 8.544 16.988

Sad 0.512 1.583 7.996 15.645
Surprise 0.438 1.525 7.766 15.135

Figure 11. 3D face generation results by using the depth-like sampling method.

We also execute a test of the proposed geometric sampling method on the FaceWare-
house dataset. Figure 12 shows the experimental results with the two geometric sampling
methods. We can see that both sampling methods have satisfactory results, which proves
their universality, i.e., it is valid on different datasets. To further verify the feasibility of
the sampling method, we expand the dataset for validation later. Currently, we captured
realistic human faces using the 3D face reconstruction technique, as shown in Figure 13.

Figure 12. 3D face generation results using two sampling methods (FaceWarehouse dataset).

In some of the generated faces, although the details of the eyes may be not clear, we
still can easily recognize the facial expressions. Additionally, it is interesting to mention
that different subjects may show different facial movements for the same expression, due
to the difference of culture, race, or character. Using our approach, we can generate faces
with the same expression, but with local surface variances (refer to the mouth and cheek
regions of the generated ‘Fear’ faces).
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Figure 13. Extended face model.

We fed the training samples computed by the general down-sampling method into
the general DCGAN model for training, and compared this with the results of our model
using the geometric sampling method. The former has the problems of slow convergence
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and inconspicuous face features. We fed the training samples computed by the geometric
sampling method into cDCGAN and our DCGAN network for training; the former also
has the problems of slow convergence of the loss function and difficulty in generating
distinctive faces. As the data of complex network structures are more closely related to
each other, there is a higher requirement for representation in a structured way, which
represents future work.

5. Conclusions

We have presented an unsupervised data-driven model for the generation of 3D faces.
Specifically, we first propose a geometry sampling approach to adapt un-structured 3D
models for the classical DCGAN model, which is a competitive data generation model. Our
method requires neither explicit face feature extraction nor pre-computed face alignments.
Our current method is effective for 3D faces, because the geometry affinities of 3D faces are
high, especially the geodesic distance. However, our method can be easily extended for
more complex shapes using reversible parameterization. As future work, we will further
investigate the potential of our new 3D face sampling approach for generation by adapting
to the recent advanced deep network techniques. We are also interested in exploring the
direction of automatic data-driven generation of 3D faces with texture and the application
of the generated 3D models combined with AR in the medical field.
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