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SUMMARY

This paper presents a new derivative-free search method for finding models of acceptable

data fit in a multidimensional parameter space. It falls into the same class of method

as simulated annealing and genetic algorithms, which are commonly used for global
optimization problems. The objective here is to find an ensemble of models that

preferentially sample the good data-fitting regions of parameter space, rather than

seeking a single optimal model. (A related paper deals with the quantitative appraisal
of the ensemble.)

The new search algorithm makes use of the geometrical constructs known as Voronoi

cells to derive the search in parameter space. These are nearest neighbour regions
defined under a suitable distance norm. The algorithm is conceptually simple, requires

just two ‘tuning parameters’, and makes use of only the rank of a data fit criterion

rather than the numerical value. In this way all difficulties associated with the scaling
of a data misfit function are avoided, and any combination of data fit criteria can be

used. It is also shown how Voronoi cells can be used to enhance any existing direct

search algorithm, by intermittently replacing the forward modelling calculations with
nearest neighbour calculations.

The new direct search algorithm is illustrated with an application to a synthetic
problem involving the inversion of receiver functions for crustal seismic structure. This

is known to be a non-linear problem, where linearized inversion techniques suffer from

a strong dependence on the starting solution. It is shown that the new algorithm
produces a sophisticated type of ‘self-adaptive’ search behaviour, which to our knowledge

has not been demonstrated in any previous technique of this kind.

Key words: numerical techniques, receiver functions, waveform inversion.

The increase in computational power coincided with the
1 INTRODUCTION

realization that, for many interesting problems, it was incon-

venient, or simply not possible, to use a linearized approximation.In the past decade and a half, Monte Carlo (MC) methods

(Hammersley & Handscomb 1964) have enjoyed a resurgence Linearization involves the calculation of partial derivatives of

data with respect to model parameters (or functionals), andin popularity amongst geophysicists, particularly in application

to inverse problems. The earliest use of MC methods was for for some non-linear problems these can either be difficult to

calculate, or have a very limited range of applicability. [Forprobabilistic, or randomized, searching of a (finite dimensional )

parameter space. Notable papers were by Keilis-Borok & a recent discussion on the role of non-linearity in inverse

problems see Snieder (1998).] Derivative-free ‘direct search’Yanovskaya (1967), Press (1968), Wiggins (1969), Anderssen

(1970), and Anderssen & Senata (1971). These studies were methods were seen as an attractive alternative. This was

especially true in seismic problems, where high-frequency bodywell known to geophysicists, but it was only when the necessary

computational power became widely accessible (around the waveforms were being used to constrain earth structure from

length-scales of geophysical exploration to those of regionalbeginning of the 1980s) that interest in Monte Carlo methods

became widespread. Prior to that (and continuing to this day), tectonics.

The early direct search methods were based on uniformmany of the inverse problems posed by geophysicists were

addressed using linear inverse theory (seeMenke 1989; Tarantola pseudo-random sampling of a parameter space, sometimes

with constraints imposed (as in Wiggins 1969). The inefficiency1987; Parker 1994 for comprehensive summaries).
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of this type of approach makes it impractical once the dimen- space represents a set of parameters describing some physical

property of the earth, for example seismic wavespeed, and thesionality of the parameter space increases. Rothman (1985, 1986)

introduced the method of simulated annealing (SA) (Kirkpatrick objective function usually depends on a measure of data misfit

and some function of the model. The data misfit measures theet al. 1983) into geophysics, which is a stochastic direct search

method designed primarily for global optimization problems. discrepancy between observations and theoretical predictions

from a model (determined from the solution of a forwardFor a survey of papers see Sen & Stoffa (1995), and for detailed

descriptions of the method see Aarts & Korst (1989), problem). This formulation applies to nearly all geophysical

inversion. For example, this is the case in the statistical viewMore recently, genetic algorithms have made the jump from

their origins in the computer science literature (Holland 1975; of inverse theory (e.g. Tarantola & Valette 1982), where one

is often interested in locating a model that maximizes theGoldberg 1989) to geophysical problems (Stoffa & Sen 1991;

Sambridge & Drijkoningen 1992). Again the objective is often posterior probability density function, and also in the ‘extremal

model’ view, which advocates optimizing some property of thestated as seeking a model giving a globally optimal data misfit

value (within a pre-defined finite-dimensional parameter space). model under the constraint that it fits the data to a satisfactory

level (e.g. Parker 1977).This type of approach has found many applications in recent

years (for surveys see Gallagher & Sambridge 1994; Sen & In many problems (even linear ones), the data alone do

not determine the model uniquely. There may exist no or anStoffa 1995). As with simulated annealing, many variants of

the basic method have been developed. These often result infinite number of models that satisfy the data. Optimal models

are one way of characterizing the ensemble of acceptable data-in the introduction of extra ‘control’ parameters (in addition to

those inherent in the basic method) which must be empirically fitting models. When a problem is both non-unique and non-

linear, it may still be informative to characterize the ensembletuned for each application. The goal of the tuning process is

usually to achieve computational efficiency, and some level of of accptable solutions by seeking models with extreme values

in appropriately chosen model properties (Parker 1977).robustness against entrapment in local minima.

In this paper we present an entirely new class of direct However, there may be cases where we do not know what

model properties might be appropriate to optimize, or the datasearch methods, which we show has some distinct advantages

over previous methods. The method is conceptually simple misfit function may be very complex, containing many local

minima, thereby making the optimal data-fitting model difficultwith at most two control parameters, but is able to exhibit

complex self-adaptive behaviour in searching a parameter space. to find and potentially of little use.

An alternative to seeking single optimal models is to charac-Unlike previous methods, the new approach is not designed

specifically to perform global optimization; however, we show terize the entire ensemble of acceptable solutions directly

by first trying to generate as many members of it as possible,that in our test problem it performs just as well as a previous

approach in this respect. The objective here is to sample the and then analysing them. This two-stage approach has been

adopted many times before; indeed, it was the original purposeregion of parameter space that contains models of acceptable

data fit (or any other objective function), and then to extract of applying Monte Carlo methods in geophysics (Press 1968;

Anderssen & Senata 1971). Since then, several authors haverobust information from the ensemble of models obtained.

