6

METHODS IN GEOCHEMISTRY AND GEOPHYSICS, 43 GEOPHYSICAL ELECTROMAGNETIC THEORY AND METHODS

MICHAEL S. ZHDANOV
Department of Geology and Geophysics
University of Utah
Salt Lake City, UT 84112, U.S.A.

CONTENTS

Pre	face			xvii
Pa	art I	Intro	duction to Field Theory	1
1	Diffe	rential	Calculus of Vector Fields and Differential Forms	3
	1.1	The Ba	asic Differential Relationships of Field Theory	3
		1.1.1	Concept of the physical field	3
		1.1.2	Dot (scalar) and cross (vector) products of vectors	6
		1.1.3	Vector differential operators	7
		1.1.4	Differentiation of the products of scalar and vector fields	11
	1.2	The Ba	asic Integral Relationships of Field Theory	12
		1.2.1	Concept of work and flux of a field	12
		1.2.2	Gauss's theorem and its vector formulations	15
		1.2.3	Stokes's theorem and its vector formulations	17
		1.2.4	Green's formulas	18
	1.3	Differe	ential Forms in Field Theory	19
		1.3.1	Concept of the differential form	19
		1.3.2	Exterior (wedge) product of the linear forms	23
		1.3.3	Canonical representations of the differential forms in	
			three-dimensional Euclidean space	24
		1.3.4	The exterior derivative	25
		Refere	nces and Recommended Reading	28
2	Four	dation	s of Field Theory	29
	2.1	Field (Generation	30
		2.1.1	Harmonic functions; Liouville's theorem	30
		2.1.2	Uniqueness of determination of the scalar field by its	
			gradient and the vector field by its divergence and curl	32
		2.1.3	Field generation conditions	34
		2.1.4	Sources of the field and their physical meaning	36
		2.1.5	Vortices of the field and their physical meaning	38
		2.1.6	Source field and vortex field	41
	2.2	Station	nary Field Equations and Methods of Their Solutions	42
		2.2.1	Poisson's equations for scalar and vector fields	42
		2.2.2	Point source; Dirac singular function	44
		2.2.3	Fundamental Green's function for the Laplace equation	46

vi Contents

	2.3	Scalar	and Vector Potentials of the Stationary Field	49
		2.3.1	Scalar potential of the source field	49
		2.3.2	Vector potential of the vortex field	50
		2.3.3	Helmholtz theorem and classification of the vector fields	52
	2.4	Nonsta	ationary Fields and Differential Forms	54
		2.4.1	Nonstationary vector fields and differential forms in	
			four-dimensional space E_4	54
		2.4.2	Differential form equations	55
		2.4.3	Ampere-type differential forms and a continuity equation	58
		2.4.4	Faraday-type differential forms and the four-potential	59
		2.4.5	Nonstationary vector field equations	60
		Refere	nces and Recommended Reading	61
Pā	ırt II	Four	ndations of Electromagnetic Theory	63
3	Elect	romag	netic Field Equations	65
	3.1	Maxwe	ell's Equations and Boundary Conditions	67
		3.1.1	Basic equations in the theory of electromagnetic fields	67
		3.1.2	Physical interpretation of Maxwell's equations	71
		3.1.3	Boundary conditions for the vector field	77
		3.1.4	The field in a homogeneous medium	82
	3.2	Time-F	larmonic Electromagnetic Field	83
	3.3	Electro	magnetic Energy and Poynting's Theorem	86
		3.3.1	Radiation conditions	87
		3.3.2	Poynting's theorem in the time domain	87
		3.3.3	Energy inequality in the time domain	89
		3.3.4	Poynting's theorem in the frequency domain	91
	3.4	Electro	omagnetic Green's Tensors	93
		3.4.1	Green's tensors in the frequency domain	93
		3.4.2	Green's tensors in the time domain	95
	3.5	Recipro	ocity Relations	96
		3.5.1	Lorentz lemma	96
		3.5.2	Reciprocity relations for the Green's tensors and	
			electromagnetic fields	98
		3.5.3	Electromagnetic Green's tensor representation theorems	100
		Refere	ences and Recommended Reading	103
4	Mod	els of	Electromagnetic Induction in the Earth	105
	4.1	Model	s of Electromagnetic Fields	106

