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S U M M A R Y

In geophysical inversion, inferences of Earth’s properties from sparse data involve a trade-off

between model complexity and the spatial resolving power. A recent Markov chain Monte

Carlo (McMC) technique formalized by Green, the so-called trans-dimensional samplers,

allows us to sample between these trade-offs and to parsimoniously arbitrate between the

varying complexity of candidate models. Here we present a novel framework using trans-

dimensional sampling over tree structures. This new class of McMC sampler can be applied to

1-D, 2-D and 3-D Cartesian and spherical geometries. In addition, the basis functions used by

the algorithm are flexible and can include more advanced parametrizations such as wavelets,

both in Cartesian and Spherical geometries, to permit Bayesian multiscale analysis. This

new framework offers greater flexibility, performance and efficiency for geophysical imaging

problems than previous sampling algorithms. Thereby increasing the range of applications and

in particular allowing extension to trans-dimensional imaging in 3-D. Examples are presented

of its application to 2-D seismic and 3-D teleseismic tomography including estimation of

uncertainty.
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1 I N T RO D U C T I O N

Seismic tomography is the inference of the spatial distribution

of properties of the Earth’s interior using recorded seismograms.

The history of seismic tomography dates back nearly 40 yr to

the work of Aki (1977). Rapid increases in computing power

coupled with greater availability of data has provided fertile

ground for more advanced and effective inversion methods. For

recent review articles see Rawlinson & Sambridge (2003) and

Rawlinson et al. (2014).

In general, inversion methods fall into one of two categories:

those that produce a single optimal model given some parametriza-

tion and data fit criteria, for example, Thurber (1983), and those that

produce an ensemble of models (Mosegaard & Tarantola 1995). In

the first category, model estimation methods make use of optimiza-

tion techniques to minimize a combination of error norms. In the

second approach, an ensemble of trial models are generated, often

using probabilistic sampling methods such as Markov chain Monte

Carlo (McMC; Gamerman & Lopes 2006; Brooks et al. 2011). From

the ensemble, statistical inferences can be made and representative

single models extracted such as the ensemble mean, mode, or some

transform of the model parameters. Mosegaard & Tarantola (1995)

provides a comprehensive overview of this type of inversion.

In optimization for a single regularized solution to an inverse

problem, a number of parameters need to be tuned. Often these

involve choices to be made, for example, deciding on an under-

lying maximal grid resolution as well as damping and smoothing

parameters to prevent over fitting of the data. These choices are

subjective and while there are criteria for choosing the smoothing

and damping parameters such as the L-curve test (Hansen 1992),

these are not without their problems (Hanke 1996; Vogel 1996).

Additionally, smoothing and damping operations are often imposed

through a globally tuned parameter whose choice is a compromise

across the whole domain. This is particularly problematic in re-

gional or global seismic tomography where there is often highly

uneven coverage of a region of interest by seismic waves. In addi-

tion, uncertainty estimates based on a regularized single realization

of the inverse problem, necessarily reflect the form of damping and

smoothing imposed and can be overly optimistic.

Recently, computing power has advanced sufficiently to allow

Monte Carlo sampling approaches to be applied to seismic tomog-

raphy problems. With the introduction of Birth/Death Monte Carlo

(Geyer & Moller 1994) and the more general Reversible Jump

McMC (Green 1995; Denison et al. 2002), these sampling schemes

are able to make trans-dimensional steps between different model

parametrizations. This allows both the characteristic, for example,

basis function, and the number of unknowns to vary from step to

step of the inversion algorithm.

This is a flexible approach that results in a ‘parsimonious’ so-

lution to problems in that the model complexity is driven by the

data without the use of parameters that require tuning. These

trans-dimensional samplers, introduced to the geophysics commu-

nity by Malinverno (2002), have been successfully applied to a

number of geophysical inverse problems (Sambridge et al. 2006;
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Hopcroft et al. 2007; Bodin & Sambridge 2009; Piana Agostinetti &

Malinverno 2010; Minsley 2011; Dettmer et al. 2012; Iaffaldano

et al. 2014; Piana Agostinetti et al. 2015).

A common class of parametrization used in the trans-dimensional

solution of spatial problems are Voronoi cells built from a set of

nuclei (Okabe et al. 1992). By specifying the location of the nuclei

as well as the value (or values) of Earth properties within each cell,

a mobile Voronoi model can be used to represent Earth properties

spatially in 2-D (Bodin et al. 2012). In the first 3-D application we

are aware of, Piana Agostinetti et al. (2015) have recently extended

the Voronoi cell approach to local earthquake tomography problems.

These Voronoi cell parametrizations are grid free and locally adapt

to regions of increased heterogeneity tempered by the resolving

power of the data. Although the application of the trans-dimensional

Voronoi cell method is now well established for seismic imaging,

there are a number of short comings that hinder its application as

the number of data and complexity of the Earth model increases.

In ray-based seismic tomography, numerical integration along ray

paths requires the evaluation of the model at hundreds to thousands

of spatial points per observation. For each point along the ray, we

need to determine from the Voronoi cell parametrization the Earth

properties, for example, seismic wave speed, and this involves de-

termining in which cell the point resides. A naive algorithm would

simply find the nearest Voronoi nuclei by computing the distance

to every nuclei of the model and this results in an O(n) operation,

where n is the number of Voronoi cells (Sambridge & Gudmunds-

son 1998). In 2-D problems, we can use a Delaunay triangulation to

speed up the cell look up operation to an O(log n) operation. Even

with fast algorithms for incrementally maintaining the Delaunay

triangulation (Lawson 1977), the accounting cost of maintaining

the triangulation can be prohibitive for large problems.

A second feature of the Voronoi cell approach is that they do

not lend themselves well to representing a continuous field. In a

Voronoi cell parametrization, the Earth properties within each cell

are often represented with constant values, although in principle,

any order polynomial is possible. This means that each Earth model

consists of an irregular polygonal mesh with discontinuities, both

in the function and in its derivatives, at the interfaces between cells.

Typically, any single Earth model in the ensemble is rather crude

and implausible and it is only by averaging over many such crude

representations that it is possible to generate a continuous field. This

means that the Voronoi cell approach must utilize multiple indepen-

dent Markov chains or very large numbers of samples in a single

chain in order to produce a continuous field through averaging.

Use of Voronoi cells in 3-D imaging has two additional compli-

cations. The first is that there is no analogue of fast 2-D incremental

Delaunay calculation algorithms and so Voronoi cells must be deter-

mined from ‘scratch’ each time the mesh is updated, further adding

to the computational burden. The second is that the shape of Voronoi

cells in 3-D is particularly sensitive to the choice of spatial scaling

between lateral and radial directions. For example, Voronoi cells

built around nuclei at depth can easily protrude to the surface.

In this paper, we introduce a new class of parametrization for

trans-dimensional imaging problems which overcomes the limita-

tions of Voronoi cells while providing a general efficient frame-

work for dealing with 1-D, 2-D and 3-D problems in Cartesian or

spherical geometries. The new framework allows a great deal of

flexibility in terms of the choice of basis functions, including mul-

tiscale parametrizations such as wavelets and subdivision surfaces.

We show that with our new algorithm, we are able to make larger

scale 3-D tomographic problems practical using trans-dimensional

sampling for velocity model estimation with uncertainties.

2 R E P R E S E N TAT I O N O F G E O P H Y S I C A L

I M A G E S W I T H T R E E S

Before introducing the trans-dimensional framework for sampling

over trees, we show how the concept of trees can be used to rep-

resent a tomographic Earth model. There are many examples of

using hierarchical or multiresolution analyses of images in 2-D, for

example, the Laplacian pyramid (Burt & Adelson 1983) and the

wavelet transform (Mallat 1989). Broadly speaking, within each

of these schemes an image is subsampled to obtain a coarser but

more compact representation. Error terms are computed represent-

ing the difference between the subsampled and true image so that

with a combination of the subsampled image and error terms, we

can accurately reconstruct the original image. This process can be

repeated recursively on each subsampled image until the result is a

single pixel, representing the mean of the image, and a hierarchi-

cal set of error terms for each resolution scale. It is a property of

continuous tone images that individual pixels are often highly corre-

lated with their neighbours, and as a result, many of the error terms

are near zero. For this reason, such multiresolution image analysis

techniques have been used for image compression, for example, the

JPEG 2000 image compression standard (Unser & Blu 2003).

This hierarchy of a single mean value of an image through suc-

cessive levels of perturbative terms can naturally be represented by

a tree structure. Fig. 1(a) shows how a quaternary tree in which each

node has 4 child branches, spans from the single pixel representa-

tion of an average value of a field, through successive levels of local

perturbation terms. In this example, each node of the tree contains

a single parameter value. At the root of the tree, the highest level

in Fig. 1(a), this value represents the mean of the image and all

other descendant nodes represent a local deviation from that mean.

In this way, each tree level creates an image with a corresponding

spatial resolution and each child node adds detail by perturbing the

previous level at a finer spatial resolution. From this multiresolution

tree representation, we can construct arbitrary 2-D images which

can be used to represent, for example, the seismic wave speed or

slowness of a region of the Earth. This same principle, of spanning

the subdivision of grid with a tree, applies equally to 1-D, 2-D, 3-D

Cartesian geometries and equally to non-Cartesian geometries such

as spherical geometry (Samet 2006).

It is important to point out here that the tree needn’t completely

span the underlying 2-D grid as shown in the Fig. 1(a). An incom-

plete tree is shown in Fig. 1(b). The 2-D image from this tree is

constructed in the same way as the full tree with the parameter val-

ues of 0 at the missing nodes of the tree. This has the potential to

compress the model space, or the number of model parameters, by

locally adapting to structure or data coverage.

The use of adaptive mesh refinement has been used previously

in geophysical inversion, for example, Sambridge & Faletic (2003),

where a criterion based on the maximum spatial gradients in seismic

velocity perturbation was used to iteratively subdivide a tetrahedral

grid during the inversion. A similar approach was presented by

Plattner et al. (2012) for electrical resistivity tomography where a

multiscale wavelet parametrization was adaptively refined through

optimization.

