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Abstract: Cosmogenic isotope analysis involves the measurement of cosmogenic nuclides that
have accumulated in the upper few metres of the Earth’s surface as a result of interactions
between cosmic rays and target elements. The concentrations of these cosmogenic nuclides can
provide quantitative estimates of the timing and rate of geomorphic processes. In dating appli-
cations the concentration of cosmogenic nuclides is interpreted as reflecting the time elapsed
since a surface exposure event. However, over most of the Earth’s surface for most of the time
the landsurface experiences incremental denudation and in these circumstances cosmogenic
nuclide concentrations are related to the rate of denudation. Applications of event dating using
cosmogenic isotopes include constructional landforms such as volcanic and depositional
features, fault displacement, meteorite impacts, rapid mass movement, bedrock surfaces rapidly
eroded by fluvial or wave action or exposed by glacial retreat, and the burial of sediment or ice.
Strategies for quantifying rates of incremental change include estimates of denudation rates
from site-specific samples and from fluvial sediment samples reflecting catchment-wide rates,
and measurements of cosmogenic nuclide concentrations in soils and regolith to quantify rates
of rock weathering. The past decade has seen a rapid growth in applications of cosmogenic
isotope analysis to a wide range of geomorphological problems, and the technique is now
playing a major role in dating and quantifying rates of landscape change over timescales of
several thousands to several millions of years.
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I Introduction

The Earth is under constant bombardment by cosmic radiation, primarily comprising
protons, with a smaller proportion of a-particles, electrons and heavier nuclei. A
proportion of this cosmic radiation comes from the Sun, but the more energetic particles
(typically 108–1010 eV) originate largely from our own galaxy, with the very highest
energy particles (up to 1020 eV) having a source outside the Milky Way. It is the higher
energy particles that are primarily responsible for generating the shower of secondary
cosmic radiation in the upper atmosphere which reaches the Earth’s surface. This
secondary cosmic radiation flux, consisting predominantly of neutrons, with a much
smaller component of muons, interacts with target elements in minerals in a shallow
layer at the Earth’s surface to produce, in situ, extremely small quantities of cosmogenic
nuclides. Measurements of the amounts of these cosmogenic nuclides accumulated
over time can provide valuable information on the age and rate of change of the land
surface.

Until the development in the late 1970s and early 1980s of accelerator mass spec-
trometry (AMS) (Klein et al., 1982; Elmore and Phillips, 1987) and high-sensitivity noble
gas mass spectrometry, cosmogenic isotope analysis was confined to the relatively
much higher concentrations of cosmogenic nuclides found in meteorites and lunar
samples that had received a cosmic-ray flux which had not been attenuated by the
shielding effects of the Earth’s atmosphere. Nonetheless, even prior to developing the
capability to measure the exceedingly low concentrations of cosmogenic nuclides
produced in situ in terrestrial materials, the potential for applying such measurements
to geomorphological problems was recognized. In fact, the origins of using cosmogenic
nuclides to determine the exposure history of the Earth’s surface go back to Davis and
Schaffer (1955) who used beta counting to date a late Quaternary surface on a chlorine-
rich phonolite. Other early contributions include a largely ignored paper published in
German in the early 1970s (Fröhlich and Lübert, 1973) which proposed calculating
denudation rates using in-situ-produced cosmogenic nuclides (see Tuniz et al., 1998),
and the work by Srinivasan (1976) who measured cosmogenic 126Xe to determine a
‘surface residence time’ for a sedimentary barite sample (see Cerling and Craig, 1994a).

Following the advances in measurement technology and the increased understand-
ing of the in situ production of cosmogenic nuclides that was acquired during the 1980s,
there has been a rapid growth in applications of cosmogenic isotope analysis in geo-
morphology and related fields of Quaternary science. From five or six papers per year
in the early 1990s, the number has risen to 20 or more in the past two to three years
(Figure 1). These totals are for applications papers only, and exclude a large body of
theoretical and technical contributions.

The importance of cosmogenic isotope analysis as a technique in geomorphology
arises, in part, from the timescale that it can address. Depending on the local rate of land
surface stripping, cosmogenic isotope analysis can provide information on ages of
geomorphic events, denudation rates and the operation of specific geomorphic
processes over timescales ranging from thousands to millions of years. It thus forms a
crucial bridge between investigations over the short term based on modern process rate
measurements and historical data, and long-term studies based on techniques such as
thermochronology (Burbank et al., 1996; Cockburn et al., 2000). A key advantage of a
technique that provides information on denudation over these intermediate timescales
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is that it can effectively average out short-term fluctuations in rates associated with
climatic variations or other high frequency perturbations. It also circumvents, to a large
extent, the problem of high magnitude–low frequency events which severely limit the
potential to extrapolate short-term geomorphic process rate measurements (typically
limited to a few years) to the longer term.

Another key advantage is the very wide scope for sampling in addressing a diverse
range of geomorphological problems. Unlike information gleaned from geochronolog-
ical techniques such as radiocarbon or luminescence dating, which are frequently
confined to rather specific field situations, cosmogenic isotope data can be acquired
from an enormous variety of geomorphologically useful contexts. This is the case
because of the almost ubiquitous occurrence in common rock-forming minerals of the
target elements for cosmogenic nuclide production (Table 1). The ability to date or
quantify rates of landform change directly, rather than inferring chronological
information about them indirectly, makes the technique particularly valuable. In short,
cosmogenic isotope analysis enables geomorphological studies to be attempted that
were previously impossible, it can address key questions about geomorphic process
rates, and it provides the means to answer long-standing questions about landscape
evolution.

In this review we focus on the geomorphological applications of in situ-produced
cosmogenic isotope analysis, although many of the studies discussed, especially those
involving the dating of landforms, also have great relevance to problems in Quaternary
science. We exclude applications based on atmospheric (also known as ‘meteoric’ or
‘garden variety’) cosmogenic nuclide production, although this can also provide
important insights into environmental processes (e.g., McKean et al., 1993; Stanford et
al., 2000), not least in 14C dating of organic materials. Our aim is to provide a compre-
hensive, although not exhaustive, survey to inform researchers unfamiliar with the
technique of the potential of in situ-produced cosmogenic isotope analysis in advancing

Figure 1 Growth in number of papers on geomorphological applica-
tions of in situ-produced cosmogenic nuclides published from 1990 to
mid-2002
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research in geomorphology and allied fields. Several excellent discussions of the
principles and technical details of cosmogenic isotope analysis are already available,
most notably the comprehensive review by Gosse and Phillips (2001), but also
including contributions by Lal and Peters (1967), Lal (1988), Nishiizumi et al. (1993),
Finkel and Suter (1993), Cerling and Craig (1994a), Bierman (1994), Kurz and Brook
(1994), Tuniz et al. (1998), Fifield (1999) and Zreda and Phillips (2000). Discussions of
cosmogenic isotope analysis are now also to be found in texts and reference manuals
(e.g., Dickin, 1995; Noller et al., 2000), an indication that the technique is beginning to
move from the purely development stage to more routine applications.

II Cosmogenic isotope analysis

The main principles that govern the use of cosmogenic isotopes in geomorphology are
conceptually simple: a cascade of cosmic radiation continuously bombards the Earth, of
which a small proportion reaches the surface where nuclear interactions with terrestrial
materials, such as soil or rock, produce cosmogenic nuclides. Strong attenuation of the
cosmic-ray flux restricts production to the upper few metres of the Earth’s crust; thus
the concentration of in situ-produced cosmogenic nuclides in a surface sample provides
a quantitative record of near-surface exposure. Lal (1988) identified 12 cosmogenic
isotopes that are produced in terrestrial materials. Six of these have been significant in
geomorphological investigations – 3He, 10Be, 14C, 21Ne, 26Al, 36Cl (Table 1) – whereas
others, such as 39Ar and 41Ca (e.g., Loosli, 1983; Fink et al., 1990), will require further
development for geomorphological applications.

