

Geometry Variations Analysis of TiO₂ Thin-Film and Spintronic Memristors

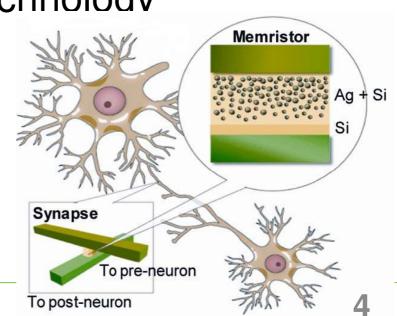
M. Hu¹, H. Li¹, Y. Chen², X. Wang³ & R. E. Pino⁴

- ¹ Dept. of ECE, Polytechnic Institute of NYU
- ² Dept. of ECE, University of Pittsburgh
- ³ Seagate Technology LLC
- ⁴ Air Force Research Laboratory, Advanced Computing Miao Hu, January 17, 2011

WHAT IS MEMRISTOR

WHAT IS MEMRISTOR

- ☐ Memristor is a resistor with memory
 - $M(t) = \phi(t)/q(t)$, unit Ω
 - Intrinsic state to remember the history
 - Passive, AC
- □ Predicted in 1971, Found in 2008.


PROSPECT OF MEMRISTOR

- Memristor features nano-size, non-volatility, reconfigurable
- Potential Applications

High density storage technology

DRAM 18 Gbits/cm²
Memristor 100 Gbits/cm²

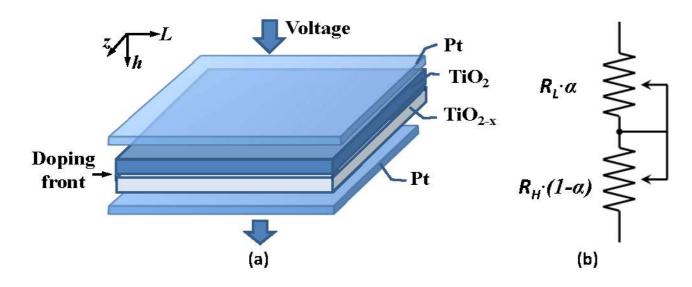
- Reconfigurable computation
- Neural network

OUTLINE

- Motivation
- ☐ Memristor examples
 - TiO₂ thin-film memristor
 - Spintronic memristor
- ☐ Memristor model with geometry variations
- ☐Statistical analysis
- □ Performance analysis
- **□**Summary

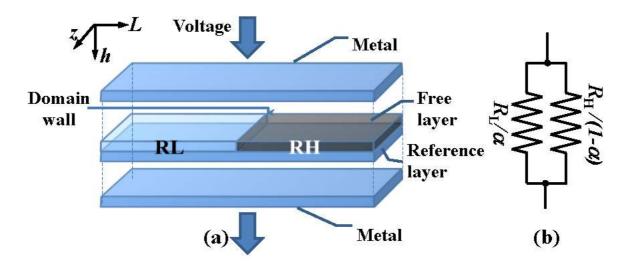
MOTIVATIONS

- ☐ Improve fabrication
 - Measurement
 - Predict margin and actual performance
- ☐ More applications
 - Multi-level memory: Levels?
 - Reconfigurable computation: Accuracy?
 - Neural network: Fuzzy operation?


OUTLINE

- Motivation
- ■Memristor examples
 - TiO₂ thin-film memristor
 - Spintronic memristor
- ☐ Memristor model with geometry variations
- ☐Statistical analysis
- □ Performance analysis
- **□**Summary

MEMRISTOR EXAMPLES


☐ TiO₂ thin-film memristor

$$M(a) = a \cdot R_L + (1 - a) \cdot R_H$$
$$\frac{da(t)}{dt} = \mu_v \cdot \frac{R_L}{h^2} \cdot \frac{V(t)}{M(a)}$$

