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Abstract

In spite of the recent progresses on classifying 3D point cloud
with deep CNNs, large geometric transformations like rota-
tion and translation remain challenging problem and harm the
final classification performance. To address this challenge,
we propose Geometry Sharing Network (GS-Net) which ef-
fectively learns point descriptors with holistic context to en-
hance the robustness to geometric transformations. Compared
with previous 3D point CNNs which perform convolution on
nearby points, GS-Net can aggregate point features in a more
global way. Specially, GS-Net consists of Geometry Similar-
ity Connection (GSC) modules which exploit Eigen-Graph
to group distant points with similar and relevant geometric
information, and aggregate features from nearest neighbors
in both Euclidean space and Eigenvalue space. This design
allows GS-Net to efficiently capture both local and holistic
geometric features such as symmetry, curvature, convexity
and connectivity. Theoretically, we show the nearest neigh-
bors of each point in Eigenvalue space are invariant to rotation
and translation. We conduct extensive experiments on public
datasets, ModelNet40, ShapeNet Part. Experiments demon-
strate that GS-Net achieves the state-of-the-art performances
on major datasets, 93.3% on ModelNet40, and are more ro-
bust to geometric transformations.

1 Introduction

Analysis and classification of 3D point cloud is an important
problem in computer vision and graphics, due to its wide
applications in robot manipulation (Rusu et al. 2008), au-
tonomous driving (Qi et al. 2018) etc. The challenge of this
problem comes from several aspects. Firstly, the point cloud
are sparsely sampled from 3D surfaces in an irregular and
off-order way. Secondly, the point cloud usually undergoes
large geometric transformations and deformations. It is im-
portant to achieve robustness to transformation and permu-
tation for analyzing and classifying 3D point cloud.

Large research efforts have been devoted to solving the
above problems. One research direction (Su et al. 2015;
Feng et al. 2018; Maturana and Scherer 2015; Wu et al.
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Figure 1: Visualization of Eigen-Graph (Best view in color
and zoom in). Given a red anchor point, traditional convo-
lutions for 3D points operate on a local region as shown
in the red circle. To explore the geometry of point cloud
such as symmetry, curvature, convexity and connectivity,
we use Eigen-Graph to group neighbors in both Euclidean
space and Eigenvalue space. The anchor point’s neighbors
in Euclidean space are colored blue and its neighbors in
Eigenvalue space are colored green, thus we construct the
Eigen-Graph of the anchor point and its neighbors. Obvi-
ously, green points provide more information about the ge-
ometry of the whole point cloud. It shows that our method
indeed associates the anchor points with points having sim-
ilar local geometry, even though these points are far away
from each other in Euclidean space.

2015) aims to represent the irregular 3D point cloud using
regular data, in that way they can use classical convolution
neural network to process the regular data. Two of the most
common regular representations are voxels and multi-view
images. However, both these representations have limita-
tions. Dense voxels representation is inefficient due to the
sparsity of input point clouds, while multi-view images may
lose 3D structures of points and cause occlusion problem.

Another direction focuses on designing convolution oper-
ations for irregular points, which are inspired by the promi-
nent success of CNNs on regular grid data, such as audio
and images. PointNet (Qi et al. 2017a) learns a spatial en-
coding of each point directly on Euclidean space and aggre-
gates all individual point features by max pooling to obtain
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a global point cloud signature. Max pooling as a symmetric
operation can obtain permutation invariance. By its design,
PointNet does not capture local geometry directly which is
indispensable to the description of 3D shape. Other works
(Qi et al. 2017b; Xu et al. 2018) mainly utilize group op-
erations (k-nearest neighbors group or ball region group) to
identify local points for convolution. But these group opera-
tions only focus on local neighborhood region in Euclidean
space. Despite of the discreteness and irregularity of point
cloud, these operations mainly account the local structures
of each point and are not efficient to capture the holistic ge-
ometric information from distant information. The holistic
geometry not only provides discriminative cues for classifi-
cation but also help to achieve robustness to transformation.
In addition, points with similar geometric structures can be
far away from each other in Euclidean space. Previous works
mentioned above largely neglect the geometric relationships
among these distant points.