This paper deals largely with the first stage of this problem, stated similar views, and proposed methods of appraising the

ensemble (Kennett & Nolet 1978; Kennett 1978; Dosso &i.e. generating an acceptable ensemble, and only in a qualitative

manner with the second state, i.e. appraising the ensemble. Oldenburg 1991; Vasco et al. 1993; Lomax & Snieder 1995;

Snieder 1998). Here we adopt a similar approach, althoughA related paper, Sambridge (1999; hereafter referred to as

Paper II), shows how a similar approach to the one presented we prefer to make inferences based on properties of all models

in the ensemble, not just the acceptable ones, because inhere can be used to extract quantitative robust information

from an ensemble of models. In Paper II, no assumption is principle bad data-fitting models may also tell us something

useful. The focus of this paper is on the ‘sampling’ problem.made on how the ensemble of models is generated, and in

particular it need not necessarily be generated with the method

presented in this paper.
3 SEARCHING A PARAMETER SPACE

We compare the new approach to existing methods on the

inversion of seismic receiver functions for S-wave velocity Stochastic (Monte Carlo) search methods such as uniform

Monte Carlo search (UMC), simulated annealing (SA) andstructure in the crust. This is a complex non-linear waveform

fitting problem, where linearized techniques either fail or have genetic algorithms (GA) are becoming increasingly popular for

optimizing a misfit function in a multidimensional parametera strong dependence on the starting model (Ammon et al. 1990).

We also perform some detailed analysis of the new method space. The work presented here was motivated by a question

that arose in the author’s own use of these methods. ‘How canand show how its computation time scales with quantities

such as dimension and number of samples. The new class of a search for new models be best guided by all previous models

for which the forward problem has been solved (and hence themethods makes use of some simple geometrical concepts which

we show can also be used to enhance existing search methods data-misfit value evaluated )?’ It is instructive to consider how

each of the three methods above addresses this issue. UMCsuch as genetic algorithms and simulated annealing.

by definition makes no use of previous samples in parameter

space, since each new sample is independent of the previous
2 ENSEMBLE INVERSION RATHER THAN

samples. Both SA and GA make use of previous samples,
OPTIMIZATION

but in rather complex ways. The information inherited from

previous samples may also be highly dependent on controlIt is common to formulate a geophysical inverse problem as

one of optimization in a finite-dimensional parameter (model ) parameters (GA) or temperature profiles (SA), each of which

must be tuned for each problem individually.space (possibly under constraints). Each point in model
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In this paper we argue that a simple way of making use of approximation’ to the misfit surface (NA-surface) is generated

by simply setting the misfit to a constant inside each cell.previous model space samples is to use them to approximate

(i.e. interpolate) the misfit (objective) function everywhere Therefore to evaluate the approximate misfit at any new point

we need only find which of the previous samples it is closest to.in model space. Assuming that this can be done, a simple

generalized algorithm for searching a parameter space would The NA-surface provides a simple way of performing non-

smooth interpolation of an irregular distribution of points intake the following form.

d-dimensions and has some very useful properties. For any

distribution and density of samples, the Voronoi cells are always(1) Construct the ‘approximate misfit surface’ from the

n
p
previous models for which the forward problem has unique, space filling and have size inversely proportional to the

sampling density (see Fig. 1). This means that the NA-surfacebeen solved;

(2) use this approximation (instead of actual forward will contain short-scale variations in misfit only where they

are present in the original samples, and longer-scale variationsmodelling) together with a chosen search algorithm to

generate the next n
s
samples; where sampling is sparse. We can regard the NA-surface as a

‘minimal’-feature approximation of the misfit surface influenced(3) add n
s
to n
p
and go back to (1).

equally by all available samples. The interesting feature is that
IDEALIZED ALGORITHM

the size and shape of the neighbourhoods about each sample

(and hence the regions of better and worse data fit) are com-
We will refer to this as our ‘idealized’ search algorithm

pletely determined by the samples themselves. In particular,
containing one free parameter n

s
(initially n

p
=n
s
). The two

no spatial scalelengths or directionality are imposed externally.
missing details are how to construct the approximate misfit

It is therefore a useful candidate to drive our idealized sampling
surface, and how to generate new samples with it. In the next

algorithm above. Note that if the NA-surface can be used to
section we present a simple but (we argue) powerful way of

generate new samples (geared towards regions of lower misfit)
constructing an approximate misfit surface, and in the sub-

then these will only change the Voronoi cells locally, and once
sequent sections we see how this can be used with existing

their true misfit values are generated they will improve the
search methods such as SA and GA, and also as the basis of

local resolution of the next NA-surface.
a new search algorithm.

Sambridge (1998) first suggested this approximation as a

way of sampling a posterior probability density function for

evaluating Bayesian integrals. Here we use it to approximate3.1 The neighbourhood approximation to a misfit

any misfit function and show how it leads to a new class offunction

search algorithms for high-dimensional parameter spaces.
Given a set of n

p
samples in model space for which the misfit

function has been determined we use the geometrical construct
3.2 Incorporating the neighbourhood approximationknown as the Voronoi diagram (Voronoi 1908) (see Okabe
into existing methodset al. 1992; Watson 1992; Sambridge et al. 1995, for full details).

This is a unique way of dividing the d-dimensional model
Our idealized search algorithm above may be summarized

space into n
p
regions (convex polyhedra), which we call Voronoi

as ‘intermittently replace the real forward modelling calcu-
cells. Each cell is simply the nearest neighbour region about

lation with the approximation provided by the NA-surface’.
one of the previous samples, as measured by a particular

Obviously, then, it is independent of the search algorithm, and
distance measure. Here we use the L

2
-norm, and so the distance

it may be incorporated into any existing direct search method.
beween models m

a
and m

b
is given by

(Note here that we could not use the NA-surface with any

gradient-based method since all derivatives are effectively zerod(m
a
−m
b
)d=[(m

a
−m
b
)TC−1
M
(m
a
−m
b
)]1/2 , (1)

or infinite). Here we briefly discuss how the NA-surface can
where C

M
is a matrix that non-dimensionalizes the parameter

be used with several popular direct search methods, namely
space. (For example, a prior model covariance matrix.) Note

genetic algorithms and two forms of simulated annealing. In
that the size and shape of the Voronoi cells will depend on the

each case we insert either SA or GA at step (2) of the idealized
choice of C

M
. Its role is to put each parameter on an equal

algorithm described above.
footing. A simple choice would be a diagonal matrix with

elements 1/s2
i
. Here s

i
can be interpreted as a scale factor for

3.2.1 A genetic algorithmthe ith parameter. In this case we can effectively reduce C
M
to

the identity by rescaling each parameter axis by the set of scale
There are many variants of genetic algorithms and these have

factors, s
i
(i=1, … , d). In what follows we will assume that

been described thoroughly in the references cited. At each
this is the case and drop the C