Rather than a fixed criterion, we propose to sample over such

subdivision refinement choices to obtain posterior information on

where our data requires finer scale features. By itself, recast-

ing geophysical inverse problems within a tree structure offers

little advantage, but as we shall see it is highly suited to cou-

pling with a trans-dimensional algorithm within a fully Bayesian

framework.
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974 R. Hawkins and M. Sambridge

Figure 1. The Laplacian Pyramid subdivision showing how a quaternary tree can span from the coarsest resolution to the finest error terms. At the top level,

we have a single pixel representation of a 2-D domain, the root node of the tree, which is subdivided into four subpixels at the next level and so on. In (a), we

show the complete tree structure to the third level. In (b), we show how an incomplete quaternary tree can still be used to parametrize a 2-D Earth model and

how this can locally adapt to regions of localized heterogeneity. In both (a) and (b), the two models have the same number of parameters but represent very

different structure.

3 A G E N E R A L B AY E S I A N

T R A N S - D I M E N S I O NA L F R A M E W O R K

F O R T R E E S

In a Bayesian approach to inference, the solution we obtain is a nu-

merical estimate of the a posteriori probability distribution or pos-

terior (see Gelman et al. 2004 for a general overview and Mosegaard

& Tarantola 1995, Sambridge & Mosegaard 2002 for an overview

of Bayesian inference in a geophysical context). This is the proba-

bility density of the model space given the observed data, or written

mathematically, p(θ |d), where θ is our vector of model parameters

and d our vector of observations. In all but the simplest of problems,

this probability density function is approximated numerically using

McMC techniques and Bayes theorem (Bayes 1763), that is,

p(θ |d) =
p(θ )p(d|θ )

p(d)
. (1)

This states that the posterior probability density, p(θ |d), is equal

to the prior probability distribution, p(θ ), times the likelihood

p(d|θ ), which we will abbreviate to L(θ ), normalized by the ev-

idence, p(d). An McMC sampling approach can be applied to the

numerator of the right-hand side of eq. (1) to obtain an estimate

of the posterior probability distribution up to the normalizing con-

stant of the evidence, which is often difficult to compute explicitly

(Sambridge et al. 2006).

An McMC sampler requires the specification of the prior prob-

ability distribution, which represents a priori information we may

have on the distribution, or plausible range, of the model parame-

ters, and the likelihood which is a probabilistic measure of the fit of

the model to the data. An McMC sampler operates by starting from

some model at step i of θ i, then creating a new proposed model

θ ′
i using a proposal in the form of a reversible probability den-

sity function q(θ ′
i |θi ). The new model is accepted, that is, θi+1 = θ ′

i

or rejected, that is, θ i + 1 = θ i, based on an acceptance probability,

commonly the Metropolis–Hastings acceptance criterion (Metropo-

lis et al. 1953; Hastings 1970)

α(θ ′, θ ) = min

{

1,
p(θ ′)

p(θ )

L(θ ′)

L(θ )

q(θ | θ ′)

q(θ ′ | θ )

}

. (2)

This can be read as the prior ratio times the likelihood ratio times

the proposal ratio. We are not limited to a single proposal proba-

bility density function at every step, it is perfectly feasible to select

randomly from a set of proposal distributions. The Metropolis–

Hastings criteria satisfies the mathematical condition known as

‘detailed balance’ (Gamerman & Lopes 2006) which allows the

Markov chain to converge and correctly sample the target posterior

distribution.

It is common practice to remove some initial number of steps

from the final ensemble which are believed to be pre-converged or

‘burn-in’ samples. In most cases, the fact that we only obtain the

posterior probability distribution up to a normalizing constant is not

a problem as relative inferences are generally sufficient.

An extension to McMC samplers is the Birth/Death scheme of

Geyer & Moller (1994), generalized to the trans-dimensional frame-

work developed by Green (1995). In trans-dimensional samplers,

a proposal distribution is allowed to change the parametrization of

the model and dimension, that is, the size of the vector θ of model

parameters. A key benefit of allowing the sampling to jump between

dimensions is that the data dictates the model complexity resulting

in a parsimonious result (Malinverno 2002; Sambridge et al. 2006).

Additionally, we can obtain a posterior probability distribution on

the number of model parameters required by the data given the noise

rather than fixing this a priori.

The generalization of the Metropolis–Hastings acceptance crite-

ria to support trans-dimensional steps is

α(θ ′, θ ) = min

{

1,
p(θ ′)

p(θ )

L(θ ′)

L(θ )

q(θ | θ ′)

q(θ ′ | θ )
| J |

}

, (3)

where the additional term from eq. (2), |J |, is determinant of

the Jacobian that maintains detailed balance through variable
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transformations resulting from trans-dimensional steps. Expression

(3) may also be used if the dimension is unchanged, but the proposal

involves a step from one class of parametrization to another.

The complexity of the models generated from trans-dimensional

samplers is dependent on the level of noise applied, that is, in

general, the lower the noise, the higher the complexity. For this

reason, in the case where the noise on the data us unknown, it

is advantageous to use a hierarchical Bayesian step which allows

noise parameters to be inverted for as part of the sampling of model

parameters as shown by Bodin et al. (2012).

A birth/death trans-dimensional sampler will consist of three

classes of proposal, a birth proposal where the model vector θ will

increase in size, a death proposal where some model parameters are

removed, and a value proposal where the model vector remains the

same size, but one or more values will be changed (i.e. the normal

class of proposal in fixed dimension McMC samplers).

Our aim here is to apply the trans-dimensional framework to the

McMC sampling of tree structures that we can use to represent geo-

physical models of the Earths internal structure. In this framework,

a birth proposal will consist of adding one or more new nodes to

the tree, a death proposal will consist of removing one or more

nodes from the tree, and a value proposal will perturb one or more

values located within the existing tree. To our knowledge no gen-

eral treatment of trans-dimensional sampling over tree structures

has previously been presented. The only work we are aware of is

Denison et al. (1998) which is limited to binary classification trees.

Here we apply the trans-dimensional formalism of Green (1995) to

general trees with known structure.

We define a ‘general’ tree as one in which the maximum number

of child nodes, of any node, is fixed. With this restriction a prior

can be computed. We have yet to encounter a situation where this

restriction limits the application of this new framework. In general,

the structure of the tree will be restricted by the geometry of the

physical application. For example, in the 2-D image example earlier,

each pixel is subdivided into four subpixels and this is the upper

limit on the number of child nodes. For a 3-D volume, each voxel

will subdivide into eight subvoxels which gives an upper limit on

the number of child nodes of 8.

In the following subsections, we describe the components of the

acceptance criteria and introduce the full general expressions for

each type of model perturbation.

3.1 The model

In the earlier 2-D example, the tree structure ‘template’ consists of

the complete spanning quaternary tree and two possible tree models

conforming to this template are shown in Fig. 1. A simpler example

of such a tree model in a binary tree template appears in Fig. 2

where the template is shown in outline and an example tree model,

consisting of active nodes and value(s) at each node, is shown in

solid shading.

Each active node in the tree model has one or more associated

values, so given a number of nodes, k, our model space vector would

be

θ = 〈Tk, v1, . . . , vk〉 , (4)

where Tk represents the arrangement of the k nodes within the

template tree structure and v is the vector of parameters at each

node (which may be a single parameter). If we have a unique counter

for each tree node, we can represent Tk as a set of indices, that is,

Tk = 〈t1, . . . , tk〉.

Figure 2. The first four levels of a binary tree template shown as outline

with an individual tree model highlighted with solid lines.

3.2 The prior

Given the parametrization in eq. (4), we can write the prior on

the model in general terms as a product of conditional probability

distribution functions (PDFs),

p(θ ) =
k

∏

i=1

p(vi | Tk, k)p(Tk |k)p(k). (5)

Stated simply, the prior is a combination of the probability on the

number of nodes in the tree, the probability of the arrangement of

the tree within its template and the parameter values at each of the

nodes. This prior specification reasonably assumes that each term

is independent which results in a separable prior PDF.

3.2.1 Prior on the number of nodes

The prior for the number of nodes is a choice that will be dependent

on how the model is mapped from the tree structure. Here, we leave

the prior as a general expression, p(k), but highlight two common

choices. First, a uniform prior

p(k) =
1

kmax − kmin + 1
, (6)

where kmax and kmin (usually 1) are chosen as the upper and lower

bounds on the number of nodes. An alternative is to use a Jeffreys’

prior (Jeffreys 1939; Jaynes 2003), that is,

p(k) ∝

{

1
k

k > 0

0 otherwise
. (7)

This prior is improper because the limit of the integral of p(k) is

unbounded as k goes to infinity. Nevertheless, a useful feature is that

there is no imposed restriction on the number of nodes unlike in the

uniform prior case (see page 238 of Jeffreys 1939). In experiments

to be described here, the posterior PDF of k with either prior is

similar, which shows that it is primarily the data which constrains

the dimension of the model.

3.2.2 Prior on homogeneous unrestricted trees

The prior on the arrangement of the nodes within the tree template,

p(Tk |k), is the most complicated component of this algorithm and is

derived here for our general tree parametrization. The prior we have

used is a uniform prior on the structure of the tree, by this we mean

that given a number of nodes, k, any arrangement of the nodes into a
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valid tree within its template has equal probability to any other. This

is the least informative prior on a tree structure and also the most

tractable to compute for the acceptance criteria. The consequences

of this prior are that a model that has an even distribution of detail

across the region is equally as likely as a model that has localized

fine detail. This is illustrated in Fig. 1 where both models shown

have the same number of active tree nodes. In this prior, both of

these models are equally likely.

This reduces computing the prior on the structure of the tree

into a problem of computing the number of valid tree arrangements

possible given a tree structure template and the number of active

nodes, that is,

p(Tk | k) =
1

Nk

, (8)

where Nk is the number of valid trees with k nodes. To evaluate

Nk , we first consider unrestricted homogeneous trees, which we

define as those where each node has the same upper limit on the

number of child nodes. Binary and quaternary trees fall into this

class. By unrestricted we mean that there are no other constraints on

the structure of the tree such as a maximum height and therefore that

the tree can grow infinitely large. For this class of trees, there are

analytical expressions for computing the number of arrangements,

Nk . For binary trees, it is known that the number of arrangements

follows the sequence of Catalan numbers (Catalan 1844; Hilton &

Pedersen 1991; Knuth 2004), that is,

Nk =
1

k + 1

(

2k

k

)

, (9)

where
(

2k

k

)

is the standard binomial coefficient. This result has been

generalized by Aval (2008) to trees with a maximum number of n

children

Nk =
1

(n − 1)k + 1

(

nk

k

)

. (10)

When n = 2, this reduces to eq. (9). This expression allows closed

form expressions for the prior for homogeneous unrestricted trees.

However, this only represents a small subclass of possible trees and

we need to extend this further.

