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ABSTRACT 

 

This study provides forensic search teams with systematic geophysical monitoring 

data over simulated clandestine graves for comparison to active cases.  Simulated 

‘wrapped’ and ‘naked’ burials were created.  Multi-geophysical surveys were 

collected over a three-year monitoring period.  Bulk ground resistivity, Electrical 

Resistivity Imaging, multi-frequency Ground Penetrating Radar, grave and 

background ‘soil water’ conductivity data were collected.  Resistivity surveys 

revealed the naked burial had consistently low-resistivity anomalies, whereas the 

wrapped burial had small, varying high-resistivity anomalies.  GPR 110-900 MHz 

frequency surveys showed the wrapped burial could be detected throughout, with the 

‘naked’ burial mostly resolved.  225 MHz frequency GPR data was optimal.  ‘Soil 

water’ analyses showed rapidly increasing (year one), slowly increasing (year two) 

and decreasing (year three) conductivity values.  Results suggest resistivity and GPR 

surveys should be collected if target ‘wrapping’ is unknown, with winter to spring 

surveys optimal.  Resistivity surveys should be collected in clay-rich soils. 

 

Keywords: forensic science; forensic geophysics; clandestine grave; monitoring; 

electrical resistivity; Ground Penetrating Radar; conductivity 
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Forensic investigators are increasingly using geoscientific 

 methods to aid them in civil or criminal forensic investigations, predominantly to 

assist search teams or for trace evidence purposes (1-3).  One key and high-profile 

‘target’ for forensic search teams to detect and locate is human remains buried within 

clandestine graves (4-5).  Whilst more traditional forensic search team methods 

include the use of remote sensing (6-7), trained victim recovery dogs (8), metal 

detectors (3), metal probes (9), geochemical surveys (3) and mass excavations (10), 

forensic geophysical surveys are starting to be utilised, albeit sporadically, in criminal 

search investigations (Harrison pers. comm.). 

 

Geophysical surveys have been used to locate clandestine graves in a number of 

reported criminal search investigations (11-19).  Geophysical surveys collected over 

simulated burials have been undertaken in order to collect control data (e.g. (20-22)).  

These studies have shown that the resulting geophysical responses could be 

reasonably well predicted, although responses seem to vary both temporally after 

burial and between different study sites.  A few studies have also collected repeat 

(time-lapse) geophysical surveys over controlled experiments (e.g. (16, 23-25), which 

have documented temporal changes in geophysical responses over their study periods.  

Uncertainties, however, still remain over what and how long temporal variations 

occur in geophysical surveys after burial, with study survey sites needing to be fully 

characterised (e.g. geologically and climatologically) to allow comparisons with other 

studies or indeed for active forensic cases.  Documenting temporal changes is 

important as geophysical responses from recent clandestine burials are known to vary 

more than for archaeological graves.  Potential reasons could be the temporal changes 
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in grave soil characteristics, decomposition products, climatic variations and other site 

specific factors (see Fig. 1 and (26)). 

 

This study was conducted to systematically assess the changing geophysical response 

of simulated clandestine graves during the first three years after burial.  A clandestine 

grave is defined in this study as an unrecorded burial that has been hand-excavated 

and dug <1 m depth below ground level (bgl).  There has been little published 

quantitative data on discovered clandestine burial dimensions, so a 0.5m bgl depth has 

been used, based on a 0.6 m depth bgl average from 87 discovered U.S. burials (28) 

and a 0.4 m depth bgl average from 29 discovered U.K. burials (10).  It should be 

noted that geophysical results will vary depending upon the depth of burial and indeed 

on local soil type.  The discovered graves published in (10,28) were usually 

rectangular in plan-view, mostly hurriedly hand dug using garden implements and 

usually just large enough to deposit the victim before being back-filled with excavated 

soil and associated surface debris.  Manhein (28) also detailed that almost ½ of the 87 

documented U.S. cases were either clothed or encased in material (plastic or fabric), 

so the authors decided to use two end member scenarios for this study; namely a 

naked and wrapped burial, although it is emphasised that these obviously do not 

represent all types of potential style of burial. 

 

There are many potential near-surface geophysical search techniques that could be 

utilised to search for clandestine graves (20,25,29).  Electrical resistivity methods 

were selected since these have not been employed much to-date in active search cases 

but they have been shown to detect clandestine graves in different ground conditions 

(15,26,29-31).  However geophysical responses will vary depending upon local soil 
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type; therefore resistivity surveys will not be applicable in all searches.  Ground 

Penetrating Radar (GPR) is the most frequently-used geophysical search technique 

(11,12,17,19,21), thus GPR datasets at the commonly-acquired (100-900 MHz) 

frequencies were also collected for comparison purposes.  It was deemed unnecessary 

to also collect magnetic data, as, in contrast to historical graves which do show 

anomalies (32), magnetic results over simulated recent clandestine burials in a variety 

of depositional environments have proved to be unpromising for search teams (33).   

 

The aims of this three year geophysical monitoring study of different simulated burial 

style clandestine burials were to answer some basic questions posed by forensic 

search teams.  Appropriate site data (rainfall, temperature, soil and ‘grave’ water 

conductivities) were also simultaneously collected in order to allow comparisons with 

other research studies and criminal search investigations.  Basic forensic search 

questions which will be addressed by this study were: firstly could electrical 

resistivity fixed-offset surveys successfully locate both simulated clandestine burials? 

And if so, how long were they geophysically detectable for? Secondly could GPR 

surveys successfully locate both simulated clandestine burials throughout the three 

year monitoring period?  And if so, how long were they geophysically detectable for?  

And finally, which dominant frequency antenna was optimal to detect them?  Thirdly 

When was the optimal time (both up to three years post-burial and seasonally) to 

undertake a forensic GPR or electrical resistivity geophysical search survey?  

Fourthly, what advantages do 2D Electrical Resistivity Imaging (ERI) forensic 

surveys have over other electrical probe configurations or indeed other techniques?  

Fifthly, what effect does soil type have on a forensic geophysical survey being 

successful?  Sixthly, what was important to do when processing electrical resistivity 
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datasets?  Seventhly, what was important to do when processing GPR survey 

datasets?  Finally, when should a forensic geophysical survey be undertaken in a 

search scenario?   

 

Methodology 

 

Study site 

 

The chosen controlled test site was located on Keele University campus, ~ 200 m 

above sea level, close to the town of Newcastle-under-Lyme in Staffordshire, UK.  

The local climate is temperate, which is typical for the UK (34).  The study site was a 

grassed, small rectangular area (~25 m x ~25 m), surrounded by small deciduous trees 

(Fig. 2).  Therefore, this study site was representative of a semi-rural environment.  

Nearby borehole records showed that Carboniferous (Westphalian) Butterton 

Sandstone bedrock geology was present ~2.6 m bgl (35).  Local soil maps, however, 

designated this area as made ground, due to the presence of demolished greenhouses.  

Initial soil sampling indicated a vertical site succession of a shallow (0.01 m) organic-

rich, top soil (Munsell colour chart colour (Mccc): 5 YR/2/2.5), with underlying ‘A’ 

Horizon (Mccc: 5 YR/3/3) comprising predominantly of a natural sandy loam that 

contained ~5% of isolated brick and coal fragments.  The natural ground ‘B’ Horizon 

was encountered at ~0.45 m bgl, dominated by sandstone fragments from the 

underlying bedrock. 