M
matrix.

iteration a new set of n
GA
samples is generated using stochastic

A formal definition of the Voronoi cell follows: Let
operators. This population will often contain new models and

P={m
1
, … ,m

np
} be a set of points of d-space, where

some which are identical to previous models. The use of the
2≤n

p
≤2, and let m

i
≠m
j
for i≠ j. The Voronoi cell about

NA-surface here is quite trivial. One could simply replace
point m

i
is given by

the misfit calculation (requiring forward modelling) with an

evaluation of the NA-surface for a fixed number of iterations,V (m
i
)={x|dx−m

i
d≤dx−m

j
d for j≠i, (i, j=1, … , n

p
)} .

say n
f
. After this, one would calculate the real misfit values for

(2)
the latest population, and use these to update the NA-surface.

After I
GA
iterations one would have solved the forward problemFig. 1 shows a set of Voronoi cells about 10, 100 and 1000

irregularly distributed points in a plane. Since the data misfit I
GA
n
GA
/(n
f
+1) times, as compared to I

GA
n
GA
times if the

NA-surface were not used.function is known at all previous samples, the ‘neighbourhood
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Figure 1. (a) 10 quasi-uniform random points and their Voronoi cells. (b) The Voronoi cells about the first 100 samples generated by a Gibbs

sampler using the neighbourhood approximation. (c) Similar to (b), but for 1000 samples. (d) Contours of the test objective function. As samples

are generated, the approximation to the multi-modal surface becomes more accurate. Note that all four maxima of the objective function are well

sampled but the lower valleys are poorly sampled.

Clearly, then, there is a cost saving. The price one pays for to look at how the samples are generated. Two methods are

common: the Metropolis–Hastings method (Metropolis et al.this is the risk that the searching ability of the algorithm with

the approximate misfit is less effective than for that with the 1953; Hastings 1970); and the Gibbs sampler (Geman &

Geman 1984).true misfit. The degree to which this inhibits the effectiveness

of the GA depends on the nature of the forward problem and
3.2.2.1 The Metropolis–Hastings method: Metropolis–Hastingsprobably varies between applications. On the positive side,
(M–H) performs a Markov-chain random walk in model spacehowever, with the NA-surface one could run a GA for many
(see Gelfand & Smith 1990; Smith 1991; Smith & Robertsmore iterations [a factor of (n

f
+1) times] for the same overall

1993; Mosegaard & Tarantola 1995, for details). At eachcomputation time.
iteration the current model,m

A
, is perturbed randomly, usually

along one of its d parameter axes, according to a probability
3.2.2 Simulated annealing

distribution, q (m
B
|m
A
). For example, in Fig. 2 the perturbation

is from point A to point B. A second (uniform) random deviate,A simulated annealing algorithm works by generating samples,
r, is then generated between zero and one, and the walk movesm, whose distribution in model space is asymptotically equal
from A to B ifto a prescribed sampling density function, S(m):

r<minC1,
S(x
B
)q(m

B
|m
A
)

S(x
A
)q(m
A
|m
B
)D , (4)S(m)=expA

−w(m)

T B , (3)

where q(m
A
|m
B
) is the probability that a walk at B would bewhere T is a temperature parameter used to gradually change

perturbed to A. Usually q is symmetric in its arguments andthe sampling density function as the algorithm proceeds.
one obtains the more familiar Metropolis condition on r:The method is commonly used in a Bayesian inversion

(see Tarantola 1987; Duijndam 1988a,b, for a discussion), and
r<minC1,

S(x
B
)

S(x
A
)D . (5)for T=1 the function w(m) is often chosen so that sampling

density, S(m), is equal to the posterior probability density

(PPD). In principle, w(m) can be any data misfit function If this condition is not met then the walk stays at A and a

new perturbation is made (along the next axis). This accept/(for example see Scales et al. 1992; Sen & Stoffa 1995). To

examine how the NA-surface can be used in this case we need reject procedure requires the misfit to be evaluated at the
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computation time of forward modelling is represented by T
FM
,

and that of a nearest neighbour search by T
NN
, then the time

for generating each independent model with the NA-surface is

T
NA
=T
FM
+T
NN
I
r
d , (6)

whereas the equivalent using forward modelling is

T
misfit
=T
FM
I
r
d . (7)

This leads to a cost ratio of

T
NA
T
misfit

=
1

I
r
d
+
T
NN
T
FM

. (8)

In many problems we would expect I
r
d&1 and T

FM
&T
NN
,

and hence one could generate many more samples using the

NA-surface for same overall cost. By setting T
NA
=T
misfit

in

the above equations, we find that this factor, F, is given by

F=A
1

I
r
d
+
T
NN
T
FM
B
−1
. (9)

(Note that, if T
NN
=T
FM
, then F#1 and hence there would

be no real benefit from using the NA-surface; one might as
Figure 2. AMarkov-chain Monte Carlo walk using the neighbourhood

well use the true misfit.) As in the case of the GA this
approximation to the misfit function. The Voronoi cells (polygons) are

improvement in efficiency comes at the cost of intermittently
defined around the set of previous samples (black); the sampling

substituting the approximate misfit for the true misfit. Againdensity function is constant inside each cell. The cell in which the walk
the usefulness of the NA-surface will depend both on thestarts is shaded. The grey line shows the range of values that can be
nature of the forward problem and the sample size, n

s
. As n

s
taken in the first step of the random walk which is determined

probabilistically according to a conditional PDF (plotted above the is increased the NA-surface is used to generate more samples
figure). Here the walk may leave the cell in which it starts and is and so the information contained in the previous models is
attracted to the cells where the data-fit function is high (see text). exploited for longer. Conversely, as n

s
is decreased the

NA-surface is updated more rapidly and less use is made of

the global information contained in it.

