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S U M M A R Y  
An approach is presented for interpolating a property of the Earth (for example 
temperature or seismic velocity) specified at a series of ‘reference’ points with 
arbitrary distribution in two or three dimensions. The method makes use of some 
powerful algorithms from the field of computational geometry to efficiently partition 
the medium into ‘Delaunay’ triangles (in 2-D) or tetrahedra (in 3-D) constructed 
around the irregularly spaced reference points. The field can then be smoothly 
interpolated anywhere in the medium using a method known as natural-neighbour 

interpolation. This method has the following useful properties: (1) the original 
function values are recovered exactly at the reference points; (2) the interpolation is 
entirely local (every point is only influenced by its natural-neighbour nodes); and (3) 
the derivatives of the interpolated function are continuous everywhere except at the 
reference points. In addition, the ability to handle highly irregular distributions of 
nodes means that large variations in the scale-lengths of the interpolated function 
can be represented easily. These properties make the procedure ideally suited for 
‘gridding’ of irregularly spaced geophysical data, or as the basis of parametrization 
in inverse problems such as seismic tomography. 

We have extended the theory to produce expressions for the derivatives of the 
interpolated function. These may be calculated efficiently by modifying an existing 
algorithm which calculates the interpolated function using only local information. 
Full details of the theory and numerical algorithms are given. The new theory for 
function and derivative interpolation has applications to a range of geophysical 
interpolation and parametrization problems. In addition, it shows much promise 
when used as the basis of a finite-element procedure for numerical solution of partial 
differential equations. 

Key words: interpolation, natural neighbours, parametrization. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 INTRODUCTION 

Many areas of geophysics rely on methods of 
parametrization and interpolation in two and three 
dimensions. Examples include numerical modelling of 
mantle convection, crustal deformation and associated 
thermal conduction/advection, seismic tomography, and the 
interpolation of topographic, gravity, magnetic or other 
data fields. In the interpolation problem one has a 
distribution of reference points, or ‘nodes’, in two or three 
dimensions at which the value of some scalar quantity (for 
example seismic velocity, or temperature) is known, and the 
problem is to represent this variable everywhere using the 
values at the nodes. Often a ‘local’ method is preferred, 
because it is more physically realistic in data interpolation, 

and also well suited to numerical modelling applications. In 
this case, the values of the variable at any point depend 
only on the data in its neighbourhood. Local schemes 
usually involve a discretization of the region into cells 
(rectangular, tetrahedral etc.), and so methods of 
parametrization and interpolation are closely related. 

An important property of interpolation methods is the 
degree of continuity or ‘smoothness’ they achieve in the 
interpolated function. Numerical schemes for the solution of 
partial differential equations (PDE) usually require con- 
tinuity in first (and sometimes second) derivatives of 
variables, and some level of smoothness is often preferred 
when interpolating observational data. When the nodes have 
a regular distribution, for example on a rectangular grid, 
many local methods are available for smoothly interpolating 
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in two (2-D) and three dimensions (3-D) (see, for example, 
De Boor 1962). Smooth, local methods also exist for highly 
irregular distributions of nodes when special local 
constraints exist between the nodal positions, for example 
when groups of six nodes lie on either the vertices or sides 
of triangles (Powell zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Sabin 1977). Modern applications of 
the finite-element method often used this type of ‘locally 
constrained’ nodal distribution to produce highly irregular 
parametrizations that concentrate accuracy and detail in 
the parts of a calculation where they are needed 
(Zienkiewicz 1977). 

When the distribution of nodes is completely arbitrary the 
problem of smooth and local interpolation (in 2-D and 3-D) 
is more difficult, and has received less attenuation. Although 
various methods have been developed (comprehensive 
reviews appear in Schumaker 1976: Watson 1992) few of 
these have found applications in geophysical poblems. 
However, there appears to be considerable potential for 
local, smooth interpolation schemes that are able to handle 
arbitrary nodal distributions. One application is in 
Lagrangian finite-element techniques for the solution of 
partial differential equations. In this case the nodal 
distribution cannot be determined for the convenience of 
the underlying interpolation scheme, but is instead 
controlled by the calculation itself, and can become highly 
irregular. Examples include Lagrangian finite-element 
schemes for modelling crustal deformation (Braun & 
Beaumont 1987; Fullsack 1995). Another possible applica- 
tion is in the gridding of observed data (for example 
gravitational or magnetic fields) where the distribution is 
often determined by practical considerations, which can lead 
to highly anisotropic data sets with variable density. Existing 
methods are often based on simple spatial moving averages, 
for example Kriging (Matheron 1973; Delfiner & 
Delhomme 1975), which are non-local methods. 

There is also much potential for using highly irregular 
cellular parametrizations to represent Earth properties, such 
as seismic velocity, where the length-scales of variation can 
vary considerably in different parts of the Earth. An 
irregular parametrization would allow large variations in 
scale-length to be represented by concentrating small cells 
(e.g. tetrahedra) in the parts of the model that required 
them. For example, in seismic tomography one might wish 
to parametrize finely a region around a subduction zone but 
use a larger cell size in the lower mantle. The main 
difficulties in using highly irregular parametrizations lie in 
‘book-keeping’ problems, i.e. how to build the parametriza- 
tion and how to keep track of which cell any given point is 
in. 

In this paper we show how some powerful new methods 
from the field of computational geometry can be used to 
solve these problems. The result is a procedure to generate 
a unique set of triangles (or tetrahedra) from arbitrarily 
distributed nodes in 2-D or 3-D that provides an ideal basis 
for local interpolation methods. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA theory of local and 
smooth interpolation is also described. This theory has 
largely been developed by practitioners in the field of 
computational geometry (Sibson 1980, 1981; Watson 1992). 
We have extended the theory to derive expressions for the 
first derivatives of the interpolated function and an 
algorithm for their efficient calculation. This has useful 
applications when the new approach is used as the basis of 

PDE finite-element solvers. For clarity, most of the 
mathematical details are confined to the appendices. 

At present the interpolation procedure does not appear to 
be widely used, although the theory of Delaunay 
tessellations, upon which it is based, is a much studied area 
of computational geometry and has already found 
applications in a number of fields. In geophysics, the earliest 
use of a Delaunay triangulation, that we are aware of, was 
by Parker, Shure & Hildebrand (1987), who used i t  to 
represent the surface of seamounts in an application of 
inverse theory to seamount magnetism. In that and 
subsequent uses of the technique (e.g. Hildebrand & Parker 
1987) linear interpolation was performed over Delaunay 
triangles that were derived from an irregular distribution of 
nodes. More recently, Constable, Parker & Stark (1993) 
used a Delaunay tessellation to represent the radial 
component of the geomagnetic field at the core-mantle 
boundary, by distributing regularly positioned nodes on a 
sphere. They also performed a linear interpolation of 
function values (specified at the vertices) after a gnomonic 
projection of each triangle onto a tangent plane. 

In this paper we discuss the more general theory of 
natural-neighbour interpolation and irregularly distributed 
nodes in 2-D and 3-D. It is our objective to bring this 
tessellation and interpolation theory to the attention of the 
geophysical community, describe the algorithms needed to 
use it (together with some improvements of our own), and 
to demonstrate its potential for a range of geophysical 
problems. 

2 V O R O N O I  CELLS A N D  
D E L A U N A Y  TESSELLATIONS 

Computational geometry deals with the design and analysis 
of algorithms for geometric problems. Many areas of the 
natural sciences, mathematics, engineering and computer 
science give rise to problems that are inherently geometrical. 
Applications of geometric algorithms and theory are rapidly 
growing (for survey papers see O’Rouke 1988; Dobkin 
1988), although to date geophysicists have not made use of 
the advances in this expanding field. 

Over the past decade, fundamental geometric constructs 
known as Voronoi diagrams and Delaunay tessellations have 
received a large amount of attention. (A ‘tessellation’ is a 
covering of a surface with tiles; here we use the term to 
represent the filling of space with triangles in 2-D, or 
tetrahedra in 3-D.) In 2-D, the Voronoi diagram of an 
irregular set of nodes divides the plane into a set of regions, 
one for each node, such that any point in a particular region 
is closer to that region’s node than to any other node. 
Fig. l(a) shows the Voronoi diagram for a set of 16 nodes. 
Each region, or cell, consists of the part of the plane nearest 
to that node. The cells are unique, space-filling, and can be 
defined similarly in any dimension. The Voronoi diagram is 
regarded as ‘one of the most fundamental and important 
geometrical constructs determined by an irregular set of 
points’ (Avis & Bhattacharya 1983). 

The concept of Voronoi diagrams was originally 
developed by mathematicians (Dirichlet 1850; Voronoi 
1908) and subsequently redeveloped in many fields, 
including meteorology (Thiessen 191 l), crystallography 
(Niggli 1927), metallurgy (Frank & Kasper 1958; Wigner & 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. (a) The Voronoi diagram for a set of 16 nodes in a plane. (b) The corresponding Delaunay triangulation. The thick ‘perimeter’ line 
connects the nodes in the convex hull. 