Inspired by the above analysis, this paper proposes Geom-
etry Sharing Network (GS-Net) which aggregates features
in both Euclidean space and Eigenvalue space. GS-Net ex-
ploits Eigen-Graph to calculate structure tensor for measur-
ing local geometric properties of input points, which further
allows us to identify points with similar local structures but
located distant in Euclidean space. We prove that these struc-
ture tensors are invariant to transformations and yield rich
local structural information. As shown in Figure 1, given
an anchor point for convolution, GS-Net identifies a group
of neighbor points from Euclidean space and also another
group of points with similar local structures (Eigen-graph
features). Then the convolutions are performed for both
groups to capture local and holistic geometric representation
separately. The convolutional features from both groups are
integrated for classification or segmentation. We conduct ex-
tensive experiments to examine the proposed methods. Our
method achieves the state-of-the-art performance on Model-
Net40 for classification (93.3%) and shows more robustness
to geometric transformations than previous methods.

The main contributions of this paper are summarized as
follows.

• We propose a novel Geometry Similarity Connection
(GSC) module which exploits Eigen-Graph to group dis-
tant points with similar and relevant geometric informa-
tion and aggregate features from neighbors in both Eu-
clidean space and Eigenvalue space which can capture lo-
cal and holistic geometric information more efficiently.

• We introduce 3D structure tensor and Eigen-Graph to cap-
ture the geometric features of points. Theoretically, we
prove these features are invariant to translation and rota-
tion.

• Our GS-Net achieves the state-of-the-art performances
on major datasets, ModelNet40, ShapeNet Part. More-
over, GSC module can be integrated into different existing
pipelines for point cloud analysis.

2 Related Work

2.1 Deep Learning on Point Cloud Analysis

Deep neural networks have enjoyed remarkable success for
various vision tasks, however it remains challenging to ap-
ply CNNs to domains lacking a regular structure such as 3D
point cloud. These challenges include: (1) local and holis-
tic geometric information representation; (2) permutation in-
variance; (3) rotation and translation invariance. However,
not all networks can address these problems absolutely.

PointNet (Qi et al. 2017a) and DeepSet (Zaheer et al.
2017) are pioneering architectures that directly process point
cloud. The basic idea is to learn a spatial encoding of each
point and then aggregate all individual point features to
a holistic signature. But by this design, relations between
points are not sufficiently captured. To remedy this, Point-
Net++ (Qi et al. 2017b) partitions point cloud into over-
lapping local regions by the distance metric of the under-
lying space and extracts local features capturing fine geo-
metric structures from neighbors, but it still only considers
every point in its local region independently. In our method,
we address this issue by defining a convolution block that
group the features from the neighbors in Euclidean space
and Eigenvalue space.

DGCNN (Wang et al. 2018) captures local geometric
structure while maintaining permutation invariance and re-
constructs the k-nn graph using nearest neighbors in the fea-
tures space produced by each layer. Different with DGCNN,
our method does not use dynamic strategy, we apply Eigen-
Decomposition to choose the nearest neighbors and share
the local features with distant points with similar geometric
information.

(Thomas et al. 2018a) directly uses eigenvalues and fuc-
tions of eigenvalues as features in deep-learning setting.
(Landrieu and Simonovsky 2018) adds eigenvalues to its
shape descriptors. Our method aggregates features from
nearest neighbors in Eigenvalue space in order to capture
holistic geometric information. And we also uses eigenvalue
as features in our network settings.

2.2 Classical Geometric Representation

The local geometry of point cloud is estimated by the distri-
bution of points in the neighborhood. (Demantke et al. 2011)
propose a method which aims at finding the optimal neigh-
borhood radius for each point, working directly and exclu-
sively in the 3D domain, without relying on surface descrip-
tors or structures. Firstly, they compute three dimensional-
ity features for each point, between predefined minimal and
maximal neighborhood scale. The three dimensionality fea-
tures (a1D, a2D, a3D) (Demantke et al. 2011) are computed
exhaustively, at each point and for each accepted neighbor-
hood scale from local covariance matrix. Various geometri-
cal features can be derived from the eigenvalues of the co-
variance matrix. a1D, a2D, a3D describe linear, planar, and
scatter respectively. In our GS-Net, we use operations on
eigenvalues to improve the robustness of rotation and trans-
lation in GS-Net. Moreover, the Eigen-Graph (Sec 3.2) en-
hances the representation of local geometry.
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2.3 Rotation Invariance for Point Cloud Analysis