proposed model, B, and so one solution to the forward problem

is required for each parameter axis in turn. A single iteration 3.2.2.2 T he Gibbs sampler: The Gibbs sampler (also known
is completed after cycling through all d axes, and therefore as a ‘heat bath’ algorithm) is presented in detail in Geman &
requires the forward problem to be solved d times. However, Geman (1984) and Rothman (1986). In contrast to M–H this
many of the proposed perturbation steps may be rejected, and is a one-step method in which a perturbation to a model is
so the model at the end of the iteration will have only some generated and always accepted. Fig. 2 gives an example. Again
of its components changed. The walk must proceed for a the starting model is at A, but in this case the perturbation
number of iterations, say I

r
, before the Markov-chain ‘relaxes’ to B is produced by drawing a random deviate from the 1-D

and the current model becomes statistically independent of the conditional PDF shown above the figure. This conditional
starting model, A. The whole process can then be repeated for distribution is produced by cutting S(m) along the x-axis
the next independent model. It is important to note that it is through A. In Fig. 2, the NA-surface is used instead of the true
only the statistically independent samples that are drawn from misfit function, and so the conditional consists of six segments
the desired density distribution S(m), and each one is at a cost formed from the intersection of the x-axis and the Voronoi
of d×I

r
solutions to the forward problem. [In practice, the cells. In each segment the PDF is constant, because the

value of I
r
is controlled by the accept/reject ratio of the chain, NA-surface is constant inside each Voronoi cell. After cycling

which is highly dependent on the character of the misfit through all d axes, a new model is produced, but in contrast to
function w(m) and the value of T : Rothman (1986); Gelfand M–H it will have all components changed and be independent
& Smith (1990); Smith (1991); Smith & Roberts (1993).] of the previous model A.
As with a genetic algorithm, the M–H method can be used To implement the Gibbs sampler with the true misfit function
directly in step (2) of the idealized algorithm. In this case, one usually approximates the conditional PDF by evaluating
however, we have a direct statistical interpretation of how it it at n

a
points along the axis, each of which requires a solution

works. At each stage the M–H method can be used to draw to the forward problem (Rothman 1986). Therefore the time
n
s
statistically independent samples from the current NA-misfit for generating each statistically independent sample with the

surface; that is, the NA-surface is used to replace w(m) in eq. (3). true misfit is
The important point is that this requires only nearest neighbour

calculations and no solutions to the forward problem. If the T
misfit
=T
FM
n
a
d , (10)
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whereas with the NA-surface we have

T
NA
=T
FM
+T
NN
n
a
d . (11)

An analysis similar to that for the M–H case leads to a cost

ratio of

T
NA
T
misfit

=
1

n
a
d
+
T
NN
T
FM

. (12)

As can be seen here, the discretization of the axis, n
a
, plays a

similar role to the relaxation time, I
r
, in the M–H method.

(In numerical experiments with a Gibbs sampler on the

receiver function problem discussed in Section 5 we had d=24,
n
a
=20, and found T

NN
/T
FM
>1/3000, indicating that for this

case the NA-surface produces considerable savings.) Overall,

the NA-surface with the Gibbs sampler results in a similar

efficiency to that for M–H case, and comments and caveats

carry over.

Sambridge (1998) presented some results of using the

NA-surface in conjunction with the Gibbs sampler to generate

samples from successive neighbour approximations to a misfit

surface. It was found that the convergence of the Gibbs sampler

became excessively slow as the dimension increased. However,

it was incorrectly concluded that the ‘NA-Gibbs sampler’
Figure 3. A uniform random walk restricted to a chosen Voronoi cell.would be impractical for dimensions greater than 10. Later
A Gibbs sampler is used in a similar manner in Fig. 2; however, thework showed that the slow convergence was due to the lack
conditional PDF outside the cell is set to zero (plotted above).of structure in the PDF used in that example.
Asymptotically, the samples produced by this walk will be uniformly

We see, then, that the neighbourhood approximation can
distributed inside the cell regardless of its shape.

easily be used in combination with any existing direct search

method; however, its success will depend on the details of the
chosen Voronoi cells with a locally uniform density. Theapplication. Fig. 1 shows a simple example of searching a 2-D
algorithm can be summarized in the following four steps.parameter space using the NA-Gibbs sampler for a test function

with T=1/15 and
(1) Generate an initial set of n

s
models uniformly

(or otherwise) in parameter space;
w(m)=

f
max
− f (m)

f
max
− f
min

, (13)
(2) Calculate the misfit function for the most recently

generated set of n
s
models and determine the n

r
models

where the test function range is f
max
=2200 and f

min
=500. 10 with the lowest misfit of all models generated so far;

independent samples are generated at each iteration (n
s
=10, (3) Generate n

s
new models by performing a uniform

n
a
=20). The initial 10 samples are distributed uniformly, random walk in the Voronoi cell of each of the n

r
chosen

and Voronoi cells are plotted for 100 and 1000 samples. As models (i.e. n
s
/n
r
samples in each cell );

the algorithm proceeds, the information in the NA-surface is (4) Go to step 2.
exploited to concentrate sampling in the regions where S(m)

A NEIGHBOURHOOD ALGORITHMis high [shown in part (d)]. Note that all four of the local

maxima (darkest regions) are densely sampled, while the troughs
The uniform walk within a chosen Voronoi cell can bein S(m) ( lighter) are sparsely sampled. An example of the

generated using a Gibbs sampler, in a manner similar to thatNA-Gibbs sampler in a 24-dimensional space is presented in
described above. Fig. 3 shows an example. At each step the ithPaper II, although there it is applied to the appraisal rather
component of the current model, x

A
, is replaced with a uniformthan the search stage of the inverse problem.

random perturbation restricted to the boundaries of the current

Voronoi cell (l
i
, u
i
). This is essentially the same as in the

previous case (shown in Fig. 2), except that the conditional
4 A NEIGHBOURHOOD SAMPLING

PDF is set to zero outside the cell. The resulting random
ALGORITHM

walk asymptotically generates a spatially uniform distribution

of samples with any d-dimensional convex polygon. TheThe previous section showed how the neighbourhood approxi-

mation can be used to enhance any existing direct search philosophy behind the algorithm is that the misfit of each of

the previous models is representative of the region of space inmethod. It was only used, however to replace the forward

problem. In this section we present a new direct search method its neighbourhood (defined by its Voronoi cell ). Therefore at

each iteration new samples are concentrated in the neigh-which uses the spatial properties of Voronoi cells to directly

guide the sampling of parameter space. bourhoods surrounding the better data-fitting models. In this

way the algorithm exploits the information contained in theThe algorithm is conceptually simple and summarized in

