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ABSTRACT

In this paper, the application of partial wavelet coherence (PWC) and multiple wavelet coherence (MWC)

to geophysics is demonstrated. PWC is a technique similar to partial correlation that helps identify the

resulting wavelet coherence (WTC) between two time series after eliminating the influence of their common

dependence. MWC, akin to multiple correlation, is, however, useful in seeking the resultingWTC of multiple

independent variables on a dependent one. The possible El Niño–Southern Oscillation–related impact of the

large-scale atmospheric factors on tropical cyclone activity over the western North Pacific is used as an ex-

ample. A software package for PWC and MWC has been developed. It also includes modified software that

rectified the bias in the wavelet power spectrum and wavelet cross-spectrum. The package is available online

(see http://www.cityu.edu.hk/gcacic/wavelet).

1. Introduction

The technique of wavelet analysis has increasingly

become a common tool for time series examinations.

It not only helps overcome the limitations of Fourier

transform in analyzing nonstationary time series, but

also tackles the problem of constant window width and

thus the time-resolution issue over frequencies (Daubechies

1992). This is done by decomposing the time series into

a time–frequency space with multi-time-resolution, which

allows one to determine the dominant modes of variability

and the change of those modes with time (Torrence and

Compo 1998). It is very useful in the field of geophysics, in

which trends and periodicities of oscillations with various

frequencies are often studied.

Many studies have been carried out previously on

the application of wavelet analysis to geophysics and

some free toolkits have also been provided. For ex-

ample, Torrence and Compo (1998) gave an excellent

guide with a user-friendly toolkit for wavelet trans-

form. Maraun and Kurths (2004) presented the evolu-

tion of cross-wavelet transform, developed a statistical

test for wavelet coherence (WTC),1 and discussed some

pitfalls in wavelet applications. Extending the toolkit of

Torrence and Compo (1998), Grinsted et al. (2004)

provided a software package for cross-wavelet trans-

form and WTC.

Recently, Mihanovi�c et al. (2009) introduced two

additional wavelet analysis techniques—partial wave-

let coherence (PWC) and multiple wavelet coherence

(MWC)—to the field of marine science for calculating

the resulting WTC of two effects after eliminating their

common dependent factor and the proportion of WTC

that can be explained by multiple independent variables

on one dependent, respectively. Ng and Chan (2012)

applied PWC to remove the El Niño–Southern Oscilla-

tion (ENSO) effect, revealing the unlikely dependence of

tropical cyclone intensity on local sea surface tempera-

ture in the Bay of Bengal.

While the PWC and MWC techniques should have

wide applications in the study of geophysical systems,

Mihanovi�c et al. (2009) applied them only to extract

oscillations with a particular frequency as a time series.

The direct usage of these techniques in the frequency–

time space, which is believed to be as valuable, has not
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yet been well documented. The present paper therefore

aims to contribute toward such documentation by dem-

onstrating the use of PWC and MWC in frequency–time

space. Moreover, a Matlab software package for these

techniques is developed, which also includes modified

software [based on the program of Torrence and Compo

(1998) andGrinsted et al. (2004)] that rectified the bias in

the wavelet power spectrum (WPS) and wavelet cross-

spectrum (Liu et al. 2007; Veleda et al. 2012).

Although several studies have suggested that the rise

of sea surface temperature due to global warming may

induce increases in tropical cyclone frequency and in-

tensity (e.g., Knutson and Tuleya 1999; Emanuel 2005;

Webster et al. 2005), Chan and Liu (2004) found that

tropical cyclone activity over the western North Pacific

(WNP) does not seem to depend on the rising sea sur-

face temperature, though a large percentage of its vari-

ation is forced by large-scale atmospheric factors that

are found to be associated with ENSO. The result is

confirmed by Chan (2009). In this paper, an investigation

using wavelet analysis of the ENSO-related impact of

these large-scale atmospheric factors on tropical cyclone

activity over the western North Pacific is conducted.