3.2.3 Restricted and heterogeneous trees and their priors

The first restriction on a tree template is an upper limit on height. As

seen in the earlier 2-D example, the height of the tree corresponds

to the level of subdivision of the region. As such, a restriction on

the height of the tree imposes a strict upper limit on the minimum

resolution scale of the model. In addition, it also constrains the

computational complexity of the problem as we no longer need to

deal with arbitrarily large trees.

A second variant to be considered is a heterogeneous tree which

contains nodes with varying upper limits on the number of child

nodes. In later examples, where we use wavelet parametrizations

in 2-D, we will make use of heterogeneous trees where the root

of the tree has three possible child nodes, and all subsequent nodes

have four possible offspring. Analytic expressions for the number of

arrangements of a tree given the number of nodes are only known for

trees where each node has the same maximum number of possible

child nodes. For both the restricted height and heterogeneous trees,

we need to calculate number of arrangements given k.

The Catalan sequence for binary trees can be derived from a re-

currence relationship using generating functions (see Eq. 2.5.10 of

Wilf 1990). The general solution to both these problems is to com-

pute the number of arrangements from a recurrence relationship.

Starting from the recurrence relationship for binary trees,

Nk =

⎧

⎨

⎩

1 k ≤ 0
∑k−1

i=0 NiNk−i−1 otherwise
, (11)

where k is the number of tree nodes, we recognize that we have a

simple integer partitioning problem (Stanley 1997) and the modifi-

cation of eq. (11) from a binary tree to a ternary tree requires the

addition of a third partitioning of the k nodes among the three child

branches. To include restrictions on the height of the tree, we simply

add the relevant terminating conditions, for example, rewriting the

equation

Nk,h =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 h = 0

1 k ≤ 0
∑k−1

i=0 Ni,h−1Nk−i−1,h−1 otherwise

. (12)

Further details of the recurrence relationships and our algorithm

for computing them in an efficient fashion is outlined in Appendix A.

From here on, we assume that Nk,h is known from a recurrence

relationship like eq. (12) and that the prior on the structure of the

tree can be calculated as the inverse of the number of arrangements

of trees given a number of nodes, that is,

p(Tk | k, h) =
1

Nk,h

, (13)

where h is a maximum height restriction.

3.2.4 Prior on each parameter value

The prior on the Earth model parameters at each node of the tree

will depend the particular basis functions used. Again this prior

is often a choice and we briefly mention some alternatives. The

simplest prior is a uniform prior which constrains the parameter

values to be within an upper and lower bound. It has been shown

that the distribution of wavelet coefficients for continuous images

follows a generalized Gaussian distribution (Antonini et al. 1990,

1992) suggesting that a generalized Gaussian distribution may be

a suitable prior for wavelet based parametrizations. For Bayesian

approaches to wavelet based Compressive Sensing, ‘spike and slab’

priors have been used (Ishwaran & Rao 2005; He & Carin 2009).

Any of these choices are possible and we leave the prior on the

Earth model parameters at each active tree node unspecified and

simply write p(vi |Tk, k). In the case of vi being of dimension m,

this becomes

p(vi |Tk, k) =
m

∏

j=1

p(vi, j |Tk, k), (14)

where p(vi, j |Tk, k) is the prior on the jth component of the ith tree

node.

3.2.5 Prior ratios

For each class of proposal, that is, birth, death and change value,

we can write down the prior ratios. For a simple change in the jth

component of the parameter value in the ith tree node, the structure

of the tree does not alter and the prior ratio is

p(θ ′)

p(θ )
=

p(v′
i, j |Tk, k)

p(vi, j |Tk, k)
. (15)
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For uniform priors, p(v′
i, j |Tk, k) = p(vi, j |Tk, k) the prior ratio is

unity.

For a birth proposal, the structure of the tree changes due to the

addition of a new node and the prior of the values cancels except

for those of the new node, hence the prior ratio is

p(θ ′)

p(θ )
=

p(k + 1)p(Tk+1)p(vi |Tk, k)

p(k)p(Tk)
. (16)

If the prior on k, the number of nodes, is uniform then p(k+1)

p(k)

will cancel. Analytical expressions for the prior ratio on the struc-

ture of the tree are generally not available except for some simple

unrestricted trees of which we give examples in following sections.

For the death proposal, the prior ratio is

p(θ ′)

p(θ )
=

p(k − 1)p(Tk−1)

p(k)p(Tk)p(vi |Tk, k)
. (17)

3.3 The likelihood

It is assumed that the model vector can be mapped into the same

data space as our vector of observations, d, so that a standard misfit

can be computed as

�(θ ) = (G(θ ) − d)T C−1
e (G(θ ) − d) , (18)

where G is the operator that represents the predictions of data ob-

servations from a model and Ce is our data error covariance matrix

which assumes errors follow a Gaussian distribution. We can then

use the standard normal error distribution for computing the likeli-

hood

p(d | θ ) =
1

√

(2π )n |Ce|
exp

{

−
�(θ )

2

}

, (19)

where n is the number of observations. The operator G can take

many forms, in Fig. 1 we showed two examples of how a quaternary

tree can be mapped into a 2-D image which could be compared to

measured data. In later examples, we similarly show how trees with

the node values representing wavelet coefficients can be mapped

into 2-D and 3-D images.

3.4 The proposals

For the proposal distribution, q(θ ′|θ ), we have three different classes

of proposal: birth, death and change parameter value. Throughout

these explanations we use the prime superscript to represent pro-

posed quantities, for example, θ ′ is a proposed model generated

from the current model, θ , via proposal distribution q(θ ′|θ ).

To aid the explanation of the operation of these proposal classes,

we introduce three sets of nodes within a general tree structure. The

first set is simply the set of all currently active tree nodes which we

label Sv . Note that Sv is always non-empty because it will always

have at least the root of the tree as an element. The second set, which

we label Sd , is the set of all nodes in the tree that have no active child

nodes. It is from this set that we choose nodes to remove from the

tree during the death proposal of the algorithm. The third set, Sb, is

the set of empty nodes in the tree structure that are direct children

of the nodes in set Sd . This set represents possible locations for

adding new tree nodes during the birth proposal of the algorithm. It

should be noted that the set Sd is a subset of Sv , whereas the set Sb

is disjoint of the other 2 sets.

An example showing each set for a binary tree can be seen in

Fig. 3 with the nodes of each set shaded with a different colour.

Figure 3. The first five levels of a binary tree template are shown in outline

with a representative individual tree model drawn with solid lines. The nodes

shaded in blue correspond to nodes in the current tree model and are members

of the set Sv , or the set of nodes that can be perturbed during a change value

proposal. The nodes shaded in green are members of the set Sd and represent

nodes that can be removed by the next death proposal. Conversely, the nodes

shaded in red are members of the set Sb that contains inactive nodes that

could be added to the tree model by the next birth proposal. Although we

have shown only a binary tree here, these sets can apply equally to any tree

structure.

3.4.1 Value proposals

The first and simplest proposal is the change value proposal. This

perturbation updates the value of an existing node of the tree. If we

take the general case of selecting the jth embedded parameter at the

ith node in the tree, then the forward proposal probability density

becomes

q(θ ′ | θ ) = q(�vi, j | i, j)q( j | i)q(i | Sv). (20)

The last term of the above equation represents the probability of

choosing the ith node given Sv . Generally, the choice of which node

to perturb for a value proposal will be a uniform one and so we

have

q(i | Sv) =
1

|Sv|
, (21)

where |Sv| is the number of elements in Sv .

The second term represents the probability of selecting the jth

component of the vector of value(s) at the ith tree node. For cases

where there is only one value at each node this term disappears.

The first term is the actual perturbation of the Earth model pa-

rameter value itself. A common approach to perturbing values in

McMC samplers is to draw from a symmetric distribution centred

about the current value with a pre-defined width which is tuned to

achieve a desired acceptance rate. A common choice is the Normal

distribution and in this case the proposal probability will be

q(�vi, j | i, j) =
1

√
2πσi, j

exp

{

−
�v2

i, j

2σ 2
i, j

}

, (22)

where σ i, j is the standard deviation of the normal distribution for

the perturbation of the parameter. Using a proposal of this form,

rather than sampling from the prior, can cause proposed values to

be outside prior bounds, in which case the proposal is rejected.

The standard deviation may be the same for all tree nodes or

set separately to achieve good acceptance rates. It is also straight

forward to use adaptive schemes such as the Single Component
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Adaptive Monte Carlo approach of Haario et al. (2005) and the

adaptive approach of Atchade & Rosenthal (2005).

Regardless of how the standard deviation or width is set, in all

cases the new value is generated from a symmetrically distributed

random variable. This results in the reverse proposal probability

density equal to that of the forward, so the proposal ratio for chang-

ing values is unity

q(θ | θ ′)

q(θ ′ | θ )
= 1. (23)

3.4.2 Birth proposals

The birth proposal probability density may be written

q(θ ′ | θ ) = q(vi | i)q(i | Sb). (24)

Similarly to the change value proposal, the last term represents

the probability of choosing where to place the new node. Unlike in

the case of the change value proposal, in some cases there is merit

in preferentially choosing to birth nodes closer to the root of the

tree. We have performed experiments with using weighted proposal

densities of the form

q(i | Sb) =

{

D(i)α
∑

j∈Sb
D( j)α

|Sb| > 0

0 otherwise
, (25)

where D(i) is the depth or height of node i and α is the weighting

factor. Negative values of α preferentially select lower height nodes

and, conversely, positive values preferentially select higher height

nodes, whereas a 0 value results in a uniform choice of the birth

node. In our experiments with a weighted proposal, we obtained

on average poorer results than simply using a uniform proposal to

select the position of the new node, so we prefer a simpler uniform

proposal

q(i | Sb) =

{

1
|Sb | |Sb| > 0

0 otherwise
. (26)

The case for the condition when |Sb| = 0 can only occur when

there is some restriction on the tree structure template on the total

number of nodes in the tree. An example of this would be a tree

with a maximum height.

The first term of the proposal probability density in eq. (24)

reflects how the new parameters are chosen for the new tree node.

The simplest method of performing this is to sample the new values

from the prior, that is,

q(vi | i) = p(vi |Tk, k). (27)

Although this is an ‘unfocused’ proposal, birthing from the prior

has been shown to result in good mixing by Dosso et al. (2014). It

also simplifies the calculation of the acceptance terms as the prior

probability density in the proposal cancels with the prior ratio in

the full acceptance expression.