In comparison to permutation invariance, rotation invariance
is a more challenging problem. Previous works has dealt
with issues of invariance or equivarance under particular in-
put transformations. PointNet (Qi et al. 2017a) and Point-
Net++ (Qi et al. 2017b) guarantee the permutation invari-
ance by a symmetric pooling operator and PointNet em-
ploys a complex and computationally intensive spatial trans-
former network to learn 3D alignment, PCPNet (Guerrero et
al. 2018) also uses a learned transformer block, but these
networks (including (Wang et al. 2018; Xu et al. 2018)) do
not include rotation invariance. (Thomas et al. 2018b) up-
grades the existing neural network with rotation invariance
property, a special convolutional operation is designed as a
basis block in the network. But it causes the loss of informa-
tion as there is no bijection between R3 and 2-dimensional
sphere. In our method, Eigen-Graph addresses the rotation
invariance naturally with Eigen-Decomposition of 3D struc-
ture tensor.

3 Method

3.1 Overview

As shown in Figure 2, we consider a S-dimensional point
cloud with N points, denoted by X = {x1, . . . , xN} ⊂ R

S .
Usually, each point of point cloud contains 3D coordinates
xi =

(

x1
i , x

2
i , x

3
i

)

, which means that S = 3; it is also possi-
ble to include other coordinates representing RGB informa-
tion, normal vectors, and so on. In our network architecture,
we use hierarchical structure to learn local and holistic fea-
tures of point cloud. On each level, we use Geometry Sim-
ilarity Connection(GSC) module (Sec 3.2) to capture abun-
dant local geometric information of each point and share ge-
ometric features with distant points. After that, we adopt the
FPS algorithm to down-sample the points and the features
(Sec 3.4). Low-level features represent the local geometric
information, while high-level features provide semantic in-
formation.

As for classification task, instead of using only the last
level’s features as the encoder’s output (Wang et al. 2018),
we concatenate all levels’ features together and extract the
holistic features by global max pooling and global average
pooling. The concatenation of all levels’ features aims to
fuse the features from different levels and the pooling opera-
tor urges to capture the most effective features for classifica-
tion. Then we handle the holistic features by fully-connected
layers with integrated dropout (Srivastava et al. 2014) to cal-
culate the probability for each category. The cross-entropy
loss is used for training.

As for segmentation task, our segmentation network has
an encoder which is the same as the classification network’s.
We need to interpolate the features on each level of the en-
coder module and then concatenate them. Inspired by (Qi et
al. 2017b), we also concatenate repeated one-hot category
label to the features before MLP (Hornik 1991). This mech-
anism is designed to apply the category supervision to the
point-wise segmentation.

3.2 Geometry Similarity Connection Module

This subsection describes the Geometry Similarity Connec-
tion (GSC) module in GS-Net. It is illustrated in Figure 3
and 4. The structure of Eigen-Graph is shown in Figure 1.

Eigen-Graph. As shown in Figure 4, we use k-
nearest neighbors search (KNN) algorithm to get k1-
nearest neighbors of each point xi in Euclidean space. Let
{

xi1 , . . . , xik1

}

be k1-nearest neighbors of xi. Let M =
(

xi1 − xi, . . . , xik1
− xi

)

, where xij (1 ≤ j ≤ k1) belongs

to k1-nearest neighbors of xi in Euclidean space.
We define the 3D structure tensor as C = MMT , even if

the ground truth (surface) is locally flat, noise points cause
unflatness of point cloud sampled from the surface. As long
as the neighbor region of the given point is not flat, C is
a symmetric positive definite matrix. We have the decom-
position C = RΛRT , where R is a rotation matrix and Λ
is a diagonal and positive definite matrix, known as eigen-
vectors and eigenvalues matrices respectively. The positive
eigenvalues λ ⊂ R

3 are ordered so that λ1 ≥ λ2 ≥ λ3 > 0.
At each point xi, we get the 3D structure tensor and denote
the eigenvalues at point xi by

(

λ1
i , λ

2
i , λ

3
i

)

(1 ≤ i ≤ N).

We use L2 norm to calculate the distances between different
points.

Distance(xi, xj) = ‖λi − λj‖L2 (1)

We choose the indices of k2-nearest neighbors of each
point according to Eigen Matrix whose element is Dij =
‖λi − λj‖L2 .