Knowledge of production mechanisms and time-integrated production rates form
the basis for the application of cosmogenic isotope analysis in geomorphology.
Significant advances have been made since the pioneering work of Lal and Peters
(1967), and reducing remaining uncertainties in production systematics remains a major
research priority (Gosse et al., 1996; Dunai, 2000, 2001a, b, 2002; Stone, 2000, 2002;
Desilets et al., 2001). Three principal mechanisms produce most cosmogenic nuclides:
neutron spallation (the dominant process at the surface for all cosmogenic nuclides),
thermal neutron capture and muonic interactions (which become of increasing relative
importance with depth owing to the longer penetration lengths of these particles
(Heisinger et al., 2002a, b) ). Production rates have been determined both empirically
using natural and artificial targets (e.g., Nishiizumi et al., 1989, 1996; Cerling and Craig,
1994b; Niedermann et al., 1994; Kubik et al., 1998; Stone et al., 1998a; Dunai and
Wijbrans, 2000) and theoretically (e.g., Lal, 1991; Masarik and Reedy, 1995; Masarik
2002; see also Gosse and Phillips, 2001: 1519). Production rates vary with location and
time and must be scaled to account for a number of factors including depth within a
target (Lal, 1991; Brown et al., 1992), altitude (atmospheric shielding) and latitude
(primarily the spatial influence of the geomagnetic field) (Lal, 1991; Dunai, 2000; Stone,
2000), topographic shielding and sample surface slope (exposure geometry) (Dunne et
al., 1999). Temporal influences that need to be addressed include variations in the
cosmic-ray flux (Gosse and Phillips, 2001), several geomagnetic field parametres that
vary with time (Kurz et al., 1990; Licciardi et al., 1999; Dunai, 2001b; Masarik et al., 2001),
intermittent shielding by surface materials including regolith, sediments, snow and
vegetation (Nishiizumi et al., 1989; Gosse et al., 1995a), loss of cosmogenic nuclides
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through diffusion from the host mineral (Trull et al., 1991; Brook et al., 1993), the effects
of fire (Bierman and Gillespie, 1991; Zimmerman et al., 1994) and possible changes in
the elevation of sampled sites (Lal, 1991; Brown et al., 1991). The net result of all these
effects is that very careful sampling protocols are required based on a detailed under-
standing of the geomorphic processes operating at sampled sites (Gosse and Phillips,
2001) and quantitative modelling of production rates for each isotope and application
(Lal, 1991; Dunai, 2000; Stone, 2000). Current levels of uncertainty are approximately
10–20%, most of which results from production rate scaling for latitude and altitude
(see Gosse and Phillips, 2001, for detailed discussion). 

Cosmogenic nuclides accumulate in surface rocks as a function of production over
time moderated by denudation and, for radioisotopes, radioactive decay. In some cases,
relative concentrations in a suite of samples can be enough to solve a geomorphologi-
cal problem. More often, translating measured abundances of cosmogenic nuclides into
useful geomorphic data depends on the use of a suitable interpretative model based on
an appreciation of probable site history. Various models have been devised, some being
unique to individual applications. The simplest and most widely used model involves
estimating the surface exposure age of a sample assuming that it has been suddenly
exposed from a depth sufficient for it not to contain a pre-existing (inherited)
cosmogenic nuclide component, and that it has not subsequently experienced
denudation or burial. Under these circumstances a stable nuclide will continue to
accumulate indefinitely and therefore have no theoretical upper age limit, although the
zero denudation assumption is likely to be violated over longer timescales (~>105 yr)
and this imposes an upper limit to exposure dating. Radionuclides eventually attain an
equilibrium concentration where production is balanced by radioactive decay. This
point defines the theoretical upper age limit for cosmogenic radionuclide exposure
dating, assuming zero denudation, and is reached after approximately four times the
half-life of the radionuclide being used (Table 1). If the assumption of zero denudation
is not met, or the nuclide concentration has become saturated, the model will yield an
‘apparent’ or minimum age. In cases where there has been progressive denudation
rather than a sudden ‘exposure event’, the cosmogenic nuclide concentration can be
used to estimate a rate of denudation assuming that the system is in secular equilibrium
with respect to production, denudation, and decay (for radionuclides) (see Section V, 1).
This model effectively quantifies the ‘dwell time’ of the upper 1–2 m of the surface.
Such estimates are model-dependent since assumptions have to be made about secular
equilibrium and the temporal variability in the denudation rate and are model maxima
if these assumptions are not met (Bierman, 1994; Cerling and Craig 1994a). 

III Range of applications

In summarizing here the wide range of applications of cosmogenic isotope analysis to
geomorphological phenomena, it is important to highlight the two ways of modelling
cosmogenic nuclide concentrations by drawing a distinction between dating geomor-
phological ‘events’ and measuring incremental change. A geomorphological event in
this context is a change in the landscape that, in relation to the background rate of mod-
ification of the landscape, represents an ‘instantaneous’ occurrence of sufficient
magnitude to expose material that has previously been effectively shielded from cosmic
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radiation. Common examples would be exposure of a fresh bedrock face by a deep
landslide, or by glacial retreat. Obviously once the ‘event’ has occurred ‘normal’
geomorphic processes can lead to progressive denudation of the ‘event surface’. The
depth of such modification, and therefore the effect on cosmogenic nuclide concentra-
tion, is likely to be negligible in most instances for young events (typically ~1–3 ´
104 yr) in comparison with the depth through which significant cosmogenic nuclide
production occurs.

By incremental change we envisage the mode of landscape activity that occurs over
most of the Earth’s landscape for most of the time – that is, the progressive weathering
and stripping away of material in increments that are small in comparison with the
characteristic attenuation length (typically ~0.6 m for rock) of cosmogenic nuclide
production in Earth surface materials. Although there are important exceptions, it is
usually more appropriate to regard the cosmogenic nuclide concentration of a sample
as reflecting the net effect of cosmogenic nuclide production and the prevailing rate of
denudation (and radioactive decay in the case of radionuclides), than to think of a land
surface as having been initiated at a specific instance in the past and thereby seeing the
landscape as comprising elements with specific ‘ages’. We prefer the term ‘denudation’
to ‘erosion’ when referring to the overall removal of surface materials resulting from a
combination of processes, or where the specific processes are undefined; we use
‘erosion’ where the process is predominantly or solely one of entrainment and transport
of solid material by water, ice or wind. The distinction between dating events and
recording rates of incremental change has been used as the basis for organizing this
review (Table 2).

IV Dating events

1 Constructional landforms

a Volcanic landforms: The construction of new surfaces on volcanic landforms,
which normally occurs ‘instantaneously’ in the context of long-term rates of landscape
change, provides a clear example of a geomorphic event that can be dated through the
accumulation of cosmogenic nuclides. Moreover, the ability to date volcanic rocks inde-
pendently using radiometric techniques has provided an important means of
determining cosmogenic nuclide production rates (Craig and Poreda, 1986; Kurz 1986a,
1986b, 1987; Phillips et al., 1986; Marti and Craig, 1987; Kurz et al., 1990; Nishiizumi et
al., 1990; Poreda and Cerling, 1992; Laughlin et al., 1994). With these improved
cosmogenic nuclide production rate data, surface exposure dating of lava flows is now
able to provide independent corroboration of radiometric ages where post-eruptive
denudation has been insignificant (Staudacher and Allègre, 1993), and has the potential
to be used in preference to conventional radiometric methods in specific cases,
especially for young flows and for samples with a low potassium content or inherited
argon (Sarda et al., 1993; Zreda et al., 1993; Laughlin et al., 1994; Shepard et al., 1995).

Where there are reliable radiometric ages for lava flows, the difference in radiometric
and apparent surface exposure age can be used to identify burial events and quantify
the rate of post-eruptive denudation (Cerling, 1990). For instance, on Réunion
Staudacher and Allègre (1993) found that the cosmogenic exposure age of ~62 ± 4 ka for
a lava flow was only slightly younger than its 65 ka K-Ar age, thus constraining the rate
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of denudation rate since eruption to less than ~3 m Ma–1, and confirming that the flow
was not covered by scoriae or ash during subsequent eruptions. Other specific applica-
tions of cosmogenic isotope analysis to volcanic landforms have included using
cosmogenic 3He concentrations to investigate zonation and magma evolution of the
Potrillo volcanic field, New Mexico, USA (Anthony and Poths, 1992; Eppes and
Harrison, 1999), constraining surface flow stratigraphy and rates of eruption for Sierra
Negra, the largest of the western Galapagos shield volcanoes (Reynolds et al., 1995),
dating the displacement of volcanic features to constrain the age of caldera collapse on
Réunion (Staudacher and Allègre, 1993), and quantifying rates of Quaternary fault
movement in the Grand Canyon region, USA (Fenton et al., 2001; see Section IV, 2).

b Depositional landforms: Applications of cosmogenic isotope analysis to deposi-
tional landforms range from glacial moraines and erratics, to fluvial terraces, alluvial
fans and debris flows, and lacustrine and marine shorelines. Compared with other
methods for dating depositional landforms, such as conventional 14C dating and lumi-
nescence techniques, the advent of in situ cosmogenic isotope methods has greatly
expanded both the temporal range that can be addressed and the variety of sites that
can be studied.