Seitz 1933), and pattern recognition (Blum 1967). In each 
case, different names have been used. The other closely 
related geometric construct which is of interest here is the 
Delaunay tessellation (or triangulation in 2-D), which was 
introduced by Voronoi (1908) and extended by Delaunay 
(1934). The Delaunay triangulation of the 16 nodes in 
Fig. l(a) is shown in Fig. l(b). The Delaunay triangles are 
formed by simply connecting the nodes whose Voronoi cells 
have common boundaries. Again these concepts generalize 
easily to higher dimensions, for example in 3-D we have 
Delaunay tetrahedra. (In this paper we tend to use 
terminology appropriate to the 2-D case, although the 
discussion is equally appropriate for three or more 
dimensions.) Recently, several comprehensive reviews have 
appeared on the subject and readers are referred to these 
for a detailed discussion of the history, theory, properties, 
methods of construction and applications of these 
fundamental geometric structures (Aurenhammer 1991; 
Fortune 1992; Okabe, Boots & Sugihara 1992). 

2.1 Useful properties of Delaunay tessellations 

The Voronoi cells and Delaunay triangles are said to be 
‘dual’ to one another, and once one is known the other is 
completely defined. Delaunay triangles are of interest to us 
because of their useful properties. In a sense they provide 
the ‘best-looking’ set of triangles. By this we mean that they 
are the set of least ‘long and thin’ triangles that can be 
generated among the many triangulations that are possible 
with irregularly distributed points. This is often referred to 
as the maximum-minimum angle property and can be used 
as the basis for calculating the set of triangles (Fortune 
1992). 

Another useful property is that the size of the Delaunay 
triangles is strongly determined by the density of the nodal 
distribution. This property is derived directly from the 
Voronoi cells, whose areas can be used as an inverse 
measure of the nodal density. Therefore the size of 
Delaunay triangles will vary enormously when the nodal 
distribution is highly irregular. This property is very useful 
for parametrizing geophysical models where large variations 
in length-scale exist. If Delaunay triangles, or Voronoi cells, 
are used to parametrize a medium (for some numerical 
calculation, or perhaps in seismic tomography) then 
extremely large variations in cell size and hence in 
scale-length can readily be represented in the model. A 

numerical example of this is presented in Section 4. 
The combined properties of the maximum-minimum 

internal angle and density-dependent size make Delaunay 
triangles ideal for use as the basis of an interpolation 
procedure. The simplest interpolation procedure is linear, 
i.e. when the value of a function at any point in a triangle is 
found by linear interpolation of the three ‘data’ values at the 
vertices (see Section 3.1). In this case the interpolated value 
is only dependent on the function values at the three 
vertices, and for Delaunay triangles these are the best three 
‘nearby surrounding nodes’. This property holds regardless 
of the complexity of the nodal distribution. If the density 
and angular distribution of the nodes varies enormously 
across a data set then the Delaunay triangles will adapt 
accordingly, and the linear interpolation will always be 
between three nearby surrounding nodes. 

The main limitation of linear interpolation is that it 
produces discontinuities in the first derivatives of the 
function across the sides of the triangles and all second 
derivatives are zero inside each triangle. In many 
applications, higher order smoothness is required and in the 
gridding of irregular data smooth contours are often 
desirable. In these cases a higher order interpolation 
procedure is required. 

2.1.1 Natural neighbours 

The idea of a set of ‘nearby surrounding nodes’ is 
generalized by the definition of natural-neighbour nodes. 
The natural neighbours of any node are those in the 
neighbouring Voronoi cells, or equivalently, those to which 
the node is connected by the sides of Delaunay triangles. 
For example, in Fig. l(a), node A has natural neighbours 
numbered 1 to 7. (For a thorough discussion of natural 
neighbours see Watson 1985 1992). Although natural 
neighbours usually refer to the nodes, one can equally well 
define a set of natural neighbours to any zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( x , y )  point in the 
plane as that set of nodes which would be connected to the 
point if it were added to the Delaunay triangulation. Again 
these definitions generalize in a straightforward way to 
higher dimensions. The importance of natural neighbours is 
that they represent a set of ‘closest surrounding nodes’ 
whose number and positions are well defined and vary 
according to the local nodal distribution. (Some theoretical 
upper bounds on the number of possible neighbours to any 
node have been derived; see Okabe et al. 1992 for details.) 
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One can think of the natural neighbours about any point 

as a unique set of nodes that defines the ‘neighbourhood’ of 
the point in the plane. If the distance between nodes is 
relatively large in some places, or the distribution is highly 
anisotropic, then the set of natural neighbours will reflect 
these features, but nevertheless still represent the best set of 
nearby surrounding nodes. They are therefore ideal 
candidates for the basis of a local interpolation scheme; i.e. 
we have 

where f ( x ,  y )  is the interpolated function value, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(i = 1, .  . . , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn )  are the data vaues at the n natural-neighbour 
nodes to the point ( x ,  y)  and the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+i (i = 1,. . . , n )  are 
weights associated with each node. The way in which the 
weights, +i,  are determined will control the smoothness 
properties of the interpolation. However, since the 
summation in (2.1) is only over the natural-neighbour nodes 
then, regardless of how the 4, are determined, the 
interpolation is guaranteed to be local. Furthermore, the 
size and shape of the region that can influence any point 
will adapt naturally to the local variation in node density. In 
Section 3 a method known as ‘natural-neighbour interpola- 
tion’ is described which uses the areas of Voronoi cells to 
determine the weights. This method results in continuous 
first and second derivatives in the interpolated function at all 
points except the nodes themselves, and is ideally suited to 
highly irregular nodal distributions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.2 Methods of calculating Delaunay triangulations 

During the past decade a number of algorithms have been 
devised to calculate Delaunay tessellations in 2-D and 3-D. 
Early 2-D algorithms, suitable for computer programming 
are ones by Lawson (1977), and Green & Sibson (1978). A 
comprehensive list can be found in the review articles cited 
above. There are several types of algorithm, each of which 
may be suitable for particular applications. The ‘edge 
flipping’ algorithm (Fortune 1992) starts with an existing 
non-Delaunay triangulation and uses the maximum- 
minimum angle property to update iteratively all connec- 
tions between nodes until they are in a Delaunay 
configuration. This method can be very useful when an 
existing Delaunay triangulation in 2-D is known and one 
wishes to re-calculate the Delaunay connections after 
perturbing the position of all of the nodes. The previous set 
of nodal connections usually provides an excellent starting 
point for the flipping algorithms. This approach was used by 
Braun & Sambridge (1994) to update a Delaunay mesh at 
each time-step of a Lagrangian finite-element scheme. This 
resulted in a new method for solving large-strain rock 
deformation problems. 

Other types of algorithm include ‘incremental’ methods, 
which add nodes sequentially and update the Delaunay 
triangulation after each addition. Often methods are 
developed specifically for the 2-D case and will not work, or 
will quickly become inefficient, in higher dimensions. In 2-D, 
the method generally accepted as the most efficient is the 
‘sweepline’ algorithm of Fortune (1987). For three or more 
dimensions, the early methods are ones by Watson (1981), 

Bowyer (1981) and Devijver & Dekesel (1983). Many of the 
higher dimensional methods use the ‘empty circle’ 
property, which says that the circles (spheres in 3-D) passing 
through the vertices of Delaunay triangles contain no other 
nodes. In our experience, the most efficient higher 
dimensional method at present is the ‘quickhull’ algorithm 
of Barber, Dobkin & Huhdanpaa (1993). This procedure 
actually calculates the ‘convex hull’ of a set of points in any 
number of dimensions. (The convex hull is the smallest 
convex set of nodes that enclose all nodes. In 2-D the line 
joining all nodes in the convex hull forms an ‘outer 
perimeter’. See the thicker line in Fig. l(b).) Brown (1979) 
discovered a connection between Delaunay tessellations in 
dimension d and convex hulls in dimension d + 1, which 
means that any multidimensional convex-hull algorithm can 
be used to calculate a Delaunay tessellation. The quickhull 
algorithm uses this approach to determine the Delaunay 
tessellation in any dimension. 

The data structure used to specify the Delaunay 
tessellation is a triplet of nodal indices for each triangle. 
In this paper we calculate this list with the quickhull 
algorithm, which we found to be comparable in speed, in 
2-D, with Fortune’s sweepline method. Since it is mainly 
the properties of the Delaunay triangulation that are of 
interest here, we do not describe the ‘quickhull’ algorithm in 
any detail. Barber ef al. (1992) provide full details, and in 
any case an efficient public domain computer code is 
available to implement it (Barber & Huhdanpaa 1994). 

3 INTERPOLATION METHODS BASED 
ON D E L A U N A Y  TRIANGULATIONS 

3.1 Linear interpolation 

If linear interpolation is sufficient for an application then the 
Delaunay triangles provide an ideal basis. Given the values 
of some observable ( f ; , i =  1, .  . . ,3 )  at the nodes of a 
triangle (x i ,  y , ;  i = 1, . . . , 3), the interpolated value at any 
point (x ,  y )  interior to the triangle is given by 

where + , ( x , y )  is a 2-D basis function which varies linearly 
from a value of 1 at the node (x , ,  y , )  to zero at nodes (x,, y,) 
( j  # i). In practice, it is convenient to replace eq. (3.1) with 
the equivalent expression 

f(x, Y )  = C l X  + C2Y + c3. (3.2) 

where the coefficients, c = ( c ~ ,  c2, c ~ ) ~ ,  are the solution of 
the linear system 

Ac = f, (3.3) 

with f = ( f i , f 2 , f 3 ) T  and where A is a matrix whose ith row 
is ( x , , y , ,  1). In 3-D there are four vertices to each 
tetrahedron and so the number of coefficients in eq. (3.1) 
increases to four. Similarly, the linear system in eq. (3.3) 
increases to 4 X 4. 