MEMRISTOR EXAMPLES

☐ TMR based spintronic memristor

$$M(a) = \frac{R_H \cdot R_L}{R_H \cdot a + R_L \cdot (1 - a)}$$

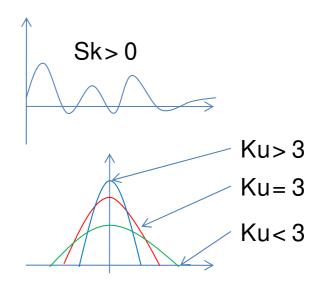
$$\frac{da(t)}{dt} = \frac{\Gamma_{v}}{l} \cdot J_{eff}(t), J_{eff} = \begin{cases} J(t) = \frac{V(t)}{M(a) \cdot l \cdot z}, J(t) \ge J_{cr} \\ 0, J(t) < J_{cr} \end{cases}$$

DIFFERENCES

- □ Typical
- Many differences
- Principles
- Equivalent circuits
- Sizes
- Make model a general solution

	Length (L)	Width (z)	Thickness (h)	
TiO ₂	50 nm	50 nm	10 nm	
Spintronic	200 nm	10 nm	7 nm	

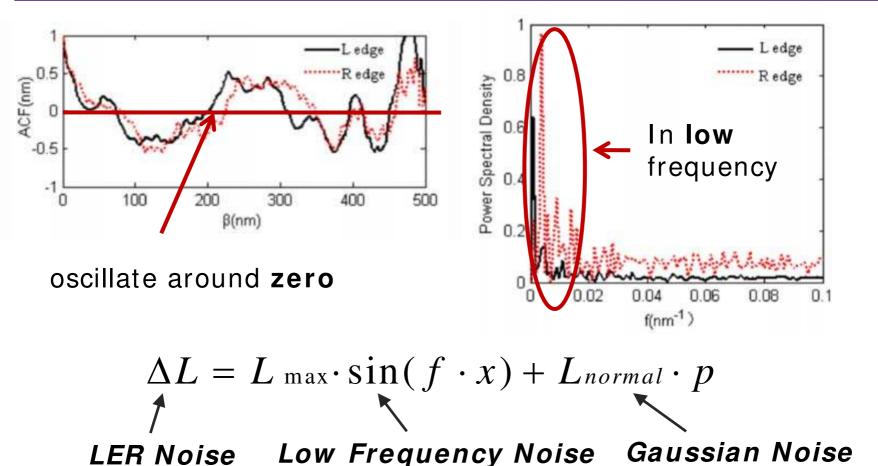
OUTLINE

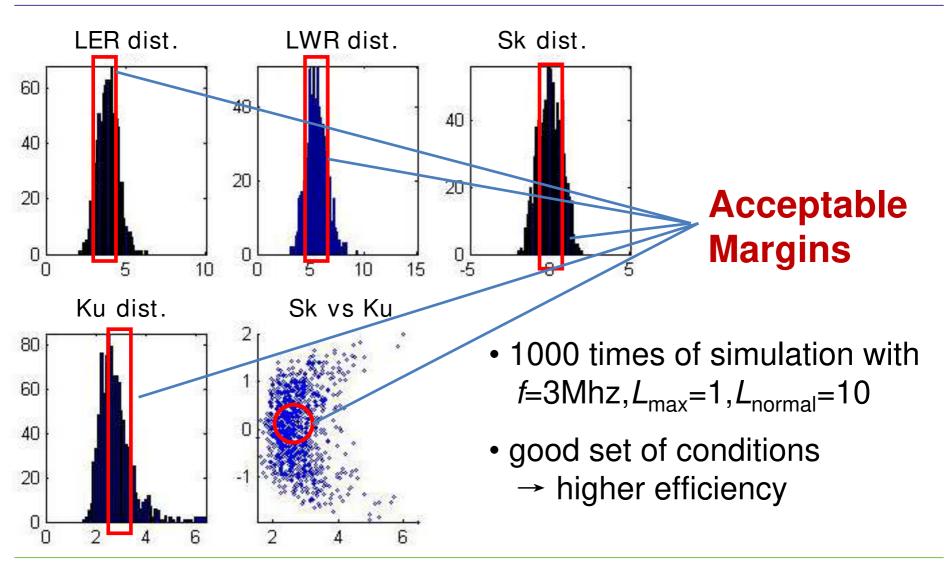

- □ Motivation
- ☐ Memristor samples
 - TiO₂ thin-film memristor
 - Spintronic memristor