The dating of moraines and other glacial deposits through surface exposure ages has
been a major application of cosmogenic isotope analysis, with most studies being
focused on the chronology of the associated glacier fluctuations and their broader
climatic and environmental implications, rather than with the dating of glacial
landforms per se. Locations for such studies are worldwide, ranging from the British
Isles (Bowen et al., 2002) to eastern Russia (Gualtieri et al., 2000), the western USA
(Zreda and Phillips, 1995; Gosse et al., 1995a, b; Phillips et al., 1996, 1997, 1990;
Chadwick et al., 1997; Licciardi et al., 2001; James et al., 2002), western Canada (Jackson
et al.,1997, 1999), eastern Canada (Steig et al., 1998; Davis et al., 1999; Marsella et al., 2000;
Kaplan et al., 2001; Miller et al., 2002), East Africa (Shanahan and Zreda, 2000), southeast
Australia and Tasmania (Barrows et al., 2001, 2002), the Himalayas and Tibetan Plateau
(Phillips et al., 2000; Owen et al., 2001, 2002a, b, c; Taylor and Mitchell, 2002; Schäfer et
al., 2002a), and Antarctica (Brown et al., 1991; Brook and Kurz, 1993; Brook et al., 1993,
1995a, b; Fabel et al.,1997). A focal issue for a number of these and other studies of
glacial deposits has been the chronology of glacial fluctuations marking the Late Glacial
Maximum and the global synchrony, or otherwise, of the Younger Dryas (Ivy-Ochs et
al., 1996, 1999; Tschudi et al., 2000; Briner et al., 2001, 2002; Phillips and Bowen, 2002;
Bourlès et al., 2002; Schäfer et al., 2002b). However, in attempting to date the rapid
climatic fluctuations represented by the last glacial to post-glacial transition, and in
particular to identify any leads and lags in the climatic system between the northern
and southern hemispheres, the current resolution of cosmogenic isotope analysis is
being pushed to its limits, especially in view of uncertainties in cosmogenic nuclide
production rates resulting from regional differences over time in the geomagnetic field
and in mean atmospheric pressure (Stone, 2000; Gosse and Stone, 2001).

The simplest model for dating glacial moraines and similar glacial depositional forms
assumes that blocks of bedrock with no prior exposure to cosmic radiation are either
entrained at the glacier base, or fall on to the glacier surface and are rapidly incorpo-
rated as englacial debris. Subsequently these boulders are exposed at the surface when
the ice cover is removed. Various factors, however, can produce more complex
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scenarios and these can result in a moraine of a particular age having constituent
boulders with a range of cosmogenic surface exposure ages, and indeed moraines with
identical cosmogenic exposure ages not being correlative (Hallet and Putkonen, 1994).
One of these factors is inheritance, where individual boulders already contain a
significant inventory of cosmogenic nuclides through exposure to cosmic radiation
prior to incorporation as englacial or subglacial debris. Others are the differential
weathering and erosion of boulders of contrasting lithologies, and the progressive
exposure of boulders in a moraine through the removal of overlying finer material.
Inheritance, which appears to characterize 10–20% of moraine boulders (Gosse and
Phillips, 2001; Briner et al., 2001), produces exposure ages greater than the age of the
moraine, whereas erosion gives rise to younger ages. The variation in exposure age as
a result of erosion, which is obviously more significant on older moraines, has been
modelled by Zreda et al. (1994), but a common strategy for dating a moraine is simply
to discount individual boulders with exposure ages significantly younger or older
(typically by several standard deviations) than the overall mean age (e.g., Zreda et al.,
1999; Briner et al., 2002). In spite of these issues of data interpretation, the potential of
cosmogenic isotope analysis to identify complex moraine sequences and to challenge
previous chronologies of glacial landform development based on correlation through
stratigraphic position is clear (Fabel and Harbor, 1999; Zreda and Phillips, 1995).

The question of inheritance is also prominent in applications of cosmogenic isotope
analysis to other depositional landforms such as fluvial terraces (Molnar et al., 1994),
alluvial surfaces (Liu et al., 1996) and shoreline deposits (Trull et al., 1995). In dating
fluvial terraces in Wyoming and Utah, Anderson et al. (1996) addressed the problem by
analysing two amalgamated samples of 30 clasts each, one from the surface and one
from the subsurface at a depth sufficient for the sample to have been shielded from
post-depositional cosmic-ray exposure. This enabled them to constrain cosmogenic
nuclide accumulation prior to deposition. Developments of this approach involving
multiple-sample depth profiles have been used to date suites of fluvial (Repka et al.,
1997; Hancock et al., 1999) and marine (Perg et al., 2001) terraces, while Phillips et al.
(1998) have modelled different vertical profile patterns of cosmogenic 21Ne concentra-
tions in stream terraces and alluvial fan deposits in New Mexico to assess the effects on
exposure age of inheritance, changes in bulk density, erosion and burial. Where the age
of a river terrace is independently known then the measured cosmogenic nuclide con-
centrations can be corrected for post-depositional production and the remaining
cosmogenic nuclide inventory used to estimate the catchment-wide rate of denudation
at the time of terrace formation (Schaller et al., 2002). More generally, cosmogenic
surface exposure dating of fluvial terraces has significant potential for recording
episodic incision and aggradation in fluvial systems over timescales of 104–105 yr
(Schildgen et al., 2002) and thereby providing much needed chronological constraints
on models of episodic erosion and complex response.

2 Tectonic displacement

A major application of cosmogenic isotope analysis has been the dating of fault
movements to infer slip rates and earthquake recurrence intervals. The advantage of
cosmogenic exposure dating here is that timescales typically up to 50 ka can be
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addressed and seismic activity is therefore being monitored over geologically useful
time spans. In the majority of studies surface exposure dating of displaced deposition-
al features has been used to provide age constraints on fault movement. Offsets on
alluvial fans have been used in central Asia (Ritz et al., 1995; Brown et al., 1998a; Hetzel
et al., 2002a, b ), the southwest USA (Bierman et al., 1995; Fenton et al., 2001; Zehfuss et
al., 2001), Argentina (Siame et al., 1997) and Jordan (Klinger et al., 2000), on piedmont
alluvial surfaces in Argentina (Siame et al., 2002) and on fluvial terraces at several
locations along the Kunlun fault in Tibet (Van der Woerd et al., 1998, 2002). In Otago,
New Zealand, Jackson et al. (2002) have inferred the rate of propagation of an anticline
above a blind reverse fault from the trend in cosmogenic 10Be exposure ages of large
silcrete boulders on the crest of the resulting uplifting ridge.

Fault displacement histories can also be inferred from cosmogenic nuclide
inventories in bedrock fault scarps (Zreda and Noller, 1998). Measuring in situ-
produced 14C in limestone, Handwerger et al. (1999) have estimated an age of ~4600 yr
for the most recent movement of a fault in northern Utah, while Mitchell et al. (2001)
have compared measured accumulations of cosmogenic 36Cl concentrations on a
limestone scarp face in northern Israel with modelled accumulations through time
based on different fault displacement scenarios. In this latter study the best matches
between modelled and measured 36Cl concentrations indicated episodic behaviour of
the fault and variations in mean displacement rate over the past 14 ka.