This linear system is trivial to solve, and so the value of 
f ( x ,  y )  at any point in a triangle is easily found. The main 
‘book-keeping problem’ that occurs is to know which 
triangle (or tetrahedron) contains a given point. As the 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
2
2
/3

/8
3
7
/7

1
8
6
3
4
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



Parametrization using natural neighbours zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA841 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
overlap with all other nodes. From this it follows directly 
that 

number of nodes increases, it can become very inefficient to 
search through all triangles systematically. Fortunately, a 
very efficient method, which we will refer t o  as the ‘walking 
triangle algorithm’ (Lawson 1977; see also Lee zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Schachter 
1980; Sloan 1987), has been developed for this problem. 
Details of the algorithm and our extension to 3-D are given 
in Appendix C. With this method it is possible to find 
quickly the triangle containing any given point, regardless of 
the overall complexity of the Delaunay triangles. Therefore 
linear interpolation may be performed efficiently. 

32 Natural-neighbour interpolation 

In natural-neighbour interpolation the weights, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4,, in eq. 
(2.1) are taken as the natural-neighbour (n-n) coordinates of 
the point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( x ,  y )  in the plane. Natural-neighbour coordinates 
were introduced by Sibson (1980,1981) and may be defined 
in any number of dimensions. They have a straightforward 
geometric definition which is most easily explained in 2-D. 
Consider the five nodes in Fig. 2(a) and the sides of the 
Voronoi cells. If one adds a point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX in cell 3, then a new 
Voronoi cell can be placed around it (the shaded region in 
Fig. 2b). The Voronoi cell about X overlaps all of the 
original cells of its natural neighbours. The n-n coordinate of 
X with respect to a neighbour is defined as the ratio of the 
area of their overlapping Voronoi cells to the total area of 
the Voronoi cell about X .  For example, in Fig. 2(b) the n-n 
coordinate of X with respect t o  node 3 is the ratio of the 
areas of the polygon afghe to the polygon abcde. The five 
‘overlapping regions’ in Fig. 2(b) are known as 
second-order Voronoi cells. The definition of a second-order 
Voronoi cell between nodes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj is the region within 
which all points are closest to node i and second-closest to 
node j .  In Fig. 2(b) the n-n coordinates of X with respect to 
its natural neighbours are the normalized areas of the five 
second-order Voronoi cells of X and nodes I to 5. 

Since n-n coordinates are always normalized areas (or 
volumes in 3-D), we immediately have 0 5 +i(x ,  y )  5 1 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1, $j  = 1. Clearly, if X were placed on top of any node, say 
node 3, then the boundaries of the (shaded) Voronoi cell 
would become identical to that of the original Voronoi cell 
and so there would be total overlap with cell 3 and zero 

\ 5 

+,(x/) = I, i f  i = j ,  

=0, if i + j ,  
(3.4) 

where the vector x, is the position of node j .  Eq. (3.4) also 
holds in 3-D, and means that the interpolated value f ( x )  at 
any point, x, has the useful property of being exactly equal 
to the original function value at the nodes, i.e. we have 

The second important property of natural-neighbour 
interpolation is that it is a local procedure. One can think of 
the n-n coordinate, Cp,(x), as a function describing how node i 
influences the region around it. It turns out that $,(x) is only 
non-zero in the union of the n circles that pass through the 
vertices of the n Delaunay triangles about node i, where n is 
the number of natural neighbours of node i. Fig. 3(a) shows 
a mesh of Delaunay triangles with the union of circles about 
node i shaded. Each circle passes through node i and two of 
its natural neighbours, and so the boundary is composed of 
n circular arcs. (In 3-D the circles become spheres and the 
triangles tetrahedra.) It can be seen that the size and shape 
of the influence region is a function of the position of node i 
and its neighbours. Fig. 3(b) shows a plot of $,(x) as an 
illuminated surface, seen from the direction of the arrow in 
Fig. 3(a). One can see that 4,(x) smoothly decreases from a 
value of 1 at node i to 0 at the boundary, regardless of the 
distribution of the neighbours. It can be shown that the 
gradient of the surface goes to zero at the boundary (see 
Appendix A). 

The third important property of natural-neighbour 
coordinates is that they are continuously differentiable at all 
points except at  their defining node, i (Sibson 1980). This 
means that the interpolated function, f(x), given by (2.1) is 
also continuously differentiable everywhere except at the 
nodes. The smoothness in the interpolated function is a 
direct result of the smoothness of the natural-neighbour 
surface seen in Fig. 3(b). In our experience (see the 
examples in Section 4) the lack of differentiability at the 
nodes is rarely a problem in practice, and natural-neighbour 
interpolation does not have the limitation, seen in linear 

\ 5 

1 
0 

1 
0 

Figure 2. (a) The original Voronoi diagram for five neighbouring nodes and an interpolation point X .  (b) The new Voronoi cell about X 
(shaded). The overlap of the new Voronoi cell with the original cells forms five second-order Voronoi cells between X and its neighoburs. 
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Figure 3. (a) The shaded region about node zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi shows the area that it can influence in natural-neighbour interpolation. (b) A perspective view 
of the influence surface about node i seen from the direction of the arrow in (a). The height of the surface at any point is the value of its 
natural-neighbour coordinate with respect to node i 

interpolation, of discontinuous derivatives across cell 
boundaries. 

In summary, natural-neighbour interpolation results in an 
interpolant which fits the origin data at  the nodes exactly, is 
local, and guarantees continuity in first and second 
derivatives everywhere except at the nodes. Furthermore, 
the size and shape of the local region vary according to the 
local nodal density distribution, by virtue of its definition 
using natural neighbours. These properties hold in any 
dimension. An efficient procedure for calculating the n-n 
coordinates in 2-D was given by Watson (1992). In 
Appendix A we expand on Watson’s description, and show 
how it may be extended to  give first derivatives of the 
interpolated function. We also discuss the extension of the 

procedure to 3-D. In the next section we examine the 
performance of natural-neighbour interpolation in the 
gridding of a highly irregularly distributed topographic data 
set. 

4 APPLICATIONS OF THE DELAUNAY 

INTERPOLATION 

4.1 Building multiple-scale seismic models 
with a Delaunay mesh 

In many geophysical studies there is a need to build 2- and 
3-D pararnetrizations of the Earth. For example, in seismic 

MESH A N D  NATURAL-NEIGHBOUR 
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tomography the region of interest is often divided into cubic 
cells (e.g. Aki, Christoffersson zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Husebye 1977). In nearly 
all cases, the cell sizes are constant throughout the entire 
model, or vary in only one dimension (e.g. depth). With a 
local interpolation procedure the size of the cell determines 
the smallest scale-lengths allowed, and a regular paramet- 
rization forces these to be the same everywhere in the 
model. In many problems it may be useful t o  concentrate 
detail in a particular part of a model without introducing a 
dense parameterization everywhere, for example in 
teleseismic traveltime tomography where the data often only 
provide useful constraints within a limited region beneath 
the receivers, or in mantle convection simulations where 
large- and small-scale flows interact with each other. The 
complete freedom allowed by the Delaunay tessellation to 
build 'well shaped' triangles, or tetrahedra, from arbitrary 
nodal distributions in 2-D and 3-D makes them ideal for the 
basis of a parametrization. With this approach it is possible 
to build 2-D and 3-D models with an enormous variation in 
cell sizes and complex geometry. Fine detail may be 
imposed anywhere by simply adding more nodes locally and 
letting the Delaunay tessellation produce the cells. The 
resulting 'book-keeping' problem (i.e. how to  find the 
triangle containing a given point) is solved by the walking 
triangle algorithm (Appendix C), and so a highly flexible 
method of parametrization is produced. 

We now present two examples to demonstrate the power 
of the technique. These are somewhat artificial in that we 
have combined subsets of 3-D models, resulting from 
different tomographic studies over different length-scales, 
in order to highlight the advantages of the technique. This 
was necessary because all current 3-D 'tomographic' earth 
models are produced using regular grids, or long-wavelength 
spherical harmonic parametrizations and therefore provide a 
relatively narrow range of length-scales compared to what 
can be achieved with the new approach. We use subsets of 
these models to increase the variability in data density and 
illustrate the power of the new approach to  handle highly 
irregular nodal distributions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4.1.1 
sphere 

In the first example we use the Delaunay tessellation to 
combine features of two complex models on the surface of a 
sphere. The two models we use are a global a priori 
Love-wave velocity model of Ricard, Nataf & Montagner 
(1995) and a 3-D P-wave model of the north-west Pacific 
produced by seismic tomography (van der Hilst, Engdahl & 
Spakman 1993). The laterally heterogeneous global model is 
intended to  be representative of a period of -73s and a 
depth of ~ 1 0 0 k m .  It consists of velocity perturbations 
sampled on a regular 2"X 2" grid. The regional 3-D 
subduction-zone model of the north-west Pacific consists of 
P-velocity variations on a lateral 1" X 1" grid and layers with 
depth separations of between 35 and 175 km. The two 
models are useful because they contain structural features of 
different shapes and scales. 