Fig. 3. The key idea is to generate new samples by resampling previous models to adapt the sampling.
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There are two important features of the new algorithm. The
4.1.1 A brute force approach

first is that the size and shape of the neighbourhoods are not

The intersections can be approximated using a simple approach.imposed externally but rather determined automatically and
We discretize the axis into n

a
points, and for each find itsuniquely by the previous samples. Note that the boundaries

nearest neighbour amongst the previous n
p
samples. Theof each Voronoi cell are determined by all previous samples,

approximate position of the intersection is given by a changeand, regardless of how irregularly distributed the samples are,
in the nearest neighbour node. If we calculate the distance tothe neighbourhood will be a ‘reasonable’ one, in the sense of
each of the n

p
points, then the time for finding a single nearestan L

2
-norm. The second feature is that the algorithm only

neighbour satisfiesrequires models to be assessed for their relative fit to the data,

because it uses only the rank of a misfit/objective function. T
NN
3n
p
d . (14)

This is very useful because in many problems (e.g. seismic
By using eq. (11), we see that the time for generating eachwaveform inversion) it is often much easier to answer the
independent sample becomesquestion ‘is model A a better fit to the data than model B?’

than to quantify the difference in a precise way. With most T
NA
=T
FM
+l
1
n
a
n
p
d2 , (15)

search methods one is forced to define an absolute measure of
where l

1
is a constant of proportionality. In practice this is

data misfit (e.g. the chi-square or the PPD), which requires
very easy to implement, and, with modern vector computation,

accurate knowledge of the statistics of the data errors. With a
may be practical for many applications. However, since the

rank-based approach, the weight of each of the previous
‘intersection problem’ is at the very heart of the algorithm

samples in driving the search depends only on their position
(and will need to be solved many times), an efficient solution

in the rank list and not on any analytical estimate of the noise
is essential. Note that the ratio of the two terms in eq. (15) is

statistics. Of course noise fluctuations still play a role because,

when large enough, they can influence the ranks of the misfit
T
R
=
l
1
n
a
n
p
d2

T
FM

. (16)
values. Ultimately, an absolute measure of data fit is always

needed in order to determine if any models satisfy the data; Ideally we seek T
R
<1, so that the overall cost of the algorithm

however, by using only misfit rank, the search process becomes is dominated by the time required to solve the forward problem.
independent of the absolute scale of the misfit function. Even if this is not the case however, the algorithm is still
With direct search methods that do not use rank, one is viable. Note also that, since the cost of generating a single
often forced to rescale the misfit function to avoid stability sample depends on all n

p
previous samples (eq. 15), the cost

problems or loss of efficiency. For example, misfit rescaling is for generating all samples depends quadratically on n
p
.

often used with genetic algorithms to reduce ‘exhaustion’

problems (Goldberg 1989). [We note that misfit rank has also
4.1.2 A refined approach

been introduced into GAs to deal with this problem (Goldberg

& Deb 1991; Sambridge & Gallagher 1993).] Similarly, the It turns out that this simple ‘brute force’ approach can be
main role of the temperature parameter (crucial to the per- improved upon considerably by using a more complex method
formance of the simulated annealing algorithm) is to rescale which avoids a discretization of the axis and also allows exact

intersections to be calculated. If we define the kth Voronoi cellthe misfit function (cf. eq. 3), thereby controlling the influence

as the one about sample v
k
, and the point where the boundaryof large changes in misfit on the search process. A rank-based

between cells k and j intersects the axis as x
j
(see Fig. 3), thenapproach can be applied to any misfit criterion that can discern

by definition we havebetween completing models (even one based on a combination

of criteria or a set of heuristic rules). d (v
k
−x
j
)d=d (v

j
−x
j
)d . (17)

In defining the neighbourhood algorithm a second control
Taking C

M
=I we haveparameter, n

r
, has been introduced. Again the influence of

this is quite straightforward. For larger values, the sampling d2
k
+ (v
k,i
−x
j,i
)2=d2

j
+ (v
j,i
−x
j,i
)2 , (18)

(at each iteration) is spread over more cells, and so we would
where d

k
is the perpendicular distance of sample k from the

expect the algorithm to be more exploratory in nature.
current axis, and a subscript of i denotes the ith component

Conversely, for smaller values it is restricted to fewer cells and
of the corresponding vector. Solving for the intersection point

so the sampling should be more localized. In Section 5 we
we obtain

examine the influence of this parameter in more detail.

x
j,i
=
1

2 Cvk,i+vj,i+
(d2
k
−d2
j
)

(v
k,i
−v
j,i
)D . (19)

4.1 Sampling Voronoi cells in a high-dimensional space If we ignore the calculation of d2
k
and d2

j
for the moment then

this expression requires just six arithmetic operations toIt turns out that, in order to implement the neighbourhood
evaluate. To find the required boundaries of the Voronoi cell,algorithm, full details of the high-dimensional Voronoi diagram
eq. (19) must be evaluated for all n

p
cells and the two closestdo not have to be determined (which would be an impossible

points either side of x
A
retained. More formally, we have thetask). As can be seen from Fig. 3, all that is required is to find

lower boundary given bythe points where the boundaries of the d-dimensional Voronoi

cell intersect the ith axis passing through a given point x
A
. max[l

i
, x
j,i
] , (for x

j,i
≤x
A,i
; j=1, … , n

p
) , (20)

The next step of the uniform random walk is then restricted
and the upper boundary by

to lie between these two points on the axis (i.e. x
j
and x

l
in Fig. 3). min[u

i
, x
j,i
] , (for x

j,i
≥x
A,i
; j=1, … , n

p
) , (21)
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where l
i
and u

i
are the lower and upper bounds of the

5.1 Parametrization and synthetic receiver functions
parameter space in the ith dimension, respectively. After

The crustal structure is divided into six horizontal layers,cycling over all dimensions a new sample in parameter space

which we name ‘Sediment’, ‘Basement’, ‘upper’, ‘middle’ andis generated, and the time taken for each satisfies

‘lower Crust’, and ‘Mantle’. The model comprises of four
T
NA
=T
FM
+l
2
n
p
d , (22) parameters in each layer: the thickness of the layer (km), S

velocity at the topmost point in the layer (km s−1 ), S velocity
which gives a cost ratio at the bottommost point in the layer (km s−1 ), and the ratio

of P and S velocity in the layer. A linear gradient in velocity

is assumed in each layer. The philosophy behind the para-T
R
=
l
2
n
p
d

T
FM

, (23)
metrization is to be as flexible as possible, allowing a very

wide range of earth models to be represented by a finite-
which in practice will be a considerable improvement over the dimensional (d=24) parameter space. Therefore very loose
brute force approach since a factor of n

a
d has been removed prior bounds are placed on each parameter. These are apparent