GroupLayer. Now we have k1-nearest neighbors’ in-
dices in Euclidean space and k2-nearest neighbors’ indices
in Eigenvalue space. As we have presented in Figure 3, we
denote the input features of level l by F l = {f l

1, f
l
2, ..., f

l
N}.

For convenience, we omit the superscript l. In GroupLayer,

let
{

fi1
1

, . . . , fi1
k1

}

be k1-nearest neighbors’ features of

point xi, and let
{

fi2
1

, . . . , fi2
k2

}

be k2-nearest neighbors’

features of point xi. We group the neighbor features as fol-
lows:

fk1

i =
⊙

j:(i,j)∈E

(fj − fi, fj) , j ∈
{

i11, . . . , i
1
k1

}

(2)

fk2

i =
⊙

p:(i,p)∈E

(fp − fi, fp) , p ∈
{

i21, . . . , i
2
k2

}

(3)

where
⊙

means concatenation. Then we concatenate fk1

i

with fk2

i as the features at each point:

f ′
i =

⊙

(

fk1

i , fk2

i

)

(4)

In the first GSC module shown in Figure 2, the input fea-
tures are the coordinates X and the eigenvalues E of points.
We group coordinates using k1-nearest neighbors and group
eigenvalues using k2-nearest neighbors. In the other GSC
modules, we use the previous level’s output as the input fea-
tures and group features in both Euclidean space and Eigen-
value space.
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Figure 2: GS-Net architecture for classification and segmentation (Best view in color and zoom in). In encoder, we use hierar-
chical structure to learn the features on each level. The network takes N points as input. We use Geometry Similarity Connection
(GSC) module to capture abundant local geometry features of each point which can be shared with distant points. After that,
we down-sample the points and features to the next level. For classification, we concatenate down-sampled features from each
level and pool the holistic features to a 1D global descriptor, which is used to generate classification scores. The segmentation
network concatenate the interpolated features of each levels and then calculate each point’s scores. The color from red to blue
denotes the features’ response, while the size of points denotes the features’ channels number on different levels.

MLP and MaxPooing. In GSC module, we calculate fea-
tures at each point from GroupLayer and implement the mul-
tilayer perception (MLP)(Hornik 1991), then we use Max-
Pool in neighbor domains to get the features of each point:

f ′′
i = MaxPool(MLP (f ′

i)) (5)

And the output of GSC module is denoted by F ′′ =
{f ′′

1 , f
′′
2 , ..., f

′′
N}.

3.3 Rotation and Translation Invariance

In this subsection we give some theoretical analysis about
rotation and translation invariant robustness of our method.
As we have mentioned in Sec 3.2, the 3D structure tensor is
C = MMT . We denote the eigenvalues of C as (λ1, λ2, λ3)
and the corresponding eigenvectors are (v1, v2, v3). Thus we
have the following equation:

Cvq = λqvq , 1 ≤ q ≤ 3 (6)

The way we get 3D structure tensor guarantees that 3D
structure tensor of each point is invariant to translation. Let
R be an arbitrary rotation matrix in 3D Euclidean space. Af-
ter applying rotation matrix to point cloud, we get the new
3D structure tensor C ′ = RM(RM)T . We can get the fol-
lowing equations:

RTR = RRT = I (7)

C
′
Rv

q
= RMM

T
R

T
Rv

q
= RMM

T
v
q
= RCv

q
= λ

q
Rv

q (8)

From equations above, we know that (λ1, λ2, λ3) are also
the eigenvalues of 3D structure tensor C ′. So the eigenvalues
of each point is invariant to rotation and translation which
ensure the indices of k2-nearest neighbors of each point are
invariant (illustrated in Figure 5). This mechanism improves
the robustness of our model to rotation and translation. The
empirical experiment results also demonstrate what we have
proved theoretically (Sec 4.2).

3.4 Complements of the Architecture

Hierarchical Feature Learning. Our method follows the
design where the hierarchical structure (Qi et al. 2017b) is
composed of a set of abstract layers. By this way, we can
enlarge receptive field of each point progressively along the
hierarchy. As shown in Figure 2, the hierarchical structure is
composed of three abstract levels. An abstract level l takes
Nl × 3 points matrix and Nl × Cl features matrix as input.
The output are Nl+1 × 3 points matrix and Nl+1 × Cl+1

features matrix. We use FPS algorithm to down-sample the
points and features at 3 levels (1024-512-256 points in clas-
sification network).