To demonstrate the power of the tessellation we take an 
irregularly distributed subset of nodes from each model and 
combine them on the surface of a sphere. In the global 
model we choose 1932 nodes from the total of 16200. The 

Combining global- and regional-scale models on a 

selection of these was biased towards nodes with negative 
velocity perturbations, which forces many of the nodes to lie 
in slow regions like mid-ocean ridges, and the overall 
distribution becomes representative of these large-scale 
global features. In contrast, the subset of nodes selected 
from the regional model were biased towards fast velocity 
perturbations in a horizontal layer at  135 km depth. This 
forces the distribution of nodes to take on the character of a 
lateral section through the imaged subduction zone. By 
combining the two sets of nodes we obtain a highly irregular 
distribution of nodes which is concentrated about different 
regional- and global-scale structural features. 

Figure 4(a) shows the triangulation of the combined set of 
2780 nodes on a sphere. Since the nodes actually lie on a 
curved surface in 3-D (and not on a plane) the Delaunay 
tessellation consists of tetrahedra rather than triangles. The 
triangles in Fig. 4(a) are in fact the exterior faces of the 
Delaunay tetrahedra as seen from the outside (which is 
equivalent to the convex hull of the surface nodes). The 
internal connections between nodes are ignored in this case, 
although one could just as easily add nodes throughout the 
volume of the sphere and build a complete 3-D 
parametrization. (Note that if the internal nodes were all 
within the convex hull then the exterior faces would be 
unchanged.) In Fig. 4(a) it can easily be seen how the size zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof 
the triangles varies with the local nodal density and yet 
there are very few highly distorted (long and thin) triangles. 
The global structure of the mid-ocean ridges is clearly 
visible, and the dense set of triangles in the north-west 
Pacific region is too small to be distinguished at  this scale. 

Figure 4(b) shows an enlarged view of the north-west 
Pacific region. (The grey border is the same in the two 
diagrams.) In this figure we see more clearly how the 
regional model with shorter-scale features has been knitted 
into the global model. The lateral expression on the 
subduction zone beneath the Kurile and Izu Bonin trenches 
is represented by a dense set of triangles. In this case the 
size of the triangles varies by two orders of magnitude across 
the figure, but we could just as easily add much denser nodal 
distributions within the current mesh, for example down to 
separations of the order of kilometres or metres, and 
calculate the corresponding Delaunay triangles without 
difficulty. Similarly, it is possible to add extra nodes to the 
interior of the sphere to form a complex 3-D parametriza- 
tion. (In this case the diagram would be unchanged because 
the new tetrahedra would have the same exterior faces.) 

4.1.2 
of the Mantle 

A second example, which illustrates the power of the 
parametrization for complex structures, is shown in Figs 5(a) 
and (b). Here we have combined a great-circle cross-section 
through a global spherical harmonic P-wave model of the 
lower mantle (i.e. model L02.56 of Dziewonski 1984) with 
the same profile through the north-west Pacific model used 
above. The global spherical harmonic model contains very 
large-scale features, and nodes (shown as black in Fig. 5a) 
have been selected at  intervals of -300km along 11 
contours of velocity perturbation between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf 1 .O per cent. 
The subset of nodes from the subduction-zone model has 
been chosen randomly from those nodes with positive 

From subduction zones zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto spherical harmonic models 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. (a) A triangulation of a subset of nodes from the a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApriori Love-wave model of Ricard et al. (1994) with a subset of nodes from the 
model of van der Hilst et al. (1993) embedded in the north-west Pacific region. The distance between nodes varies by nearly two orders of 
magnitude but the tessellation procedure is able to produce ‘well shaped’ triangles. (b) An enlargement of the north-west Pacific region 
showing the triangles in the subduction-zone model. 

anomalies down to 660 km depth. The two sets of nodes 
have been combined with a regular grid in the upper mantle 
(white nodes) with 4” angular spacing. In total, 1471 nodes 
are used and 2849 Delaunay triangles are produced. In this 
case we see how the Delaunay triangles adapt from the 
long-wavelength global-scale features in the spherical 
harmonic model to the much smaller-scale features in the 
subduction zone. Fig. 5(b) shows an enlarged view of the 
subduction zone mesh. As in the previous example, the size 
of the triangles varies by two orders of magnitude, and one 
can see how very complex structures with large variations in 
scale can easily be incorporated in this type of mesh. 

The two examples above demonstrate the large degree of 
flexibility possible with the Delaunay parametrization. 
However, they by no means extend the technique to its full 
potential. One could just as easily embed smaller-scale 
models within the variable mesh. Even with single-precision 
computation, it would be just as easy to build 3-D earth 
models with nodal separations varying from 1 m to the 
radius of the Earth. This flexibility can be very useful in 
geophysical inversion problems like seismic tomography, 
where one might wish to use a variable density of nodes to 
reflect the varying density of ray paths, or perhaps make the 
positions of the nodes variable in the inversion. It seems 
likely that Delaunay parametrizations together with constant 
cell, linear, or natural-neighbour interpolation will find 
applications in many geophysical problems of this kind. 

4.2 
topographic data 

Most geophysical field data (topography, gravity, magnetic 
anomalies, etc.) are collected at irregularly spaced locations, 

Application to the gridding of irregularly distributed 

whereas visualization tools and processing software 
commonly assume that geophysical observables are known 
at the corners of a regular grid. A necessary step in much 
geophysical data analysis is therefore to interpolate a field, 
known at a series of irregularly positioned points, onto a 
regular mesh. Here we demonstrate the usefulness of the 
n-n interpolation method for interpolating highly irregularly 
distributed data. 

The data set we use consists of measurements of 
topography at 13 932 irregularly spaced ‘reference points’ in 
south-eastern Australia (Fig. 6a). All points lie within the 
boxed region in Fig. 6(a), and their geographical distribution 
is shown in Fig. 6(d). Notice that the reference points are 
characterized by large local variations in density. Most 
areas are covered by approximately 10 points per degree, 
but the Melbourne region, for instance, (Fig. 6f) has a much 
denser data coverage at 1 point every 2 km. In some places 
the data distribution is highly anisotropic, e.g. where the 
topography has been measured along roads, or ship tracks. 
The 27 838 Delaunay triangles are shown in Fig. 6(e) (which 
took only 6.9 CPU seconds to generate on a Sun Sparc 
10/51 workstation). A large variation in the size of triangles 
produced can clearly be seen. The areas of high data 
density are covered by triangles too small to distinguish at 
this scale, while the rural areas have a nearly regular pattern 
of large triangles. The variability of the nodal density is also 
reflected in the number of neighbours about each node, 
which varies between 3 and 83 and has an average value of 
12. Note how the distribution of the triangles adapts to 
incorporate the linear ‘road’ data embedded in the more 
diffuse regional data. 

We have interpolated the entire topographic data set on a 
289 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX 193 point rectangular mesh using the n-n interpola- 
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(a) Spherical harmonic (L02.56) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ subduction zone models (NWP91) 

(b) Spherical harmonic (L02.56) + subduction zone models (NWP91) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. (a) Whole-mantle cross-section of a Delaunay triangulation. The black nodes are produccd by contouring the 3-D spherical harmong 
lower-mantle model (L02.56) of Dziewonski (1984). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA subset of the nodes from the subduction zone model of van der Hilst zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAef al. (1993) ha 
been embedded in a regular set of upper-mantle nodes (white). (b) An enlargement of the cross-section through the subduction zone showin1 
the smallest triangles. With the Delaunay tessellation a large range of scale-lengths can be produced in the parametrization. 

tion method (45.8 CPU seconds on a Sparc 10/51 work- 
station). The result is shown in Fig. 6(b) as a contour map 
with artificial illumination from the north-east. The most 
interesting result i s  that, despite the large variations in data 
density over the area, the n-n interpolation yields a very 
smooth surface. All contours are characterized by the same 
curvature, even in areas of very high or very low data 
density. Comparison of Figs 6(b) and (d) shows that the 
large gradients in data density have not biased the 
reconstruction. For example, the area of high data density in 
the north-west and the co-linear ship track data in the 
south-east both lie in regions of small or zero gradients in 
topography, and in the reconstruction there is no noticeable 
topography produced in those areas. Similarly, in the central 
highland regions the topographic features in Fig. 6(b) do not 
appear to be distorted by the trends in the data distribution 
(Fig. 6d). It is, of course, true that the quality of the 
reconstructed topography field will be limited by the 
information content of the data-one cannot reproduce 
features that are not sampled-but the important point is 
that the high irregularity of the data sampling has not 
contaminated the reconstruction in any other way. The n-n 
interpolation allows us to look at the information contained 
in the data while minimizing the bias imposed by the 
irregular distribution of the data. 