	4.2	Static	Electromagnetic Fields	107
		4.2.1	Electrostatic fields and electrostatic potentials	108
		4.2.2	Boundary conditions for electrostatic potential	111
		4.2.3	Calculation of the electrostatic field of a specified charge	
			distribution	112
		4.2.4	Analogy between constant current fields and electrostatic	
			fields	113
		4.2.5	Direct current flow, associated magnetic field, and the	
			Biot-Savart law	117
		4.2.6	Point and dipole sources on a uniform earth	120
		4.2.7	DC potential in an anisotropic earth	126
	4.3	Electro	omagnetic Field Diffusion in Conductive Media	130
		4.3.1	Monochromatic quasi-static EM fields	131
		4.3.2	Plane electromagnetic waves in a homogeneous	
			medium	133
		4.3.3	Electromagnetic potentials	140
		4.3.4	Quasi-stationary field of a dipole source in a homogeneous	
			medium	142
		4.3.5	Spherical electromagnetic waves	146
	4.4		omagnetic Waves nces and Recommended Reading	150
		Kelele	nices and Recommended Reading	151
5	Elec	tromag	netic Fields in Horizontally Stratified Media	153
	5.1	Plane	Wave Propagation in a Layered Earth	154
		5.1.1	Plane electromagnetic wave in a horizontally stratified	
			medium	154
		5.1.2	Low-frequency behavior of wave impedance	162
		5.1.3	Definition of frequency windows	165
	5.2		al Method of Computing EM Fields in Horizontally Stratified	
		Media		168
		5.2.1	Fourier transform in the spatial domain	168
		5.2.2	Point source of the DC field in horizontally stratified	
			medium	172
		5.2.3	Electric field of the point source in a layered earth	183
		5.2.4	Electrical dipole source of the DC field in a horizontally	_
			layered medium	187
		5.2.5	Expressions for electric fields in a horizontally layered	
			medium using the Hankel transform	188

	5.3	Electro	omagnetic Field of an Arbitrary System of Magnetospheric	
		Curren	ts in a Horizontally Homogeneous Medium	191
		5.3.1	Spatial frequency-domain (SFD) representation of the	
			electromagnetic field in a horizontally layered medium	192
		5.3.2	Lipskaya-Vanyan formulas concerning impedance ratios	194
		5.3.3	Horizontal polarization of the electric field in a	
			horizontally homogeneous earth, and the reduced spatial	
			wave number spectrum	197
	5.4		magnetic Fields Generated in Layered Earth by Electric and	
		Magne	etic Dipole Transmitters	200
		5.4.1	Spectral representation of the field of a horizontal current	
			dipole on the surface of a horizontally layered medium	200
		5.4.2	Electromagnetic field of a horizontal current dipole at the	
			surface of a homogeneous half-space	206
		5-4-3	Frequency domain representation of the field of a vertical	
			magnetic dipole above a horizontally stratified medium	210
		5-4-4	The magnetic field of a vertical magnetic dipole on the	
			surface of a uniform half-space	213
		5-4-5	Near and far fields	214
		5.4.6	Frequency domain method for computing transient fields	217
		5.4.7	Transient fields of a dipole source observed in a homo-	
			geneous medium and on the surface of a homogeneous	
		5.6	conducting half-space; fields in the near and far zones	220
		Refere	ences and Recommended Reading	230
6	Elec	tromag	netic Fields in Inhomogeneous Media	233
	6.1	Integr	al Equation Method	235
		6.1.1	Background (normal) and anomalous parts of the	
			electromagnetic field	235
		6.1.2	Poynting's theorem and energy inequality for an	
			anomalous field	236
		6.1.3	Integral equation method in two dimensions	237
		6.1.4	Calculation of the first variation (Fréchet derivative) of the	
			electromagnetic field for 2-D models	240
		6.1.5	Integral equation method in three dimensions	243
		6.1.6	Calculation of the first variation (Fréchet derivative) of the	
			electromagnetic field for 3-D models	244
	6.2	Integr	al Equation Method in Models with Inhomogeneous	
		Backg	round Conductivity	247
		6.2.1	Model with inhomogeneous background conductivity	248
		6.2.2	Accuracy control of the IBC IE method	252