3 Episodic denudation

a Meteorite impacts: Perhaps the clearest example of an ‘instantaneous’ denudation-
al event that exposes bedrock previously shielded from cosmic radiation is the creation
of a crater by an impacting bolide. One of the most significant early applications of
cosmogenic isotope analysis was the dating of the Meteor Crater impact site in Arizona,
USA. Previous age estimates had ranged from 25 ± 5 ka, based on stage of soil
development, to 49 ± 3 ka from thermoluminescence data. Two independent studies
employing 36Cl (Phillips et al., 1991) and 10Be and 26Al (Nishiizumi et al., 1991a)
confirmed the thermoluminescence dating, with Phillips et al. (1991) finding a mean age
of 49.7 ± 0.85 ka for four ejected boulders, and Nishiizumi et al. (1991a) establishing an
overall lower bound on the crater age of 49.2 ± 1.7 ka. Cosmogenic isotope analysis is
clearly applicable to dating recently formed terrestrial impact structures, and thereby
improving estimates of impact recurrence intervals, although erosional, weathering and
burial effects make sampling and data interpretation more complex for older craters.

b Rapid mass movement: An important issue in geomorphology is gaining an
accurate assessment of the significance in landscape development of high
magnitude–low frequency events. Rapid mass movement represents a suite of
processes which are difficult to monitor directly because of their low frequency,
although they may represent an important mode of hillslope transport in a number of
geomorphic settings. Dating of these events through cosmogenic isotope analysis is not
only yielding valuable insights into their role vis-à-vis other geomorphic processes, but
also providing key quantitative data on slope failure processes and recurrence intervals,
and for natural hazard assessment.
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Examining post-glacial landsliding on the Isle of Skye, Ballantyne et al. (1998)
analysed cosmogenic 36Cl in two blocks exposed during slope failure, but originating
well below the original surface (in order to eliminate any inherited cosmogenic 36Cl).
The measured surface exposure age of 6.5 ± 0.5 ka post-dates deglaciation by several
thousand years and slope failure was therefore thought to be caused by joint extension
and rock bridge shearing and/or seismic activity, rather than related to periglacial
conditions. In attempting to relate rock failure events to seismic activity, Hermanns et
al. (2000, 2001) have used cosmogenic 21Ne to date eight superimposed rock avalanche
deposits on the Puna Plateau in the central Andes, ranging in age from 152 to 31 ka, to
investigate the influence of active faulting on slope oversteepening and subsequent
gravitational collapse. In another study Bell et al. (1998) estimated the period elapsed
since the last major seismic event at sites in California and Nevada by determining
minimum- and maximum-limiting ages (using, respectively, rock-varnish microlamina-
tions and cosmogenic 36Cl) of precariously balanced boulders that could be toppled by
strong ground motion.

An important aspect of rapid mass movement events is their significance in environ-
mental management. Through the relatively long timescales that it is able to address,
cosmogenic isotope analysis can provide valuable benchmark data for comparison with
historical or modern rates. For instance, in the Garwhal Himalaya, northern India,
Barnard et al. (2001) have compared estimates of the enhancement of modern rates of
landsliding and erosion caused by human activity (mostly through the removal of slope
toes at road cuts) with longer-term rates of landsliding and river incision derived from
cosmogenic 10Be and 26Al dating of strath terraces and two large (>10 million m3)
mid–late Holocene slides. They concluded that in their study area anthropogenic
influences are accelerating rates of denudation. Debris flows can play a significant role
in modifying river channels through creating rapids or natural dams, and their
frequency is important in the management of regulated rivers. Using a range of
historical data and a variety of chronological techniques in association with cosmogenic
3He exposure dating of olivine phenocrysts in basalt clasts, Cerling et al. (1999) have
been able to estimate recurrence intervals for debris flows entering the Grand Canyon
reach of the Colorado River at tributary junctions.

In addition to the application of cosmogenic surface exposure dating to rapid mass
movement events of previously unknown age, independently dated events are
potentially valuable sites for calibrating cosmogenic nuclide production rates since
major landslides instantaneously expose rock previously buried below the depth of
cosmic ray penetration. For example, the age of the Köfels landslide in Austria (9800 ±
100 yr dendro-calibrated relative to 1995) has been tightly constrained by 14C dating of
buried wood, and this has been used to determine the production rates of cosmogenic
10Be and 26Al (Ivy-Ochs et al., 1998; Kubik et al., 1998).

c Catastrophic flooding: As with major landslides, sites experiencing rapid erosion
of bedrock or large boulders through deep scouring by catastrophic floods can be
valuable for cosmogenic nuclide production rate studies when there is independent
dating of flood events. For instance, erosion by the Bonneville flood in the Snake River
Plain at the end of the last glacial (~17.6 ka BP) has been used by Cerling (1990) and
Cerling and Craig (1994b) to provide calibration sites for cosmogenic 3He production.
Cosmogenic surface exposure dating also has the potential to provide ages for
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previously undated catastrophic flooding events, as illustrated by the study of Cerling
et al. (1994) who used cosmogenic 3He and 21Ne in basalt boulders and scoured bedrock
to date the Big Lost River flood through Box Canyon in south-central Idaho. A range of
ages amongst the samples was ascribed to inheritance of pre-flood cosmogenic nuclide
production, but together the data indicated a maximum age of ~20.5 ± 1.9 ka for the Big
Lost River flood. This is essentially identical to the 3He age of 20.5 ± 0.8 ka for the
Owens River flood in California (Cerling, 1990; Cerling and Craig, 1994b). Both ages
correlate with the beginning of the Missoula floods in the northwest USA and together
they may indicate the start of glacial melting in the western USA (Cerling et al., 1994).

d Strath terraces: While catastrophic floods can scour bedrock to depths of many
metres in a single event, lateral erosion of bedrock valley walls and progressive vertical
incision of bedrock channels by ‘normal’ flood events can create flights of strath terraces
whose height above the present channel and surface exposure age (time elapsed since
abandonment) can together yield long-term mean rates of channel incision. Such
incision rates are a key variable characterizing regional-scale rates of denudation and
landscape change, especially in active orogenic settings. For instance, in the middle
gorge of the Indus River near Nanga Parbat in the northwest Himalayas, cosmogenic
10Be and 26Al surface exposure ages of well-preserved strath terraces up to 410 m above
the present channel indicate incision rates of 1–12 m ka–1 with an acceleration of rates
15 ka ago (Burbank et al., 1996; Leland et al., 1998). To the southeast in the Garwhal
Himalaya , Barnard et al. (2001) have inferred a fluvial incision rate of 4 m ka–1 from two
cosmogenically dated terraces above the Alaknanda River in their study focused on
rates of landsliding. Strath terraces often exhibit patchy alluvial cover implying a
complex history involving temporary burial after their initial formation. Careful field
assessment prior to sampling is therefore necessary in order to assess the suitability of
a simple surface exposure model (Molnar et al., 1994; Anderson et al., 1996). Where a
simple exposure history does not apply surface exposure ages of flights of strath
terraces cannot be used directly to estimate channel incision rates, but may yield other
useful information. For instance, Pratt et al. (2002) found similar surface cosmogenic
(10Be and 26Al) exposure ages of around 7 ka BP for fluvially eroded surfaces in central
Nepal across a height range of 43–124 m above the channel of the Marsyandi River and
interpreted this to be the result of filling of the valley by sediment at least 80 m thick
during a period of more active landsliding triggered by enhanced early Holocene
monsoonal precipitation.

e Wave-cut platforms: Analogous to the cutting of new surfaces into bedrock by
fluvial channel incision is the formation of wave-cut platforms through the erosive
effects of wave action on shoreline bedrock outcrops. The exposure histories (formation
ages) of these landforms are important both in tracking relative sea-level change, and,
where the global sea-level change is independently constrained, quantifying rates of
active tectonic, or glacio-isostatic, surface uplift. Although radiocarbon dating and
other radiometric techniques have been widely employed, notably to raised coral reefs,
cosmogenic isotope analysis is valuable where the bedrock, or associated deposits, are
not suitable for these other dating methods. Stone et al. (1996) have presented data for
the ‘Main Rock Platform’ in western Scotland with cosmogenic 36Cl apparent ages or
‘effective irradiation times’ based on a simple exposure model. They note, however, that
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this will not represent the true age if marine transgressions or other temporary
shielding effects are not taken into account. Nonetheless, even with these uncertainties,
their study demonstrates that apparent ages alone place the formation of the Main Rock
Platform firmly in the termination phase of the last glacial.