Another important feature is the ability of the 

reconstructed surface to respond to data on multiple scales. 
We have already commented on the large variation in size of 
Delaunay triangles. A close-up of the data distribution and 
the Delaunay triangulation for the Melbourne area (boxed 
in Fig. 6b) is shown in Figs 6(f) and (8) respectively. We 
have applied the n-n interpolation to the same data, to 
produce a very fine-scale 241 X 121 rectangular grid in this 
region. The result is shown in Fig. 6(c) (which took 11.0 
CPU seconds on a Sparc 10/51 workstation). The contours 
are also equally smooth in all parts of the gridded area. In 
this case, however, the smaller-scale features present in the 
data have been reproduced because of the local nature of 
the interpolation procedure. The interesting point here is 
that, since the n-n method produces a single well-defined 
interpolation surface, the two reconstructions in Figs 6(b) 
and (c) are, essentially, images of the same surface at 
different scales. That is, if we gridded the entire region in 
Fig. 6(b) at the fine scale-length of Fig. 6(c), and then 
zoomed in to the smaller region, we would obtain exactly 
the same surface as in Fig. 6(c). Therefore the n-n surface 
contains structural features at all length-scales that are 
present in the data, and there is no artificial smoothing 
length imposed by the interpolation method. Furthermore, 
the minimum scale-lengths produced in the reconstruction 
are solely determined by the separation of the data points. 
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Parametrization using natural neighbours zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA847 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1000 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkm - 

figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6.  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a) The region covered by the topographic data set (boxed) relative to Australia. (b) The n-n interpolation of topography onto a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 8 9 X  193 regular grid with artificial illumination from the north-east. (c) The fine-scale n-n interpolation of the boxed region in (b) onto a 
241 X 121 regular grid. (d) The 13.932 data points used to produce (b). (e) The Delaunay triangulation of the nodes in (d). (f) The data points 
within the ‘fine-scale’ region of (c). (8) An enlargement of the Delaunay triangulation in the ‘fine-scale’ region. 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Continued.) 
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Parametrization using natural neighbours zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA849 

4.3 Other applications of n-n interpolation: solving 
partial differential equations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Another area where n-n interpolation has applications is in 
the numerical solution of partial differential equations 
(PDEs). Finite-element methods (FEM) approximate the 
solution, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf ( x ) ,  of PDEs at a series of nodes, within a 2-D or 
3-D domain. Two important features are the choice of the 
spatial distribution of the nodes, and the choice of 
interpolation method used to represent the variation of f ( x )  

between the nodes. Delaunay triangulation and natural- 
neighbour interpolation provide an excellent basis for these, 
and offer several advantages over previous methods in cases 
where the nodal distribution cannot be chosen to suit the 
interpolation method, for example when a Lagrangian 
method is used to solve the PDE, or when the mesh adapts 
during the calculation to improve accuracy. 

The essential part of all finite-element methods is the 
numerical integration of a functional, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, defined in terms of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
f ( x )  and its spatial derivatives, over the domain of the 
problem. This integral is performed by dividing the region 
into elements and evaluating the integrand at a series of 
‘strategically chosen’ integration points. In classical FEM, 
polynomial functions of the solution values at the nodes are 
used to evaluate A at the integration points within each 
element. In this case the number of nodes at the boundaries 
of each element controls the order of the interpolation 
procedure, and hence the type of PDE that can be solved. I f  
Delaunay triangles (or tetrahedra) are used together with 
natural-neighbour interpolation then the value of the 
integrand is influenced by all natural neighbours and not just 
those at the boundries of the element (see Fig. 2). This 
produces an interpolant that is smoothly varying and 
continuously differentiable, and it can therefore be used to 
solve high-order PDEs (for example the Navier-Stokes 
equation) even when the nodes are irregularly distributed. 
In a Lagrangian formulation of a PDE, the mesh ‘follows’, 
or evolves with, the solution, and the distribution of nodes 
can quickly become highly irregular. In this case Braun zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& 
Sambridge (1995) have shown that the natural-neighbour 
interpolant leads to a powerful new type of weighted 
residual method for solving PDEs, which they call the 
Natural Element Method (NEM). 

In the NEM, numerical problems arising from the 
irregular distribution of nodes are easily dealt with, 
provided that enough nodes are defined in regions of high 
gradients in the solution. Similarly, highly distorted meshes 

Table 1. CPU time for tessellation and gridding. 

Number of nodes preprocessing gridding 
102 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.97 0.05 
103 1.33 0.06 

105 55.79 0.14 
104 5.63 0.08 

CPU time (in seconds) for preprocessing and gridding of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n randomly generated data points onto an 11 X 11 regular 
grid using a Sun Sparc lob1 workstation. Preprocessing 
consisted of calculating the Delaunay tessellation, finding 
the centres of each circumcircle, and formulating the 
adjacency matrix (using the algorithm in Appendix C). 
Note: the interpolation times increase in proportion to 
log n. 

may still be used to yield accurate estimates of the solution, 
f ( x ) ,  because i t  is the density of nodes that determines the 
‘quality’ of the n-n interpolation, and not the shape of the 
Delaunay triangles. Also, the discontinuity that occurs in the 
gradient of the interpolant at the nodes is of no consequence 
because we need only evaluate the functional A at the 
integration points within each triangle. It is important to 
note that the NEM is only possible because we have derived 
analytical expressions for the spatial derivatives of the 
interpolant in terms of the function values f (x)  at the nodes 
(Appendix A). [For a detailed description of the NEM and 
examples of the different types of PDEs, the reader is 
referred to Braun & Sambridge (1995).] 

5 DISCUSSION 

We have shown that the use of new algorithms from 
computational geometry has applications in several areas of 
geophysics. These algorithms provide a method for rapidly 
discretizing a 2-D or 3-D medium into irregularly sized 
triangles or tetrahedra, which provides a highly flexible 
parametrization and an ideal basis for linear, or smooth, 
local interpolation. The parametrization allows one to build 
models with an arbitrarily large range of length-scales by 
simply adding nodes at any point in the model and using the 
Delaunay triangulation to define the ‘cells’. The triangle, or 
tetrahedron, containing any point can be found efficiently 
with the walking triangle algorithm, which is explained in 
full together with our extension to 3-D. An important 
feature of this and all of the other algorithms described here 
is that they completely avoid global searches across the 
entire data set. As a consequence, the computation time 
increases at most linearly with the number of data nodes, as 
shown in Table 1. They are, therefore, ideally suited to very 
large data sets. 

The flexibility of the parametrization makes it a powerful 
tool in any numerical modelling, or inverse problem, where 
an irregular discretization is advantageous. Several examples 
have been given to illustrate how the parametrization may 
be used to build 2-D and 3-D seismic models with structures 
ranging from the scale of subduction zones to that produced 
by whole-mantle tomography. 

We have discussed the concept and use of natural 
neighbours as a method for obtaining a smooth interpolant 
over irregularly shaped and sized Delaunay triangles. Full 
details of an existing algorithm for natural-neighbour 
interpolation have been presented together with some 
improvements of our own. An example is given of its use in 
the gridding of a topographic data set with a highly 
irregular distribution. We have drawn together several 
algorithms from the computational geometry literature and 
paid particular attention in describing how they work. It is 
our hope that the level of detail given is complete enough to 
enable the reader to make use of any of the methods 
presented. We believe that they represent a powerful new 
tool, and that they will find applications in many 
geophysical problems. 

ACKNOWLEDGMENTS 

We thank Rob van der Hilst and Jean-Paul Montagner for 
providing us with their seismic models, and David Watson 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
2
2
/3

/8
3
7
/7

1
8
6
3
4
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



850 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM .  Sambridge, J .  Braun and H. McQueen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
for many helpful discussions and details of his algorithm for 
calculating natural-neighbour coordinates. Greg Houseman 
and Cathy Constable provided reviews which were helpful in 
improving the  paper.  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
REFERENCES 

Aki, K., Christoffersson, A. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Husebye, E.S., 1977. Determination 
of the three-dimensional structure of the lithosphere, J. 
geophys. Res., 82, 277-296. 

Aurenhammer, F., 1991. Voronoi Diagrams-A Survey of a 
Fundamental Geometric Data Structure, ACM Computing 

Avis, D. & Bhattacharya, B.K., 1983. Algorithms for computing 
d-dimensional diagrams and their duals, Adu. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAComput. Res., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, 
159-180. 

Barber, B. & Huhdanpaa, H., 1994. Qhull (computer program), 
Available via Internet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAftp from geom.umn.edu., The Geometry 
Center, 1300 South Second Street, Minneapolis, MN 55454. 

Barber, B., Dobkin, D.P. & Huhdanpaa, H., 1993. The Quickhull 
Algorithm for Convex Hull, The Geometry centre technical 
report GCG53, The Geometry Centre, Univ. of Minesota, 
Minneapolis, MN 55454. 

Blum, H., 1967. A transformation for extracting new descriptors of 
shape, Proc. Symp. on Models for the Perception of Speech and 
Visual Form, pp. 362-380, ed. Whaten-Dunn, W., MIT Press, 
Cambridge, MA. 

Bowyer, A,, 1981. Computing Dirichlet tessellations, Computer J. ,  
24, 162-166. 

Braun, J. & Beaumont, C., 1987. Styles of continental rifting: results 
from dynamic models of lithospheric extension, in Sedimentary 
Basins and Basin-forming mechanisms, eds Beaumont, C. & 
Tankard, A.J., Can. Soc. Pet. Geol. Mem. 12,241-258. 