(cf. eq. 16). in the figures below and also act as the scale factors required
To complete the description we need the set of squared to non-dimensionalize the parameter space. (Numerical values
perpendicular distances, d2

j
( j=1, … , n

p
), available at each and all other details can be found in Shibutani et al. 1996).

step of the walk. These can be calculated for the initial axis A synthetic receiver function (RF) was calculated from
[an O (dn

p
) calculation], and for each new axis by a recursive the true model using the Thomson–Haskell matrix method

update procedure. For example, after the ith step has been (Thomson 1950; Haskell 1953), and uniform random noise
completed and the walk moves from x

A
to x
B
, the current set was added in the frequency domain (with a noise-to-signal

of d2
j
values can be calculated for the (i+1)th axis using ratio of 0.25). This resulted in the ‘observed’ RF shown in

Figs 5(c),(d) etc. (grey line). A chi-square misfit function was
(d2
j
)
i+1
= (d2
j
)
i
+ (v
j,i
−x
B,i
)2 used to measure the discrepancy between the true, wobs (m),

and predicted, wpre(m), waveforms from an earth model m:− (v
j,i+1
−x
B,i+1
)2 for ( j=1, … , n

p
) . (24)

The cost of this procedure for each model also depends linearly x2
n
(m)=

1

n
∑
Nd

i=1
A
wobs
i
−wpre
i

s
i
B
2
, (25)

on n
p
d, and so only the multiplicative constant in (22) is

changed, and overall the time taken will be linear in both the where s
i
is an estimate of the standard deviation of the noise

number of previous points, n
p
, and dimension, d. This com- calculated from wobs using the approach described by Gouveia

pletes the description of the method. In the next section we & Scales (1998), and n is the number of degrees of freedom
present a numerical example of its application to the problem (n#N

d
−d ). (Note that all off-diagonal terms of the data

of inverting seismic receiver functions for crustal seismic covariance matrix are ignored, and so this misfit measure does
structure. In this case we found that the total time taken for not take into account any temporal correlation in the noise.)
solving the forward problem for all models was a factor of 14 The trace was sampled at a frequency of 25 Hz with 30 s
times greater than the total time of generating all of the duration, giving a total of N

d
=876 data points.

samples (i.e. T
R
=1/14).

5.2 Searching for data-fitting models

Fig. 4 shows the improvement in data fit (of the best model)5 EXAMPLES
in three trials with a neighbourhood and a ‘well-tuned’ genetic

To illustrate the neighbourhood algorithm we examine its algorithm starting from various initial (random) populations.
performance in the inversion of receiver functions for crustal (The details of the genetic algorithm are exactly those of
seismic structure. This is a highly non-linear waveform-fitting Shibutani et al. 1996.) At each iteration the neighbourhood
problem, exemplifying many of the difficulties of seismogram algorithm generates 10 samples of a uniform random walk
inversion. Typically, receiver functions contain both high- inside each of the Voronoi cells of the current two best models
amplitude reverberation phases, due to near-surface structure, (i.e. n

s
=20, n

r
=2). These values were selected after a few

and much smaller-amplitude converted phases from the Moho. trials with n
s
in the range 2–100 and n

r
in the range 1–10. No

It is well known that when linearized techniques are applied to exhaustive testing was done and we do not expect the values
receiver function inversion they can have a strong dependence to be in any way optimal. The tuning of the genetic algorithm
on the assumed starting model (Ammon et al. 1990). It is was accomplished with more care (and not by the author)
therefore a suitable test problem on which to illustrate the (Shibutani, personal communication).
algorithm. Our primary interest in Fig. 4 is to compare the characters
We use a synthetic data problem so that the true model of the misfit reduction in the two cases, rather than the
is known in advance and can be compared with the results particular values of data misfit achieved. (The latter will no
of the algorithm. To be as realistic as possible we use exactly doubt vary between applications and with the precise details
the same parametrization of crustal structure as was used by of the algorithms.) Notice how the GA curves in Fig. 4(a)
Shibutani et al. (1996). In that study, a genetic algorithm consist of a large number of small changes and a few larger
was applied to the inversion of receiver functions recorded in steps which gradually diminish. In contrast, the three NA

eastern Australia. We also apply this genetic algorithm to our curves (Fig. 4b) all have a ‘staircase’-like feature reminiscent

synthetic receiver functions and compare the performance with of the early stages of a uniform Monte Carlo search (shown

dashed); however, unlike the case for uniform sampling, thethat of the neighbourhood algorithm.
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small changes in the NA curves suggests that it exhibits no

local search character; rather, it is performing uniform searches

in ever-decreasing volumes of parameter space. The important

point is that the size and shape of these sampling regions

(Voronoi cells) are completely determined by the previous

samples, and also evolve as the algorithm proceeds.

5.3 Self-adaptive sampling in parameter space

Examining the reduction in misfit of the best model gives only

limited information on the character of the search process.

Figs 5 and 6 show the distribution of S-wave velocity models

for the two better runs in the GA and NA, together with

the receiver functions of the best model found in each case. The

most striking feature of these figures is the difference in the

sampling density of the best 1000 models between the GA and

NA results. In the GA case, both density plots (Figs 5a and b)

show a very localized sampling with high concentration in some

places and ‘holes’ in others. This implies localized irregular

sampling in parameter space. The density of the 1000 NA

models is much smoother in both cases. Again this is more

reminiscent of uniform sampling; however, the search has

achieved levels of misfit reduction that are comparable to those

for the GA search. The ranges of models generated (shown

as black outlines) are effectively at the boundaries of the

parameter space, and are similar in all cases.

A comparison of the best fit model in each case (white line)

with the true model (black line) shows that for both GA and

NA the depth and velocity jump across the Moho are recovered

reasonably well. This results in the P-to-S conversion at 5 s

being fit quite well in all cases, although the NA model in

Fig. 6(a) has a slightly deeper Moho resulting in a slightly

later converted phase (see Fig. 6c). The NA models seem to

recover the depth and jump across the basement better than

the GA, resulting in better alignment of dominant phases in the

reverberations (0–3 s). This may account for the lower overall

data fit of the GA models.