 

The test site was located ~200 m from the Keele University weather observation 

station, which continually measured daily rainfall and air and ground temperatures as 
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well as having soil temperature probes at 0.1 m, 0.3 m and 1.0 m bgl.  This allowed 

below-ground site temperatures to be recorded.  Figure 3 shows a monthly summary 

of the total rainfall and average temperature data over the monitoring period.  Daily 

average temperatures at 0.3 m bgl were used to convert burial days to accumulated 

degree days (ADDs), which corrected for local site temperature variations by 

weighting each day by the average daily temperature and then giving each burial day 

an ADD value (36).  Therefore, for a two-day period, in which the average 

temperature of the first day was 12 °C and the second day was 15 °C, the ADD value 

for those two days would be 27 ADD.  The local weather station data showed that 

total monthly rainfall during the study period ranged from 21.6 mm to 166.7 mm, with 

an overall monthly average of 64.7 mm.  Average monthly air temperatures ranged 

from -1.2 ºC to 15.8 ºC, with an overall monthly average of 8.7 ºC.  Note at 0.3m bgl 

the average temperature was 9.8 ºC for the three year monitoring period. 

 

Simulated graves 

 

The Human Tissue Act (2004) prevents human cadavers from being used for research 

in the UK.  Domestic pig (Sus scrofa) carcasses, sourced from a local abattoir, were 

instead used as proxies to simulate homicide victims, after the necessary permissions 

from the U.K.’s Department for Environment, Food and Rural Affairs (DEFRA) had 

been obtained.  Pig cadavers are commonly used in such monitoring experiments as 

they comprise similar chemical compositions, size, tissue:body fat ratios and skin/hair 

type to humans (31,37).  Five simulated graves were created at the site (Fig. 2A).  

Three of the graves were used for the repeat geophysical surveys, whilst ground water 

samples were collected at regular intervals from both the fourth grave and a separate 
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control site away from the graves (Fig. 2E-F), both of the water sampling sites being 

outside the geophysical survey area (Fig. 2A).  Of the three simulated graves 

geophysically surveyed, one contained a naked pig carcass, one contained a wrapped 

carcass and the third was an empty grave to act as a control (Fig. 2). 

 

The ‘graves’ were hand-excavated to 0.5 m bgl on the 7
th

 December 2007.  For each 

grave, the turf was removed and approximately 1.5 m long, 0.75 m wide and 0.6 m 

deep bgl pits were excavated.  The three pig cadavers, which weighed ~80 kg each, 

were then placed in the graves (Fig. 2C/D).  One pig cadaver was wrapped in a 

tarpaulin, which was made of woven polyethylene strands and measured 1.8 m x 2.7 

m (product number: D00065, Duratool Corporation).  The pigs had been deceased for 

less than 5 hours at the time of burial, having been dispatched by the abattoir by a bolt 

gun.  The simulated graves were then backfilled to ground level with the excavated 

ground material and the ‘graves’ had the overlying grass sods carefully replaced (Fig. 

2B), leaving a slight mound over the graves to account for later settlement.  Leftover 

soil was disposed of away from the study site. 

 

Bulk ground water conductivity data collection 

 

Within the ‘pig’ lysimeter grave outside of the survey area (Fig. 2A), a ground water 

sample lysimeter was placed between the carcass and the grave wall (Fig. 2E and 

(27).  The porous end cap of a model 1900 (SoilMoisture Equipment Corporation™) 

soilwater sample lysimeter was then vertically inserted into ‘slurry’ made up of a 

mixture of excavated soil and water, to ensure a good hydraulic conductivity between 

the ground and the lysimeter for future sample extractions (38).  A control site 
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lysimeter was also installed ~10 m from the survey area by digging a narrow hole 

(~0.3 m x ~0.3 m) to ~0.6 m depth bgl and the same procedure employed (Fig. 2A).  

Once installed, the exposed ends of the lysimeters were sealed with rubber stoppers.  

A hand vacuum pump was used to generate a suction pressure of 65 kPa within each 

lysimeter, in order for the instruments to draw fluid from the soil.  Excavated ground 

material was then used as backfill and grass sods carefully replaced, following the 

same procedure as the survey graves. 

 

Once the lysimeters were sited, plastic syringes with a tube attachment were used to 

extract ground water samples from both of the lysimeters two days before the bulk 

ground resistivity (fixed-offset) surveys were collected (Table 1).  This would ensure 

measurements of groundwater would be from fluid collected within this time period, 

rather than from the last time the fluid was collected during the previous month.  Prior 

to collection of the first groundwater samples, all lysimeters were emptied twice to 

remove the water used to make the slurry.  The conductivity of all samples was 

measured and recorded in millisiemens per metre (mS m
-1

) immediately after 

collection using a multiline P4 multi-parameter meter (WTW GmbH) (Fig. 2F).  The 

data collection took ~0.5 h each time. See (27) for more information. 

 

Bulk ground (fixed-offset) resistivity data collection & processing 

 

A resistivity survey was conducted at the study site 11 days before burial for 

comparison with the post-burial data sets.  Subsequent fixed-offset resistivity surveys 

were conducted at monthly intervals, commencing 28 days after burial (Table 1).  The 

survey area measured 5 m x 14 m and sloped by approximately 3º from northwest to 
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southeast.  Within this area were the ‘naked pig’ grave, the empty grave and the 

‘wrapped’ pig grave (Fig. 2).  The twin probe array was chosen for this study, as this 

array has been proven to be capable of detecting clandestine graves (see (39)).  

Resistivity data were collected for the first year with an RM4 resistance meter 

(Geoscan™ Research) mounted on a custom-built frame that featured two 0.1 m long 

stainless steel electrodes.  The mobile probes were separated by 0.5 m, whilst the 

remote probes were placed 1 m apart at a distance of 17 m from the survey area at the 

same position for each survey.  The remote probes were inserted approximately 0.15 

m into the ground.  For each measurement, the mobile probes were pushed 

approximately 0.05 m into the ground.  In every survey, parallel resistivity 

measurements were made at 0.25 m intervals along the SE-NW orientated, 5 m long 

survey lines that were 0.25 m apart (Fig. 2A).  From years one onwards, a RM15 

(Geoscan™ Research) resistivity meter was used, with the same equipment 

configuration and collection strategy as stated for the RM4.  Both ends of each survey 

line were permanently marked with plastic pegs to ensure that the area surveyed 

remained constant.  Two more pegs were used to permanently mark the reference 

probe locations.  The RM15 surveys each took ~2 h to acquire. 

 

Resistivity survey data were processed using the Generic Mapping Tools (GMT) 

software (40).  To aid visual interpretation of the data, a minimum curvature gridding 

algorithm (41) was used to interpolate each dataset to a cell size of 0.125 m x 0.125 

m.  Long-wavelength trends were then removed from the data to allow smaller, grave-

sized features to be more easily identified.  Trend removal was achieved by fitting a 

cubic surface to the gridded data and then subtracting this surface from the data.  

Seasonal changes in site conditions, such as soil moisture content, caused variations in 



   

 

11 

the range of resistivity values in datasets collected at different times of the year.  

Therefore, survey data were normalised by dividing each dataset by its standard 

deviation.  All processed, normalised datasets then had a zero mean value and 

standard deviation units, which then made comparisons between different resistivity 

survey datasets possible. 

 

Electrical resistivity imaging (ERI) data collection & processing 

 

A 2D Electrical Resistivity Imaging (ERI) survey line orientated SW-NE (Fig. 2A-B) 

was permanently marked with plastic pegs and surveyed at approximately three-

monthly intervals, starting at three months after burial (Table 1).  The survey profile 

was 15.5 m long and bisected all three graves (Fig. 2A); with 32 x 0.3 m long 

stainless steel electrodes placed ~0.1 m into the ground every 0.5 m along the profile 

for each survey.  There are no published papers of ERI profiles being used for 

forensic searches for clandestine burials, although ERI surveys have been used to 

evaluate the lateral and vertical extent of mass graves (42).  ERI surveys are more 

commonly used (at this scale) for environmental forensic surveys (43).  The 0.25 m 

electrode spacing was chosen because of the comparatively small spatial size of the 

target(s) and the requirement to cover all three ‘graves’ in the survey area using one 

2D profile.  For the first survey three months after burial, dipole-dipole, Schlumberger 

and Wenner array configurations were all collected, with the Wenner array 

configuration deemed optimal at this site.  Therefore, Wenner array data were 

collected for all subsequent ERI surveys.  These datasets were semi-automatically 

collected by a Campus™ TIGRE system using ImagerPro™ 2006 data acquisition 

software.  Electrode contact resistances were checked before each profile was 
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collected, and repositioned if necessary to gain equivalent contacts across each survey 

line, following standard practises (44).  Ten ‘n’ levels were collected for each survey.  