4 Removal of ice cover

Conceptually, one of the simplest applications of cosmogenic isotope analysis is dating
the removal of an ice cover from bedrock surfaces, moraines or glacial erratics. It is not
surprising therefore, that much emphasis was placed on this kind of study in the initial
applications of cosmogenic surface exposure dating. For instance, Nishiizumi et al.
(1989) used glacially polished rocks exposed by the (radiocarbon-dated) retreat of Tioga
stage glaciers in the Sierra Nevada to calibrate 10Be and 26Al production rates (see also
Clark et al., 1995). Cosmogenic isotope exposure dating of glacial retreat across bedrock
surfaces has subsequently been applied in Antarctica (Nishiizumi et al., 1991b), eastern
Canada and the Arctic (Bierman et al., 1999; Gualtieri and Brigham-Grette, 2001) and the
Swiss Alps (Kelly et al., 2002). Many studies of the chronology of glacial retreat have
combined data on bedrock forms with the exposure of glacial depositional landforms,
the assumption being that careful sampling from features such as moraines and erratics
can also provide reliable constraints on the timing of glacial retreat (e.g., Ivy-Ochs et al.,
1997; Steig et al., 1998; Schäfer et al., 1999; Zreda et al., 1999; Marsella et al., 2000; Kaplan
et al., 2001; Karhu et al., 2001; Owen et al., 2001, 2002b; Bourlès et al., 2002; Bowen et al.,
2002; Oberholzer et al., 2002; James et al., 2002; Stone et al., 2002) (see Section IV, 1 b).

An exposure age for the removal of ice cover through glacial retreat or wasting will
only be valid if the thickness of shielding ice (several multiples of the attenuation length
for ice) has been sufficient to effectively shut down cosmogenic nuclide production.
Moreover, the depth of scouring by glacial erosion prior to a glacial retreat episode has
to be great enough to remove the vertical zone of bedrock in which cosmogenic nuclides
produced during any earlier exposure episode would be residing. If this were not the
case, the cosmogenic nuclide concentration measured would include an inherited
component. In some studies, such as that for Tumbling Glacier, Baffin Island (Davis et
al., 1999), samples collected just beyond an actively retreating ice front have indeed
been found to contain minimal cosmogenic nuclide concentrations. But instances where
this is not the case can provide valuable insights into the effectiveness of glacial erosion
during individual episodes of glacial advance. For example, assuming that any
inherited cosmogenic nuclide component related only to the most recent interglacial,
Briner and Swanson (1998) calculated an erosion rate of 0.09–0.35 mm yr–1 for the
Cordilleran Ice Sheet at Mt Erie in the Puget Sound region of Washington State, USA
from excessive cosmogenic 36Cl concentrations compared with the well-constrained
radiocarbon deglaciation age. In studying the possible preservation of preglacial
topography in areas subject to frozen bed conditions under the Fennoscandian Ice Sheet
in Sweden, Fabel et al. (2002) and Stroeven et al. (2002) have found that cosmogenic
nuclide concentrations in erratic boulders gave consistent deglaciation ages, thus
confirming ice sheet overriding as opposed to ice-free conditions, but concentrations of
10Be and 26Al in preserved tors within the landscape suggested minimal erosion over
several glacial cycles. Similarly, Bierman et al. (1999) and Gosse and Willenbring (2002)
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have found complex exposure histories and evidence of inheritance indicating differ-
ential erosion under the Laurentide Ice Sheet.

The vertical extent of former glaciers and ice sheets is an important variable required
for determining past ice volumes and for palaeoclimatic reconstructions. Geomorphic
indicators of previous ice levels range from clearly defined trim lines to more equivocal
weathering limits which may reflect other zones of process transition, such as post-
glacial differential weathering or englacial boundaries between wet-based eroding ice
and noneroding frozen-bed ice. Cosmogenic exposure dating of bedrock surfaces across
these transition zones can help to distinguish between different processes of formation,
as well as providing information on the chronology of changes in ice volume (Brook et
al., 1996; Stone et al., 1998b).

5 Burial events

a Sediment burial: In addition to the chronological information that can be derived
from cosmogenic nuclide concentrations in deposits formed on the land surface,
valuable information can also be garnered in circumstances where sediments
previously exposed to cosmic radiation are rapidly buried beyond the zone of
cosmogenic nuclide production. This is because the differential decay of cosmogenic
nuclides with different half-lives will indicate the time elapsed since burial, and hence
the date of deposition. A particularly useful situation in which such rapid sediment
burial occurs is in caves, and in the first use of this application Granger et al. (1997)
measured cosmogenic 10Be and 26Al concentrations to date burial times of alluvium
deposited in abandoned caves above the present level of the New River, Virginia, USA,
and to constrain the rate of downcutting of the river during the Quaternary. Granger et
al. (2001a) also constrained the evolution of Mammoth Cave in Kentucky by dating a
series of sediments deposited by the Green River. They were able to show that the
river’s incision history was in step with major climatic changes and drainage reorgani-
zations associated with fluctuations in the margin of the Laurentide Ice Sheet. 

The cosmogenic nuclide inventories in sediments buried within depositional forms
such as river terraces can also provide valuable chronological information. For
example, although determining the cosmogenic nuclide concentration of surface
samples can yield valid ages for well-preserved river terraces (see Section IV, 1, b), this
strategy cannot be applied to older, degraded terraces which may have experienced
several metres of erosion. In such cases, however, the differential decay of two
radioactive cosmogenic isotopes (commonly 26Al and 10Be) collected from depth can be
used to estimate the age of terrace formation assuming that post-burial cosmogenic
nuclide production is known (Granger and Smith, 2000). Such production can continue
at a depth of several metres because of the deep penetration of fast muons (Granger and
Smith, 2000; Granger and Muzikar, 2001).

b Burial of glacial ice: An unusual, but key, application of cosmogenic isotope data
to constrain the chronology of a burial event is provided by the controversy over the
age of a subsurface body of glacial ice in Beacon Valley, Southern Victoria Land,
Antarctica. The significance of this buried ice is that if it is of Miocene age (minimum
8.1 Ma BP) – as has been inferred from stratigraphic relationships to overlying tills
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dated by 40Ar/39Ar analyses of presumed in situ volcanic ash – it confirms the
persistence of a cold, hyper-arid climate in the area throughout the Pliocene and refutes
the notion of an unstable East Antarctic Ice Sheet during this period (Sugden et al.,
1995). The ability of ice in the near subsurface to survive sublimation over the time
spans proposed has been questioned (Hindmarsh et al., 1998), as has the interpretation
that the volcanic ash deposits are undisturbed and thus provide a chronological
constraint on the age of the ice. Through an analysis of the concentrations of
cosmogenic 3He and 21Ne in two surface dolerite erratics and one shielded erratic from
within the ice, Schäfer et al. (2000) demonstrated that sublimation rates could not have
exceed more than a few metres per million years and that the ice must be at least several
million years old. Marchant et al. (2002) have addressed the question of whether the
volcanic ash is in situ, especially in view of the presence of well-developed polygonal
patterned ground developed in the till. Two profiles of cosmogenic 3He concentrations
through the till deposit show it to have formed through sublimation of the underlying
ice and indicate the long-term stability of the till layer in areas unmodified by pattern
ground formation.

V Incremental change

1 Site-specific denudation rates

As pointed out in Section III, most of the Earth’s surface is subject to the incremental
change associated with bedrock weathering, hillslope processes, and sediment and
solute transport, rather than discrete geomorphic events involving the instantaneous
exposure of rock through the removal of several metres of overburden. Consequently,
rather than thinking of an ‘event exposure age’, in most cases it is more meaningful to
interpret concentrations of cosmogenic nuclides as reflecting these rates of incremental
denudation.

The key to quantifying denudation rates using surface concentrations of cosmogenic
nuclides is changes in production with depth, since denudation involves bringing up to
the surface rock that was previously buried. In a steadily eroding rock outcrop, the
cosmogenic nuclide concentration approaches saturation, or secular equilibrium, as a
result of constant production on the one hand and losses by denudation as well as
radioactive decay (in the case of radionuclides) on the other. After initial exposure
secular equilibrium will be reached when sufficient time has elapsed for denudation to
remove a depth of rock two or three times the attenuation length (see Section III),
assuming denudation has been occurring in small increments relative to the attenuation
length. Under these circumstances a measured surface concentration can be accurately
modelled in terms of a constant denudation rate representing an integrated rate for the
minimum period of time required to reach secular equilibrium (Nishiizumi et al., 1986;
Kurz, 1986b; Lal, 1991). This model is commonly referred to as the ‘steady-state erosion
model’, with the term ‘steady-state’ often used to refer to both secular equilibrium and
the particular style of denudation required to satisfy the model. If the system has not
yet reached saturation, then the model will overestimate the denudation rate, whereas
if erosion is occurring episodically (i.e. in increments that are large relative to the
attenuation length), or the exposure history is complex and has included periods of
burial, then the model may either overestimate or underestimate the true rate (Lal, 1991;
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Small et al., 1997). In favourable circumstances, the ratio of two radionuclides with
different half-lives can be used to test the assumptions of the steady-state erosion
model. The ratios of 10Be and 26Al are commonly used in such cases to test for complex
exposure histories involving burial episodes and/or episodic or highly temporally
variable denudation rates, with the behaviour associated with particular isotope ratios
being depicted on an erosion-island graph (Klein et al., 1986; Lal, 1991). Measurement
uncertainties mean that the test for episodic denudation may be inconclusive, progres-
sively more so for denudation rates >1 m Ma–1 (Small et al., 1997). Nonetheless, even
though errors resulting from an inappropriate application of the steady-state erosion
model can be greater than both measurement and production rate errors, a more
accurate denudation rate estimate can be obtained by calculating the mean from many
individual steady-state erosion rate measurements (Small et al., 1997).