Section 2 contains the description of the ENSO ex-

ample, data, and methodology used in this paper. Sec-

tion 3 gives a summary review of the basics of wavelet

analysis, including the continuous wavelet transform,

cross-wavelet transform, phase angle, and WTC, which

are necessary for a better understanding of the PWCand

MWC methods. The PWC and MWC are then respec-

tively introduced in sections 4 and 5, with their appli-

cations demonstrated. This paper is summarized with

some discussions on wavelet applications in section 6.

2. Data and methodology

a. Tropical cyclone data

The tropical cyclone data of the International Best

TrackArchive for Climate Stewardship (IBTrACS; Knapp

et al. 2010; Kruk et al. 2010) Project over theWNP during

1960–2008 are employed. The ratio of the number of ty-

phoons to the number of tropical cyclones (RTY) is in-

vestigated in this study. Tropical cyclones and typhoons

are only counted for maximum sustained wind speed

when .34 and .64 kt, respectively, is reached in their

lifetime.

b. Atmospheric data

The wind, temperature, geopotential height, and spe-

cific humidity data are from the reanalysis of the National

Centers for Environmental Prediction–National Center

for Atmospheric Research (Kalnay et al. 1996; see online

at http://www.esrl.noaa.gov/psd/), which is of 2.58 lati-

tude 3 2.58 longitude horizontal resolution. Similar to

Chan and Liu (2004), an empirical orthogonal function

(EOF) is first performed via correlation matrices on the

thermodynamic and dynamic parameters suggested by

Gray (1979) that govern tropical cyclone genesis and de-

velopment. The domain of 58–308N, 1208E–1808 is selected,

as tropical cyclones over the WNP mostly reach their

maximum intensity south of 308N and east of 1208E (Xue

and Neumann 1984). Because over 90% of tropical cy-

clones in this region are recorded duringMay–November,

only data from these months are used. The time series

of the principal components (PCs) that are significantly

correlated with that of RTY at a 95% confidence level

and related to ENSO are then analyzed. The sign of the

EOFs is chosen to give a positive correlation with ENSO.

c. The climatic oscillation indexes

The Niño-3.4 and Niño-3 indexes are extracted from

the National Oceanic and Atmospheric Administration

(NOAA) Earth System Research Laboratory website

(http://www.esrl.noaa.gov/psd/data/climateindices/list).

Both the Niño-3.4 and Niño-3 indexes are often used to

detect the variability of the canonical ENSO.

Recently, an anomalous warming event similar to but

different from the canonical ENSO has been found near

the central Pacific; this phenomenon has been named

the ENSO Modoki. The ENSO Modoki index (EMI)

has been established to monitor its variability (Ashok

et al. 2007). In this study, it is calculated from theNOAA

Extended Reconstructed Sea Surface Temperature V3b

dataset according to the definition

EMI5 [SSTA]C 2 0:5[SSTA]E2 0:5[SSTA]W, (1)

where [SSTA]C, [SSTA]E, and [SSTA]W are the sea sur-

face temperature anomalies averaged over the regions

(108S–108N, 1658E–1408W), (158S–58N, 1108–708W), and

(108S–208N, 1258–1458E), respectively.

The Indian Ocean dipole mode index (DMI) is extrac-

ted from the website of the Japan Agency for Marine-

Earth Science and Technology (http://www.jamstec.go.

jp/frcgc/research/d1/iod/).

3. Basic applications of wavelet analysis

a. Continuous wavelet transform

Wavelet transform is a tool often used for analyzing

a nonstationary time series with different power at

different frequencies. There are two types of wavelet

transform—the continuous wavelet transform and dis-

crete wavelet transform. Only the latter suits orthogonal

wavelet bases, while both can be used for nonorthogonal
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wavelet functions. Continuous wavelet transform is dis-

cussed in this paper.

By projecting a time series on a wavelet function

c0(h), which must be time–frequency space localized

and have zero mean, the decomposition makes it pos-

sible to obtain information from the local neighborhood.

One frequently used wavelet function is the Morlet

wavelet, which is also used in this paper as an example.