Each electrode position was surveyed during the first survey using Leica™ 1200 

differential GPS Real-Time Kinematic (RTK) equipment.  The ERI surveys each took 

~2 h to acquire. 

 

Raw ERI data sets were then individually processed and inverted utilising a least-

squares inversion approach using Geotomo™ Res2Dinv v.355 software in accordance 

with (45) resistivity surveying recommendations.  The bottom four ‘n’ levels were 

removed and ½ cell spacing was utilised during the inversion process to remove 

potential edge effects and reduce any near-surface electrical resistivity variations 

respectively.  The dGPS survey data were also integrated within profiles to show 

topographic corrections.  Finalised models of true resistivity sections were lastly 

created. 

 

Geotomo™ Res2Dinv software also allowed ERI analysis of temporal changes in 

resistivity by using a time-lapse inversion method.  To avoid inverting models 

independently which can amplify data uncertainties (46), a least-squares smoothness 

inversion incorporating cross-model constraints (47) was utilised.  A half cell spacing 

was also used to refine the model and reduce the impact of near surface effects (see 

(48)).  In order to focus on the graves rather than seasonal resistivity variations of the 

whole profile, the resistivity data was constrained and compared to data from the first 

ERI survey of the graves, i.e. three months after burial. The resulting time-lapse 

profiles were therefore compared to the first survey and thus not independently 

inverted as was undertaken with the raw ERI data sets (45).  
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Electrical resistivity 2D profile models 

 

Once the site monitoring data had been collected, simple 2D summary models of the 

survey site were then generated using Geotomo™ Res2DMod v.3.0 software.  These 

aimed to improve the 2D resistivity model generated by (15) by using the site 

monitoring data for model calibration.  Three models were generated to represent the 

site at years one, two and three after burial.  Numerical cell dimensions were 32 cells 

across and 12 cells deep, to be similar to the ERI 2D profile data configuration.  

Model layers and targets were calibrated to the collected 1D soil profiles and 

measured grave dimensions, with apparent resistivities of the top cells calibrated to 

contemporary resistivity fixed-offset surveys.  For the year 2 model, values were 0.35 

Ω.m for the naked pig grave, 59 Ω.m for the empty grave and 63.1 Ω.m for the 

surrounding model top layer respectively.  Deeper layer 2 cell values of 200 Ω.m and 

500 Ω.m for the ‘wrapped pig’ grave were obtained from ERI surveys and ‘grave soil’ 

conductivity measurements.  The computer programme also allowed synthetic ERI 2D 

profiles to be generated using the input information to calculate apparent resistivities.  

Wenner array ERI profiles were therefore inverted to be comparable to the actual 

Wenner array ERI profiles collected at the same time periods for comparison 

purposes. 

 

Ground Penetrating Radar (GPR) data collection & processing 

 

Repeat GPR survey datasets were also collected within the survey area (Fig. 2A) at 

approximately three-monthly intervals after burial (Table 1).  There are numerous 
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published papers of forensic GPR surveys for criminal (11,12,17,19) and simulated 

clandestine burials (23-25).  Most published forensic case studies using GPR use 

medium (200-500 MHz) frequency antennae (e.g. (13,19,49).  PulseEKKO™ 1000 

equipment utilised 110 MHz, 225 MHz, 450 MHz and 900 MHz dominant frequency 

antennae to collect four datasets for each repeat survey post burial to investigate these 

commonly used frequencies and the less used ones.  It was decided that 50 MHz and 

1,200 MHz dominant frequency datasets would not be acquired as these would be too 

low resolution and take too long to acquire respectively to be used in forensic search 

cases effectively.  

 

The 14 m x 5 m survey area was GPR surveyed on 0.5 m spaced, 5m long SE-NW 

orientated, parallel survey lines by 110 MHz, 225 MHz and 450 MHz dominant 

frequency antennae.  Using 0.5 m spaced survey lines for the 450 MHz frequency 

datasets was due to time constraints – ideally 0.25 m spaced survey lines should be 

utilised for this frequency.  The transmitter antennae always led each profile for 

consistency purposes.  The 900 MHz dominant frequency antennae were used to 

acquire datasets on 0.25 m spaced lines over a smaller area, centred over the ‘naked 

pig’ grave (Fig. 3A).  Radar trace spacings were 0.2 m, 0.1 m, 0.05 m and 0.025 m for 

the 110, 225, 450 and 900 MHz frequency data respectively, using 32 ‘stacks’ to 

increase the signal-to-noise ratio and for all datasets for consistency purposes.  The 

GPR surveys took ~1 h, ~2.5 h, ~4 h and ~2 h to acquire for the 110, 225, 450 and 

900 (subset) MHz dominant frequency datasets respectively. 

 

Once the 2D GPR profiles for each dominant frequency antennae were acquired, they 

were downloaded and imported into REFLEX-Win™ v.3.0 processing software.  For 
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each 2D profile, the first arrival wavelets were first picked and shifted to ensure 

consistent arrival times at 0 ns.  Processing steps were applied in order to filter out 

non-target ‘noise’ and therefore make the target hyperbolae more pronounced. These 

steps were: (1) subtracting the mean from traces (‘dewowing’), (2) picking first 

arrivals and (3) applying static correction and moving the start times for traces in all 

profiles to 0 ns, (4) applying a 1D Butterworth bandpass filter to remove low-

amplitude frequencies, (5) background-removal to reduce any ‘ringing’ effect and 

finally (6) applying a Stolt migration in accordance with the target hyperbolae 

velocities.  Lastly horizontal time-slices of the four dominant frequencies datasets for 

each survey were generated using the processed 2D profiles within REFLEX-Win™ 

v.3.0 processing software.  Time slices were generated by collapsing a ~6 ns (9 ns – 

15 ns) time window containing the target hyperbolae to display absolute amplitude 

values.  

 

Results 

 

Bulk ground water conductivity 

 

Background soilwater conductivity measurements demonstrated that background 

values were consistent over the three year survey period (averaging 444 ± 0.1 µS/cm 

with 84 SD), whereas the pig leachate conductivity varied throughout the survey 

period (Fig. 4A).  Pig leachate conductivity varied from 729 ± 0.1 µS/cm (12 days 

after burial) up to a maximum of 33,400 ± 100 µS/cm (671 days after burial) over the 

survey period.  Conductivity changes during the first two years of burial are reported 

in (8).  The ‘grave’ conductivity values were twice the background values after only 
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two weeks of burial.  Leachate values could be grouped into five linear regressions; 

0–150, 150–307, 307–671, 671-840 and 840-1,057 after burial days respectively (cf 

Fig. 4A).  The final conductivity measurements at the end of the survey period could 

not be obtained due to prolonged cold conditions had frozen soilwater and thus 

prevented extractions (December 2010 had an average site monthly air temperature of 

-1.2 ºC).  One, two and four regression lines had a good fit with the collected data (R
2
 

values of 0.97, 0.99 and 0.99 respectively), with the third and fifth regression lines 

demonstrating less confidence (R
2
 values of 0.72 and 0.82 respectively), see Figure 

4A.  The second linear regression line represented the highest period of conductivity 

increase, increasing by ~144 µS/cm per day on average.  This rapid increase in 

conductivity was most probably due to an increase in the rate of decomposition of the 

cadaver caused by higher soil temperatures in the spring and summer months (cf. Fig. 

3).  After 671 days of burial (~2 years), conductivity values rapidly decreased, ~136 

µS/cm per day on average until 840 days after burial.  From 840 days of burial to the 

end of the study period, the rate of conductivity decrease then slowed significantly; 

even during the summer months (cf. Fig. 4A). 