- ☐ Memristor model with geometry variations
- ☐Statistical analysis
- □ Performance analysis
- **□**Summary

GEOMETRY VARIATIONS

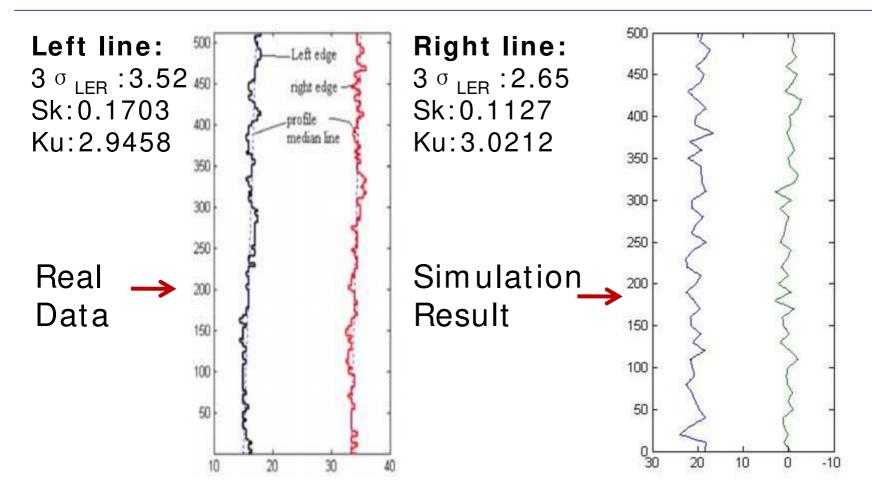
- ☐ Line Edge Roughness (LER)
 - Beyond the capability of analytic model
 - The most difficult part
- ☐ Thickness fluctuation (TF)
 - Follows Gaussian distribution
- ☐ Random doping (RDD)
 - Not significant, not considered

LER CHARACTERIZATION


- ☐ LER's characteristics*:
 - Root Mean Square (RMS)
 - Skewness (Sk)
 - Kurtosis (Ku)
 - Power spectral density (PSD)
 - Auto-correlation function (ACF)

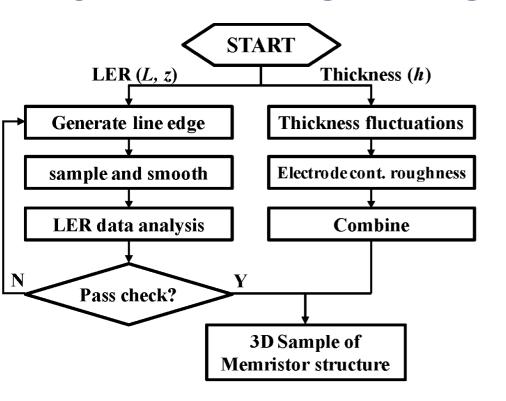

^{*} Z. Jiang, "Characterization of Line Edge Roughness and Line Width Roughness of Nano-scale Typical Structures," 2009.