The probability density for the reverse step can be written

q(θ | θ ′) = q(i | S ′
d ). (28)

This states that the reverse proposal is simply the probability of

selecting the newly added node i from the set S ′
d . S ′

d is the set of

nodes that may be deleted after the proposed birth.

With uniform selection from the two sets involved and sampling

from the prior for the new values, we obtain a general expression

for the proposal ratio

q(θ | θ ′)

q(θ ′ | θ )
=

|Sb|
|S ′

d |p(vi |Tk, k)
. (29)

3.4.3 Death proposals

The proposal probability distribution is essentially the reverse of

the birth proposal, so again, for a uniform selection of the node to

remove, and sampling from the prior on the reverse step, we can

write the proposal ratio for a death step as

q(θ | θ ′)

q(θ ′ | θ )
=

|Sd |p(vi |Tk, k)

|S ′
b|

, (30)

where the set S ′
b represents the set of available points to add nodes

to the tree after the selected node is removed.

3.4.4 Jacobian

The last component of the acceptance criteria is the Jacobian. For the

change value proposal, the dimension of the model, θ , is constant.

Since we only perturb one value at a time using a simple function

of a random variable, the Jacobian will always be equal to 1 in this

case.

For a birth proposal, our model space vector can be written as

θ = 〈(t1, v1), . . . , (tk, vk)〉 , (31)

where we use unique indices t1. . . tk to define the currently active

nodes of the tree and hence the model vector becomes a set of tuples

consisting of the node index and the vector of values associated with

that node. We can then write the transform, which must be bijective,

for a birth step as

〈(t1, v1), . . . , (tk, vk), (u, w)〉
⇐⇒

〈

(t ′
1, v1)′, . . . , (t ′

k, v′
k), (tk+1, vk+1))

〉

, (32)

where u is a random variable used to choose the unique index of the

location of the new node in the tree and w is the vector of random

variables used to generate the values for the new node. To build the

Jacobian we construct a matrix of partial derivatives of the functions

used to map values from one model space to the other. For existing

nodes in a birth step no change is required and

ti , vi = t ′
i , v′

i ∀i ∈ 1 . . . k. (33)

Therefore, the partial derivatives for these will be 1. The propos-

als as described in previous sections for the choice of the location

of the new node will always mean that tk+1 = u and likewise this

will result in a partial derivative of 1.

In the case where we sample from the prior for the values in the

new node, we will similarly have vk+1 = w which will result in an

identity matrix for the Jacobian and therefore 1 for the determinant.

This is the scenario that we have generally used but we would like

to highlight a potential extension that results in some modification

to the Jacobian.

The application of the tree structure suggests a multiresolution

hierarchy and as such we expect there to be some relationship be-

tween either the parent node and the newly added child node or

a newly added child node and its siblings. For example, we may
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expect that the values at the child will be less than that of the parent

so we may wish to choose random values scaled by those of the

parent. Alternatively, we may expect the mean of the child nodes to

be near zero, and so if there are existing child nodes then we scale

and offset the new values according to the values of the siblings. In

either case, we find that the mapping takes the form

vk+1 = f (w, v j ), (34)

where f is some function of both the random variables and one or

more of the existing values of other tree nodes (e.g. the parent or

other sibling nodes). This will result in off-diagonal values in the

Jacobian matrix. Some choices of the function, f, may also result in

non-unity values along the diagonal of the Jacobian and care must

be taken to correctly compute the Jacobian scaling term.

3.4.5 The general acceptance criteria

We are now in a position to write down the general acceptance crite-

ria for a trans-dimensional sampler on tree structures by combining

the expressions from the previous sections. For a value proposal,

the acceptance criterion is

α(θ ′ | θ ) = min

{

1,
p(v′

i, j |Tk, k)

p(vi, j |Tk, k)

L(θ ′)

L(θ )

}

. (35)

When using a uniform prior, p(v′
i, j |Tk, k) = p(vi, j |Tk, k), and the

above expression reduces to the likelihood ratio.

For a birth step, with the values of the new node sampled from

the prior, the acceptance criterion is

α(θ ′ | θ ) = min

{

1,
p(k + 1)p(Tk+1)

p(k)p(Tk)

L(θ ′)

L(θ )

|Sb|
|S ′

d |

}

. (36)

And likewise for a death step, the general acceptance criterion

is

α(θ ′ | θ ) = min

{

1,
p(k − 1)p(Tk−1)

p(k)p(Tk)

L(θ ′)

L(θ )

|Sd |
|S ′

b|

}

. (37)

When using a uniform prior on the number of nodes we have

p(k) = p(k + 1) = p(k − 1) and these terms cancel from the birth

and death acceptance criteria.

These are conceptually simple criteria for sampling over general

tree structures, however, a practical difficulty is in efficiently com-

puting the tree structure prior ratios
p(Tk+1)

p(Tk )
and

p(Tk−1)

p(Tk )
for which we

describe a fast algorithm in Appendix A.

It is generally acknowledged that the construction of acceptance

criteria for trans-dimensional samplers is non-trivial. A small er-

ror in these criteria can easily result in a sampler that superficially

appears to be working but will nonetheless bias the results. In Ap-

pendix B, we show some of the tests performed to validate the

correctness of the new framework.

3.4.6 A simple synthetic regression test

To give a simple example of the application of this general frame-

work, we implemented a simulated 1-D regression problem. This

uses a binary tree template and a box car basis function of vary-

ing width and location at each node of the tree. This is the 1-D

equivalent of the parametrization shown in Fig. 1. Given a boxcar

B(x)i, j =

{

1 2−i j ≤ x < 2−i ( j + 1)

0 otherwise
, (38)

Figure 4. In a binary tree template, we can associate a boxcar basis function

with each tree node. In the figure above, we show the boxcar basis functions

graphically embedded in a binary tree structure. Along each row or at

each height of the tree, the basis functions are orthogonal to each other.

Conversely, from any parent node, the two child node basis functions are

bisecting subdividers of the parents basis function. By storing scaling terms

at each node of the tree, Si, j, we can construct a 1-D function from the tree

expressed as the sum of scaled versions of the basis functions using eq. (39).

where i represents its width and j its offset, we can construct a

binary tree template containing coefficients, Si, j, at each node. The

1-D regression function to be estimated is then constructed from

g(x) =
imax
∑

i=0

2i −1
∑

j=0

Si, j B(x)i, j . (39)

The i coordinate maps to the height in the tree and j runs hor-

izontally starting at 0 for each row. This is shown graphically in

Fig. 4.

To verify that we can recover information from noisy data, we

used this binary tree template with boxcar basis functions to invert

data samples from a synthetic step function with added Gaussian

noise. The true model is shown in Fig. 5(a) together with the data

samples which are irregularly sampled to create areas of sparse

coverage.

A single Markov chain was run with 1 million steps with the first

500 000 samples discarded. We set the probabilities of the birth,

death and change value proposals as p(birth) = p(death) = 0.25

and p(changevalue) = 0.5. The choice of these probabilities is ar-

bitrary except that p(birth) must equal p(death) and that they sum

to one. In principle, these could be tuned for better performance in

larger more complex problems, but for this simple problem this is

unnecessary. The prior on the coefficients at each node was set to

uniform between ±1, and the change value proposals were normally

distributed with standard deviation of 0.1. The initial model was set

to have one node (the root of the tree) with its initial value sampled

from the prior.

We show the mean result (solid line) in Fig. 5(b) compared to

the true model (dotted line). The recovery is accurate and addi-

tionally we have not over fit the data and introduced spurious arte-

facts, even in regions of poor data coverage. The variance obtained

from the posterior is also low which is expected in this case as our

parametrization can perfectly represent the true model.

Fig. 5(c) shows the posterior histogram on the number of tree

nodes used to represent the data. The modal number of tree nodes is

six which matches the true model. It is interesting to note that over

the course of the sampling, the entire prior range of the number of

tree nodes has been sampled, as evidenced by the small number of
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980 R. Hawkins and M. Sambridge

Figure 5. Here we show a 1-D regression experiment using unrestricted binary trees with boxcar basis functions. The synthetic data are shown in (a) which

consists of sparsely located data points shown with crosses and the underlying true model is shown with a solid line. The recovered model is shown in (b) with

a solid line compared to the true model represented with a dotted line. The shaded region represents ±3 times the point estimate of the standard deviation from

the ensemble models. In (c), we show the posterior probability density (PPD) of k, the number of nodes of the tree which has a modal value at 6. In (d), we

show the PPD of k zoomed in at the higher values of k highlighted with the box in (c) to show that the posterior has sampled across the entire range of the prior.

counts at 50 nodes, shown enlarged in Fig. 5(d), even though the

Markov chain is initiated at k = 1 nodes.

This simple tests lend confidence that the algorithm and accep-

tance criteria of our general framework are correct.

4 A P P L I C AT I O N T O 2 - D A M B I E N T

N O I S E T O M O G R A P H Y

Ambient Noise Tomography is a technique of obtaining near sur-

face structure information from correlation of noise measurements

between spatially distributed receiver stations, introduced to the

seismological field by Shapiro & Campillo (2004) (see also review

articles by Larose et al. 2006; Snieder & Larose 2013).

Trans-dimensional traveltime tomography using a Voronoi cell

parametrization was introduced by Bodin & Sambridge (2009) and

has been successfully used for inversion of ambient noise mea-

surements for group velocity structure in several regional studies,

for example, Young et al. (2011), Pilia et al. (2015), and Saygin

et al. (2015). In the following sections, we show how this problem

can be solved with our new trans-dimensional tree algorithm using

wavelets as basis functions.

4.1 A tree-structured wavelet parametrization

Wavelet analysis may be used to decompose bounded signals in both

time and frequency at multiple scales. This is in contrast to Fourier

analysis which decomposes signals by frequency only (for an in-

troduction to wavelets see Daubechies 1992 and Mallat 1999). The

fast discrete wavelet transform (DWT), following the multiresolu-

tion wavelet transform of Mallat (1989), has been used in a variety of

image based problems, notably image compression. Wavelet bases

have been previously used in several studies for resolving seismic

tomography at various scales, for example, Chiao & Kuo (2001),

Simons et al. (2011), Chevrot et al. (2012), Charlety et al. (2013)

and Fang & Zhang (2014).