 

Site temperature variation could be removed from raw conductivity values as 

previously discussed by weighting each day by its average daily temperature and then 

giving each day after burial an accumulated degree day (ADD) following standard 

methods (36).  This study had the advantage of having temperature probe 

measurement data available from the actual mid-cadaver depth (~0.3m bgl) from the 

nearby meteorological weather station, instead of using average air temperatures (Fig. 

3).  This allowed a reduction of one linear regression line to four regressions, with an 

improved correlation for the first 307 days of burial (R
2
 value of 0.99), see Fig. 4B. 
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Bulk ground (fixed-offset) resistivity 

 

Bulk ground resistivity surveys acquired over the study period were remarkably 

consistent, with average fixed-offset survey resistance values of 67.1 Ω (with 49.6 Ω 

minimum and 97.8 Ω maximum values respectively), once de-spiking data processing 

had been undertaken (only averaged one anomalous ‘spike’ per survey).  Selected 

processed fixed-offset resistivity surveys are graphically shown in Figure 5 (see Fig. 

2A for ‘grave’ locations).  These shown datasets are acquired at three-monthly 

intervals, except the control dataset (acquired before grave emplacement) and a 

survey collected two weeks after burial (see Table 1 for full survey list).  The control 

dataset showed the site was comparatively heterogeneous geophysically before burial, 

with significant areas of high resistivity at 0-2 m and 4.5-8 m on the X axis when 

compared to background areas.  This is perhaps unfortunate for the experiment but a 

good test in identifying target ‘graves’ in a real environment. 

 

The ‘empty’ grave which acted as control could not be geophysically detected 

throughout the survey period (green boxes in Fig. 5).  The ‘naked pig’ grave (red 

boxes in Fig. 5) could predominantly be identified as a resistive low (coloured blue) 

anomaly, when compared to background values, that appeared four weeks after burial 

and generally became consistently larger in planview than the grave throughout the 

survey period, although there were variations in both amplitude strength and plan 

view area covered (cf. Fig. 5).  The ‘wrapped pig’ grave (blue boxes in Fig. 5) showed 

predominantly a smaller high resistivity anomaly, when compared to background 

values, which appeared immediately after burial.  Temporal variations were present, 
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with no associated grave anomaly present at 196 days after burial and both low and 

high anomalies present at 700 days after burial.   

 

Electrical resistivity imaging (ERI) 

 

Electrical resistivity imaging surveys acquired over the study period were also 

consistent, with average ERI six ‘n’ level survey resistivity values of 161.8 Ω.m (with 

137.6 Ω.m minimum and 206.0 Ω.m maximum respectively), once de-spiking data 

processing had been undertaken.  A summary of the 2D ERI profiles collected is 

graphically shown in Figure 6 (see Fig. 2A for profile location and Table 1 for 

collection dates).  An average inversion model error (RMS) of 2.82 (with 1.7 

minimum and 5.5 maximum) indicated a very good model inversion fit to the 

collected resistivity values. 

 

The ‘empty’ grave (marked in Fig. 6) could be detected throughout the survey period 

as it had consistently slightly lower resistivity values, when compared to neighbouring 

regions.  The ‘naked pig’ grave was detectable throughout the survey period (albeit 

poorly at 23 months after burial – Fig. 6K), being a consistently anomalous low, when 

compared to background values.  It also reached the largest size ~one year after burial 

(Fig 6D).  The ‘wrapped pig’ grave was mostly detectable as a smaller high resistivity 

anomaly, when compared to background values, although it could not be detected in 

the 1 year and 18 months after burial profiles (Fig. 6D and 6H). 

 

The time-lapse difference ERI profiles shown in Figure 7 show the percentage change 

in resistivity compared to the reference (March 2008) dataset.  The time-lapse results 
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reveal that up to 20 months post-burial (see Fig 7A – 7G) there is a consistent and 

significant (<30%) reduction in the resistivity of the soils within and surrounding the 

naked and wrapped pig cadavers.  Spatially these decreases in resistivity are most 

prominent directly below the cadavers and exhibit a downward shift over time which 

is highly indicative of the fluid flow associated with decompositional leachate plumes. 

Interestingly the profile collected ~9 months after burial shows the ‘empty’ grave to 

have relative lower resistivity than the reference dataset (Fig. 7C), an observation that 

is not obvious in the fixed-offset data of the same time period (280 day labelled image 

in Fig. 5).  Both this and the overall resistivity reduction of the near-surface soils seen 

in many of the time-lapse profiles could be attributed to tree-root related activity; 

during spring and summer, fine, highly conductive tree roots become active and grow 

(particularly in soil areas of reduced density/increased porosity such as that of the 

empty grave) to exploit surface water resources (50).  Over time the accumulative 

drying effects of root absorption and those due to summer (i.e. increased 

evapotranspiration, reduced rainfall) are typically observed during autumn (Sep – 

Nov) with significant (<150%) increases in resistivity (46).  It is important to note 

however that this is not clearly noticeable in the early post-burial stages (Fig 7B – 7G) 

and is only prominent in the later post-burial stages (Fig 7H – 7K).  The other main 

observation from the time-lapse results is both the ‘naked pig’ and ‘wrapped pig’ 

graves have consistently increased resistivities from two years after burial onwards, 

when compared to the reference dataset (Fig. 7H - 7L).  This reflects the drying of the 

initially fluid rich cadavers and may also reflect the higher resistivity associated with 

the skeletal remains of the cadavers (as detailed in Fig. 1D). 

 

Electrical resistivity 2D profile models 
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For the one year burial model, the synthetically generated ERI profile did not look 

that comparable to its equivalent survey ERI profile, although the ‘naked pig’ grave 

anomaly did look similar, being a shallow and isolated, almost spherical low resistive 

area when compared to background values.  The synthetic ‘wrapped pig’ grave was 

not resolved, which was the same as shown in the true ERI profile, although the 

‘empty grave’ was not imaged on the synthetic profile but was in the true ERI profile.  

For the two year burial model (Fig. 8), the synthetically generated ERI profile looked 

more similar to its equivalent survey ERI profile (cf. Fig. 6H).  The synthetic ‘naked 

pig’ grave anomaly looked very similar to the true ERI profile, being a shallow semi-

spherical low resistivity anomaly and both the ‘empty grave’ and ‘wrapped pig’ grave 

targets were both not resolved in either profile.  For the three year burial model, the 

synthetically generated ERI profile did not look that comparable to its equivalent 

survey ERI profile, similarly to the one year after burial dataset.  The ‘naked pig’ 

grave anomaly again did look similar, being a shallow and isolated, almost spherical 

low resistive area when compared to background values.   

 

Ground Penetrating Radar (GPR) 

 

Key 2D GPR profiles acquired through the survey period are shown in Figure 9A and 

9B (see Fig. 2A for profile locations).  Pre-burial profiles (to act as control) are also 

shown, except for 900 MHz frequency data which did not have a control dataset 

acquired.   
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The 110 MHz dominant frequency 2D profiles showed the ‘wrapped pig’ grave could 

be consistently and clearly identified by a strong hyperbola throughout the survey 

period, although there was a continual reduction in reflection amplitudes.  The ‘naked 

pig’ grave was detectable as a hyperbola up to 18 months after burial, but this had 

significantly lower amplitudes when compared to ‘wrapped pig’ grave hyperbolae (cf. 

Fig.9A and 9B).  After 18 months of burial, however, it was difficult to detect a 

hyperbola over the ‘naked pig’ grave.  There were no clear hyperbolae other than 

those associated with the target graves within these 2D profiles. 