Figs 6(e) and (f ) show results from a separate NA run

with parameters n
s
=2, n

r
=1. This is included because it

(fortuitously) provides an example where the best fit model

found has exactly the same numerical value as one of the GAFigure 4. (a) x2 data misfit function plotted against the number of
results (see GAr3 in Figs 5b and d). This is useful becausemodels (produced by a genetic algorithm) for which the forward
it allows a direct comparison of sampling between the twoproblem has been solved. The three curves are produced by different

starting random number seeds. (b) As (a), for three runs of the algorithms without the complication of differences in sampling
neighbourhood algorithm. In both panels the corresponding curve leading to differences in the fit of the best model. The NA
from a uniform Monte Carlo search is plotted for reference (solid). sampling is again much more distributed and uniform than
Notice how the GA curves consist of a large number of small changes the GA case, which confirms the previous conclusion that the
while the NA curves look more like the early stages of the uniform

more distributed sampling of the NA has not been at the
Monte Carlo search. After 10 000 models have been sampled, two of

sacrifice of improving the fit of the best model. A comparison
the three NA curves have lower data misfits than the best GA curve.

of the two best fit models shows that the NA model (Fig. 6e)

is similar at the Moho but distinctly different from GAr3

in the reverberation layers near the surface [giving a nearsteps continue as the iterations proceed, and result in reason-

able well fit best models (x2
n
values of 1.42, 2.04 and 1.44). perfect fit to the true receiver function in the high-amplitude

(0–1 s) part of the trace]. This also suggests the presence ofAfter 10 000 models have been generated, the uniform sampling

gives a x2
n
value of 3.75 (a poor data fit), and two of the multiple minima in the misfit surface (as one might expect in

a waveform-fitting problem).three NA curves have lower misfits than the best GA curve

(x2
n
values of 1.79, 2.51 and 1.69), although we do not feel that One might argue that the apparently sparse sampling of the

NA is a disadvantage because it will not concentrate as muchthis is particularly significant.

The character of the misfit reduction is more intriguing. In sampling in the region of parameter space about the true

model, compared with a GA perhaps. To examine this questionthe GA case the small changes suggest that a ‘local search’

mechanism is present (consistent with previous speculation on we plot the entire ensemble of models produced by NAr1 and

GAr1 projected onto four pairs of parameter axes (see Fig. 7).GAs; Sambridge & Drijkoningen 1992). The absence of these
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Figure 5. (a) Density plot of the best 1000 data-fitting S-velocity models generated by the GA with the first random seed (GAr1). The best data-

fitting model is plotted in white with a black outline, and the true model is in black. The darker shading represents better fit to the data. The

outline represents the extremes of all 10 000 models generated. (b) As (a), for run GAr3. (c) and (d) Receiver functions of the true (grey) and best

fit (black) models for GAr1 and GAr3, respectively. In both cases the density of the models is highly irregularly distributed, showing concentrations

and ‘holes’ about the best model.
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Figure 6. (a) Model density plot for models produced by the neighbourhood algorithm with the first random seed (NAr1) and parameters

n
s
=20, n

r
=2. Details are the same as for Fig. 5. (b) As (a), for run NAr3. (c) and (d) Receiver functions of the true (grey) and best fit (black)

models for NAr1 and NAr3, respectively. (e) and (f ) Show the results using control parameters n
s
=2, n

r
=2. Note that the final data fit is exactly

the same as for GAr3.
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Figure 6. (Continued.)

Immediately one sees the effect of the discretized parameter contain reasonable information on both the depth and jump

across the Moho.space used by the GA (left panels). All GA samples fall on a

relatively crude grid. (Note that the level of discretization used

by the GA is typical of problems of this kind, and had to be
5.4 Properties of NA sampling

limited in order to stop the GA string becoming too long;

Shibutani et al. 1996). The holes in the GA ensemble are also In these examples only a small number of Voronoi cells were

resampled at each iteration (n
r
=1 or 2). Since a small valueapparent, even close to the best fit model (cross). It is well

known that the GA can produce an ensemble containing of n
r
suggests a more restrictive search (i.e. more exploitation

than exploration), one might suspect that this would severelymodels that are partial or full copies of each other, which will

mean that many models plot on top of each other in the left inhibit the sampling of the NA, perhaps directing it away

from a global minimum towards secondary minima. Fig. 9 waspanel. The NA works with a continuum and produces a diverse

cloud of samples with sampling concentrated in the neighbour- produced in an attempt to examine this question, and, it turns

out, allows us to observe a remarkable property of the NAhood of the best fit model (which, in this case, is on average

closer to the true model, marked by an ×). sampling. Here we plot, as a function of iteration, the average

distance in model space between the current best fit modelIt is interesting to note that even though each cloud in Fig. 7

is a projection from 24 to two dimensions, there is a fair and the set of models most recently generated inside its

Voronoi cell. For the NA this is an average over n
s
/n
r
models,amount of consistency between the data fit of the model and

its position relative to the centre of each cloud (darker shades and gives a measure of the size of the Voronoi cell about the

current best fit model. We also plot the same measure forindicate better data fit). Furthermore, the sampling density

seems to increase closer to the best fit model, indicating that the GA and MC results for reference (although in these cases

the curve has no simple interpretation).the algorithm has adapted the sampling to concentrate in

regions of better data fit. We argue here that the diversity of As the iterations proceed we see (from Fig. 9) that the size

of the Voronoi cell about the best fit model gradually decreasesthe NA ensemble is likely to be more useful in the appraisal

stage of the inverse problem than that produced by the GA, and then increases in a spike-like feature only to decay again.

This pattern is repeated several times. The reason for thissince it might better characterize the region of acceptable

models. (This issue is dealt with in detail in Paper II.) becomes clear when we compare the curve to the corresponding

misfit reduction curve NAr1 in Fig. 4(b) (this curve is shownFig. 8 shows a similar scatter plot where all 10 000 models

have been plotted as a function of Moho depth and velocity in Fig. 9 in light grey). The spikes in Fig. 9 occur at exactly

the same points as where a new best fit model is found.jump across the Moho. (These variables are linear combi-

nations of the original model parameters.) One can see that Therefore the gradual shrinking of the Voronoi cell is a result

of more and more samples being generated within it. (Wethe true values (crosses) are reproduced well by the best fit

model and the NA ensemble provides thorough sampling recall that at each iteration the Voronoi cells are updated, and

so they must shrink as space is taken up by new cells.) Eachabout the true values. We conclude from this that the data
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Figure 8. 10 000 models produced by the NA projected onto the axes

representing the S-velocity jump across (x-axis), and depth of, the

Moho ( y-axis). Symbols and shading as in Fig. 7. The plot range is

the complete parameter space (11 to 60 km for Moho depth, −0.5 to
1.8 km s−1 for velocity jump). The best fit and true models are relatively

close. The density of the samples is increased in the region around the

true solution where data fit is high (darker shades).

a new set of n
r
Voronoi cells whose centres differ from the old

ones. Note that each new best fit model is not necessarily

produced by sampling the previous best fit Voronoi cell, but

may have come from any of the n
r
cells. Hence the centres of

sampling may jump from place to place. Note also that as the

best model is replaced with a better one, the old cell is not

necessarily discarded, since it merely moves down the rank

list. We see then that the NA is always sampling the ‘currently

most promising’ n
r
regions in model space simultaneously.