The DWT in Cartesian domains has a natural multiscale hierarchy

that can be traversed with a tree structure. In image compression, this

has been utilized by Shapiro (1993) and Said & Pearlman (1996). In
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Geophysical imaging using trans-dimensional trees 981

Figure 6. In (a), we show a simple 4 × 4 image in the lowest panel and two successive wavelet transforms of this image in the panels above. The first forward

wavelet transform results in 2 × 2 lower resolution approximation of the input image and a set of wavelet coefficients (shown in darker shade). The next step

performs the forward wavelet transform on the 2 × 2 image to obtain a 1 pixel approximation and 3 wavelet coefficients. With this 1 pixel approximation and

the 3 plus 12 wavelet coefficients, we can recover the original 4 × 4 pixel image using the inverse wavelet transform. In (b), we show the tree structure that

spans the 1 pixel approximation and wavelet coefficients of a 4 × 4 square image. Each level of decomposition is shaded a progressively lighter shade of grey

and note how each branching of the tree coincides with the next wavelet decomposition level. In (c), we show how a variation of the tree structure can equally

apply to rectangular regions by beginning from two top level coefficients.

Compressive Sensing the same tree structure has been used for 1-D

signal recovery by La & Do (2005) and 2-D image reconstruction

by He et al. (2010).

In Fig. 6(a), we show the progressive decomposition of a small

4 × 4 pixel image (bottom) by a wavelet transform. As can be

seen, at each step the image is reduced by half in each dimension.

The wavelet based tree structure of this wavelet decomposition

is illustrated in Fig. 6(b). The progressively shaded regions indi-

cate each level of wavelet decomposition with the darkest top left

corner representing the scaling coefficient of the wavelet decom-

position at the coarsest level which also corresponds to the root of

our tree.

The tree has three children from the root node, and four children

from every other node with the exception of the last nodes repre-

senting the finest level of detail which have no children. This is the

case for a region in which the width and height are equal. For rectan-

gular regions, a tree can be constructed by treating the initial scaling

coefficients of a wavelet decomposition of a rectangular region as

a 2-D subdivision grid. An example is seen in Fig. 6(c). In the fol-

lowing examples we use square images for simplicity, however, the

only limitation when working with wavelets and this framework is

that each image dimension must be a power of two.

At the root of the tree, the parameter value represents the scaling

coefficient from a wavelet decomposition of the tomographic image.
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982 R. Hawkins and M. Sambridge

Figure 7. The synthetic models used in our tests is a smooth (cosine) checkerboard with seismic velocities between 2.5 and 3.5 km s−1. We generate 1000

random ray paths through the region from which we integrate traveltimes to obtain our synthetic observations to which we add Gaussian noise.

The parameter values of the remaining tree nodes represent the

hierarchy of wavelet coefficients. In contrast to the earlier 2-D image

example, where values at the tree nodes are directly summed into

an output image, we reconstruct an image from these coefficients

by using the inverse wavelet transform (Mallat 1999).

4.2 The synthetic model and test procedure

To demonstrate the new trans-dimensional tree algorithm, we com-

pare it to the Voronoi parametrization in some synthetic checker-

board tests with 1000 fixed ray paths. The ray paths remain fixed

during the sampling to allow a direct comparison between the var-

ious parametrizations, however, there is no impediment in the new

method that prevents either ray path updates at every step for a fully

non-linear inversion (Galetti et al. 2015) or periodic updates for an

iterative non-linear scheme (Bodin & Sambridge 2009).

The true model and the ray coverage are shown in Fig. 7. The

region of the test is set to a square bounded at ±10 degrees lon-

gitude and latitude. The model is a smooth (cosine) checkerboard,

we also show results for a discontinuous (boxcar) checkerboard in

Appendix C. The observed traveltimes are computed by integrating

along each path and Gaussian noise is added with a standard devia-

tion of 5 s which corresponds to approximately a 2.5 per cent error

on the mean traveltime.

For the wavelet parametrization, we repeat the exercise with three

different wavelet bases. These are the Haar wavelet (Haar 1910),

the Daubechies 6-tap wavelet (Daubechies 1988) and the Cohen-

Daubechies-Feauveau 9/7 wavelet (Cohen et al. 1992, see table 6.2)

as used in the JPEG-2000 image compression standard (Usevitch

2001). The choice of these wavelet bases is designed to give a

representative selection of available wavelets with varying degrees

of smoothness.

We have endeavoured to perform the tests under comparable

conditions. To that end, 64 independent Markov chains are used in

each case with 10 million steps. At an interval of 1 million steps,

we restart each chain by randomly choosing a new starting model

from current population with probability proportional to the mean

likelihood of each chain. This approach, detailed by Dettmer et al.

(2011), accelerates convergence to sampling the high-probability

region of the posterior PDF and prevents individual chains from

becoming stuck in local modes.

For the Voronoi case, all chains are started with a single cell

corresponding to a tree with a single root node. We use ‘birth

from the prior’ for both the Voronoi and Wavelet parametrization

in the birth and death steps. For change value proposals, we use

fixed Gaussian perturbations of the cell values/wavelet coefficients

where we have reasonably tuned these to obtain acceptance rates of

approximately 20 to 40 per cent.

The prior on the number of parameters, p(k), is set to be uniform

between 1 and 5000 parameters (eq. 6). In the Voronoi parametriza-

tion, we set a uniform prior on the wave speed between 2.0 and

4.0 km s−1 which encompasses the true range of 2.5 and 3.5 km s−1.

For the Wavelet parametrization, the prior specification is compli-

cated by the fact that the range of values of the coefficients can vary

by several orders of magnitude, that is, from the coarsest to finest
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Figure 8. The mean of the ensembles obtained for the four different parametrizations. In each plot, we also show the uncertainties along longitudinal and

latitudinal transects indicated by the dashed lines. These show the 95 per cent credible interval as a grey shaded region with the true model overplotted with

black and white dashes.

resolution. This means that it is sensible to set a different uniform

prior for each level of wavelet decomposition with the prior bounds

determined by examining likely velocity variations. This approach

suffices for these simulation tests, but a more advanced scheme such

as that of Lochbühler et al. (2015), would also be possible.

4.3 Ensemble mean and credible intervals

We now present the results of these simulations to compare the

two approaches. First, the mean of the ensembles across all chains

is shown in Fig. 8. Subjectively, the CDF 9/7 and Daubechies 6

wavelets have recovered the smooth model better. The Haar wavelet
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984 R. Hawkins and M. Sambridge

has performed poorly while the Voronoi parametrization reasonably

recovered the broad pattern of the model but introduced polygonal

artefacts.

In addition to the mean of the ensemble, we can extract point

wise 95 per cent credible intervals. In Fig. 8, we have also plotted

the 95 per cent credible interval along transects indicated by the

dashed line through the ensemble means. The credible interval is

shown as a shaded grey range and the true model is shown with a

dashed line. The two transects are chosen in this example so that

the longitudinal transect samples along peaks and troughs while the

latitudinal transect samples along a constant velocity. From Figs 8(a)

and (b), we can see that the CDF 9/7 and Daubechies 6 wavelets

have low uncertainties, a characteristic of model parametrizations

suited to the underlying data. Contrasting this we can see that the

magnitude of the uncertainties for the Haar wavelet and the Voronoi

cell are significantly higher. These results highlight the point that

the choice of parametrization is important both to the recovery and,

more importantly, to the uncertainties recovered.

4.4 Number of model parameters

The number of parameters (coefficients in the trans-dimensional tree

based wavelet parametrization and cells in the Voronoi parametriza-

tion) gives a simple measure of model complexity. Direct com-

parison between the two parametrizations is a little difficult be-

cause in the Voronoi parametrization each cell has three parameters,

the cell value and its (x, y) coordinates. For the trans-dimensional

tree wavelet parametrization, the most reasonable approach is to

assume the model is written as in eq. (31) where each parameter

has a coefficient value and a unique tree node identifier as variables.

This would mean that we should multiply the number of Voronoi

cells by 3 and the number of wavelet coefficients by 2 to obtain a

fair comparison. In the Fig. 9, we show the histograms of the raw

number of cells/wavelet coefficients.

For the wavelet parametrizations, the number of coefficients is

higher than that of the Voronoi cell parametrization, particularly

for the Haar wavelet parametrization. This may suggest that the

wavelet parametrizations is over-parametrized, however, as shown

in Section 4.7 this is not necessarily the case.

4.5 Computational time

We recorded the compute time for the last 1 million steps for each

independent chain and averaged these to obtain an estimate of the

relative computational cost of each of the parametrizations. The

computed times are shown in Table 1.

Since the Voronoi parametrization is grid free, comparing the

cost of integrating traveltimes along ray paths will depend on the

sampling rate along the ray paths. To ensure equivalency, as much

as possible, of the two methods in terms of forward model accuracy,

the ray paths were sampled at approximately the upper limit of grid

resolution used by the wavelet parametrization. As a 128 × 128 grid

was used in a 20 × 20 degree region, this sampling spacing was

approximately 0.16 degrees.

In the tree-based wavelet parametrization, the forward model

cost is dominated by the inverse wavelet transform (Mallat 1999).

As a general rule, a smoother wavelet will require more compu-

tational effort in the transform. For the Daubechies 6 wavelet, we

used the standard DWT whereas both the Haar and CDF 9/7 used

the Fast Lifted Wavelet transform (Sweldens 1996; Daubechies &

Sweldens 1998). This explains the relatively poor performance of

the Daubechies 6 parametrization. It is possible to use a lifted trans-

form version of the Daubechies 6 wavelet in which case the expected

time for this transform would lie between that of the Haar and the

CDF 9/7 transform. However, the number of active coefficients does

factor into the computational time as evidenced by the fact that the

Haar computational time is greater than that of the CDF 9/7 trans-

form (this is reversed in other examples presented in Appendix C,

where more coefficients are needed by the CDF 9/7 parametriza-

tion).

Taking the median of the tree-based wavelet parametrization

compute times, we can see that for these examples, the Voronoi

parametrization is roughly an order of magnitude slower. These

synthetic tests have relatively few coefficients. As the complexity

of the models increase, the Voronoi parametrization scales in com-

putational effort as O(log n), with n the number of cells, in the best

case. In contrast, the dominant cost in the forward model of the

trans-dimensional tree wavelet parametrization, the inverse wavelet

transform, is independent of the number of coefficients, suggesting

that the wavelet method will scale better to more complex and larger

scale tomographic problems.

4.6 Convergence

Monitoring convergence is notoriously difficult in McMC. In the

trans-dimensional case, measures such as the Gelman-Rubin statis-

tic (Gelman & Rubin 1992) are not applicable. In this work, we

simply assume that the independent Markov chains have converged

when the negative log likelihood as reached an equilibrium value

consistent with the data and errors. This is sufficient for the sim-

ulated problems we introduce here but robust convergence metrics

for trans-dimensional sampling is an area of further research.