Braun, J. & Sambridge, M., 1994. Dynamical Lagrangian 
Remeshing (DLR): A new algorithm for solving large strain 
deformation problems and its application to fault-propagation 
folding, Earth planet. Sci. Lett., 124, 21 1-220. 

Braun, J. & Sambridge, M., 1995. Solving partial differential 
equations on highly irregular evolving grids using the Natural 
Element Method, Nature, in press. 

Brown, K.Q., 1979. Voronoi diagrams from convex hulls, Inf. 
Process. Lett., 9, 223-228. 

Constable, C.G., Parker, R.L. & Stark, P.B., 1993. Geomagnetic 
field models incorporating frozen flux constraints, Geophys. J .  
Int., 113,419-433. 

De Boor, C. ,  1962, Bicubic spline interpolation, J. Math. Phys.. 41, 
212-218. 

Delaunay, B.N., 1934. Sur la sphere vide. Bull. Acad. Science USSR: 
Class Sci. Math.. VII, 793-800. 

Delfiner, P. & Delhomme, J.P., 1975. Optimum interpolation by 
kriging, in Display and analysis of spatial data, pp. 96-114, eds 
Davis, J.C. & McCullagh, M.J., Wiley, London. 

Devijver, A. & Dekesel, M., 1983. Computing multidimensional 
Delaunay tessellations, Pattern Recogn. Lett., 1, 3 11-316. 

Dirichlet, G.L., 1850. Uber die Reduction der positiven 
quadratischen Formen mit drei unbestimmten ganzen Zahlen, 
J. Rein u. Angew. Math., 40, 209-227. 

Dobkin, D.P., 1988. Computational geometry: then and now, in 
Theoretical Foundations of Computer Graphics and CAD,  
NATO AS1 Series, F40, pp. 71-109, ed. Earnshaw R.A., 
Springer-Verlag, Berlin. 

Dziewonski, A.M., 1984. Mapping the lower mantle: Determination 
of lateral heterogeneity in P velocity up to degree and order 6, 
J. geophys. Rex,  89, 5929-5952. 

Fortune, S., 1987. A sweepline algorithm for Voronoi diagrams, 
Algorithmica, 2, 153-174. 

Fortune, S., 1992. Voronoi diagrams and Delaunay triangulations, 

S U ~ V ~ Y S ,  23,345-405. 

in Computing in Euclidean Geometry, eds Du, D.Z. & Hwang, 
F., World Scientific, Singapore. 

Frank, F.C. & Kasper, J.S., 1958. Complex alloy structures regarded 
as sphere packings, Acta Crystallogr., 11, 184-190. 

Fullsack, P., 1995. An arbitrary Lagrangian-Eulerian formulation 
for creeping flows and its applications in tectonic models, 
Geophys. J. Int., 120, 1-23. 

Green, P.J. & Sibson, R., 1978. Computing Dirichlet tessellations 
in the plane, Comput. J . ,  21, 168-173. 

Hildebrand, J.A. & Parker, R.L., 1987. Paleomagnetism of 
Cretaceous Pacific Seamounts Revisited, J. geophys. Res., 92, 
12695-12712. 

Lawson, C.L., 1977. Software for C' surface interpolation, in 
Mathematical Software, Vol. 3, ed. Rice, J., Academic Press, 
New York. 

Lee, D.T. & Schachter, B.J., 1980. Two algorithms for constructing 
a Dalaunary triangulation, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAInt. J .  Comput. Inf. Sci., 9, 219- 
242. 

Matheron, G., 1973. The intrinsic random functions and their 
applications, Adv. Appl. Proh., 5,439-468. 

Niggli, R., 1927. Die topologische Strukturanalyse, Z. 
Kristallograph, 65, 391-415. 

Okabe, A., Boots, B. & Sugihara, K., 1992. Spatial Tessellations 
Concepts and Applications o,f Voronoi Diugrams. John Wiley & 
Sons, Chichester. 

O'Rouke, J., 1988. Computational geometry, Annu. Rev. Comput. 
Sci., 3, 389-41 1. 

Parker, R.L., Shure, L. & Hildebrand, J.A., 1987. The Application 
of Inverse Theory to Seamount Magnetism, Rev. Geophys., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA25, 
17-40, 

Powell, M.J.D. & Sabin, M.A., 1977. Piecewise quadratic 
approximations on triangles, A CM Trans. Math. Software. 3, 

Ricard, Y . ,  Nataf, H.C. & Montagner, J.P., 1995. The 3-SMAC 
Model - Confrontation with seismic data, J. geophys. Res., 
submitted. 

Schumaker, L.L., 1976. Fitting surfaces to scattered data, in 
Approximation theory uol. 2, pp. 203-268, ed. Lorentz, G.G., 
Academic Press, New York. 

Sedgewick, R.. 1990. Algorithms in C. Addison-Wesley, Reading, 
MA. 

Sibson, R., 1980. A vector identity for the Dirichlet tessellation, 
Math. Proc. Camb. Phil. Soc., 87, 151-155. 

Sibson, R., 1981. A Brief Description of Natural Neighbour 
Interpolation, in lnterpreting Multivariafe Data, pp. 21-36, ed. 
Barnet V., Wiley, Chichester. 

Sloan, S.W., 1987. A fast algorithm for constructing Delaunay 
triangulations in the plane, Adu. Eng. Software, 9, 34-55. 

Thiessen, A.H., 191 1. Precipitation average for large area, Monthly 
Weather Rev., 39, 1082- 1084. 

van der Hilst, R.D., Engdahl, E.R. & Spakman, W., 1993. 
Tomographic inversion of P and p P  data for aspherical mantle 
structure below the northwest Pacific region, Geophys. J. lnt., 
113,264-302. 

Voronoi, M.G., 1908. Nouvelles applications des parametres 
continus a la theorie des formes quadratiques, J. reine Angew. 

Watson, D.F., 1981. Computing the n-Dimensional Delaunay 
Tesselation with Applications to Voronoi Polytopes, Comput. 

Watson, D.F., 1985. Natural Neighbour Sorting, Australian Comput. 

Watson, D.F., 1992. Contouring: A Guide to the Analysis and 

Wigner, E. & Seitz, F., 1933. On the constitution of metallic 

Zienkiewicz, O.C., 1977. The finite element method, 3rd edn, 

31 6-325. 

Math., 134, 198-287. 

J., 24, 167-172. 

J., 17, 189-193. 

Display of Spatial Data, Pergamon, Oxford. 

sodium, Phys. Rev., 43, 804-810. 

McGraw-Hill, Maidenhead. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
2
2
/3

/8
3
7
/7

1
8
6
3
4
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



Parametrization zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAusing natural neighbours 851 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
APPENDIX A: CALCULATING N A T U R A L -  
NEIGHBOUR COORDINATES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The n-n coordinate of X with respect to each node, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ J x ) ,  is 
just the area of the second-order Voronoi cell between X 
and that node, normalized by the total area of the Voronoi 
cell around X. We recall that the second-order Voronoi cell 
between X and node i is the region of overlap between the 
old Voronoi cell around node i and the new Voronoi cell 
around X ,  for example the polygon ufghe in Fig. 2(b). 
Watson’s method (Watson 1992) is essentially a way of 
calculating the areas of the second-order Voronoi cells by 
breaking them down into a sum of signed areas of 

subtriangles. The procedure is best explained with the aid of 
an example. Fig. A1 shows the five natural-neighbour nodes 
about X .  We can imagine these nodes to be surrounded by a 
much larger set of nodes that are not neighbours of X ,  but 
only the natural-neighbour nodes need be considered. 

The procedure begins by finding each Delaunay triangle 
whose circumcircle contains the point X .  (The circumcircle 
is the circle that passes through the three nodes of a 
triangle.) We will call these ‘circum-triangles of X’. In Fig. 
A l ,  the circum-triangles of X are A,,,, A324 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA345. A 
consequence of the empty circle property (described in 
Section 2 )  is that the vertices of the circum-triangles of X 
are in fact just the natural neighbours of X .  As the number 

Natural neighbour coordinates 1 

5 

Contribution to node 3 from triangle 123 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA’ *  
New Voronoi cell about x 

Natural neighbour coordinates 2 

I 

Contribution to node 3 from triangle 432 Contribution to node 3 from triangle 345 

Figure Al.  (a) The Voronoi cell about node X (shaded) and its five neighbours. Figs (b), (c) and (d) show how the signed areas of the three 
sub-triangles (shaded dark) can be added to produce the area of the second-order Voronoi cell between X and node 3. The sub-triangles in (b) 
and (d) have negative areas while that in (c) is positive. The areas of the other four second-order Voronoi cells are found in a similar way. 
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of nodes becomes large, it would be expensive to search 
through all triangles to find the few whose circumcircles 
contain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX ,  especially since the search would have to be 
repeated for every new X .  Fortunately, the search algorithm 
of Lawson (1977) can be used to find all circum-triangles. 
This is a local search method, which remains efficient even 
for a large number of nodes. Details of the algorithm 
together with our modifications are given in Appendix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB. 
For each circum-triangle of X we can calculate the vectors 
cI ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc, and c,, where 

CI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= WP2, P3, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXI ,  

c2 = @(P,, PI, 4, 
c3 = @(PI 9 P2r x), 

(‘41) 

where the function @(a, b, c) represents the centre of the 
circle passing through the three points a, b and c. Each of 
the points (cl,c,,c,) is the centre of the circle passing 
through X and a pair of its natural neighbours. Their 
positions for each of the circum-triangles of X are shown in 
Figs Al(b), (c) and (d) respectively. It is convenient to write 
the three expressions in (Al) as one equation using a ‘cyclic’ 
rotation of the indices zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj ,  and k :  

c j  @(pi? P k ,  x). (A2) 

The cyclic rotation simply means that the values of j and k 
are fixed by i in cyclic rotation, i.e. 123,231,312. Each 
circum-centre c, can be found by solving a simple 2 X2 
linear system, 

If we write the circum-centre of the Delaunay triangle A,,, 
as v, then we have 

Again, a simple linear system must be solved to find v. [Note 
that if x were placed on the circle passing through the nodes 
at pI ,  p,, p3 then we would have c, = v, (i = 1, . . . , 3).] 