Further, with convolution applied to a discrete sequence

xn and the scaled and translated wavelet, the continuous

wavelet transform can be easily defined:

WX
n (s)5

ffiffiffiffi

dt

s

r

�
N

n951

xn9c0

�

(n92 n)
dt

s

�

, (2)

where n5 1, . . . ,N, s is the set of scales used, and dt is the

time step (Grinsted et al. 2004). This transform could be

calculated quicker via Fourier transform by doingN times

the convolution given in (2) for each scale (Torrence and

Compo 1998). WPS is defined as 2j 3 jWX
n (s)j

2, where j

is the scale level and 2j is multiplied so as to correct the

bias toward low-frequency oscillations in the WPS. This

bias has not been corrected in the programs offered by

previous studies (Liu et al. 2007).

In general, either the white- or red-noise background

spectrum is suitable for geophysical processes and hence

used to define the null hypothesis for the significance test

for peaks in WPS. Those phenomena of red-noise char-

acteristics, like our example, can be well modeled by the

lag-1 autoregressive process (Gilman et al. 1963; Allen

and Smith 1996). With an appropriate background spec-

trum and desired confidence level, significant regions can

be easily found.

While the WPSs of both the monthly Niño-3 and

Niño-3.4 indexes (Fig. 1) are dominated at the period

around the 2–7-yr band and do not appear to be very

different, a slightly greater areal extent of significant re-

gions is shown for the WPS of the Niño-3.4 index, par-

ticularly since 1980, when the ENSO Modoki started

occurring more frequently. This could be because the

Niño-3.4 index takes up signals from both the canonical

ENSO and the ENSO Modoki given its geographical

location, which has been suggested previously (Ashok

et al. 2007; Chen and Tam 2010). We therefore use the

Niño-3 index in this study to represent the canonical

ENSO. Note that regions inside the cone of influence

(COI; Torrence and Compo 1998), where discontinuities

at end points occurred because of padding with zeros that

may have distorted the results, are not considered.

b. Cross-wavelet transform and phase angle

A cross-wavelet transform helps compare two time

series xn and yn by identifying their common power.

However, without normalizing to the single WPS, wave-

let cross spectrum cannot completely reflect the possible

link between two time series and is thus no longer useful

for relationship identification, but it is for phase estima-

tion. By decomposing the complex wavelet cross spec-

trum into cross-wavelet power jWXY
n (s)j and phase, one

may write it as

WXY
n (s)5 jWXY

n (s)jeiFn
(s), (3)

where Fn(s) represents the phase difference at time tn
between the two signals (Maraun and Kurths 2004).

Although a bias also exists in wavelet cross spectra like

WPS does, the bias-correction method suggested by

Veleda et al. (2012) for the cross-wavelet spectrum will

not affect its imaginary part, and thus its usage in phase

estimation. In this paper, phase angles pointing left and

right represent antiphase and in-phase relationships, re-

spectively. They may also be used for the verification

of possible physical relationships. Consistent or slowly

changing phase angles can be considered as evidence of

significant relationships. The degrees in time units de-

pend on the frequency band one is looking for. For

example, 1808 in a 1-yr frequency band represents a half-

year. Examples demonstrating the combined usage of

phase angles and WTC are provided in section 3c.

c. WTC

Wavelet coherence (WTC) is a tool for identifying

possible relationships between two processes by searching

frequency bands and time intervals during which they

covary. In other words, WTC may enhance linear corre-

lation analyses that help reveal intermittent correlations

FIG. 1. The WPS of monthly (a) Niño-3 index and (b) Niño-3.4

index. Monthly climatological means of each month are removed

from the datasets. The cross-hatching indicates regions inside the

COI and the thick black contour indicates 95% confidence level,

using red noise as background spectrum.
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between two phenomena (Gurley and Kareem 1999;

Gurley et al. 2003), and their significant linear correlation

relationship, if it is real, should thus be shown in WTC

analyses as well. Unlike cross-wavelet transform, it is al-

ways helpful to implement the WTC analysis for re-

lationship studies, even at intervals where high coherence

exists but only minimal power is shown in the WPS of the

two processes.