The evolution of the negative log likelihood of each Markov

chain is plotted in Fig. 10 for the first million steps. We can see

that the trans-dimensional tree wavelet parametrization has lower

variability in the log likelihood across the chains and in some cases

convergence has been achieved after a relatively small number of

steps.

One reason for this is that, in general, the acceptance rates for

a birth or death proposal is higher in the trans-dimensional tree

wavelet parametrization than for the Voronoi parametrization. In

rough figures, the acceptance rates were approximately 10 per cent

for the tree based wavelet method and around 5 per cent for the

Voronoi method. Hence a birth proposal is approximately twice as

likely to be accepted in the tree based wavelet parametrization than

the Voronoi. It is a common criticism of trans-dimensional samplers

that the acceptance rates for the birth/death proposal are generally

quite low and therefore the convergence is hindered due to lack of

mixing between model spaces. It is this higher acceptance rate for

birth/death proposal that results in the faster convergence of the

trans-dimensional tree wavelet parametrization.

This higher acceptance rate is a result of the tree structure coupled

with a multiscale basis. To explain why this is the case we can see

that in the Voronoi case, the order of the births of its cells does

not matter. Contrast this with a trans-dimensional tree model where

the ordering of the birth does matter as a parent node must be

birthed before its child nodes. In a multiscale parametrization such

as wavelets, this means that coefficients that represent broad scale

features will be birthed first, and often well constrained, before

finer scale features. It also means that from any particular model,

any birth will be at a scale length that is appropriate to refining the

model rather than wasted on large-scale feature changes.
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Figure 9. The estimated posterior probability distribution on the number of nodes/cells for the different parametrizations from the cosine checkerboard test.

Table 1. Mean computational time per 1 million steps for cosine

checkerboard model.

Parametrization Time (s) Relative time

Haar 2452.8 1.4

CDF 9/7 1760 1.0

Daubechies 6 4735.7 2.7

Voronoi 30684.8 17.4

In the case of the two smooth wavelet bases, the rapid convergence

and small spread of the negative log likelihood values suggests that

these tree based wavelet parametrizations have efficiently explored

the parameter space. This implies that large numbers of independent

chains, as is needed in the Voronoi based approach, may be less

important with the wavelet parametrization, given an appropriate

choice of basis. In Fig. 11, we plot a comparison of the mean and

MAP models of all chains combined compared to a single chain.

The single chain that was chosen was the chain with the largest

minimum likelihood, notionally the worst performing chain. As can

be seen in the figure, even the ‘worst’ chain is barely distinguishable

from the overall mean.

One of the primary reasons for employing multiple chains in the

Voronoi parametrization is to improve robustness of the chain by

averaging. In the Voronoi cell case, this is the only way to obtain

a more plausible result for ambient noise tomography. The results

of these experiments have shown that with a trans-dimensional tree

based method, and an appropriate choice of wavelet basis func-

tion, multichain averaging may be unnecessary. Hence with the

new approach it suffices to employ a smaller number of Markov

chains, although with more complex and non-linear problems,

 at A
u
stralian

 N
atio

n
al U

n
iv

ersity
 o

n
 M

ay
 1

9
, 2

0
1
6

h
ttp

://g
ji.o

x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 

http://gji.oxfordjournals.org/


986 R. Hawkins and M. Sambridge

Figure 10. For each of the parametrizations compared, we plot the history of the negative log-likelihood for each of the 64 chains for the first 1 million steps

during the recovery tests of the cosine checkerboard model.

parallel interacting chain approaches such as Parallel Tempering

(Earl & Deem 2005; Dettmer & Dosso 2012; Dosso et al. 2012;

Sambridge 2014) may be necessary to adequately overcome local

modes and multimodalities.

4.7 Model comparisons

With the new trans-dimensional tree approach, we have flexibility in

the choice of basis function. With this flexibility comes the problem

of determining the best basis to use for a given problem. To compare

the results of different parametrizations, in synthetic tests we can

use some error norm from the ‘true’ model such as the mean squared

error. One issue with this approach is it does not take into account

model complexity and therefore may prefer over fitted models. A

second issue is that in real inversions, we will not have the ‘true’

model with which to compare.

We therefore require a flexible model comparison criterion. A

direct comparison between the trans-dimensional tree wavelet ap-

proach and the Voronoi method using the Bayesian Information

Criteria (BIC; Schwarz 1978) is difficult due to the already alluded

to issue of fairly estimating the number of parameters in the tree

based wavelet parametrization. Here we propose the use of the De-

viance Information Criteria (DIC; Spiegelhalter et al. 2002) which

has previously been applied in trans-dimensional model comparison

by Steininger et al. (2014). We use a variation of the DIC proposed

in Gelman et al. (2004, chapter 12), where the DIC is computed as

DIC = D(θ ) + var(D(θ )), (40)
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Figure 11. Here we show that for the CDF 9/7 parametrization recovering the cosine checkerboard model, that even the ‘worst’ performing Markov chain of

the 64 parallel chains obtains results comparable to the overall ensemble solution. In (a) and (c), we compare the mean of the ensemble of the 64 chains to the

mean of the single ‘worst’ performing chain respectively. In (b) and (d), we show the over all best Bayesian maximum a posteriori (MAP) and the MAP model

of the ‘worst’ performing chain to show that they contain many similar features.

where the overbar represents the mean, and D(θ ), the deviance, is

given by

D(θ ) = −2 logL(θ ) + 2 log f (d). (41)

f (d) is a normalizing function of the data which cancels out in

model comparison applications and can be ignored when computing

the DIC. We prefer this formulation because in trans-dimensional

sampling, point estimates can be over parametrized and from expe-

rience, using the variance results in a more stable calculation.

The first term in eq. (40) rewards a low mean negative log like-

lihood which penalizes too simplistic an ensemble of models. The

second term penalizes model complexity since more unknowns tend
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988 R. Hawkins and M. Sambridge

Table 2. The DIC of the various parametrizations from the cosine checker-

board recovery test.

Parametrization D(θ ) var(D(θ )) DIC

(i) All chains

CDF 9/7 9280.2 82.7 9321.6

Daubechies 6 9294.7 256.4 9422.9

Haar 9232.2 481.4 9472.9

Voronoi 9207.9 540.5 9478.2

(ii) Best chain

CDF 9/7 9274.4 149.8 9349.3

Daubechies 6 9282.9 194.2 9380.0

Haar 9212.1 528.4 9476.3

Voronoi 9191.2 566.1 9474.2

(iii) Steps 750 000 to 1 000 000

CDF 9/7 9283.0 252.7 9409.3

Daubechies 6 9336.2 571.3 9621.8

Haar 9509.7 10817.3 14918.4

Voronoi 10193.4 467600.2 243993.5

to result in ensembles with larger likelihood variance (Spiegelhalter

et al. 2002; Gelman et al. 2004). A model is said to be a better fit to

the data if it has a lower DIC value. We show the results of the DIC

in Table 2. We have computed the DIC across all Markov chains (i),

with just a single best chain (ii), and across all chains early in the

simulation (iii) (for steps 750 000 to 1 000 000).

The DIC results confirm earlier subjective visual comparisons of

the mean of the ensemble (Fig. 8) to the true input models (Fig. 7)

where the CDF 9/7 and Daubechies wavelet parametrizations had

recovered the true model more accurately. Here we should note

that the mean deviance of the Voronoi parametrization is less than

that of the CDF 9/7 parametrization implying a better fit to the

data. This is an example where using the misfit alone for model

comparisons is insufficient. Previously we showed in Fig. 9 that the

number of parameters in the wavelet parametrization was higher,

suggesting over-fitting. However, the DIC shows low variance of

the deviance in the wavelet case suggesting a smaller number of

effective parameters.

The results of computing the DIC across all chains and a single

chain are similar. We also computed the DIC during the last quarter

of the first 1 million steps representing the tail end of the burn-in

period. In these results, we have a great deal more variance, particu-

larly for the Voronoi parametrization, and these results clearly show

the more rapid convergence of the trans-dimensional tree approach

in this problem.

With the new trans-dimensional tree wavelet method we now have

the ability to choose from a variety of bases. Although we can use

prior knowledge of the expected heterogeneity of the tomography

to guide the choice of basis, this choice will necessarily be based

on incomplete knowledge. A potential solution is to run a sweep of

inversions with different basis functions and then compute the DIC

(or similar criteria) of the obtained ensembles.

An alternative, which is beyond the scope of this work, is to

select the wavelet bases in a hierarchical fashion itself using a

trans-dimensional sampler. In this way, the choice of basis could be

driven by the data.

5 3 - D T E L E S E I S M I C T O M O G R A P H Y

For a more substantive test of the new trans-dimensional tree frame-

work, we apply it to the teleseismic inversion of body waves to re-

cover 3-D lithospheric structure. We use the inversion result and ray

Figure 12. The teleseismic paths clipped to the 3-D region (red rectangle)

used in the inversion are sourced from the published study of Rawlinson

et al. (2011). There are 19 897 body wave ray paths in our region of interest

located in southeastern Australia.

paths published in Rawlinson et al. (2011) of a large-scale regional

area centred around Victoria, Australia.

To construct simulated data for our inversion, we apply a Gaussian

filter on the model obtained by Rawlinson et al. (2011) to remove

streak artefacts and use this as our ‘true’ model. We then embed

this model as a deviation from the AK135 Earth reference model

(Kennett et al. 1995) in the region of interest, shown in Fig. 12,

and reintegrate the 19 897 of the original 19 922 ray paths through

this model to obtain true traveltimes (some paths were removed as

they were outside our region of interest). Gaussian noise is then

added with a standard deviation of 0.5 s which corresponds to an

approximately 1 per cent error on the average traveltime through

the region. As in the earlier 2-D experiments, we are linearizing the

problems by using fixed ray paths.

The parametrization we use for the inversion of this region mostly

follows that of the ambient noise tomography example shown ear-

lier. We set a grid that is 128 longitude cells × 128 latitude cells × 32

radial cells to represent the region, this equates to nearly cubical

voxels of approximately 10 km size. In this problem, we have a 3-D

rectangular region which requires a tree starting with a 4 × 4 sub-

division grid laterally, that is, 16 children from the root of the tree,

which then progresses to the standard 3-D wavelet tree consisting

of 7 children from these subdivision nodes and 8 children thereafter

(recall that in the 2-D case this was 3 children from the root node

and 4 thereafter).