For each circum-triangle we may form three new 
triangles using the four points (cl, c2, c,, v). These have 
vertices (c,, c,, v), (c,, cl, v) and (cl, Q, v) (see Fig. Al).  We 
will refer to these as the three ‘subtriangles of the 
circum-triangle’. The area of each of these sub-triangles may 
be written 

a , , , (x )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 Il(c, - v) x (Ck - v>II, (i = 1,293) (‘46) 

where x is the vector product, 11.11 indicates the length of a 
vector, and t refers to the particular circum-triangle. Again 
we have used cyclic rotation of coordinates to define j and k .  
Each sub-triangle can be associated with a vertex of the 
circum-triangle, i.e. node i i s  associated with the sub-triangle 
with vertices (c,, ck, v). In Figs Al(b), (c) and (d) we have 
shaded (dark) the three sub-triangles corresponding to node 
3. The success of the algorithm rests on the fact that by 
adding the areas of the sub-triangles, with an appropriate 
sign factor, we can obtain the areas of the second-order 

Voronoi cells. For example, consider the three sub-triangles 
corresponding to node 3 in Figs Al(b) to (d). If we subtract 
the area of the sub-triangles in Figs Al(b) and (d) from the 
sub-triangle in Al(c) then we get the required polygon 
(shaded light grey). In a similar way, the areas of the other 
four second-order Voronoi cells (i.e. for nodes 1,2,4 and 5) 
are found by adding the signed areas of their sub-triangles. 
Of course the sign of the areas is important in obtaining the 
correct sum. Fortunately, however, the correct signs are 
guaranteed by using cyclic order of indices in eqs (A2) and 
(A6), and ensuring that the vertices of each Delaunay 
triangle (pl, p2, p,) are in positive (counter-clockwise) order. 
Once these conditions are met, the sub-triangles will always 
be determined with the correct sign and we need only sum 
their signed areas with those from the other circum-triangles 
that correspond to the same node. The total for each node, 
i, will then give the area of the second-order Voronoi cell 
between X and node i. 

Since the outer loop is over the circum-triangles and the 
inner loop is over the three vertices of each circum-triangle, 
it is convenient to introduce a local node numbering for 
each triangle, i.e. we refer to &, for the node with local 
index i in triangle t .  The local node numbering is shown in 
Figs Al(b) to (d). With this we can write the 
natural-neighbour interpolated function in eq. (2.1) as 

where A is the total area of the Voronoi cell about X ,  given 
by the sum of the areas of the second-order Voronoi cells, 

where N is the number of circum-triangles of x. Watson’s 
method is therefore to calculate the four points given in eqs 
(A2) and (AS) for each circum-triangle, evaluate the signed 
areas for the three vertex nodes using eq. (A6), and 
calculate the double sums in eqs (A7) and (A8). An 
algorithm in pseudo-code, which implements this approach, 
is given in Fig. A2. 

A1 Derivatives of the interpolated function 

For some applications it is useful to have derivatives of the 
interpolated function. These are obtained by differentiating 
eq. @7), 

(s = L2) ,  (‘49) 

where x =  (xl ,  x ~ ) ~ .  The term aAldx, can be found by 
differentiating eq. (A8). After substituting this into (A9) and 
simplifying, we obtain 

(s = 1, 2). (A10) 

The only new terms in (A10) are the derivatives of the 
signed sub-triangle areas, aa,,/ax,. These can be found by 
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An algorithm for natural neighbour interpolation 

Set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu,du,  f ,  f,, f2,dv1, and du, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0; 
For each Delaunay circum-triangle of X ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt, (t = 1 , .  . . ,n): 

set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv = circumcentre of triangle (p1,p2,p3) (solve eqn. A.3) ; 
for i = 1 ,2 ,3 ;  

set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj and k using cyclic order; 
calculate matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA(Jk)  using eqn. (A.4); 
calculate vector b, using eqn. (A.4); 
set c, = circumcentre of triangle (p), pkr x) (solve eqn. (A.3)) and store; 
calculate vector dt,# for (s = 1,2) using eqn. (A.13); 
set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcZ,# = solution of linear system (A.12) for (s = 1,Z) and store; 

end; 
for i = 1,2,3;  

set q = global node index corresponding to local node i; 
set fq = f,,,, the function value at current node; 
set at,, = signed area of triangle ((c, ,c, ,v) (using eqn. (A.6));  

set A = A +at,%; 

set d,  =aat,,/dxl using (C~,,,C~,~,C~,C~,V) in eqn. (A.11); 
set d, = dat,,/dx2 using ( c ~ , , , c ~ , ~ , c ~ , c ~ , v )  in eqn. (A.11); 

set 4* = 49 + at,,; 

set f = f + " J q ;  

set f, = fl + dJg; 
set f 2  = f, + 4 f9 ;  
set dv, = dv, + d,; 
set du, = dv, + d,; 

end; 
end; 
set f = fi 
set f, = f ( f l  - fdu,) (eqn. (A.lO); 
set f, = i ( f 2  - fdu,) (eqn. (A.lO); 
finish; 

(eqn. (A.7)); 

Upon exit f = f(x),  f ,  = af/dx,, f, = af/ax, and d9(q = 1 , .  . . ,n) are the natural neighour 
co-ordinates of the point at x. 

Figure A2. A pseudo-code algorithm for natural-neighbour interpolation at the test point X 

differentiating eq. (A6): 

(i = 1,2, 3), (s = 1, 2). (A l l )  

[Note here that if x lies on the circle passing through the 
vertices of Delaunay triangle, t ,  then because each ci 
(i = 1,. . . ,3) is equal to v, the contributions of triangle t to 
(Y,,~(X) and its derivatives are all zero.] 

The six equations in (A l l )  contain the derivatives of the 
centres of the circum-circles with respect to the components 
of the position vector, dci/dx,. For ease of notation we will 
write these vectors as c,.,, and the components of ci as 
(d,, c;). The derivative vectors may be found by 
differentiating the linear system of equations in (A3), and 
we obtain 

where Aok) is the matrix given by (A4), and 

d,., = [(c: - x,), (c: - ('413) 

All terms in the 2 X 2 linear system (A12) are known, and so 
with cyclic rotation of indices the six vectors c,, 
(i = 1, 2, 3;s = I ,  2 )  can be calculated. The derivatives of the 
natural-neighbour interpolated function may now be 
determined, using eqs (A9) to (A13). An algorithm for 
calculating the function and first derivative natural- 
neighbour interpolation is given in Fig. A2, in a pseudo-code 
language. 

In practice, the main limitation of the algorithm is that it 
breaks down when the point x lies exactly on the line 
between two nodes, i.e. on the side of a Delaunay triangle. 
In this case a circle cannot be constructed to pass through all 
three points, and so the circum-centre, c, in eq. (A2), cannot 
be defined. It is important to note that the theory of 
natural-neighbour coordinates does not break down here, 
and that the second-order Voronoi cells are still well 
defined. It is only the method of calculating their areas 
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854 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM. Sambridge, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ .  Braun and H. McQueen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
which breaks down. In this special case the second-order 
Voronoi cell has a pair of parallel sides and it cannot be 
broken down into triangles of the type used in the 
algorithm. At present there seems to be no solution to this 
problem, although in the application to finite-element 
modelling (Braun zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Sambridge 1995) the interpolated 
function need only be evaluated at points within the 
Delaunay triangles and never on the sides. Therefore the 
break-down condition is never encountered, although an 
extension of the algorithm to handle this special case may be 
useful for other problems and is the subject of our current 
work. In the gridding of irregularly distributed data fields, a 
satisfactory result is almost always achieved by perturbing 
any co-linear x points away from the edge of a Delaunay 
triangle. 

The smoothness of the natural-neighbour influence 
surface is one of its special properties. Sibson (1980) proved 
that the natural-neighbour coordinates zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4j(x) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( j  = 1,. . . , n )  
in eq. (2.1) are continuously differentiable at all points 
except at the nodes, in any dimension. This means that the 
influence surface in Fig. 3(b) must smoothly tend to zero at 
its boundary, except at the positions of its neighbouring 
nodes (which also lie on the boundary). 