Feature Interpolation for Segmentation Task. In seg-
mentation task, to obtain the feature map which has the same
number of points as the original input, we must interpolate
features from the coarsest scale to the original scale (Qi et al.
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method instance aero bag cap car chair ear guitar knife lamp lap motor mug pistol rocket skate table
m-IOU ph top board

Kd-Net(Klokov and Lempitsky 2017) 82.3 80.1 74.6 74.3 70.3 88.6 73.5 90.2 87.2 81.0 94.9 57.4 86.7 78.1 51.8 69.9 80.3
PointNet(Qi et al. 2017a) 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6
SCN(Xie et al. 2018a) 84.6 83.8 80.8 83.5 79.3 90.5 69.8 91.7 86.5 82.9 96.0 69.2 93.8 82.5 62.9 74.4 80.8
SO-Net(Li, Chen, and Hee Lee 2018) 84.6 81.9 83.5 84.8 78.1 90.8 72.2 90.1 83.6 82.3 95.2 69.3 94.2 80.0 51.6 72.1 82.6
KCNet(Shen et al. 2018) 84.7 82.8 81.5 86.4 77.6 90.3 76.8 91.0 87.0 84.5 95.5 69.2 94.4 81.6 60.1 75.2 81.3
RS-Net(Huang, Wang, and Neumann 2018) 84.9 82.7 86.4 84.1 78.2 90.4 69.3 91.4 87.0 83.5 95.4 66.0 92.6 81.8 56.1 75.8 82.2
PointNet++(Qi et al. 2017b) 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6
DGCNN(Wang et al. 2018) 85.1 84.2 83.7 84.4 77.1 90.9 78.5 91.5 87.3 82.9 96.0 67.8 93.3 82.6 59.7 75.5 82.0
SpiderCNN(Xu et al. 2018) 85.3 83.5 81.0 87.2 77.5 90.7 76.8 91.1 87.3 83.3 95.8 70.2 93.5 82.7 59.7 75.8 82.8
Ours 85.3 82.9 84.3 88.6 78.4 89.7 78.3 91.7 86.7 81.2 95.6 72.8 94.7 83.1 62.3 81.5 83.8

Table 1: Segmentation results on ShapeNet Part dataset.

Figure 3: Geometry Similarity Connection module (Best
view in color and zoom in). k1 denotes the number of near-
est neighbors in Euclidean space and k2 means number of
nearest neighbors in Eigenvalue space. The input are points
and features on level-l. In GSCM, Eigen-Graph is designed
to compute the indices of neighbors in Euclidean space and
Eigenvalue space. The GroupLayer shares the local geomet-
ric features according to the indices of k2-nearest neighbors
in Eigenvalue space.

2017b). The l-th features interpolation level takes Nl × C
′

l

decoder features matrix as input, let Xl and X1 be the spatial
points set with Nl×3 and N1×3 coordinates. To obtain the
features of 1-st level, we simply find three nearest neighbors
of X1 in Xl and then calculate the weighted sum of their
features. The combination weights are acquired according
to the neighbors’ normalized spatial distances.

4 Experiments

In this section, we conduct comprehensive experiments to
evaluate our GS-Net. In Sec 4.1, we evaluate our GS-Net for
point cloud analysis on classification task and segmentation
task. In Sec 4.2, we compare the rotation robustness of GS-
Net with state-of-the-art methods.

4.1 Point Cloud Analysis

Classification on ModelNet40. ModelNet40 (Wu et al.
2015) contains 12,311 CAD models from 40 categories.
9,843 models are used for training and 2,468 models are for
testing. We evaluate our model on the ModelNet40 (Wu et al.

Figure 4: Eigen-Graph module(Best view in color and zoom
in). It first gets the structure tensor of the input points, then
use Eigen-Decomposition to compute the eigenvalues which
are used to get the indices of the nearest neighbors in Eigen-
value space.

2015) for classification task. Following the configuration in
PointNet (Qi et al. 2017a), we use the source code of Point-
Net to sample points uniformly from the mesh models. The
results are summarized in Table 2. Our model achieves the
state-of-the-art performance (93.3%).