	6.3	•	of Linear and Nonlinear integral Approximations of the	
			omagnetic Field	254
		6.3.1	Born and extended Born approximations	255
		6.3.2	Quasi-linear approximation and tensor quasi-linear	
		,	equation	256
		6.3.3	QL approximation using a multigrid approach	257
		6.3.4	Quasi-analytical solutions for a 3-D electromagnetic field	258
		6.3.5	Quasi-analytical approximation for a model with variable background (QAVB)	260
		6.3.6	Quasi-analytical solutions for 2-D electromagnetic fields	262 265
		6.3.7		265
		6.3.8	Localized quasi-linear approximation	267
	6.4	_	ential Equation Methods	270
	0.4	6.4.1	Field equations and boundary conditions	270
		6.4.2	Electromagnetic potential equations and boundary	2,70
		0.4.2	conditions	274
		6.4.3	Finite difference approximation of boundary-value problem	275
		6.4.4	Discretization of Maxwell's equations using a	-, 3
			staggered grid	276
		6.4.5	Discretization of the second order differential equations	•
		•	using the balance method	280
		6.4.6	Discretization of the electromagnetic potential differential	
			equations	285
		6.4.7	Finite element solution of boundary-value problems	288
		Refere	nces and Recommended Reading	292
_				
Pā	art III		ersion and Imaging of Electromagnetic	
		rie	ld Data	297
7	Princ	iples	of Ill-Posed Inverse Problem Solution	299
	7.1	Ill-Pos	ed Inverse Problems	300
		7.1.1	Formulation of well-posed and Ill-posed problems	300
		7.1.2	Correctness set	301
		7.1.3	Quasi-solution of the Ill-posed problem	302
	7.2	Found	ations of Regularization Theory	303
		7.2.1	Definition of misfit functional	303
		7.2.2	Regularizing operators	306
		7.2.3	Stabilizing functionals	307
		7.2.4	Tikhonov parametric functional	312

Х

	7.3	Regula	arization Parameter	313
		7.3.1	Tikhonov method of regularization parameter selection	313
		7.3.2 Poforo	L-curve method of regularization parameter selection nces and Recommended Reading	316
		Refere	nces and Neconimended Neading	319
8	Elect	tromag	netic Inversion	321
	8.1	Linear	Inversions	322
		8.1.1	Born inversion	322
		8.1.2	Discrete linear EM inverse problem	323
		8.1.3	The Tikhonov regularization method of linear inversion	325
		8.1.4	Definition of the weighting matrices for model parameters	
			and data	326
		8.1.5	Approximate regularized solution of linear inverse problem	328
		8.1.6	The Levenberg-Marquardt method	331
		8.1.7	Conductivity imaging by the Born approximation	331
		8.1.8	Iterative Born inversions	336
	8.2	Nonlin	ear Inversion	337
		8.2.1	Formulation of the nonlinear EM inverse problem	337
		8.2.2	Regularized solution of nonlinear discrete EM inverse	
			problem	338
		8.2.3	The steepest descent method for nonlinear regularized	
			least-squares inversion	339
		8.2.4	The Newton method for nonlinear regularized	
			least-squares inversion	340
		8.2.5	Numerical schemes of the Newton method for nonlinear	
			regularized least-squares inversion	341
		8.2.6	Nonlinear least-squares inversion by the conjugate	
		0	gradient method	342
		8.2.7	The numerical scheme of the regularized conjugate gradient method for nonlinear least-squares inversion	243
		8.2.8	Fréchet derivative calculation	343 344
	8.3		Linear Inversion	
	0.3	8.3.1	Principles of quasi-linear inversion	347
		8.3.2	Localized quasi-linear inversion	347
	8.4	-	Analytical Inversion	348 348
	0.4	8.4.1	Fréchet derivative calculation	
		•	Inversion based on the quasi-analytical method	349
		8.4.2 Refere	ences and Recommended Reading	350 351