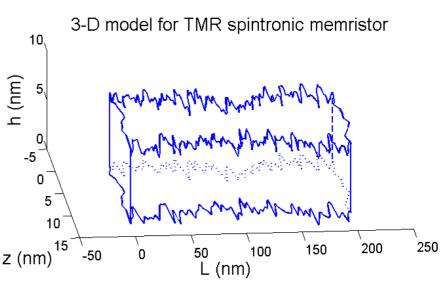
LER CHARACTERIZATION



^{*} from nano-scale resist pattern fabricated with CABL-9000C EBL system of Crestec. Co. of Japan with the accelerating voltage 30kV

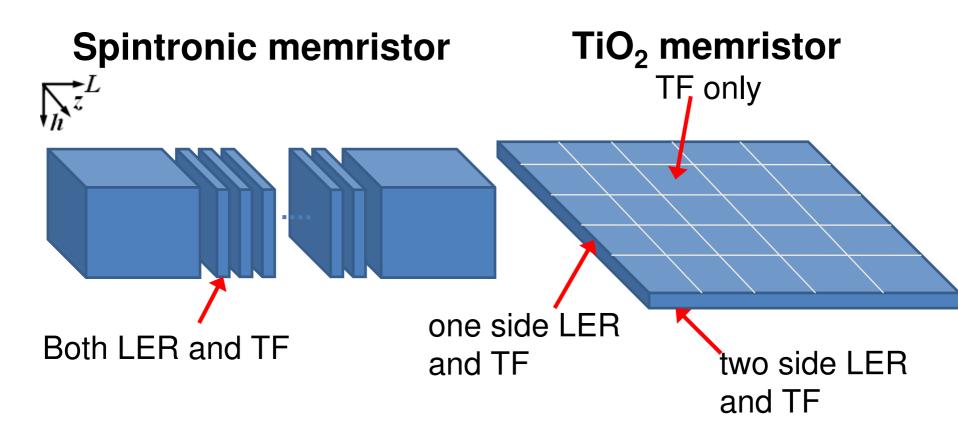
LER SIMULATION RESULTS




LER CHARACTERIZATION

 $^{^{\}star}$ from nano-scale resist pattern fabricated with CABL-9000C EBL system of Crestec. Co. of Japan with the accelerating voltage 30kV

GEOMETRY VARIATIONS GENERATION FLOW

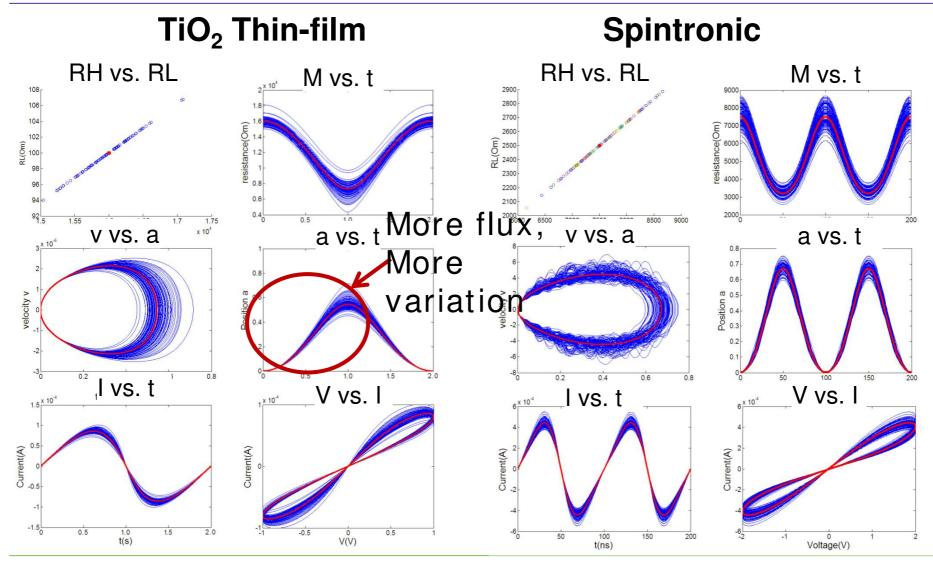

Generation Flow

An Example of Spintronic Memristor

OUTLINE

- Motivation
- ☐ Memristor examples
 - TiO₂ thin-film memristor
 - Spintronic memristor
- ☐ Memristor model with geometry variations
- ☐Statistical analysis
- ☐Performance analysis
- **□**Summary