Site-specific denudation rates based on the steady-state erosion model have been
estimated for a wide range of locations and geomorphic settings (Table 3). These rates
are naturally biased towards low values because of preferential sampling of bare
bedrock surfaces that are usually the most slowly eroding and resistant components of
the local landscape. Variations in rates can also be evident depending on microtopog-
raphy and other detailed characteristics of the specific sampling site selected.
Extrapolation of these rates across the landscape can, therefore, be problematic, and
uncertainties can arise from the difficulties in strictly fulfilling the assumptions of the
steady-state erosion model. Notwithstanding these caveats, the studies listed in Table 3
represent a major advance in quantifying rates of denudation integrated over geomor-
phologically useful periods of time (103–106 years) compared with the previous paucity
of data relevant to these timescales. That uncertainties over the appropriate erosion
model in any particular case, together with analytical and production rate errors, may
produce total errors in denudation rate estimates in some cases exceeding 50% must be
placed in the context of the lack of data for similar timescales provided by other
techniques. Whilst such large errors would be unacceptable in cosmogenic surface
exposure studies attempting, for instance, to resolve uncertainties in the timing of late
glacial events, they may not be problematic in studies where establishing approximate
rates of denudation is sufficient to test often long-standing notions about rates and
modes of landscape change. For example, cosmogenic-nuclide based estimates of
escarpment retreat rates of 10–100 m Ma–1 over the past 104–106 yr for the Great
Escarpment in southern Africa contrast with a mean rate of retreat of the order of 1000
m Ma–1 implied by King’s classic model of landscape evolution for the area (Fleming et
al., 1999; Cockburn et al., 2000). Similarly, although cosmogenic nuclide concentrations
have demonstrated some exceedingly slow rates of denudation of ~5 m Ma–1 or less for
erosion surfaces and inselbergs in Australia, southern Africa and Antarctica
(Nishiizumi et al., 1991b; Bierman and Turner, 1995; Cockburn et al., 1999; Cockburn and
Summerfield, 2000; Summerfield et al., 1999a, b ; Belton et al., 2000; Bierman and Caffee,
2001), these rates would still be too high to preserve intact erosion surfaces over the
time intervals of up to 50 Ma or more that have been proposed.

2 Catchment-averaged denudation rates

An obvious potential limitation of site-specific sampling in providing data relevant to
denudation rates at a broader scale is the ‘nonrandom’ nature of sample selection.
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Where sampling is from bedrock outcrops in terrain that is predominantly blanketed by
regolith, denudation rates are likely to be less than the regional average since exposed
bedrock is likely to be present because it is eroding less rapidly than its surroundings.
In principle, however, the process of denudation, from the weathering of bedrock to the
transport of material on slopes and the transmission of sediment in river channels,
provides a natural sampling mechanism whereby each of many thousands of
individual mineral grains in a river sediment sample will carry its own history of
exposure to cosmic radiation. By averaging together these individual exposure histories
through the analysis of a single sample of sediment from a river channel it is possible
to estimate the mean rate of denudation for the catchment area upstream of the
sampling site. This principle was first suggested by Lal and Arnold (1985), and was
tested by Brown et al. (1995a) in the Icacos basin in Puerto Rico, where a denudation rate
of ~43 m Ma–1 was estimated. This study, together with that of Granger et al. (1996),
identified a range of factors that have to be addressed in making such denudation rate
estimates; these include variations in production rates throughout the basin (especially
as a function of elevation), variations in bedrock mineralogy, the storage and remobi-
lization of sediment, differential weathering of different calibre grains, regolith mixing
through bioturbation, physical weathering and slope processes, and the mixing of
sediment from areas of different erosion rates. In evaluating the method, Granger et al.
(1996) compared denudation rates estimated from cosmogenic nuclide concentrations
in present-day river sediment with rates derived from sediment volumes in well-dated
alluvial fans in two small catchments in northeast California. The close correspondence
between the two sets of estimates confirmed that in small catchments with little
sediment storage cosmogenic nuclide concentrations in river sediment can provide a
good estimate of basin-wide long-term denudation rates. In a general assessment of the
viability of this basin-averaged approach to cosmogenic isotope analysis, Bierman and
Steig (1996) concluded that it provides an effective means of estimating denudation
rates in basins in isotopic steady state and where the sampled sediments are well
mixed. However, care has to be taken where quartz grains are being analysed (as is
frequently the case for cosmogenic 10Be and 26Al) since the relative resistance of quartz
to dissolution means that its residence time in regolith will be longer than the average
for all mineral grains (Small et al., 1999), although the resulting bias is probably modest
compared with the other uncertainties in cosmogenic denudation rate estimates (Riebe
et al., 2001a).

The ability to use cosmogenic nuclide concentrations to characterize basin-wide as
well as site-specific denudation rates has provided the opportunity to compare areally
averaged denudation rates with those for specific landform elements and subcatch-
ments within basins. For instance, Granger et al. (2001b) showed that in the Diamond
Mountains batholith in California, exposed granite bedrock has been eroding more
slowly than the average rate for catchments in which they are found. Similarly, Bierman
and Caffee (2001) found that denudation rates for bedrock samples in Namib Desert
were lower than catchment-averaged rates from channel sediment samples. In the
Yuma Wash basin in southwest Arizona, Clapp et al. (2002) used channel sediment
samples to compare sediment generation rates for subcatchments as well as the basin
as a whole. They found that in the upland subcatchments cosmogenic nuclide concen-
trations reflect rates of sediment generation from bedrock weathering, whereas
sediment in the main channel also includes the long-term effects of sediment storage
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and reworking. Further west in the Mojave Desert Nichols et al. (2002) have measured
cosmogenic 10Be and 26Al in sediment samples to document rates and processes of
piedmont modification.

As well as exploring the spatial variability of denudation rates, catchment-averaged
rates derived from cosmogenic nuclide concentrations (which reflect denudation over
periods of 103–106 years) can usefully be compared with rates derived from modern
measurements of river sediment yield. For instance, Brown et al. (1998b) used
cosmogenic 10Be in fluvial sediments to assess differences between modern and pre-
development rates of denudation in Puerto Rico, and found evidence for a significant
anthropogenic enhancement of modern sediment discharges. In the Negev Desert,
Israel, Clapp et al. (2000) compared the 33-yr sediment budget of a small, intensively
studied basin with cosmogenic 10Be and 26Al estimates of the longer-term sediment flux
and found that the modern rates of sediment transport exceed the longer-term average
by 53–86%, thus indicating current evacuation of sediment accumulated during
previous periods of enhanced sediment generation. By contrast, in the more humid
setting of western Europe, Schaller et al. (2001) found catchment-averaged denudation
rates from cosmogenic 10Be in quartz for catchments in the Allier, Meuse, Neckar and
Regen basins to be 1.5–4 times greater than those derived from modern river loads.
They suggest that this may be due to under-representation in the modern record of high
magnitude–low frequency events, to inheritance of an elevated Pleistocene signal or to
nonuniform erosion and preferential sourcing of modern sediment from the deeper
(and therefore less cosmogenically exposed) zones of the subsurface. A similar rela-
tionship between modern and longer-term rates was found by Kirchner et al. (2001) in
their assessment of erosion rates over a range of timescales in mountainous granitic
catchments in Idaho, USA. Here they estimated that mean rates over the past ~10 ka
derived from cosmogenic 10Be concentrations in river sediment are on average 17 times
greater than modern stream fluxes, a difference that they interpret as arising from the
underestimation of rare but catastrophic erosional events in short-term stream-load
monitoring. Clearly even these few studies both caution against simple generalizations
about anthropogenic enhancements of modern sediment discharges and question the
reliability of short-term records of river sediment load as indicators of longer-term
process rates.