Part Segmentation on ShapeNet Part. Part segmenta-
tion task is a challenging task for fine-gained shape anal-
ysis. We evaluate our method for this task on ShapeNet
Part benchmark (Yi et al. 2016). ShapeNet Part consists of
16,880 models from 16 shape categories and 50 different
parts in total, with 14,006 models for training and 2,874
models for testing split. Each point cloud is annotated with
2 to 6 parts. We choose mIoU as the evaluation metric which
is averaged across all classes and instances. The results are
summarized in Table 1. The input consists of coordinates
and normals. Our method can effectively deal with point
clouds with geometric characteristic such as symmetrical
structure. Figure 6 shows some segmentation examples.

4.2 Comparison of Rotation Robustness

We compare GS-Net with the state-of-the-art approaches
on ModelNet40 classification for rotation-robustness evalu-
ation. The results are summarized in Table 3 with four com-
parisons: (1) both training set and test set are augmented by
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Method Input Accuracy

Pointwise-CNN(Hua, Tran, and Yeung 2017) 1k points 86.1
ECC(Simonovsky and Komodakis 2017) 1k points 87.1
PointNet(Qi et al. 2017a) 1k points 89.2
SCN(Xie et al. 2018a) 1k points 90.0
Flex-Conv(Groh, Wieschollek, and Lensch 2018) 1k points 90.2
PointNet++(Qi et al. 2017b) 1k points 90.7
SO-Net(Li, Chen, and Hee Lee 2018) 2k points 90.9
KCNet(Shen et al. 2018) 1k points 91.0
MRTNet(Gadelha, Rui, and Maji 2018) 1k points 91.2
Spec-GCN(Chu, Samari, and Siddiqi 2018) 1k points 91.5
PAT(FPS+GSS)(Yang et al. 2019) 1k points 91.7
Kd-Net(Klokov and Lempitsky 2017) 1k points 91.8
SpiderCNN(Xu et al. 2018) 1k points 92.2
DGCNN(Wang et al. 2018) 1k points 92.2
PCNN(Atzmon, Maron, and Lipman 2018) 1k points 92.3
Ours 1k points 92.9
Ours(k=32) 2k points 93.3

PointNet++(Qi et al. 2017b) 5k points+nor 91.9
Spec-GCN(Chu, Samari, and Siddiqi 2018) 1k points+nor 91.8
SpiderCNN(Xu et al. 2018) 1k points+nor 92.4

Table 2: Classification results (%) on ModelNet40 dataset.
”nor” denotes the normal of point cloud.

Method z/z z/s s/s 0/s

DGCNN(Wang et al. 2018) 90.4 30.9 82.6 19.6
PointNet(Qi et al. 2017a) 81.6 15.8 66.3 11.7
PointNet++(Qi et al.
2017b)

90.1 27.1 87.8 16.1

SpiderCNN(Xu et al. 2018) 83.5 29.3 69.6 21.8

Ours 89.8 37.1 87.9 19.4
Ours(λj − λi, λj) 85.0 72.8 82.8 50.7

Table 3: Comparisons of rotation robustness on ModelNet40
classification. λi means the eigenvalues of the anchor point
and λj denotes the eigenvalues of its neighbors.

random angle rotation for z axis(z/z); (2) training set with
random angle rotation for z axis and test set with random
angles rotation for all three axes (x,y,z) (z/s); (3) both train-
ing set and test set are augmented by random angles rotation
for all three axes (s/s); (4) only test set with random angles
rotation for all three axes (0/s).

Table 3 consists of two groups of approaches. The first
group consists of four approaches: DGCNN (Wang et al.
2018), Point (Qi et al. 2017a), Point++ (Qi et al. 2017b)
and SpiderCNN (Xu et al. 2018), while the second group
is our approach with different settings. Different from our
model shown in Figure 2, last one of second group only use
eigenvalues as the input features without any coordinates in-
formation and it achieves the best performances of compar-
ison (2) and (4). While our original model achieves the best
performance of comparison (3) and get a comparable result
with DGCNN of comparison (1). These comparisons aim to
validate the eigenvalues of each point is invariant to rotation
and can improve robustness of our method to rotation.

5 Analysis of GS-Net

In Sec 5.1, we perform the ablation analysis of GS-Net. We
discuss the effectiveness of architecture design and input
features. Sec 5.2 is the complexity comparison of GS-Net
and existing methods. Sec 5.3 shows that Eigen-Graph effi-

Figure 5: Visualization of rotation and translation invari-
ance. We visualize the anchor point(red)’s neighbors (green)
in Eigenvalue space. The green points are not influenced by
the rotation and translation of the input points.