STATISTICAL ANALYSIS



- Compute state of each filament
- Combine them to achieve the overall performance

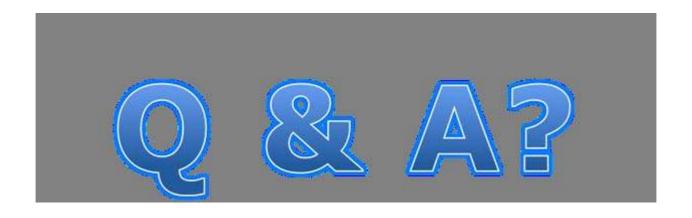
OUTLINE

- Motivation
- ☐ Memristor examples
 - TiO₂ thin-film memristor
 - Spintronic memristor
- ☐ Memristor model with geometry variations
- ☐Statistical analysis
- □ Performance analysis
- **□**Summary

PERFORMANCE ANALYSIS

PERFORMANCE ANALYSIS

- Main source of process variation
 - TiO₂ memristor: TF
 - Spintronic memristor: LER
- Variation estimation of M:
 - TiO₂ memristor: -36.5% to 24.1%
 - Spintronic memristor: -16.3% to 21.1%
- □ Signal type does not affects the variation Flux does


OUTLINE

- Motivation
- ■Memristor examples
 - TiO₂ thin-film memristor
 - Spintronic memristor
- ☐ Memristor model with geometry variations
- Model simplification
- ☐Statistical analysis
- **□**Summary

SUMMARY

- We evaluate the impact of geometry variations quantitatively:
 - TiO2 thin-film and spintronic memristors;
 - Electrical properties of memristors; and
 - Static and memristive parameters.
- A simple LER sample generation algorithm is proposed to speed up the related Monte-Carlo simulations.
- This device modeling methodology can be expended to other materials.
- The process-variation analysis will benefit memristorbased design.
- Model download: http://eeweb.poly.edu/hli/index files/memristors.htm

Supplementary slides

MODEL EQUATIONS

☐ Thin-film memristor

$$M(a) = a \cdot R_L + (1 - a) \cdot R_H$$

$$\frac{da(t)}{dt} = \mu_v \cdot \frac{R_L}{h^2} \cdot \frac{V(t)}{M(a)}$$

☐ For spintronic memristor

$$M(a) = \frac{R_H \cdot R_L}{R_H \cdot a + R_L \cdot (1 - a)}$$

$$\frac{da(t)}{dt} = \frac{\Gamma_{v}}{l} \cdot J_{eff}(t), J_{eff} = \begin{cases} J(t) = \frac{V(t)}{M(a) \cdot l \cdot z}, J(t) \geq J_{cr} \\ 0, J(t) < J_{cr} \end{cases}$$

RESULTS

TABLE IV. 3σ MIN./MAX. OF TIO2 MEMRISTOR PARAMETERS.

Sinusoidal	LER only₽		Thickness only₽		Overall₽	
Voltage₽	–3σ₽	+3σ₽	–3σ₽	+3σ₽	–3σ₽	+3σ₽ ₽
$R_{ m H} \& R_{ m L^{43}}$	-5.4%	4.1%	-5.5%	4.8%	-6.4%	7.3%
M(α)₽	-5.4%	4.1%	-37.1%+	20.8%	36.5%	24.1%
α(t) <i>⇔</i>	0.0%	0.0%	-13.3%	27.5%	-14.7%	27.4%
<i>ν</i> (α) <i></i>	0.0%	0.0%	- 9.3%	15.6%	-10.4%	16.9‰
<u>i</u> (α)₽	- 4.7%∻	5.7%	- 9.3%	15.7%	-10.7%	17.2%.
Power 4	-4.7 %∻	5.7%	-8.8%	14.1%	-10.1%	15.6‰