Following Grinsted et al. (2004), WTC can simply be

defined by normalizing thewavelet cross spectrum to the

single WPS, and WTC squared is thus

R2(x, y)5
j§[W(x, y)]j2

§[W(x)]3 §[W(y)]
, (4)

where the W operator is the continuous wavelet trans-

form when it has one argument and cross-wavelet

transform when it has two, and §5 S � s21, in which S is

the smoothing operator that helps strike a balance be-

tween resolution and significance. Because of the nor-

malizing nature ofWTC, the bias problem exists inWPS

and wavelet cross spectrum does not occur inWTC. The

same applies for PWC and MWC. The term ‘‘coherence’’

usually stands for the WTC squared, which ranges from 0

to 1 (1 being the highest coherence), given by smoothing

operators.Monte Carlomethods are used to determine the

statistical significance level of WTC.

The time series of the first PC of 850-hPa relative

vorticity (RV1), that of 200–850-hPa vertical wind shear

of zonal wind (VWS1), and the second PC of moist static

energy (MSE2) are highly correlated with RTY and the

Niño-3 index at a .95% confidence level with correla-

tion coefficients of.0.37 and.0.57, respectively. These

time series provide a demonstration of the application of

WTC (Fig. 2). For example, the WTC of RTY and RV1

suggests that the two series have apparent coherence

throughout the study period around the 3–16-yr band,

where the mean phase of oscillations within the signifi-

cant regions and outside COI is;328. TheWTC of RTY

and VWS1 and of RTY and MSE2 implies that their

relationships are dominant only after the mid-1980s

around the 4–16-yr band, in which the corresponding

mean phase angles Fm are ;148 and ;278, respectively.

The in-phase relationships agree with the positive cor-

relation coefficients found by simple correlations and

suggest that stronger low-level relative vorticity is as-

sociated with an increase in tropical cyclone activity,

while the vertical wind shear of the zonal wind and

moisture static energy also contribute after the mid-

1980s. This example shows the usefulness of WTC in

determining the varying phases and intermittent corre-

lation relationships between two phenomena.

4. PWC

SinceRTYappears to be related toENSOat around the

2–8-yr band (Fig. 3) and the time series of RV1, VWS1,

and MSE2 are all significantly correlated with the Niño-3

index, the ‘‘stand-alone’’ relationship between RTY and

FIG. 2. The WTC of (a) RTY and RV1, (b) RTY and VWS1,

and (c) RTY and MSE2 over the WNP during the period May–

November. The cross-hatching indicates regions inside the COI

and the thick black contour indicates 95% confidence level. The

arrows indicate the relative phase relationship, with those pointing

right representing in-phase, pointing left representing antiphase,

and pointing straight down indicating the lead of RTY by 908.

FIG. 3. The WTC of RTY over the WNP and the Niño-3 index

during the period May–November. The cross-hatch indicates re-

gions inside the COI and the thick black contour indicates 95%

confidence level. The arrows indicate the relative phase relation-

ship, with pointing right representing in-phase, pointing left rep-

resenting antiphase, and pointing straight down indicating the lead

of RTY by 908.
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the PCs should be studied by removing the effect of

ENSO. Partial correlation is one of the methods that can

be used in a simple correlation concept. In wavelet appli-

cations, we can perform this with the help of PWC.

PWC is a technique similar to partial correlation that

helps find the resulting WTC between two time series y

and x1 after eliminating the influence of the time series

x2. AsWTC has a working principle similar to that of the

traditional correlation coefficient, it can thus be under-

stood as a localized correlation in the time–frequency

space (Grinsted et al. 2004). WTC between y and x1, y

and x2, and x1 and x2 is written as

R(y, x1)5
§[W(y, x1)]

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

§[W(y)] � §[W(x1)]
p ;

R2(y, x1)5R(y, x1) � R(y, x1)*;

R(y, x2)5
§[W(y, x2)]

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

§[W(y)] � §[W(x2)]
p ;

R2(y, x2)5R(y, x2) � R(y, x2)*;

R(x2, x1)5
§[W(x2, x1)]

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

§[W(x2)] � §[W(x1)]
p ;

R2(x2, x1)5R(x2, x1) � R(x2, x1)* . (5)

Mihanovi�c et al. (2009) extended the concept from simple

linear correlation and suggested that the PWC squared

(after the removal of the effect of x2) can be defined by an

equation similar to the partial correlation squared, as

RP2(y, x1, x2)5
jR(y, x1)2R(y, x2) � R(y, x1)*j

2

[12R(y, x2)]
2[12R(x2, x1)]

2
, (6)

which is like the simple WTC, ranging from 0 to 1.