In this large-scale simulation study, we use the CDF 9/7 wavelet

basis. This results in a maximum of 524 288 wavelet coefficients, to

sample all of which would be computationally prohibitive. However,

with the trans-dimensional tree approach, we impose a hierarchy of

scale over these coefficients from coarse to fine and this results

in the trans-dimensional sampler selecting a far smaller (of the

order of 500) number of coefficients that are required to support the

resolvable model.

Nonetheless, to start from a single node of a tree as in the 2-D case

would likely take a long time to burn in. To accelerate this process,

we use a simple stochastic optimization scheme to generate an initial

model. At each iteration, this scheme generates a large number of

trial birth proposals in parallel and selects the proposed birth with

the highest likelihood. To prevent this optimization method from
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Figure 13. The histogram of likelihood and k, the number of wavelet coefficients, of all Markov chains for the first 106 iterations with the height restriction in

place are shown in (a) and (b), respectively. Overplotted with crosses are the spread of likelihoods and k generated via the optimization scheme for the initial

models. The histograms for the last 106 iterations are shown in (e) and (f). In the likelihood plots, the vertical red dashed line represents the theoretical χ2 limit

of the data. These plots illustrate the convergence of the likelihood and the number of coefficients through the three phases we used during the inversion.

generating over fit initial models, we halt when the BIC (Schwarz

1978) fails to decrease.

In the tree-based parametrization, we can also restrict the height

that the tree is allowed to sample. Given our grid is approximately

10 km on edge, we can equate each depth our tree of seven levels

with an approximate length scale: that is, level 0 represents the over-

all mean of the model velocity variations, level 1 represents scale

lengths of 320 km, level 2 scale lengths of 160 km and so on down

to level 7 which corresponds approximately to a 10 km scale length.

As an additional restriction, we set an initial height restriction at

level 5 (levels 6 and 7 unavailable) so the optimization scheme only

generated models with scale length features down to approximately

40 km. The height restriction is an optional feature of the trans-

dimensional tree method that may be used to improve convergence

in higher dimension and problems of greater complexity.

We generated 60 independent models using the optimization

scheme and from these starting models ran 60 Markov chains for

2 million steps. For the first 1 million steps, the height restriction

remained in place but was removed for the last million. In Fig. 13,

we show the spread of the negative log likelihood and number of co-

efficients generated from the optimization, the histograms of these

during the first million steps with the height restriction, and the last

million steps once this restriction is removed. In the negative log

likelihood plots, we also show with a red dashed line the theoreti-

cal χ 2 limit given the number of data and the level of independent

Gaussian noise.

The benefit of of the height restriction is that it allows broader

scale features to converge before sampling of fine scale features

commences. Fig. 13 shows how the negative log likelihood de-

creases from the initial models, which are clearly too simple. In the

first million steps, the algorithm resolves only medium scale features

due to the height restriction. In the last million steps, the chains con-

verge to the target posterior and the likelihood distribution is tightly

focused on the theoretical χ 2 limit of the data. Similarly for the

posterior on k, the number of coefficients, starts from a relatively

small number in the optimization phase and converges to a higher

number in the final 1 million steps.

The time taken for this simulation is approximately 15 hr in total

with 1 hr required for the optimization phase and 7 hr for each of

the 1 million steps (Intel Xeon CPU E5-2620 at 2.10 GHz). This
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990 R. Hawkins and M. Sambridge

Figure 14. The ensemble mean model is shown with slices at six different depths with regions of no ray coverage masked out. In each plot, we also show

uncertainties along transects indicated with the dashed lines. In the uncertainty plots, the grey region represents the 95 per cent credible interval, the ensemble

mean along the transect is shown with a dotted line, and the true model with a solid line. Generally, the true model falls close to the ensemble mean and is

within the uncertainty bounds indicating good recovery in this simulation.
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Figure 15. The ensemble mean model is shown with a slice along lines

of constant longitude in (a) and latitude in (b). In each plot, we also show

uncertainties along transects indicated with the dash lines. In the uncertainty

plots, the grey region represents the 95 per cent credible interval, the ensem-

ble mean along the transect is shown with a dotted line, and the true model

with a solid line.

equates to approximately 25 ms per iteration. We have not performed

a comparable inversion with the Voronoi parametrization. The only

work we are aware of that has attempted 3-D trans-dimensional to-

mographic inversion is that of Piana Agostinetti et al. (2015) who

report running times of approximately one month, however their in-

version included hypocentre relocations and ray-path updates which

adds significant computational complexity so a direct comparison

is not meaningful. We expect that, as with the 2-D case, we would

obtain approximately an order of magnitude decrease in computa-

tional time for a single chain in the trans-dimensional tree approach

when compared to the Voronoi parametrization for the same scale

of problem.

In Fig. 14, we present the ensemble mean results of the volume

with lateral slices at varying depth. Similar to the 2-D results ear-

lier, for each depth we show the uncertainty along lateral transects

indicated by the dashed line. In the uncertainty plots, the shaded

grey region shows the 95 per cent credible range, the solid line the

true input model, and the dotted line the ensemble mean along the

transect. We can see that we have in general achieved good recov-

ery of the true input model, but there are some cases where the true

model does not entirely reside in uncertainty bounds.

Similarly, in Fig. 15, we show two slices of the ensemble mean

volume longitudinally and latitudinally to show the recovery as a

function of depth. Again the recovery is quite good and the algorithm

has not introduced any noticeable streaking artefacts due to the

highly anisotropic ray distribution. Of minor concern is that a feature

of both of the plots is a subtle underestimation of the velocity

perturbation at the deepest part of the model. This is most likely a

result of the poor resolvability of features at depth inherent in this

teleseismic data set.

These results show that the tree based wavelet parametrization

can be used for large-scale 3-D geophysical tomography problems.

Further work on the parallelization or domain decomposition of the

wavelet transform, coupled with parallel evaluation of the likelihood

(i.e. the integration along the ray paths to obtain the model predicted

traveltimes), would likely improve performance further.

6 C O N C LU S I O N S A N D F U T U R E W O R K

In this study, we have presented a new trans-dimensional frame-

work for solving general image based geophysical inverse problems

which is both efficient and flexible. This new approach is efficient

because of three main factors: the first is that we map our mod-

els back to regular grids which enables efficient forward model

processing. Second, we can take advantage of existing fast algo-

rithms such as the Fast Lifted Wavelet Transform for building the

Earth models from the trans-dimensional tree representation. Lastly,

the tree-based approach is inherently multiscale and therefore con-

structs models in a top down, coarse to fine scale, fashion.

Our trans-dimensional framework is flexible because it allows

a wide variety of basis functions to be used for representing Earth

models, while performing all sampling operations on a common tree

structure. We have shown examples of simple boxcar basis func-

tions and wavelet bases, however, more advanced bases can be used

such as higher order orthogonal polynomials, curvelets (Candes &

Donoho 1999), and wavelets on the sphere (Schröder & Sweldens

1995; Leistedt et al. 2013). Some early work on Earth Mantle inver-

sions has been performed using a combination of spherical wavelets

laterally and Cartesian wavelets radially (Hawkins & Sambridge

2014).

With this flexibility in parametrization, a choice of basis function

represents a priori information that is at best weakly informed but

generally a subjective decision. To evaluate the efficacy of these

choices of bases objectively there are two approaches. First, we

can perform multiple inversions with different basis functions and

perform a model comparison with an objective measure such as

the DIC. Second, and the subject of future work, we hope to be

able to add a ‘best basis’ trans-dimensional selection process to the

framework that will allow the data to drive this choice.

In all experiments here, we have used uninformative uniform

priors, rudimentary model perturbations and limited interactions

between Markov chains. As stated earlier, setting the prior on a

hierarchy of coefficients for parametrizations such as wavelets is a

difficult problem and worthy of further study. More sophisticated

model perturbation schemes are possible, for example, the trans-

dimensional tree approach lends itself well to adaptive proposal

schemes, multiple model parameter updates and parallel interacting

Markov chain techniques such as Parallel Tempering (Earl & Deem

2005; Dettmer & Dosso 2012; Dosso et al. 2012; Sambridge 2014).

In our 3-D teleseismic inversion example, we used a simple opti-

mization scheme to seed the trans-dimensional sampling. It is pos-

sible to use more advanced optimization schemes, such as l1 norm

based sparsity maximizing schemes, previously used by Simons

et al. (2011), Charlety et al. (2013), and Fang & Zhang (2014) for

wavelet based parametrizations in seismic tomography problems.

From our preliminary results, the trans-dimensional tree approach

appears to show promise in the probabilistic solution of large-

scale geophysical inverse problems including robust uncertainty

estimates.
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A P P E N D I X A : C O U N T I N G

A R R A N G E M E N T S O F G E N E R A L T R E E S

In this appendix, we give an overview of the method to computing

the number of possible arrangements of a tree within a template

structure given a number of nodes, k. Recall that the recurrence

relationship for computing the number of arrangements in a binary

tree, from eq. (11), is

Nk =

⎧

⎨

⎩

1 k ≤ 0
∑k−1

i=0 NiNk−i−1 otherwise
. (A1)

We can extend this to a ternary tree, or a tree in which every node

has three possible children, as follows:

Nk =

⎧

⎨

⎩

1 k ≤ 0

∑k−1

i=0 Ni

[

∑k−1−i

j=0 N jNk−i− j−1

]

otherwise
. (A2)

In generalizing this further, it should be recognized that this is

essentially a restricted integer partitioning problem (Stanley 1997),
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Figure A1. An abstract tree node with j subtrees.

Figure A2. Rearrangement of the subtrees into a binary tree structure by

amalgamation j − 1 right most subtrees.

or stated simply as how many ways can an integer number of nodes

be distributed among some arbitrary number of subtrees. In Fig. A1,

we show a general tree node with j possible subtrees labeled T1. . . Tj.

It should be noted that each of these subtrees may have a different

structure, that is, a different limit on the number of child nodes

at the next level, to each other and to the parent tree. From this

generalization, we can construct any tree structure.

By grouping the subtrees appropriately, we recognize that any

number of subtrees can be reformulated into an expression of the

same form as the binary tree case by treating subtree T1 as itself and

subtrees T2. . . Tk as an amalgamated collection of subtrees. This is

shown graphically in Fig. A2.

Alternatively, when j, the number of subtrees, is even, we can split

the subtrees evenly into two amalgamated collection of subtrees as

shown in Fig. A3.