Square wave	LER only₽		Thickness only∂		Overall₽	
Voltage₽	–3σ₽	+3σ₽	-3σ₽	+3σ₽	–3σ₽	+3σ₽
R _H & R _L ₽	-5.3‰	3.7%	-6.2‰	5.2%	-6.6%₽	6.9%₽
$M(\alpha)$ φ	-5.3‰	3.7%₽	-17.8%	13.2‰	15.4%	14.4%
$\alpha(t)$ φ	0.0‰	0.0‰	-12.1%	16.6‰	-13.0%	15.6‰
v(α)₽	0.0‰	0.0%₽	-11.6%	17.7‰	-12.5%	16.7‰
<u>i</u> (α)₽	-4.0‰	5.2%	-11.7%	17.7‰	-12.6%	17.6‰
Power ₽	-4.0%₽	5.2%₽	-7.7%↔	9.8%₽	-8.5‰	10.1‰

RESULTS

Table V. 3σ Min./Max. of Spintronic Memristor Parameters.

Sinusoidal.	LER only₽		Thickness only∂		Overall₽	
Voltage₽	-3σ₽	+3σ₽	–3σ₽	+3σ₽	–3σ₽	+3σ₽ ₽
R _H & R _L ₽	-15.3%	22.9%	-6.1‰	5.8%₽	-16.4%	20.9‰₽
<i>M</i> (α)₽	-15.1%	23.3%	-11.0%	11.0%	€16.3%	21.1%₽
α(t)₽	-9.7%₽	8.1‰	-8.4%₽	9.5‰	-11.8%	8.1%
v(α)₽	-10.7%	22.1‰	-9.1‰	9.9‰	-21.5%	22.5‰₽
<u>i</u> (α)₽	-18.5%	18.5‰	-8.9‰	10.1‰	-17.7%	17.8% ₽
Power ₽	- 18.4%∻	18.6‰	-8.3‰	9.4‰	-17.8%	17.8%₽₽

Square wave	LER only₽		Thickness only₽		Overall₽	
Voltage₽	–3σ₽	+3σ₽	–3σ₽	+3σ₽	–3σ₽	+3σ₽
R _H & R _L ₽	-15.8%	22.0%₽	-5.3%₽	5.7%	-15.9%	24.2%₽
$M(\alpha)$ φ	-15.6%	21.8‰	-8.5%₽	9.7%₽	-1 7.0%∉	25.5‰
$\alpha(t)$	-13.1%	13.8‰	-7.5%₽	7.7%↔	-17.2%	16.2‰
v(α)₽	-16.5%	20.7%↔	-10.0%	8.3%₽	-20.1%	25.2‰
i(α)₽	-19.5%	17.1%↔	-9.0%₽	9.3%₽	-22.1%	20.5%₽
Power ₽	- 19.4%∻	17.1%↔	-7.6%₽	7.7%₽	-20.9%	19.6‰

MODEL SIMPLIFICATION

- Compute state of each filament
 Combine them to get the overall performance
 - Spintronic memristor:
 - each filament is in either R_{iL} or R_{iH} states (under geometric variation)
 - the whole device can be regarded as serial connection of all the filaments
 - TiO₂ thin-film memristor:
 - each filament is a smaller memristor
 - TiO₂ memristor is the parallel connection of them

LER SIMULATION ALGORITHM

■ We use this main function to mimic LER:

$$\Delta L = L_{\text{max}} \cdot \sin(f \cdot x) + L_{normal} \cdot p$$

 ΔL : LER noise per nm

 $L_{\rm max}$: weight of low frequency noise

 L_{normal} : weight of normal distribution

f: Frequency for low frequency noise

x: random number of uniform distribution (0.5-1.5)

p: random number of standard normal distribution