In this case, a low PWC squared shown at where a high

wavelet coherence squared was found implies that the

time series x1 does not have significant influence on

the time series y at that particular time–frequency space,

and time series x2 dominates the effect on the variance

of y, and vice versa for the opposite case. If both

RP2(y, x1, x2) and RP2(y, x2, x1) still have significant

bands, both x1 and x2 have a significant influence on y.

The coherences calculated with this technique, consistent

withWTC, as well as theMWC to be discussed in section

5 do not rely on the magnitude of the input time series.

Maraun and Kurths (2004) also pointed out that the

wavelet transform of the realization of a mixing process

could give a random number as an end product. In other

words, two independent processes do not necessarily give

zero coherence. Significance tests are therefore needed

and, similar to WTC, Monte Carlo methods are used for

PWC. The effect of PWC is shown using ideal signals in

Fig. 4b by removing the effect of a 16-yr-period sine wave

time series from the WTC of an artificial time series

comprising sine waves with six different periods (1, 4, 8,

16, 32, and 64 yr) and that consisting of two different

periods (4 and 16 yr) of sinewaves (Fig. 4a). The resulting

PWC squared, which should ideally show significant

bands at a 4-yr period only, is comparable to the WTC of

the time series of sine waves with the five different pe-

riods and a 4-yr-period sine wave time series (Fig. 4c).

The squared PWCs ofRTY andRV1,RTY andVWS1,

and RTY and MSE2 over the WNP (after the removal of

the ENSO effect) are shown in Fig. 5. The stand-alone

coherence relationships between them can be reanalyzed

with these squared PWCs. Substantial reductions in the

amplitude and areal extent of the previously found WTC

squared (Fig. 2), especially for interannual variations, are

observed. Except for the significant region present in the

squared PWCof RTY and RV1 around the 8–10-yr band,

whereRTYdoes not seem to be related to ENSO (Fig. 3),

almost all the significant regions have disappeared. The

reductions imply that there is a significant contribution

of the ENSO effect to the relationship between RTY and

the large-scale parameters. This is evident that the vari-

ability of tropical cyclone activity is forced by ENSO via

FIG. 4. (a) TheWTC between an artificial time series comprising

sine waves of six different periods (1, 4, 8, 16, 32, and 64 yr) and that

of two different periods (4 and 16 yr). (b) The PWC of the two

artificial time series used in (a), after the removal of a time series of

sine wave with a period of 16 yr. (c) Similar to (a), but for the time

series comprising sine waves of the five different periods and a time

series of a sine wave with the period of 4 yr only. The cross-

hatching indicates regions inside the COI and the thick black

contour indicates 95% confidence level. The arrows indicate the

relative phase relationship, with those pointing right representing

in-phase.
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the alteration of the atmospheric circulation, as suggested

by Chan and Liu (2004).

5. MWC

Akin to PWC, MWC works like multiple correla-

tion that is capable of seeking the resulting coherence

of multiple independents on a dependent. Because

of the similar nature between correlation coeffi-

cients and WTC, using the WTC between y and x1,

y and x2, and x1 and x2 calculated in (5), the applica-

tion of MWC can be defined with the following

equation:

RM2(y, x2, x1)5
R2(y, x1)1R2(y, x2)2 2Re[R(y, x1) � R(y, x2)* � R(x2, x1)*]

12R2(x2, x1)
, (7)

which gives the resulting wavelet coherence squared

that computes the proportion of wavelet power of the

dependent time series y that is explainable by the two

independents x1 and x2 at a given time and frequencies.

The significant levels are again calculated with the

Monte Carlomethod (Mihanovi�c et al. 2009). SinceMWC

is very sensitive to the dependencies of time series, the

assurance of the independence of x1 and x2 is a must be-

fore carrying out MWC. Otherwise, results with excep-

tionally high coherence may be produced. The MWCs of

an artificial time series comprising sine waves of six dif-

ferent periods (1, 4, 8, 16, 32, and 64 yr), a time series of

sine waves with a 4-yr period, and a time series of sine

waves with a 16-yr period are shown in Fig. 6.