 

The 225 MHz dominant frequency 2D profiles showed the ‘wrapped pig’ grave could 

also be clearly identified by an obvious hyperbola throughout the survey period, 

although there was a continual reduction in reflection amplitudes that was noticeable 

after two years of burial (cf. Fig.9A and 9B).  There was also a second, slightly deeper 

reflector that was first resolved after 15 months of burial within the ‘wrapped pig’ 

grave.  The ‘naked pig’ grave was detectable as a hyperbola up to 15 months after 

burial, but this had significantly less amplitude when compared to the ‘wrapped pig’ 

grave hyperbolae at the same frequency.  After 18 months after burial, it was difficult 

to detect an anomaly over the ‘naked pig’ grave.  There were other, smaller 

hyperbolae present in the ‘naked pig’ profiles that were not associated with the 

targets.  The other hyperbolae present in the profiles would have made it difficult to 

identify the target grave after 18 months of burial to the end of the survey period. 

 

The 450 MHz dominant frequency 2D profiles showed the ‘wrapped pig’ grave could 

also be identified by a hyperbola throughout the survey period, with again a continual 

reduction in reflection amplitudes that was noticeable after 27 months of burial to the 
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end of the survey period (cf. Fig.9A and 9B).  There was also a second, slightly 

deeper hyperbola that was first resolved after 3 months of burial.  The ‘naked pig’ 

grave was detectable as a hyperbola up to 12 months after burial, but this had 

significantly less amplitude when compared to ‘wrapped pig’ grave hyperbola.  After 

15 months after burial, it was difficult to detect an anomaly.  There were again 

numerous other, smaller hyperbolae present in both profiles that were not associated 

with the target grave. 

 

The 900 MHz dominant frequency 2D profiles could only identify the ‘naked pig’ 

grave from 9 to 12 months after burial; apart from these times after burial, the grave 

location could not be identified (cf. Fig.9A and 9B).  There were numerous other, 

smaller hyperbolae present which would have made it difficult to locate the target 

grave. 

 

The 110 MHz dominant frequency repeat survey time-slices generally showed good 

results (Fig. 10A).  The control dataset did not show any anomalies at the target 

‘grave’ positions, but did show two high amplitude anomalies at the NW border of the 

survey area which were mostly present in all subsequent 110 MHz dominant 

frequency datasets.  High amplitude isolated radar anomalies, generally significantly 

larger than the ‘graves’ in planview, were generally present within the ‘naked pig’ and 

‘wrapped pig’ target grave positions throughout the three year study period, except for 

the ‘naked pig’ position in the year 2 and 3 winter datasets.  Generally the wrapped 

pig cadaver showed as a larger and higher amplitude anomaly than the naked pig 

cadaver (Fig. 10A).  Radar anomalies were also present in the ‘empty grave’ position 

in most datasets.  There were a number of radar anomalies also present within the 
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datasets that were not associated with the target ‘grave positions, notably in the year 0 

winter, year 1 spring and summer, year 2 and year 3 summer respective survey 

datasets (Fig. 10A).  

 

The 225 MHz dominant frequency repeat survey time-slices generally showed 

variable results (Fig. 10B).  The control dataset did not shows any anomalies at the 

target ‘grave’ positions, but did show one high amplitude anomaly at the NW border 

of the survey area which was present in all subsequent 225 MHz dominant frequency 

datasets.  High amplitude isolated radar anomalies, slightly larger than the ‘graves’ in 

planview, were generally present within the ‘naked pig’ and ‘wrapped pig’ target 

grave positions throughout the three year study period, except for the ‘naked pig’ 

position in the year 2 and 3 autumn datasets.  ‘Target’ anomalies generally lessened in 

spatial extent and amplitude strength after year 1.  Generally the wrapped pig cadaver 

also showed as a larger and higher amplitude anomaly than the naked pig cadaver 

(Fig. 10B).  Radar anomalies were not present in the ‘empty grave’ position, except 

for the year 2 winter dataset.  There were a number of radar anomalies also present 

within the datasets that were not associated with the target ‘grave positions, especially 

from year 2 spring survey datasets onwards (Fig. 10B) which would make locating the 

‘target graves’ in these datasets problematic.  

 

The 450 MHz dominant frequency repeat survey time-slices generally showed 

variable results (Fig. 10C).  The control dataset did not shows any anomalies at the 

target ‘grave’ positions, but did show one high amplitude anomaly at the SW border 

of the survey area which was mostly present in subsequent 225 MHz dominant 

frequency datasets.  High amplitude isolated radar anomalies, smaller than the 
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‘graves’ in planview, were present within the ‘naked pig’ and ‘wrapped pig’ target 

grave positions throughout the three year study period.  ‘Target’ anomalies were 

generally consistent in spatial extent and amplitude strength throughout the survey 

period.  Generally the wrapped pig cadaver also showed as a larger and higher 

amplitude anomaly than the naked pig cadaver (Fig. 10C).  Radar anomalies were not 

present in the ‘empty grave’ position.  There were a number of radar anomalies also 

present within the datasets that were not associated with the target ‘grave positions, 

present in the year 0 winter survey and especially from year 2 autumn survey datasets 

onwards (Fig. 10C) which would make locating the ‘target graves’ in these datasets 

problematic.  

 

Discussion 

 

This is the first published research to sequentially collect three years of resistivity, 

GPR and site monitoring data over a simulated clandestine grave test site, so has now 

allowed some basic questions by forensic search teams listed in the introduction to be 

answered that has not been able to be undertaken to-date.   

 

Firstly, could electrical resistivity fixed-offset surveys successfully locate the ‘naked’ 

and ‘wrapped’ simulated clandestine burials? And if so, how long were they 

geophysically detectable for?  From the results of this study, the answer was: it 

depends on the burial style.  The fixed-offset resistivity surveys showed that a ‘naked’ 

cadaver(s) has a good chance of being located up to three years after burial, due to the 

highly conductive grave ‘fluids’ producing a low resistance geophysical anomaly 

when compared to background site resistance values (cf. Fig. 4).  Indeed it has been 
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suggested that conductivity measurements could even date the burial interval of a 

discovered clandestine grave in the field if a conductivity meter was available and 

enough grave ‘leachate’ was present (see (27)).  There is, however, no guarantee that 

a low resistance anomaly would still be present over a naked target ad infinitum.  

However, from the results shown in this study, a ‘wrapped’ or clothed cadaver(s) 

would be much more difficult to successfully locate using resistivity methods, as the 

wrapping essentially isolates the target(s) and its conductive grave ‘fluids’ from the 

surrounding soil (cf. Fig. 8).  This therefore gives a potential barrier to electrical 

current and produced a small high resistance anomaly to be identified over the target 

location in this study, although the anomaly did vary temporally (cf. Figs. 5 and 6).  

The wrapping used for the pig cadaver in this study was a loose weave tarpaulin and 

most probably allowed leakage of grave ‘fluids’ into the surrounding soil to create the 

resistive low anomaly ~196 days after burial (cf. Figs. 5 and 6).  This wrapping would 

be likely to be representative of a ‘clothed victim’ as clothes would not prevent 

decompositional fluids from leaking into the surrounding soils over time.  Note that 

wrapping a body in plastic or clothing has also been reported by others to slow 

decomposition (52) and inhibit micro-organism activity (37) which therefore suggests 

a clandestinely buried body may be identifiable for longer if wrapped as compared to 

naked.  Using all the resistivity datasets collected in this study, a graphical time-line 

diagram has been generated to show temporal anomaly variations throughout the 

survey period (Fig. 11).  Both the (16) and (31) resistivity study results have also been 

added for comparison purposes, although the seasonal timing of the (16) study has not 

been confirmed.  This study therefore predominantly agrees with other published 

studies on forensic resistivity surveys in that a consistent low resistivity anomaly was 

present over the ‘naked pig’ grave, although this varies temporally in both plan-view 
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size and relative amplitude compared to background values.  In terms of optimally 

configuring fixed-offset resistivity equipment if the likely depth of burial is unknown, 

modern versions (eg. the Geoscan™ RM-15 used in this study) have the capability to 

collect and digitally record fixed-offset resistivity data at a variety of probe spacings 

almost simultaneously.  This would therefore not significantly add to survey time if 

more than one probe spacing data is collected and trace sample spacing could still be 

comparatively small so that any potential loss in resolution is minimised.  However 

note that these and other named resistivity survey results are only in a few soil types – 

not all soil types may be conducive to undertake resistivity surveys. 