The growing application of catchment-averaged denudation rates from cosmogenic
nuclide concentrations has gone beyond the simple documentation of rates and
comparison of different timescales to the testing of assumptions about the efficacy of
factors controlling denudation and landscape development. For example, measure-
ments of cosmogenic 10Be and 26Al in stream sediments in the Sierra Nevada have
demonstrated a strong augmentation of denudation rates in the proximity of fault
scarps (Riebe et al., 2000), but a lack of correlation with climate (Riebe et al., 2001b).
Moreover, by combining estimates of long-term rates of mechanical denudation from
cosmogenic nuclide concentrations in sediment with estimates of solute loss from the
enrichment of insoluble elements in regolith, Riebe et al. (2001c) have shown a strong
correlation between rates of mechanical and chemical denudation, but a lack of
correlation between chemical denudation rates and climate.
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3 Accumulation and ablation of ice surfaces

A specific application of cosmogenic isotope analysis of relevance to glacial geomor-
phology involves the use of 10Be and 14C produced in situ in ice by neutron spallation
of oxygen nuclei as recorders of glacier accumulation and ablation rates (Lal et al., 1987;
Lal and Jull, 1990; Jull et al., 1994a). This is analogous to the use of cosmogenic isotopes
to record sediment deposition and denudation, except that it is the accumulation or loss
of ice that is being recorded by cosmogenic nuclide concentrations. However, differen-
tiating the in situ component from atmospheric cosmogenic nuclides trapped in air
during the firn–ice transition and those deposited by wet precipitation is complex. This
is particularly so for 10Be since atmospheric sources exceed the in situ component by an
order of magnitude and this kind of application is therefore limited to special cases (Lal
and Jull, 1992). For instance, using 14C Lal et al. (1990) estimated ice ablation rates of 58
± 7 and 76 ± 8 mm yr–1 for two locations in the Allan Hills main ice field, Antarctica,
these rates being in agreement with those determined using stakes. Similarly, the 14C-
based estimates by Lal et al. (1987) of accumulation rates for the Greenland Ice Sheet
were also found to be in line with recent model estimates.

4 Regolith and soil development

The depth-dependence of cosmogenic nuclide production rates provides a valuable
means of quantitatively monitoring those processes in soil and regolith in which there
is a vertical component to the movement of material relative to the surface. Using this
approach, data from cosmogenic isotope analysis have started to provide the means to
evaluate models of soil and regolith development that were previously untestable with
reference to the usually lengthy timescales over which the relevant processes operate.
An elegant example is provided by the testing by Wells et al. (1995) of a model of stone
(desert) pavement formation. In contrast to the idea of stone pavements resulting from
a progressive concentration of gravel at the surface as a result of the swelling and
shrinkage of surrounding fines, or through the removal of fines through deflation or
sheet wash, the similarity of surface exposure ages derived from cosmogenic 3He con-
centrations in their pavement gravel and adjacent bedrock samples demonstrated
continuous exposure of both components. As also shown in a similar study by Shepard
et al. (1995), these data are inconsistent with the gradual emergence of individual gravel
clasts over an extended period of time (the ‘lag’ hypothesis), but accord with a model
of stone pavement formation involving vertical inflation through the infiltration of fines
from above.

The very extended time periods over which duricrusts, lateritic weathering profiles
and associated weathering materials typically develop mean that the processes that
form them cannot be adequately encompassed by short-term measurements or
monitoring. Cosmogenic nuclides, however, provide a powerful means of investigating
the long-term development of such weathering forms through their ability to record
progressive burial or exposure of components of weathering profiles. For instance,
Brown et al. (1994) used 10Be and 26Al measurements in quartz veins and pebbles in
West African lateritic crusts both to determine erosion rates for the weathering profile
surfaces and to distinguish between profiles that are being eroded from those that are
experiencing burial. Other work on Brazilian and African lateritic profiles has used
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cosmogenic 10Be and 26Al to differentiate between autochthonous and allochthonous
components of lateritic systems – and hence the role of in situ weathering and colluvial
transport in their development, and to constrain models of stone-line formation
(Braucher et al., 1998a, b, 2000). Cosmogenic isotope analysis has also been applied to
calcretes using 36Cl, with the study by Liu et al. (1994) indicating, through an increase
in age with depth, that at their site in southern Arizona calcretes develop by upward
accumulation and that water movement is very limited once induration has occurred.
The potential of cosmogenic isotope analysis to reveal complex components of
weathering profile development is illustrated by the study of Schroeder et al. (2001) in
the piedmont zone of Georgia, USA. Here a significantly younger age (maximum ~8000
yr) for 14C bound in gibbsite compared with near surface residence times for quartz,
based on 10Be and 26Al inventories, of at least 90 ka points to significant recrystalliza-
tion of secondary minerals during weathering front propagation into bedrock.

5 Soil production, erosion and landscape development

The rate at which soil (regolith) is produced is a key geomorphological parameter
because it is the entrainment and transport of unconsolidated material rather than the
direct erosion of bedrock that dominates in most environments. Soil depth is a function
of the rate of soil production and the rate of removal by physical erosion and solutional
loss. But it has long been recognized that the rate of soil production is itself also
influenced by soil depth (Gilbert, 1877), although the precise nature of this relationship
has been disputed. The relationships between slope, soil depth, rate of soil production
and rate of hillslope erosion are fundamental to understanding the surface processes
controlling landscape evolution, and the ability of cosmogenic isotope analysis to
provide quantitative insights into these processes and their relationships is likely to
provide one of its most significant contributions to geomorphology. Already these
applications are being exploited. For instance, in a study of regolith production on
hillslopes in an alpine environment in Wyoming, USA using 10Be and 26Al concentra-
tions from depth profiles, Small et al. (1999) have established that the rate of regolith
production has been nearly twice as rapid under ~0.9 m of regolith than that previously
determined from erosion rates on bare rock surfaces from similar (although not
identical) alpine environments in the western USA (Small et al., 1997).

Making the assumption that bedrock conversion to soil attains a steady state under a
constant soil thickness, Heimsath et al. (1997, 1999) used cosmogenic 10Be and 26Al con-
centrations in bedrock at the base of the soil column to evaluate the relationship
between soil production rate and soil depth. For their field area in northern California
they found an exponential decline in production rate with increasing soil depth from
77 mm ka–1 with no soil cover, to 7.7 mm ka–1 under a soil depth of 1 m. Although from
their data they could not rule out a maximum in soil production rate under a thin soil
cover (a long-standing notion in geomorphology (Carson and Kirkby, 1972)) they were
able to confirm that peak soil production does occur very close to zero soil depth.
Results from a similar study in southeastern Australia confirmed the exponential
decline in rates of soil production with increasing soil depth (Heimsath et al., 2000).

Extending this approach to an intensively studied field site in the Oregon Coast
Range, Heimsath et al. (2001a) concluded from a 10Be- and 26Al-derived analysis of soil
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production rates that although there may be an approximately constant rate of
landscape erosion over parts of the Oregon Coast Range, smaller-scale processes such
as drainage competition and stochastic erosional events, especially by biogenic
processes, lead to significant temporal and spatial variations in soil depth. Further
applications in southeastern Australia illustrate how cosmogenic isotope data can be
used to quantify long-term relationships between rates of soil production, bedrock
incision, and regional erosion and regolith stripping (Heimsath et al., 2000, 2001b).

Another strategy for estimating soil accumulation and erosion rates is provided by
depth profiles of cosmogenic nuclide concentrations in soils (Phillips et al., 1998;
Phillips, 2000). Anomalously low erosion rates using this method can be produced from
the inheritance of cosmogenic nuclides from old soils incorporated into colluvium,
while bioturbation can produce depth profiles of cosmogenic nuclide concentration that
are very similar to those associated with rapid soil accumulation. Fortunately, the
distinctive profile produced through the rapid radioactive decay of in situ-produced
14C, when coupled with measurements of stable (e.g., 21Ne) or longer-lived isotopes
(e.g., 10Be), can resolve the effects of both bioturbation and inheritance (Phillips, 2000).
The potential for cosmogenic isotope data to elucidate specific processes operating in
soils on hillslopes, especially when combined with other techniques, has been
illustrated by Heimsath et al. (2002). They used cosmogenic nuclide concentrations of
10Be and 26Al to measure the overall downslope flux of soil material, in combination
with single-grain OSL dating to track the movement of individual quartz grains in
order to quantify the grain-scale mechanisms involved in the process of soil creep.