Contents

9	Elec	tromag	netic Migration	353
	9.1	Electro	magnetic Migration in the Time Domain	354
		9.1.1	Physical principles of electromagnetic migration	355
		9.1.2	Migration in a model with homogeneous background	
			conductivity	356
		9.1.3	Migration using integral transformation	357
	9.2	Analyti	ic Continuation and Migration in the (k,ω) Domain	359
		9.2.1	Analytic continuation of the EM field	359
		9.2.2	Migration as a spectral transformation	361
		9.2.3	Convolution form of migration operator	363
		9.2.4	Constructing a digital filter for EM migration	364
		9.2.5	Spectral characteristic of the digital filter	367
	9.3	Finite	Difference Migration	370
		9.3.1	2-D Finite difference migration	370
		9.3.2	Finite difference migration of a 3-D EM field	374
	9.4	Visuali	zation of Geoelectric Structures by Use of Migration in	
		the Fre	equency and Time Domains	377
		9.4.1	Migration imaging condition in the frequency domain	377
		9.4.2	Migration imaging condition in the time domain	379
	9.5	Migrati	ion Versus Inversion	381
		9.5.1	Formulation of the inverse problem	381
		9.5.2	General concept of the migration anomalous field	382
		9.5.3	General migration imaging conditions	384
		9.5.4	Regularized iterative migration	387
		Refere	nces and Recommended Reading	390
Pa	ırt IV	Ged	ophysical Electromagnetic Methods	393
10	Elect	romag	netic Properties of Rocks and Minerals	395
	10.1	Proper	ties and Units	396
		10.1.1	Electrical conductivity and resistivity	396
		10.1.2	Dielectric permittivity	398
		10.1.3	Magnetic permeability	399
		10.1.4	Wave number	400
	10.2	Proper	ties in a Parametric Sense	402
		10.2.1	Electric properties of rock-forming minerals and rocks	402
		10.2.2	Induced polarization	416
		10.2.3	Dielectric properties of rock-forming minerals	420
		10.2.4	Magnetic properties of minerals	425

	٠	
٧	1	1
Λ	ı	ı

	10.3	Effectiv	ve Conductivity of Heterogeneous Multiphase Rocks	427
		10.3.1	Mixture of conductive minerals in a host rock	427
		10.3.2	Principles of the effective-medium theory	427
		10.3.3	Effective conductivity of heterogeneous medium	433
	10.4	Proper	ties in an Existential Sense	435
		10.4.1	Concepts of a geoelectric structure and a geoelectric	
			section	435
		10.4.2	Longitudinal conductance and transverse resistance of the	
			horizontally layered geoelectric section	437
	10.5	Proper	ties of Large-Scale Geoelectric Structures	440
		10.5.1	Geoelectric mesostructures and megastructures	440
		-	The oceans	442
			The atmosphere	444
		Refere	nces and Recommended Reading	446
11			and Measurement of Electromagnetic Fields in	
	Geop	•	l Applications	449
	11.1		Generation	450
		11.1.1	Sources of EM fields	450
		11.1.2	Cables	453
		11.1.3	•	454
	11.2		rement of Electric and Magnetic Fields	459
		11.2.1	Voltage, potential, and electric field	459
		11.2.2	Sensing the magnetic field	469
	11.3	Prepro	cessing of the Data	478
		11.3.1	Sampling in time	478
		11.3.2	Analog-to-digital conversion	479
		11.3.3	Filtering	48:
		11.3.4	Stacking	486
			Deconvolution	487
		Refere	nces and Recommended Reading	489
12	Direc		ent and Induced Polarization Methods	491
	12.1	Vertica	ll Electric Sounding and Apparent Resistivity	493
		12.1.1	Techniques for vertical electric sounding	494
		12.1.2	Three point electrode array	502
		12.1.3	Dipole electric sounding	503