A further question arises from these plots. How can each

new Voronoi cell in parameter space be larger than the original

cell, if its defining point in parameter space is inside the

original cell? The answer can be illustrated with a simple 2-DFigure 7. Comparison of ensembles produced by NA (right panels)
test case (see Fig. 10). Fig. 10(a) shows a Voronoi cell (shaded)and GA (left panels) projected onto four pairs of parameter axes
and the set of new samples generated within it (open circles).( labelled). The best of the 10 000 models in each panel is shown as a

cross and the true model as a×. The dots are shaded by data fit, and After updating the Voronoi cells we see that all six of the new
a darker shade indicates a higher data fit. The GA left panel produces Voronoi cells extend beyond the original (shaded) cell. Therefore,
many copies of each model on a crudely discretized axis and yet still even though the sample itself lies inside the original cell, its
has ‘holes’. In each case the NA produces a continuum of samples Voronoi cell can extend beyond the original Voronoi cell. It
with a higher concentration of better-fitting models in the region of turns out that the likelihood of this occurring dramatically
the true model.

increases with dimension, and also the new cell is more likely

to occupy a larger region of parameter space. (This effect is

discussed in more detail by Sambridge 1998.)spike in Fig. 9 occurs when the sampling switches to a new

Voronoi cell about a new best fit model, and this cell is much

larger than the previous one.
5.5 Tuning the free parameters

This illustrates the remarkable property of the NA referred

to above; that is, the local sampling density (inverse of Voronoi As mentioned above, the two free parameters (n
s
, n
r
) used in

the examples were obtained after trials over a range of values.size) automatically increases and decreases (in a pulsating-like

fashion) as new cells are sampled. Furthermore, the centres of Robust conclusions are not possible from these limited tests,

and no doubt details will vary between applications. Fromthe sampling must also change, because they are restricted to
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Figure 9. Three curves showing how the distance between the current best data-fitting model and the centroid of the current population varies

during the search. For the NA this is a measure of the size of the Voronoi cell about the best fit model. The spikes in the NA curve coincide with

the points where a new best fit model is found ( labelled NAr1 in Fig. 4b and shown in grey here). The spike-like character demonstrates that the

NA has the ability to adapt both the sampling density and the centre of the sampling as better data-fitting models are found.

Figure 10. An example of how the NA can increase, decrease and shift the centre of its sampling density in parameter space. (a) Nine points and

their Voronoi cells. (b) After adding seven new points to the shaded Voronoi cell in (a) it has shrunk and the local sampling density has increased.

If the new model to the left becomes the best data-fit sample then at the next iteration new samples will be generated in its cell (outline shaded).

The average density will then decrease and the focus will shift. This type of effect gives rise to the ‘spike-slope’ features seen in Fig. 9.

the design of the algorithm itself, however, it is possible to updated less frequently. As both n
s
and n

r
are increased

together we would expect the overall algorithm to becomemake some general statements about how we expect the two

parameters to influence the algorithm. For example, as the more explorative and so more robust as a sampler, but less

‘efficient’ as an optimizer.number of resampled Voronoi cells n
r
, increases, we expect the

algorithm to be more explorative of parameter space and less The influence of both parameters will be affected by the

dimension of the parameter space. As shown by Sambridgeexploitative (i.e. less local ). Therefore as n
r
decreases we expect

it to be more likely to be trapped in local minima, and as n
r

(1998), there is a critical number of points in a parameter space

of dimension d above which all Voronoi cells are no longerincreases, less likely (but also less efficient at finding better

data-fitting models). The influence of n
s
is more difficult to neighbours of all other cells. If the total number of samples is

higher than this value then the Voronoi cells become ‘isolated’.assess. What we know is that as n
s
increases more weight is

given to the previous samples because the Voronoi cells are A small value of n
r
will mean that after a few iterations each
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random walk loses the ability to sample all regions in space, of measures) can be used. In the examples presented here we

and so the algorithm effectively consists of a set of n
s
simul- were able to determine a suitable x2 measure of goodness of

taneous local searches. Note that these are not independent data fit; however, in other problems more qualitative criteria,
random walks because they are restricted to the best n

s
/n
r

non-differentiable functions, or perhaps even heuristic rules
Voronoi cells, and after each iteration all of the Voronoi could be used equally well.
cells are updated. In practice, the saturation effect will only be An interesting feature of the new approach is that it can
important for small dimensions; for example, for d=5, 90 per increase, decrease and shift the density of the sampling (or
cent of saturation is acheived with #200 uniform random subportions of it) automatically as the iterations proceed. This
points (using an L

2
-norm). Sambridge (1998) showed that the is because we use Voronoi cells as the ‘local regions of interest’,

saturation value depends exponentially on dimension, which and their size and shape are uniquely determined by the
means that in practice we will nearly always severely under- previous samples. In this paper we have also shown how the
sample high-dimensional parameter spaces. As a consequence, Voronoi cell concept can be used to enhance existing direct
all Voronoi cells will share faces with all other cells, and as search methods like GA or SA by replacing the forward
the neighbourhood algorithm switches from one Voronoi cell problem. The neighbourhood algorithm is an alternative to
to another it will always be possible to move into any other these methods. The original objective with the new approach
point in parameter space (even if n

r
=1). However, this does was to allow the previous samples to guide the search for new

not guarantee that, when the algorithm is used as an optimizer, models in a straightforward and conceptually simple manner.
it will avoid local minima, or even perform any better in this We suggest that this has been achieved and that the resulting
respect than any existing method. Secondary minima in high- algorithm may find applications in a range of inverse problems.
dimensional spaces may be exceedingly complex, especially if

‘ridge-like’ narrow valley structures occur. The only safeguard

is that when the total number of samples is less than the
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