VI Palaeoaltimetry

A fundamental difficulty in testing models of long-term landscape development is the
lack of data on land surface palaeoelevation. Without such data it is not possible to
quantify changes in topography (in terms of elevation with respect to the geoid) over
time and therefore test this key component of landscape evolution models. Since
cosmogenic nuclide production rates are a function of altitude – or, more strictly,
atmospheric pressure – accumulation is sensitive to changes in the elevation of a sample
during exposure (Lal, 1991). Inferring palaeoaltimetry from measured concentrations of
cosmogenic nuclides is therefore an exciting possibility (Gosse and Stone, 2001), but
true palaeoaltimetry requires independent data on the exposure age and erosion rate of
a sample, since only by constraining these two unknowns can a change in surface
elevation of a sample since it was first exposed be calculated. Nonetheless, it is possible
to evaluate particular combinations of surface exposure age and elevation change
during the period of exposure. Such an application has been used in the Transantarctic
Mountains, Antarctica to test the assertion of substantial surface uplift of supposed late
Pliocene age Sirius Group glacial deposits and associated landscape elements at rates of
up to 1000 m Ma–1 over the past ~3 Ma (Brown et al., 1991; Brook et al., 1995a; Ivy-Ochs
et al., 1995; Bruno et al., 1997; Schäfer et al., 1999; Van der Wateren et al., 1999). The
cosmogenic data can be interpreted as showing that either the Sirius Group deposits are
of late Pliocene age, or there has been substantial surface uplift over the past 3 Ma, but
not both. In other words the cosmogenic data provide a one-way test since, within the
relevant timescale, high cosmogenic nuclide concentrations are incompatible with high



28 Geomorphological applications of cosmogenic isotope analysis

surface uplift rates, whereas low concentrations do not require high surface uplift rates
(because of the possibility of erosion reducing cosmogenic nuclide concentrations)
(Brook et al., 1995a).

Incorporating the effect of surface uplift increases apparent exposure times, and this
effect has been used to reconcile apparent differences between independent age
constraints and cosmogenic exposure age estimates (Schäfer et al., 1999; Kober et al.,
2002). More accurate palaeoaltimetry from cosmogenic nuclide data in the future will
require a better understanding of the atmospheric pressure–altitude relationship for
production than is currently available (Gosse and Stone, 2001), but will also require
unusual circumstances where the exposure history is independently constrained.

VII Facilities for cosmogenic isotope analysis

The future expansion of applications of cosmogenic isotope analysis to geomorphology
and Quaternary science will depend to a significant extent on the availability of
facilities for sample preparation and isotope measurement. There are a growing
number of such facilities worldwide, with a concentration in the USA but including
Australia, Canada, France, Germany, Japan and Switzerland. In the UK there are
dedicated AMS target preparation laboratories for 10Be/26Al and 36Cl in the
Department of Geography at Edinburgh University, but the widespread adoption of
cosmogenic isotope analysis in the UK, as elsewhere, will require a substantial increase
in target preparation capability. Sample preparation for the stable noble gas cosmogenic
isotopes is less demanding and can be accomplished with standard laboratory facilities.

In terms of the measurement of cosmogenic isotopes, the high-sensitivity noble gas
mass spectrometres capable of measuring 3He and 21Ne are relatively widely available,
but there are difficulties in using such machines where they have also been used for
measuring irradiated samples for 40Ar/39Ar dating, and the number of machines
dedicated to cosmogenic 3He and 21Ne is limited. For the measurement of cosmogenic
radioisotopes, the tandem electrostatic accelerators most commonly used range in
maximum terminal voltage from less than 3 MV to 16 MV. The lower voltage accelera-
tors (~3 MV or less) are commonly used routinely for 14C, but they can also be used to
measure 10Be and 26Al. Intermediate-sized machines (5–9 MV) can potentially measure
the full range of cosmogenic isotopes, although the higher energies available from the
largest machines (10 MV or more) are particularly advantageous for the measurement
of 36Cl (Fifield, 1999). With a maximum terminal voltage of 5 MV, the Joint
Infrastructure Fund (NERC)-financed AMS at the Scottish Universities Environmental
Research Centre AMS Facility, East Kilbride, is in the intermediate category and will
have a capability across the range of cosmogenic isotopes commonly used in Earth and
environmental science applications. Although there are currently over 40 AMS facilities
worldwide (Tuniz et al., 1998), several specialize in radiocarbon dating, and relatively
few currently undertake significant numbers of measurements across a range of
cosmogenic isotopes for Earth and environmental science applications (Table 4).
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VIII Conclusions and future directions

Over the past decade there has been a remarkable growth in applications of cosmogenic
isotope analysis in geomorphology and Quaternary science. This has arisen very largely
from the capability to provide chronological constraints where none were possible
before, both in terms of the timescales that can be addressed and because the technique
can be applied to a range of minerals that are virtually ubiquitous on the Earth’s
surface. However, this is still a rapidly developing technique and there are exciting
prospects for the immediate future.

One of these, which underpins all applications of cosmogenic isotope analysis, is
improved data on production rates and a better understanding of the spatial and
temporal factors that control them. The importance of establishing a community-wide
consensus on cosmogenic isotope production rates used in the estimation of exposure
ages and denudation rates is now regarded as a major priority, with the ultimate
objective of producing cosmogenic exposure ages with errors of 5% or less. Coupled
with the analysis of a larger number of samples for a particular problem, and the
measurement of several isotopes in the same sample, this greater accuracy will provide
the kind of tight chronological constraints necessary to answer key questions in recent
Earth history.

Another area of active research involves muon production (Heisinger et al., 2002a, b,
c). The greater attenuation length of muon interactions compared with spallation means
that muogenic production requires more time to reach secular equilibrium with respect
to losses from denudation and radioactive decay. Consequently muogenic production
is less sensitive to short-timescale perturbations in denudation, and therefore yields
rates averaged over longer periods of time than the spallation-produced component.
This opens the possibility of comparing denudation rates over different timescales from
vertical sequences of samples (Stone et al., 1994; Brown et al., 1995b; Heisinger and
Nolte, 2000).

The issue of how rates of denudation might vary over different timescales can be
taken much further by combining cosmogenic isotope analysis with other techniques
that address both shorter and longer time ranges (Kirchner et al., 2001). Such
information has important practical implications since denudation rates over
‘cosmogenic’ timescales can provide a valuable benchmark for recent anthropogenic
perturbations of drainage basins. The multi-timescale approach has already been
applied in the Nanga Parbat area of the western Himalayas where the rate of incision
of the Indus River estimated from cosmogenic exposure ages of strath terraces was
compared with longer-term denudation rates derived from fission-track ther-
mochronology (Burbank et al., 1996). The combination of cosmogenic isotope analysis
and thermochronology has also been applied to landscapes in far less active tectonic
settings (Belton et al., 2000; Cockburn et al., 2000; Brown et al., 2002). Such comparative
studies have to be undertaken with care when using site-specific sampling for
cosmogenic isotope analysis given the much larger spatial scale to which ther-
mochronology applies, but sampling from key landscape elements, such as escarpment
faces and summits, can be fruitfully integrated with data on regional patterns of
denudation derived from thermochronology (Cockburn et al., 2000).

Finally, expanded applications of catchment-averaged denudation rates studies are
also likely in the future. The ability to document the exposure, transport and burial of
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sediment in fluvial systems over timescales of 103–106 yr opens up a whole suite of pos-
sibilities for developing an understanding of drainage basin processes over the
timescales relevant to significant landscape change (Granger, 2002). Particularly
valuable for addressing the more recent part of this time range will be the wider use of
in-situ-produced 14C (Jull et al., 1989, 1992, 1994b; Handwerger et al., 1999; Lal and Jull,
2001). Recent technical advances (Lifton et al., 2001; 2002) are now making it possible to
pair this short-lived radioisotope with cosmogenic nuclides with much longer half-lives
in order to provide far more sensitivity in the detection of complex exposure histories.
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