In either of these cases where we amalgamate multiple subtrees

into two super-sub-trees, if we label these subtrees A and B, we can

rewrite the recurrence relationship as

Nk =

⎧

⎨

⎩

1 k ≤ 0
∑k−1

i=0 AiBk−i otherwise
. (A3)

Note that there is a small difference between this equation and

Eq. (A1) in that the number of nodes partitioned to the right branch

is k − i rather than k − i − 1, that is, we have Bk−i instead of Nk−i−1.

The reason for this is that we effectively split the tree in two and

compute the left- and right-hand sides which results in the root of

the tree needing to be counted twice.

Figure A3. Rearrangement of an even number subtrees into a binary tree

structure by an even amalgamation of the subtrees.

For trees or subtrees with some restriction, for example, a restric-

tion on the height, this can be enforced by adding an extra restriction

in the recurrence relationship such that

Nk =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 k > kmax

1 k ≤ 0 or k = kmax

∑k−1

i=0 AiBk−i otherwise

, (A4)

where kmax represents the maximum number of nodes of the current

subtree. This can be computed recursively using

kmax = 1 + kmax(A) + kmax(B). (A5)

In all our work thus far, our kmax is specified as a height restric-

tion on the tree so that for some subtrees, that is, those with a fixed

number of child nodes, we can use an analytical expression to com-

pute the maximum number of nodes. For other trees and subtrees,

these are generally constructed piece wise from generic trees and it

is therefore easy and efficient to compute the maximum number of

nodes recursively.

We now describe the general algorithm for computing the number

of arrangements of trees. The first point is that the algorithm incre-

mentally computes the number of arrangements for a given k rather

than for all values of k. Second, we memoize the result for previ-

ously computed k in the each subtree and the full tree. The memoize

operation is a method of reusing previously computed results, so

when we memoize some computation, the first time it is actually

computed and every other time it is simply a look-up operation in a

stored list of results. For recurrence relationship computations, this

is vital to speed up the computation as the same partial results are

frequently required. The algorithm for this is shown in Algorithm .

To give an appreciation of the need to use such an algorithm for

computing the number of arrangements we have timed the algorithm

for computing the number of arrangements for k equal 1 to 100 for

the trees used in the 2-D wavelet parametrization in Section 4. For a

naive algorithm, this takes approximately 148 min to compute and

with this algorithm we can compute the same range of numbers in

approximately 6 ms, over a million times faster.

A P P E N D I X B : VA L I DAT I O N

B1 Sampling the prior

A key test of the correctness of a set of acceptance criteria for a trans-

dimensional sampler is that the criteria do not bias the posterior on

k, which in our case represents the number of nodes. The simplest
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Algorithm 1. Algorithm for computing the number of tree arrangements.

way to demonstrate this is to allow the algorithm to run for a large

number of steps with the likelihood kept at a constant value (hence

the likelihood ratio is unity) and ensure that the posterior on the

number of nodes matches the known prior.

In order to test the general algorithm, we first implemented the

acceptance criteria for simple homogeneous trees, that is, binary,

ternary, quaternary trees etc. For these trees, we can use the result

of Aval (2008) to write down analytical expressions for the number

of arrangements of the trees for a given number of nodes which then

results in closed form solutions for the acceptance criteria which

we produce here for the birth and death proposals

α(θ ′, θ )birth =min

⎧

⎨

⎩

1,

[

∏n

j=2(k(n − 1) + j)
]

(k + 1)
∏n

j=1(nk + j)

L(θ ′)

L(θ )

|Sb|
|S ′

d |

⎫

⎬

⎭

,

(B1)

α(θ ′, θ )death = min

{

1,
n

∏n−1

j=1(nk − j)
∏n−1

j=1((n − 1)k − j + 2)

L(θ ′)

L(θ )

|Sd |
|S ′

b|

}

.

(B2)

Where n represents the number of child nodes for each tree node,

that is, n = 2 corresponds to a binary tree, n = 3 corresponds to a

ternary tree, etc. We performed a test of 1 million Markov steps with

a uniform prior on the number of nodes between 1 and a variable

Figure B1. The sampled prior of k, the number of active tree nodes, is

plotted as a grey histogram for a variety of uniform prior widths with three

different classes of trees (binary, ternary and quaternary). In each plot, the

solid red line represents the input prior showing there is good agreement

between the prior and sampled histogram. This gives confidence that the

algorithm maintains detailed balance and therefore will correctly sample

the true PPD.

Figure B2. The sampled prior obtained when using a truncated Poisson

prior is shown with a grey histogram. In each of these tests, the maximum k

is fixed at 30 and the λ parameter of the Poission prior is varied with different

classes of trees (binary, ternary and quaternary). The prior is shown with a

solid red line and agrees well with the sampled histogram.

kmax and for three different values of n. The results of this test are

shown in Fig. B1 with expected histogram shown with a red solid

line. In all cases the McMC results approximately match with the

uniform prior.

We also repeated the test for a case where the prior PDF on k is

not uniform, specifically a truncated Poisson prior on the number

of nodes of the form

p(k) =
λk

(eλ − 1)k!
, (B3)
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Figure B3. The sampled prior obtained when using a truncated Jeffreys’

prior is shown with a grey histogram. The maximum k is fixed at 100 and we

show the posterior for three classes of tree, binary, ternary and quaternary.

The analytical prior is shown with a solid red line and good agreement is

obtained with the sampled histogram.

where λ represents an approximate expected number of nodes in the

tree. We show the posterior on the number of tree nodes obtained for

varying λ and n in Fig. B2 with the prior over plotted with a solid

line. Again the sampled posterior closely matches the analytical

prior to within sampling error.

Lastly, we repeated this experiment with a truncated Jeffreys’

prior, that is,

p(k) =

⎧

⎨

⎩

c

k
1 ≤ k ≤ kmax

0 otherwise
(B4)

For some normalizing constant c and an upper limit on k of kmax.

The posteriors obtained for different n-ary trees with a kmax of 100

are shown in Fig. B3 along with the true distribution plotted with a

solid line. In all cases we appear to be correctly sampling the prior

on the number of tree nodes.

A P P E N D I X C : B OXC A R

C H E C K E R B OA R D R E S U LT S

In Section 4.2, we presented the results of a simulated smooth

checkerboard 2-D tomography test. Here we repeat the same set of

tests with a discontinuous boxcar checkerboard with the true model

shown in Fig. C1.

C1 Ensemble mean solutions

We show the ensemble mean solutions for the boxcar checkerboard

input model in Fig. C2. The Haar wavelet basis has recovered the

input model almost exactly and the Voronoi parametrization has also

performed well. Both of the smooth wavelet parametrizations have

recovered the underlying model to a lesser degree and have ringing

artefacts. This is due to a property of wavelets where the number

Figure C1. The boxcar synthetic models used in our tests with seismic velocities between 2.5 and 3.5 km s−1. We generate 1000 random ray paths through the

region from which we integrate traveltimes to obtain our synthetic observations to which we add Gaussian noise.
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Figure C2. The mean of the ensembles obtained for the four different parametrizations used for the boxcar checkerboard input model.

of coefficients required to represent discontinuities increases as a

basis becomes smoother.

C2 Number of model parameters

The histogram on the number of parameters for the boxcar checker-

board tests are shown in Fig. C3. For the CDF 9/7 and Daubechies

wavelet inversion of the boxcar checkerboard, we can see that the

number of coefficients required to get a poorer representation of

the model is substantially larger than the other two methods. This

is to be expected as the representation of hard edges with smooth

wavelets requires many coefficients. Also this then becomes a more

challenging search problem to find these larger number of important

coefficients and to sample them sufficiently, resulting in a lengthier

convergence time.
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Figure C3. The estimated posterior probability distribution on the number of nodes/cells for the different parametrizations from the boxcar checkerboard test.

Table C1. Mean computational time per 1 million steps

for the boxcar checkerboard model.

Parametrization Time (s) Relative time

Haar 1742.1 1.0

CDF 9/7 2211.4 1.3

Daubechies 6 5222.6 3.0

Voronoi 19140.1 11.0

C3 Computational time

The computational time for the boxcar checkerboard tests are shown

in Table C1. The ordering is the same as for cosine checkerboard

simulation with the Haar and CDF 9/7 parametrizations reversed

due to the small but not insignificant computational burden resulting

from a large number of coefficients.

C4 Convergence

The evolution of the negative log likelihood of each Markov chain

for the boxcar checkerboard test is plotted in Fig. C4. The spread in

likelihoods of the Voronoi parametrization is noticeably larger than

that of the trans-dimensional tree approach, even for wavelet bases

that are not a good match for this input model.
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Geophysical imaging using trans-dimensional trees 999

Figure C4. For each of the parametrizations compared, we plot the history of the negative log-likelihood for each of the 64 chains for the first 1 million steps

during the recovery tests of the boxcar checkerboard model.

C5 Model comparisons

The DICs for the various parametrizations for the boxcar checker-

board tests are shown in Table C2. The DIC clearly favours the Haar

wavelet representation in this case. It is also interesting to note that

the DIC for the Haar parametrization is almost exactly the same

across all chains after 10 million steps as it is during the steps 750

000 to 1 000 000, implying convergence has been reached very

quickly. Again the Voronoi parametrization has the lowest deviance

and therefore best overall fit, but is penalized by the variance of the

deviance. The other two smooth wavelet parametrization perform

more poorly as expected.
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Table C2. The DIC of the various parametrizations from the boxcar checker-

board recovery test.

Parametrization D(θ ) var(D(θ )) DIC

(i) All chains

CDF 9/7 9273.9 1262.4 9905.1

Daubechies 6 9292.0 1583.5 10083.8

Haar 9269.9 64.2 9302.0

Voronoi 9269.2 284.5 9411.4

(ii) Best chain

CDF 9/7 9273.5 1050.2 9798.6

Daubechies 6 9253.0 1367.1 9936.6

Haar 9268.5 76.5 9306.7

Voronoi 9257.0 219.8 9366.9

(iii) Steps 750 000 to 1 000 000

CDF 9/7 11727.4 3090233.3 1556844.0

Daubechies 6 10106.9 145477.7 82845.7

Haar 9272.3 332.8 9438.7

Voronoi 12056.0 5641905.0 2833008.5

C6 CONCLUSIONS

In Section 4.2, we observed the wavelet parametrization ob-

tain better results across a series of metrics for a smooth in-

put model. In this appendix, we have repeated this test with

a discontinuous input model of the same scale length. In both

cases, the trans-dimensional tree approach, with a good choice

of wavelet basis, is able to outperform the Voronoi cell based

approach.
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