Other than the canonical ENSO, the ENSOModoki is

also found to possess obvious relationships with RV1,

VWS1, and MSE2, with correlation coefficients .0.42

(.99% confidence level). The WTCs of the EMI and

the PCs show significant dominant oscillations, mostly

around the 8–16-yr band (not shown), which suggests

that the ENSOModoki may have a significant impact on

the interdecadal variability of tropical cyclone activity.

The WTC of the monthly Niño-3 index and EMI show

only a few significant regions (Fig. 7), indicating that the

canonical ENSO and Modoki ENSO are largely inde-

pendent, which confirms the suggestion of Ashok et al.

(2007) further to all scales. The application of MWC is

therefore illustrated by investigating the composite effect

of the canonical ENSO and ENSO Modoki on the vari-

ability of the PCs, respectively.

The combined impact of the canonical ENSO and

ENSOModoki onRV1 canbe studiedwithMWCsquared

by putting RV1 as y and the Niño-3 index and the EMI

as x1 and x2, respectively, in (7). A similar method can

be used for investigating their effect on VWS1 and

MSE2. The squared MWC of RV1, the Niño-3 index,

and the EMI; VWS1, the Niño-3 index, and the EMI;

andMSE2, the Niño-3 index, and the EMI are shown in

FIG. 5. The PWCs of (a) RTY and RV1, (b) RTY and VWS1, and

(c) RTY and MSE2 during the period May–November (after the re-

moval ofENSOeffect). The cross-hatching indicates regions inside the

COI and the thick black contour indicates 95% confidence level.

FIG. 6. The MWCs of an artificial time series comprising sine

waves of six different periods (1, 4, 8, 16, 32, and 64 yr), a time

series of sine waves with a 4-yr period, and a time series of sine

waves with a 16-yr period. The cross-hatching indicates regions

inside the COI and the thick black contour indicates 95% confi-

dence level.
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Fig. 8. Significant regions can all be seen on almost

the entire spectra, which suggests that the usefulness

of MWC in identifying the variability of the large-

scale parameters PCs together with those of the Niño-3

index and the EMI. This is because the Niño-3 index is

likely to account for the reflection of interannual var-

iability and the EMI for the interdecadal variability,

at least statistically, according to their squared WTC

with those PCs. Further investigation of the EOF pat-

terns is needed for a physical explanation of such de-

pendencies.

With MWC, by comparing different combinations

of the independent variables, the combination that

best represents the dependent one may also be found.

For example, as a significant relationship exists be-

tween VWS1 and the DMI, with a correlation coeffi-

cient of 0.40 (.95% confidence level), by comparing

the squared MWC of VWS1, the DMI, and the Niño-3

index (Fig. 9) with that of VWS1, the EMI, and the

Niño-3 index (Fig. 8b), the areal extent and amplitude

of significant regions of the former are not compara-

ble to those of the latter. This infers that EMI and

the Niño-3 index together provide a better explana-

tion of the variability of VWS1 than using the DMI

and the Niño-3 index. Even worse results are found

for the combination of the DMI and the EMI (not

shown). This example demonstrates the usefulness

of MWC in model simulations in helping to find the

best group of predictors that explain the predictand on

all scales.

6. Discussion and summary

The present study demonstrates the applications of

PWC and MWC. The possible ENSO-related impact of

the large-scale atmospheric factors leading the vari-

ability of tropical cyclone activity over the WNP is used

as an example. PWC is a technique similar to partial

correlation that helps find the resulting WTC between

two time series after eliminating the influence of their

common dependence, while MWC, working like multi-

ple correlation, is useful in seeking the resultingWTC of

FIG. 7. The WTC of monthly Niño-3 index and EMI. Monthly

climatological means of each month are removed from the da-

tasets. The cross-hatching indicates regions inside the COI and

the thick black contour indicates 95% confidence level. The ar-

rows indicate the relative phase relationship, with those pointing

right representing in-phase, pointing left representing antiphase,

and pointing straight down indicating the lead of Niño-3 index

by 908.