^	_	-	tο	-	

	٠	٠	٠
×	ı	ı	ı

	12.2	Induce	d Polarization (IP) Methods	508
		12.2.1	Induced polarization phenomena	508
		12.2.2	IP method in the frequency and time domains	509
		12.2.3	Resistivity/IP model of a typical porphyry copper system	
			in the Southwestern U. S.	512
	12.3	Physica	al and Mathematical Models of the IP Phenomenon	515
		12.3.1	IP phenomenon in the context of effective-medium theory	516
		12.3.2	Effective conductivity of a heterogeneous polarizable	
			medium	521
		12.3.3	Self-consistent approximation for effective conductivity	523
		12.3.4	Anisotropy effect in IP data	524
		12.3.5	Fundamental IP model: effective resistivity of the isotropic	
			multiphase heterogeneous medium filled with spherical	
			inclusions	525
	12.4		ear Regularized Inversion of IP Data Based on the	
			ole Model	530
		12.4.1	Forward modeling of induced polarization based	
			on the LQL approximation	531
		•	Inversion based on the LQL approximation	532
			Regularized solution of the material property equation	534
			Quantitative interpretation of IP data – The road ahead nces and Recommended Reading	537
		Kelelei	nces and recommended reading	538
13	Mag	netotel	luric and Magnetovariational Methods	543
	13.1	Earth I	EM Field of External Origin	545
		13.1.1	Quiet-time magnetic field variations	547
		13.1.2	Micropulsations	549
		13.1.3	Magnetic storms	552
		13.1.4	Substorms	553
	13.2	The Til	khonov-Cagniard Model of the MT Field	554
		13.2.1	Tikhonov-Cagniard model	554
		13.2.2	Concepts of apparent resistivity and sounding	554
		13.2.3	Relationships between the MT sounding curve and	
			the actual 1-D resistivity model	556
	13.3	Theory	of the MT and MV Transfer Functions	564
		13.3.1	Magnetotelluric operators: impedance and admittance,	
			telluric and magnetic	565
		13.3.2	Induction vectors and magnetic and electric tippers	568
		13.3.3	Spectral magnetotelluric impedances	569

13.4	Magnetotelluric Fields in Horizontally Inhomogeneous Media			
	13.4.1 Concepts of external and internal, normal and anomalous			
	-7-4	parts of an electromagnetic field	574	
	13.4.2	Anomalous electromagnetic fields and their classification	576	
		Fields in two-dimensionally inhomogeneous media and the	<i>J</i> , -	
	-5-4-5	concepts of E and H polarization	577	
13.5	Magne	totelluric and Magnetovariational Surveys	579	
-5.5	-	The MTS, MTP, and TCM methods	579	
		MVS and MVP survey methods	582	
	13.5.3	CGDS survey method	583	
13.6	Proces	sing and Analysis of MT and MV Data	583	
-		The least-squares method	584	
	_	Remote reference method	592	
	13.6.3	Robust estimation of magnetotelluric and induction		
		matrices	593	
	13.6.4	Graphical presentation of magnetotelluric and induction		
		matrices	597	
13.7	One-Dimensional Interpretation of MT Data			
	13.7.1	Analysis of distorted MTS curves	602	
	13.7.2	Quick and dirty MTS analysis	608	
	13.7.3	Quantitative interpretation of MTS curves with one-dimensional		
		models	612	
13.8	Interpretation of MVP and GDS Data			
	13.8.1	Separation of fields into internal and external parts	614	
	13.8.2	Separation of fields into normal and anomalous parts	618	
13.9	Rapid Three-Dimensional Magnetotelluric Inversion Based on			
	Linear	and Quasi-Linear Approximations	619	
	13.9.1	Iterative Born inversion of magnetotelluric data	620	
	13.9.2	MT inversion based on the quasi-analytical method	621	
	13.9.3	Regularized smooth and focusing inversion of MT data	623	
	13.9.4	Principles of the re-weighted regularized inversion	624	
	13.9.5	Minimum support nonlinear parameterization	627	
	13.9.6	Case study 1: inversion of the Voisey's Bay MT data	631	
	13.9.7	Case study 2: 3-D inversion of MT data collected by		
		Phoenix Geophysics in Ontario, Canada	634	
13.10	Rigorous 3-D Magnetotelluric Inversion			
	13.10.1	Tikhonov regularization in the full MT impedance tensor		
		inversion	638	
	13.10.2	Fréchet operator and its adjoint for two-component		
		impedance inversion	639	