 

Secondly, could GPR surveys successfully locate both simulated clandestine burials 

throughout the three year monitoring period?  And if so, how long were they 

geophysically detectable for?  And finally, which dominant frequency antenna was 

optimal to detect them?  From the results shown in this study, it was possible to 

initially locate both the ‘naked’ and ‘wrapped’ cadavers on 2D GPR profiles using the 

frequencies trialled, namely the 110, 225, 450 and 900 MHz dominant frequency 

antennae (although not the 900 MHz antennae only collected data over the ‘naked’ 

cadaver).  However after 18 months after burial, only the ‘wrapped’ cadaver was 

relatively easy to locate in the 2D profiles, interestingly being the inverse of the 

resistivity survey results which found the ‘wrapped’ cadaver to be harder to locate 

(Figs. 5 and 6).  This was presumably due to the wrapping surface allowing stronger 

GPR reflections to be obtained, with the decomposing ‘naked’ cadaver attenuating a 

greater proportion of the GPR signal.  This radar absorption would be exacerbated by 

the pig-chest cavity collapsing during later decomposition stages (cf. Fig. 1C), which 

is a probable explanation for the two GPR hyperbolae present in 225 and 450 MHz 
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dominant frequency data over the target location later on during the survey period (cf. 

Fig. 9).  The potential size of the target(s) may also be a factor; (24) found small pig 

cadavers were difficult to locate after 23 months of burial.  The lower GPR 

frequencies trialled (110 and 225 MHz frequencies) were shown in this study to be 

preferable to the higher frequencies (450 and 900 MHz frequencies) in the 2D profiles 

as there were less non-target hyperbolae present in the data and surveys also took less 

time in the field to acquire.  This could be an important factor for a forensic search 

team to consider if the proposed area is significant in size or if manpower and/or 

budget are limited.  Note; (51) suggested that 2D GPR profiles should be collected in 

both orientations over a survey site if possible to have the best chance of detection.  

The horizontal time-slices for the frequencies trialled showed generally good results 

throughout, with the wrapped cadaver again being spatially larger in extend and had a 

higher radar signal amplitude when compared to the ‘naked’ cadaver, presumably due 

to the better reflective surface of the former as previously noted.  However, the 225 

and 450 MHz dominant frequency time-slices contained a number of non-target 

anomalies that would make it difficult for search teams to be confident in picking the 

grave locations from this data alone (cf. Fig. 9).  Results from this study therefore 

suggest that both fixed-offset resistivity and GPR surveys should be undertaken in 

forensic search surveys if the style of burial (i.e. wrapping) is unknown.   

 

Thirdly, when was the optimal time (both up to three years post-burial and 

seasonally) to undertake a forensic GPR or electrical resistivity geophysical search 

survey?  From the results shown in this study, a GPR survey should be undertaken 

ideally within the first 18 months of burial, if the burial style was not known, i.e. if it 

was a ‘naked’ cadaver; the target(s) may be more difficult to locate after this time of 
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burial (cf. Fig. 9).  Note that other studies have shown favourable GPR survey results 

over much older burials in different ground conditions (eg. (14,21,29)). In this study, 

however, the time of year in which a GPR survey was undertaken did not seem to 

matter in the 2D profiles, although the horizontal time-slice data showed ‘target’ 

anomalies to have lower amplitudes in winter surveys that may be due to higher soil 

moisture contents.  This was in contrast to the resistivity surveys, which were best 

collected during winter to mid-spring months over search areas to have the best 

chance to detect a clandestine burial using resistivity methods (cf. Figs. 5, 6 and 11).  

This has also been reported by (53) who undertook time-lapse resistivity surveys over 

UK Roman fortification defence ditches.  This study can partly quantify the reasons 

for the preferred resistivity winter survey season by analysing the fixed-offset 

resistivity survey data which had the most (monthly) surveys collected during the 

survey period.  Although the average resistivities of all the fixed-offset resistivity 

surveys were broadly similar (Fig. 12A), the respective survey standard deviations 

were much more variable (4.4 – 20.1 SD); with surveys having much higher standard 

deviations during the summer and autumn months when compared to the winter and 

spring months (marked in Fig. 12B).  As clearly illustrated, the standard deviation 

variations are cyclical; with low winter/spring SD values and high summer/autumn 

SD values repeating each year during the three year survey period.  This was most 

probably due to the soil having reduced moisture content during the warmer and dryer 

periods but, importantly, in a non-uniform manner for this study site.  Thus the ‘noise’ 

present within the geophysical data significantly increased during these seasonal 

periods and effectively ‘masked’ the target(s).  See (54) for detailed analysis of site 

soil moisture for the first year of burial).  Interestingly, the ‘wrapped pig’ grave 

resistivity anomaly, which could not be resolved in most of the summer surveys, 
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returned during the winter and spring surveys (see Figs. 5 and 6).  There were two SD 

survey outliers acquired on days 280 and 672 post-burial (Fig. 12B) that did not fit the 

other dataset curves which, on comparison with weather data (Fig. 3), were probably 

due to local climate variations.  Specifically high and low rainfall respectively was 

experienced during the times of these two outlier surveys that did not follow the 

trends of other years (cf. Fig. 12B). 

 

Fourthly, what advantages do ERI surveys have over other electrical probe 

configurations or indeed other techniques?  The ERI profiles were significantly 

slower to acquire than fixed-offset configuration electrical surveys; typically only 

three to four 2D profiles could be collected per survey day which cover significantly 

less ground.  This therefore suggested that ERI surveys should not be used as a 

primary forensic geophysical survey over a search area, unless the area to be 

investigated was comparatively small.  A recommendation by (55) and reinforced 

from this study is that an ERI forensic survey should be used as a follow-on survey 

after targeted areas have been pinpointed by a previous survey, e.g. by a fixed-offset 

resistivity and/or GPR geophysical survey.  ERI profiles do have the advantage of 

penetrating much further below the ground surface than a typically 0.5m-probe 

spaced, fixed-offset resistivity survey which would therefore resolve deeper graves 

than the 0.5m bgl graves investigated in this study.  Finally collecting multiple 2D 

ERI profiles would allow 3D datasets to be generated that could better locate and 

define grave positions as (42) showed using this technique on a mass grave search. 

 

Fifthly, what effect does soil type have on a forensic geophysical survey being 

successful?  This was more of a difficult question to answer.  This study was 
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undertaken on a study site with a sandy loam soil with an underlying shallow (>3 m 

bgl) sandy bedrock geology.  In comparison, the (31) simulated forensic geophysical 

study was undertaken in a mixed sand/silt loam soil, with comparatively deep (>20 m 

bgl) bedrock geology and found that a ‘naked’ pig cadaver could not be electrically 

detected after 11 months of burial.  Both studies used a 0.5 m bgl burial depth but the 

cadaver sizes were significantly different (~80 Kg versus ~31 Kg for this study and 

the (31) studies respectively).  It is therefore difficult to conclusively state which soil 

type would be optimal for a forensic resistivity survey to be undertaken.  Results from 

this study suggests that finer-textured (i.e. clay-rich) soils, which better retains grave 

‘fluids’ rather than being dissipated, may show better results than electrical surveys 

undertaken in more sand-rich soils.  The (23) GPR time-lapse simulated burial study 

also concludes that pig cadavers were more easy to locate in sandy rather than clay-

rich soil types.  Therefore it is suggested that resistivity surveys would be more 

favourable than GPR surveys in clay-rich soil study sites.  However, the environment 

of deposition would also be a factor, for example (56) found decomposition rates 

varied significantly from cadavers in a coastal environment versus a rural field 

environment.  Saline soil water, such as some soil types found in coastal foreshore 

environments, would also significantly attenuate radar signals and thus result in poor 

penetration depths of GPR surveys in this environment.  An urban soil garden 

environment would also be likely to contain significant heterogeneous materials, such 

as found in the (31) study, which would make identifying anomalous area in GPR 

surveys in this environment problematic. 