FIG. 8. The MWCs of (a) RV1, EMI, and Niño-3 index, (b)

VWS1, EMI, and Niño-3 index, and (c) MSE2, EMI, and Niño-3

index during the period May–November. The cross-hatching in-

dicates regions inside theCOI and the thick black contour indicates

95% confidence level.

FIG. 9. The MWC of VWS1, DMI, and the Niño-3 index during

the period May–November. The cross-hatching indicates regions

inside the COI and the thick black contour indicates 95% confi-

dence level.
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multiple independents on a dependent. Given the simi-

lar working principle to that of traditional correlation

coefficients, WTC can be seen as a localized correlation

in a time–frequency space (Grinsted et al. 2004). PWC

and MWC can therefore be defined easily with the

concepts of partial and multiple correlation, as sug-

gested by Mihanovi�c et al. (2009).

With wavelet analysis, the problem of studying non-

stationary time series has been much improved com-

pared to Fourier transform, and one may now be able to

study the variations of phenomena in a time–frequency

space. However, imperfections of this tool cannot be

neglected. First, because wavelet analysis is an expan-

sion of a one-dimension time series, like simple corre-

lation, the domain selection for analysis is very critical.

In other words, the existence of noise is almost in-

evitable. This error may even be magnified when un-

dergoing a time–frequency expansion. For example, the

domain for large-scale parameters chosen in this study

may not have consistent relationships with RTY and

averaging across the domain could disrupt the rela-

tionships. Second, as wavelet analysis is developed

mainly for studying periodicity, even though phase an-

gle may help validate relationships, conclusions should

not be drawn about relationships without any expecta-

tion of further investigation. Significant coherence

could result even for random signals that happen to

oscillate at the same frequency at particular intervals

simultaneously. On the other hand, although angular

standard deviation2 measures the scattering of phase

angle and may be able to test the credibility of angle

mean, a large circular standard deviation does not

necessarily imply doubts to that significant region and

thus to the possible relationship between those phe-

nomena. As long as the phase angles do not have sud-

den changes in the significant regions, as mentioned in

section 3b, the possible physical relationship revealed

may still be applicable.

To conclude, PWC and MWC further expand the

applications of wavelet analysis, which helps diagnose

the time series in a time–frequency space. They should

have wide applications in the study of geophysical sys-

tems, for both observational and modeling ones, where

trends and periodicities of oscillations with various fre-

quencies are often investigated.
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APPENDIX

List of Symbols and Acronyms

List of symbols

Continuous wavelet transform

on time series an

WA
n , W(a)

Cross-wavelet power of times

series an and bn

jWAB
n j

Mean phase angle Fm

Multiple wavelet coherence

of time series bn and two

independents a1n and a2n

RM(b, a1, a2)

Partial wavelet coherence of

times series a1n and bn (after

the removal of time series a2n)

RP(a1,b, a2)

Phase difference Fn

S including the weighing by s21 §

Scale level j

Set of time scales used s

Smoothing operator S

Time step dt

Wavelet coherence of times

series an and bn

R(a,b)

Wavelet function c0

List of acronyms

COI Cone of influence

DMI Indian Ocean dipole model index

EMI ENSO Modoki index

ENSO El Niño–Southern Oscillation

EOF Empirical orthogonal function

IBTrACS International Best Track Archive for Climate

Stewardship

MSE2 The time series of the second PC of moist

static energy

MWC Multiple wavelet coherence

NOAA National Oceanic and Atmospheric

Administration

PWC Partial wavelet coherence

PC Principal component

RTY Ratio of number of typhoons to number of

tropical cyclones

RV1 The time series of the first PC

of 850-hPa relative vorticity

VWS1 The time series of the first PC of 200–850-hPa

vertical wind shear of zonal wind

WNP Western North Pacific

WPS Wavelet power spectrum

WTC Wavelet coherence

2 Note that sF 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

22 ln(R/n)
p

, where X5�
N

n51 cos(Fn),

Y5�
N

n51 sin(Fn), and R5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(X2 1Y2)
p

(Zar 1999).
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