Figure 6: Segmentation examples on ShapeNet Part.

ciently capture local and holistic geometric features such as
symmetry and connectivity.

5.1 Ablation Analysis

Analysis of Architecture Design. We analyze the effective-
ness of our method’s components on ModelNet40 bench-
mark for classification task. The results are summarized in
Table 4. All experiments in the ablation study are conducted
using k = 20 nearest neighbors.

Input Features. The input features directly affect the rep-
resentation of local geometry and relations between points,
thus how to define the input features is an worth exploring
issue. In order to find the most suitable feature combination,
we experiment with six settings, whose results are summa-
rized in Table 5. As can be seen, using only coordinates, the
accuracy can also reach 92.5%; Inspire by (Xie et al. 2018b)
we use only shape context as the input feature of the points
and the result can reach 91.9%; using the differences of co-
ordinates, the result can reach 92.6%; with the combination
of coordinates and their differences, the result improves to
92.7%; then we add eigenvalues of points and their differ-
ences to the input features, it gets an accuracy of 92.8%; on
this basis, we add 3D Euclidean distance of points and their
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FPS k-nn space # Points Accuracy(%)

On EU + EI 1024 92.8
Off EU + EI 1024 92.5
On EU + EI 2048 92.9
On EU 1024 92.6
On EI 1024 92.5

Table 4: ablation study of architecture design (%). ’FPS’ in-
dicates whether to use FPS down-sample strategy in the clas-
sification network. ’EU’ denotes that our method groups the
neighbors in Euclidean space, while ’EI’ denotes that our
method groups the neighbors in Eigenvalue space.

Input features Channels Acc.

xj 3 92.5
λj 3 85.2
si 8 91.9
xj − xi 3 92.6
xj − xi, xj 6 92.7
xj − xi, xj , λj − λi, λj 12 92.8
xj − xi, xj , λj − λi, λj , dij 13 92.9
xj − xi, xj , λj − λi, λj , vj − vi, vj 30 92.4

Table 5: The result (%) of six intuitive input features. i de-
notes index of anchor point and j denotes its neighbors’
indices (x: coordinates,x:shape context, λ: eigenvalues, v:
eigenvectors, d: Euclidean distance).

neighbors, it obtains the accuracy of 92.9%; however, with
the addition of eigenvectors, it can not perform as well as
other settings.

5.2 Complexity Analysis

We evaluate the model complexity in terms of model size
and forward time in Table 6. The forward time is recorded
with a batch size of 8 on a single GTX 1080 GPU, which
is the same hardware environment of the comparison mod-
els. These models are implemented by Pytorch. As illus-
trated, our method has the competitive performance with
great parameter-efficiency and acceptable speed.

5.3 Visualization of GS-Net

As shown in Figure 7, we visualize the Eigen-Graph of the
anchor points (red) from three point clouds. The blue points
in the first row represent the nearest neighbors in Euclidean

Method Model Forward Accuracy
Size(MB) Time(ms) (%)

PointNet(Qi et al.
2017a)

13.4 30 89.2

PointNet++(Qi et
al. 2017b)

7.0 603 91.9

DGCNN(Wang et
al. 2018)

7.2 73 92.2

Ours 6.0 126 92.9

Table 6: Complexity analysis of GS-Net in classification.

Figure 7: Visualization of the anchor points(red)’ neighbors
in Euclidean space and Eigenvalue space. The neighbors in
Euclidean space are colored blue and the neighbors in Eigen-
value space are colored green. The green points have similar
local geometry with the corresponding red point.

space, while the green points in the second row indicate the
nearest neighbors in Eigenvalue space. As can be seen, the
green points have similar local geometry with the anchor
point. Moreover, the Eigen-Graph is rotation invariant, as
Figure 5 shows, nearest neighbors in Eigenvalue space can
not be influenced by rotations and translations of the point
cloud.

6 Conclusion

We develop Geometry Sharing Net (GS-Net) for point cloud
analysis. The core to GS-Net is GSC module, which can
share the similar geometric information with distant points
and can be integrated into different existing pipelines for
point cloud analysis. Moreover, the Eigen-Graph of GSC
module improves the rotation and translation robustness fun-
damentally. Experiments have shown that GS-Net achieves
the state-of-the-art performance and has robustness to geo-
metric transformations.
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