 

Sixthly, what was important to do when processing electrical resistivity datasets?  

From reviewing this study fixed-offset resistivity survey results, initial 
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recommendations were to be careful when ‘de-spiking’ datasets to remove anomalous 

readings (which were usually due to poor electrode contact resistances); isolated 

readings could be reasonably removed but removing clustered anomalous readings 

could potentially remove values associated with target(s).  In this study, an average of 

only one anomalous reading was removed per survey dataset (~0.0008% of the total), 

although field operators in this simulated burial study were not under any survey time 

restraints which active forensic search teams may be under.  During resistivity data 

processing, the most important step found in this study was detrending datasets; 

otherwise site trends would potentially have masked the anomaly location(s).  It is 

important to point out that detrending resistivity datasets would be particularly 

important to undertake on survey area boundaries.  If these boundaries are also field 

or hedge boundaries, as was the case in this study and in the forensic searches detailed 

in (16) and (18), then these boundaries will commonly produce high resistivity values 

due to low soil moisture content as hedge/tree roots extract soil water.  The resulting 

large resistivity variations between survey edge areas and the rest of the survey area 

would thus potentially mask anomaly location(s).  For the ERI profiles, it was also 

important in this study to utilise cross-model constraints for the time-lapse inversion 

and implement a user defined (rather than default) linear scale for the percentage 

change in resistivity when displaying the differential images. This was needed to 

reduce data uncertainties/artefacts and to highlight the subtle changes associated with 

the graves; without the user defined scales moisture content variations throughout the 

study period would have dominated and made it difficult to compare the different 

datasets acquired.  This was a similar methodology used by (46) in a three year ERI 

time-lapse study of tree-induced subsidence, where the clay-rich soils experienced 
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seasonal related resistivity changes over several orders of magnitude.  However, 

normalisation should not be needed for an active forensic geophysical search. 

 

Seventhly, what was important to do when processing GPR survey datasets?  

Reviewing this simulated study results, clear hyperbola anomalies were present in the 

raw data 2D profiles that were acquired over the target ‘graves’ and thus limited 

processing was necessary to identify these locations (cf. Fig. 8).  This was similar to 

those shown in (23-24,51).  Horizontal time-slices were also generated of the 110, 225 

and 450 MHz dominant antennae frequency datasets and the simulated burial 

locations were mostly present as isolated, high amplitude anomalies.  However, there 

was also a significant number of isolated, high amplitude anomalies present in the 

respective datasets that were not associated with the targets; this would make locating 

the targets difficult using time-slice data alone.  This was also found in the (19) 

forensic search in a mountainous environment and the (25) simulated study in an 

urban garden environment.  Generating time-slices also takes significantly more 

processing time to do that may be difficult to undertake during a forensic active 

search but could be undertaken later if time permitted.  However, if the survey site 

ground conditions were moderately to highly heterogeneous containing a variety of 

materials, then 2D profiles would be sufficient. 

 

Finally, when should a forensic geophysical survey be undertaken in a search 

scenario?  From this simulated study and comparing results from 

(13,17,18,30,49,54,55), we recommend that forensic geophysical surveys should be 

undertaken prior to other, more invasive search methods (e.g. metal detectors, 

soil/methane probes and cadaver dog probes).  Any resulting soil disturbances would 
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lead to more false positives for the resistivity surveys, as found during the (18) 

forensic resistivity search.  Once anomalous geophysical areas within the survey area 

are identified, these should be prioritised and then subjected to more detailed 

scientific investigations, which includes geophysical surveys (e.g. 2D ERI profiles, 

higher frequency 2D/3D GPR surveys), cadaver dogs, invasive probing, etc. 

 

Conclusions and further work 

 

Geophysical monitoring survey results over the simulated clandestine burials shown 

in this study should be used as a reference to allow comparison of data collected by 

forensic search investigators looking for similar clandestine burials of murder victims.   

 

A buried ‘naked’ victim within a clandestine burial, if shallowly buried, should be 

able to be located using fixed-offset electrical resistivity surveys.  If the burial depth is 

unknown, the use of wider electrode separations in addition to the standard 0.5 m 

spacing is recommended.  Resistivity surveys are also recommended to be undertaken 

in clay-rich soils over GPR surveys due to the likelihood of highly conductive 

‘leachate’ being retained in the surrounding soil and GPR experiencing poor 

penetration depths in these soil types.  GPR surveys were also not optimal to detect 

target(s) if there is an advanced state of decomposition as may be experienced during 

significant burial times, although skeletal material would still be imaged depending on 

target(s) depth and specific site conditions.  A buried ‘wrapped’ or clothed victim 

within a clandestine burial, if shallowly buried, should be able to be best located using 

medium (110-450 MHz) dominant frequency GPR antennae over resistivity surveys, 

due to the ‘wrapping’ producing a good reflective contrast.  Fixed-offset and ERI 
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forensic resistivity surveys should be undertaken during winter to spring seasons if 

time and manpower availability permits.  It did not seem to matter which season GPR 

data should be collected in. 

 

For forensic geophysical data processing, resistivity data should be carefully 

processed, with detrending undertaken if survey grid edges border vegetation or other 

significant different land-use types; otherwise results will be masked by soil moisture 

variations.  GPR data should show target hyperbola(e) in raw 2D data profiles in ideal 

ground conditions, which has the advantage over resistivity surveys which need to be 

processed before being interpreted.  However, in more heterogeneous ground, or 

where the time since burial is significant, i.e. over 18 months, then horizontal ‘time-

slices’ could be generated to locate more subtle features that otherwise may be missed 

using 2D profile data interpretation alone.  However, a variety of non-target 

anomalies may also be present in time-slices that may make locating forensic targets 

more problematic. 

 

If the likely depth of burial is unknown, once potential location(s) have been 

identified, it is recommended that multiple 2D ERI Wenner array profiles be collected 

using 0.5 m probe spacings for a minimum of a 32 electrode array.  This survey 

configuration will be likely to penetrate to 2 m bgl and have the best chance to 

successfully locate a clandestine isolated or mass grave burial. 

 

This study site will be continued to be monitored to discover at what time period after 

burial will geophysical surveys not be able to determine the location of a clandestine 

burial and also when ‘grave soil’ conductivity values will either return to background 
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levels or reach equilibrium.  Extracted soil water samples from both the ‘pig’ 

lysimeter and background lysimeter were immediately frozen after conductivity was 

measured for subsequent chemical analysis; it is planned that organic, inorganic and 

other analytical measurements will be undertaken to examine what may be causing 

the variability in pig ‘leachate’ conductivity after burial.  This area of study has 

already begun; (33) details analysis of six months of samples using Inductively 

Coupled Plasma Mass Spectrometry (ICP-MS). 

 

Further analysis of the geophysical data will also be undertaken; both to determine if 

there are diagnostic GPR signal spectra for clandestine burials versus background 

signals and to determine if both GPR and resistivity datasets can be simultaneously 

inverted numerically to quantify anomaly location(s), sizes and to quantitatively 

combine these two geophysical search techniques. 