		13.10.3	Fréchet operator for the full magnetotelluric impedance		
			tensor inversion	640	
		13.10.4	Fréchet derivative calculation using quasi-analytical		
		643			
		645			
14	Elect	romagı	netic Methods in the Frequency and Time Domains	649	
	14.1	Electro	magnetic Sounding in the Frequency and Time Domains	650	
		14.1.1	Mutual coupling	654	
		14.1.2	Theoretical curves for EM sounding in the frequency		
			domain	658	
		14.1.3	Time-domain electromagnetic sounding	662	
		14.1.4	Properties of TDEM sounding curves	672	
	14.2	•	etation of Controlled-Source Time Domain EM Data Using		
			n-sheet Approach	677	
		14.2.1	The Price-Sheinman and Tikhonov-Dmitriev thin-film		
			models with laterally varying conductance	677	
		14.2.2	Transient field of a magnetic dipole above a conducting		
			thin sheet	680	
			S-Inversion method	686	
	14.3		magnetic Profile and Array Surveys	689	
			Profiling with two loops	689	
			Profiling with large fixed sources	689	
		14.3.3	Transient electromagnetic techniques: UTEM, LOTEM, and		
		ъ.	MTEM methods	690	
		Referer	nces and Recommended Reading	691	
15	Mari	Marine Electromagnetic Methods			
	15.1	Marine	Magnetotelluric Method	696	
		15.1.1	Main characteristic of seafloor EM equipment	697	
		15.1.2	Comparison between land and sea-bottom electromagnetic		
			anomalies	700	
			Case study: marine magnetotellurics in the Gulf of Mexico	701	
	15.2	Marine	Controlled-Source Electromagnetic Methods	704	
		15.2.1	Electrical exploration in shallow water	705	
		15.2.2	Electrical exploration beneath deep oceans	707	
		15.2.3	MCSEM method for offshore petroleum exploration	713	
		15.2.4	Interpretation of MCSEM data	716	
		15.2.5	Case study: iterative migration of Troll Gas Province		
			MCSEM data	727	
		Referen	nces and Recommended Reading	733	

16	Othe	r Platf	orms, Other Methodologies	735	
	16.1	Airborr	ne Electromagnetic Methods	736	
		16.1.1	Frequency domain airborne surveys	737	
		16.1.2	Airborne transient electromagnetic systems (ATEM)	753	
		16.1.3	Far field AEM methods	752	
	16.2	Ground	d Penetrating Radar (GPR)	756	
	16.3	Borehole Assisted Methods		764	
		16.3.1	Borehole-to-surface techniques	764	
		16.3.2	Cross-well electromagnetic tomography	767	
	16.4	Other	Electromagnetic Methods	774	
		16.4.1	Piezoelectric method	774	
			Spontaneous polarization (SP) method nces and Recommended Reading	776 780	
Α	Algebra of Differential Forms			783	
	A.1	Differe	ntial Forms in Three-Dimensional Space	784	
		A.1.1	1-, 2-, and 3-Forms	784	
		A.1.2	Exterior product of the differential forms	785	
		A.1.3	Basis of differential forms	786	
	A.2	Differe	Differential Forms in Multidimensional Spaces		
		A.2.1	Euclidean space	790	
		A.2.2	Differential forms in Euclidean space E_n	792	
		A.2.3	Differential forms in Minkowskian space M_4	794	
В	Calculus of Differential Forms				
	B.1	Exterio	Exterior Differentiation of the Forms		
		B.1.1	Exterior differential operator in multidimensional space E_n	800	
		B.1.2	Exterior differential operator in four-dimensional space M_4	802	
	B.2	Integra	ation of the Forms	806	
		B.2.1	Three-dimensional space E_3	806	
		B.2.2	Beyond three-dimensional space	808	
C	Matl	Mathematical Notations			
D	Definition of Fields and Units				
E	Linear Operators and Their Matrices			819	
	Bibliography			823	
	Ind	ex		845	