 

This experimental methodology should be repeated in other, contrasting soil types, in 

order to determine if soil type is a major factor in the ability of forensic geophysical 

surveys to successfully locate a clandestine burial.  As an example, researchers at the 

TRACES facility at the University of Central Lancashire in Preston, UK, are 

acquiring monthly conductivity measurements of a pig cadaver buried at the same 

burial depth (0.5 m bgl) in a peat soil to compare with this study results.  On a longer 

time scale, it is planned that the experiment will be repeated using human cadavers 

rather than pig analogues, as this may be an important variable to consider.  We are 

currently exploring this possibility with Anthropology Research Facility researchers at 

the University of Tennessee Knoxville, USA. 
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FIGURE CAPTIONS: 

 

FIG. 1. Four likely sequential stages of clandestine burial.  (A) Recent burial, surface 

expression is most obvious. (B) Early decomposition with cadaver dogs and/or 

methane probes being most useful. (C) Late-stage decomposition with conductive 

‘leachate’ plume that should be resolved by electrical methods. (D) Final 

decomposition state that is arguably the most difficult to detect. 
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FIG. 2.  (A) Map of survey area (dashed rectangle) with graves, ERI profile line, 

lysimeter positions and UK location map (inset).  (B) Study site, (C) ‘naked pig 

grave’, (D) ‘wrapped pig grave’, (E) ‘pig lysimeter grave’ and (F) soil ‘fluid’ 

measurement photographs respectively.  Modified from (25).  
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FIG. 3.  Summary of monthly study site statistics of total rainfall (bars) and average 

temperature (line) data at 0.3 m bgl (below ground level), measured over the three-

year study period. 

 

FIG. 4.  (A) Measured pig leachate (solid line) and background (dashed line) 

soilwater fluid conductivity values over the three year survey period.  (B) Measured 

soil water conductivity versus accumulated degree day (ADD) plot produced from (A) 

by summing average daily 0.3m bgl after burial temperatures (see text).  Best-fit 
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linear correlation formulae and confidence (R
2
) values are also shown. Modified from 

(26). 

 

FIG. 5.  Selected (year and seasons shown) fixed-offset processed resistivity datasets.  

Red, green and blue rectangles indicate positions of ‘naked pig’, ‘empty’ and 

‘wrapped pig’ graves respectively (see Fig. 2A).  Modified from (25). 
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FIG. 6.  Individually inverted 2D Electrical Resistivity Imaging (ERI) profiles 

collected during this study; model inversion errors (RMS) are indicated.  Positions of 

‘naked pig’, ‘empty’ and ‘wrapped pig’ graves are also shown (dashed lines). See Fig. 

2A (ERI/ERI’) for location.  
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FIG. 7.  Time-lapse ERI profiles where percentage changes in resistivity are shown 

relative to the March 2008 reference data set.  Resistivity change contour scales are 

the same for all profiles; areas of dark blue represent relatively decreasing resistivity 

and areas of light blue through to purple represents relatively increasing resistivity 

compared to the reference dataset.  See Fig. 2A (ERI/ERI’) for location.  
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FIG. 8.  Test site resistivity 2D model 2 years after burial, with their respective 

synthetic ERI Wenner profile shown below.  Resistivity values are field calibrated 

from either contemporaneous resistivity and ERI surveys or from fluid conductivity 

measurements (see text).  See Fig. 2A (ERI/ERI’) for location.  
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FIG. 9(A).  Key sequential processed 110, 225, 450 and 900 MHz dominant 

frequency GPR profiles that bisect the naked and wrapped pig ‘graves’ respectively 

(Fig. 2A for location) that include control profiles and data collected from 0 to 18 

months after burial. 
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FIG. 9(B).  Key sequential processed 110, 225, 450 and 900 MHz dominant 

frequency GPR profiles that bisect the naked and wrapped pig ‘graves’ respectively 

(Fig. 2A for location) that include data collected from 21 to 36 months after burial.  
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FIG. 10(A).  110 MHz frequency, quarterly GPR processed ‘time-slice’ datasets.  

Common amplitude scale shown in control dataset.  Dotted squares indicate ‘graves’ 

(Fig. 2A for location). 
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FIG. 10(B).  225 MHz frequency, quarterly GPR processed ‘time-slice’ datasets.  

Common amplitude scale shown in control dataset.  Dotted squares indicate ‘graves’ 

(Fig. 2A for location). 
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FIG. 10(C).  450 MHz frequency, quarterly GPR processed ‘time-slice’ datasets.  

Common amplitude scale shown in control dataset.  Dotted squares indicate ‘graves’ 

(Fig. 2A for location). 
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FIG. 11.  Graphical timeline (vertical lines indicate time in years) showing resistivity 

changes over simulated graves.  Relative anomaly sizes are also noted.  Two other 

named studies are shown for comparison.  All graves were buried at 0.5 m bgl. 
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FIG. 12. Summary analysis plots of monthly fixed-offset resistivity data collected 

during this study.  (A) Average resistivity values and (B) standard deviations (SD) for 

each survey.  Note SD values are highest in late summer.  Two survey outliers 

(collected at 280 and 672 days after burial) are shown but not included on respective 

lines. 
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TABLE: 

 

Survey 

date(s) 

Survey 

day after 

burial
+
 

Accumulated 

Degree Day 

(ADD)* 

Survey 

date(s) 

Survey 

day after 

burial
+
 

Accumulated 

Degree Day 

(ADD)* 

Electrical resistivity (fixed-offset)^ 28.05.2010 903 8,504 

26.11.2007
#
 -10 -64 28.06.2010 934 8,976 

21.12.2007 14 68 29.07.2010 965 9,501 

04.01.2008 28 134 02.09.2010 1,000 10,065 

01.02.2008 56 287 01.10.2010 1,029 10,486 

29.02.2008 84 416 28.10.2010 1,056 10,782 

28.03.2008 112 578 03.12.2010 1,092 11,026 

25.04.2008 140 784 ERI Profiles 

23.05.2008 168 1,136 07.03.2008 91 454 

20.06.2008 196 1,539 05.06.2008 181 1,314 

18.07.2008 224 1,965 01.09.2008 269 2,727 

15.08.2008 252 2,446 04.12.2008 363 3,732 

12.09.2008 280 2,892 06.03.2009 455 4,080 

10.10.2008 308 3,269 20.05.2009 530 4,765 

07.11.2008 336 3,548 11.08.2009 613 6,083 

05.12.2008 364 3,736 13.11.2009 707 7,371 

02.01.2009 392 3,847 20.04.2010 865 8,084 

30.01.2009 420 3,936 28.06.2010 934 8,976 

27.02.2009 448 4,041 28.09.2010 1,026 10,446 

27.03.2009 476 4,218 03.12.2010 1,092 11,026 

24.04.2009 504 4,475 GPR surveys 

22.05.2009 532 4,789 04-

05.12.2007
#
 

-3 - -2 -14 - -7 

19.06.2009 560 5,199 04-06.03.2008 88 - 90 439 - 448 

17.07.2009 588 5,677 26-27.05.2008 171 - 172 1,176 – 1,187 

14.08.2009 616 6,137 26-27.08.2008 263 - 264 2,625 – 2,642 

11.09.2009 644 6,589 10-13.11.2008 339 - 342 3,573 – 3,595 

09.10.2009 672  6,985 02-05.03.2009 451 - 454 4,059 – 4,076 

06.11.2009 700 7,310 22-23.06.2009 563 - 564 5,243 – 5,258 

04.12.2009 728 7,536 13-14.08.2009 615 - 616 6,119 – 6,137 

30.12.2009 754 7,642 09-10.11.2009 703 - 704 7,337 – 7,345 

08.02.2010 794 7,722 03-04.03.2010 817 - 818 7,781 – 7,784 

02.03.2010 816 7,778 22-23.06.2010 928- 929 8,870 – 8,888 

25.03.2010 839 7,880 28-29.09.2010 1,026 –27 10,446 – 460 

30.04.2010 875 8,181 06-07.12.2010 1,092-93 11,033 - 035 

TABLE 1.  Summary of geophysical data collected during this study.  
+
Burial date 

was 7
th

 December 2007.  *ADD date based on average daily site temperatures at 0.3 

m bgl (see text).  ^Note ground water conductivity measurements were collected the 

day before monthly surveys.  
#
First surveys for fixed-offset resistivity and GPR 

datasets were controls. 