This property may also be demonstrated in the 2-D case 
considered here. First we write 4 j ( x )  in terms of the triangle 
areas q i ( x ) ,  and by definition we have 

where the summation is over all circum-triangles of x that 
have node j as the ith vertex. Differentiating, we obtain 

From the definition of the influence surface of node j we 
know that if the test point x is placed on its boundary (and 
not at the position of any other node) then x lies on the 
circle passing through the three vertices of a Delaunay 
triangle, and node j is at one of those vertices. Furthermore, 
this is the only triangle in the summation in (A14) and 
(A15). We recall, from above, that if x lies on a 
circum-circle of triangle, t ,  then we have 

ci = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv (A161 

and therefore by substituting in eqs (A6) nd (A l l )  we find 
that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(i = 1, . . . , 3), 

(YJX) = 0, (i = 1,. . . , 3 )  
and 

Putting these in eqs (A14) and (A15) we have 

4jW = 0, 
and 

and so we can verify that for all points on the boundary of 
the influence surface (except at the positions of other nodes) 
the natural-neighbour interpolant has no discontinuities in 

its first derivatives. Note, however, that discontinuities in the 
gradient of the interpolant do exist at the positions of the 
neighbours to node j ,  and this can be seen in Fig. 3(b). 

A2 Extensions to 3-D 

The algorithm of Watson (Watson 1992) is restricted to 2-D. 
An extension to 3-D follows along very similar lines, 
although a detailed understanding is the subject of ongoing 
work. The main geometric components of the 2-D algorithm 
readily extend to 3-D, i.e. circles become spheres, triangles 
become tetrahedra. The expressions for areas and 
circum-centres can easily be replaced with their 3-D 
counterparts, and the resulting expressions can be 
differentiated. The only difficulty lies in consistently 
obtaining the correct signs of the volumes of 'sub- 
tetrahedra', i.e. the 3-D equivalent of eq. (A.6). Our 
ongoing work on this problem shows promise and results 
will be published elsewhere. 

A P P E N D I X  B: CALCULATING A L L  
CIRCUM-TRIANGLES OF X 

The outer loop in the natural-neighbour interpolation 
algorithm is over all circum-triangles of the point X .  A 
method to obtain these triangles without searching through 
all triangles was described by Sloan (1987) and attributed to 
Lawson (1977). Before the procedure can be described, 
some preliminary definitions are needed. 

For any triangle, t ,  and local node i (i = 1, 2,3), we define 
side i to be the side opposite node i. In a similar way we can 
label each face of a tetrahedron with the index of the one 
vertex not in the plane of the face. Using this notation we 
define for each side i of triangle t the function w(t, i )  to be 
the index of the triangle that shares side i with triangle t. 
Note that every side is shared by two triangles except those 
that form the convex hull, and in 3-D every triangular face is 
shared by two tetrahedra except those on the hull. If the 
side i of triangle t is on the convex hull then there is no 
other triangle sharing that side and so we set w(t ,  i) = 0. 

With these definitions, the circum-triangles of X can be 
found using the algorithm in Fig. B1. Briefly, the procedure 
tests a series of triangles to see if they are circum-triangles 
of X ,  i.e. if 

where v is the circum-centre of the triangle, and p is one of 
its vertices. The important part of the procedure is the order 
in which the triangles are tested, which is controlled by two 
'last in first out' (LIFO) stacks. These are data structures, 
commonly used in computer science (see Sedgewick 1990). 
The procedure starts with the triangle containing x, which is 
by definition a circum-triangle of X .  We can think of the 
order of triangles to be tested as a walk through 
neighbouring triangles. In this walk the first stack contains 
the next triangle to be tested, while the second stores the 
previous one. Keeping the second stack prevents the 
procedure walking back on itself. However, it relies on a 
special property of the Delaunay triangulation to ensure that 
by walking 'forward' it never encounters a previously 
found circum-circle of X (Lawson 1977). When the stacks 
are empty, all circum-circles have been found. 
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Parametrization using natural neighbours 855 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
An algorithm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor finding all circumcircles containing the point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 

Find the triangle, t which contains the point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx (use the ‘walking triangle algorithm’); 

This must be a circum-triangle of x (FOUND) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: 

For i = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1,2,3:  
Set t,,, = w ( t , i ) ;  
If t,,, # 0 then; 

Place t,,, on a ‘last in first out stack’ (stack A); 
Place t on a second ‘last in first out stack’ (stack B); 

end; 
end; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
w If stack A is empty then finish; 
Take t,,, from top of stack A; 
Take t from top of stack B; 
If t,,, is a circum-triangle of x then; 

We have found another circum-triangle of x (FOUND) ;  
for i = 1 ,2 ,3 :  

set t, = w(tne,,,,i); 
If ( t ,  # 0 and t ,  # t )  then; 
place t, on top of stack A; 
place t,,, on top of stack B; 

end; 
end; 
go to w ;  

W p e  81. A pseudo-code algorithm for finding all triangles whose circum-circles contain the test point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX .  A new circum-triangle is found each 
hrne the lines labelled ‘found’ are encountered. 

This searching procedure also works in higher dimensions 
and has been used by Sloan (19S7) as the basis of a method 
for calculating Delaunay tessellations in the plane. The 
function w ( t ,  i) is also used by the walking triangle 
algorithm, and a method for its efficient calculation is 
described in Appendix C. 

APPENDIX C: THE WALKING TRIANGLE 
ALGORITHM 

The main book-keeping problem encountered with an 
irregular mesh of triangles (or tetrahedra) is to find the one 
containing a given point x. When the number of triangles is 
large, a brute force search through all triangles becomes 
extremely inefficient, especially when many points may 
need to be located. The walking triangle algorithm 
(originally due to Lawson 1977; see also Sloan 1987) finds 
the enclosing triangle, without the need for a search through 
all triangles. A pseudo-code representation of the algorithm 
appears in Fig. Cl(a). The steps in the algorithm are quite 
simple: the ‘walk’ starts with an initial-guess triangle, t ,  and 
tests each side, i (i = 1, 2, 3), in turn. (Again, triangle sides 
are defined by the indices of the nodes opposite, which are 
in counter-clockwise order.) If the point x lies to the ‘right’ 
of the current side then the walk moves to the neighbouring 
triangle that shares this edge. The three sides of this new 
triangle are now considered in the same way as before. The 
walk stops when x lies to the ‘left’ of all three sides, in which 
case it must be inside the current triangle. 

To test if the point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x, y )  lies to the right of side i, we 
need only check whether the condition 

holds, where p, = (p: ,  p$)T and P k  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(p:, p,”)’ are the nodes 
on the edge, and J and k are defined by cyclic rotation of 
indices. The efficiency of the algorithm is due to the nearly 
direct path it takes to the triangle containing the point. Fig. 
C2 shows an example of its application to a set of 980 
triangles. The initial triangle is in the bottom right corner 
(black), and the correct triangle is in the top left (black). In 
this case the correct triangle is located by sampling only 60 
triangles. Obviously the number of triangles tested depends 
on the distance between the starting triangle and the correct 
one, but the algorithm is guaranteed to work starting from 
any triangle. If a series of points to be located are close to 
each other, then the triangle containing the previous point 
serves as an excellent starting guess for the next. The 
algorithm is also independent of the size and complexity of 
the triangulation, and may be used to locate points within 
any set of convex polygons (e.g. rectangles, hexagons, etc.) 
whose outer perimeter forms a convex polygon. 

C1 An extension to 3-D 

The algorithm requires some modifications to work with 3-D 
tetrahedra. This is because there is no analogue of the 
counter-clockwise step around the sides of the triangle. Our 
extension is quite simple-we merely replace the test at each 
side (of the triangle) with a more sophisticated test at each 
face of the tetrahedron which distinguishes between the 
inside and outside of the tetrahedron: we know the point x 
must be outside the current tetrahedron if x and the vertex 
p, are on opposite sides of the face i, i.e. if 
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856 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM .  Sambridge, J .  Braun and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH. McQueen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe walking triangle algorithm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Set t to the index of any triangle; 

Triangle t is the current best guess index of the triangle containing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx; 
For zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi = 1 ,2 ,3 :  

Set j and k by cyclic rotation; 
Set t,,, = w ( t , i ) ;  (t,,, is the other triangle which shares side i) 
If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx is to the right of the line (p,,pk), (use eqn. C.l) theii: 

If t,,, = 0 then x is outside of convex hull so finish; 
If t,,, # 0 then set t = t,,,; 
go to 0 ; 

end; 
end; 
The point x must be in triangle t ;  
finish; 

(b) An algorithm to calculate the adjacency matrix 

Let V,,, be the global node index of the i th vertex of triangle t .  
For q = 1,. . . , N: set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnq = the number of natural neighbours of node q ;  

For t = 1,. . . , NT: [loop over triangles) 

For i = 1 ,2 ,3 :  [loop over sides of current triangle) 
Set j and k by cyclic order; 

Set q = q,,,ql = y,, and q, = q,k 
For m, = 1, . . . , nql : 

(global node indices); 

[loop over neighbours of node ql )  
If C(q, ,m,)  = 0 then; (record connections between q,  and q 2 )  

Set C(q1, m, 1 = q 2 ;  

Set T(q, ,m,)  = t ;  
For m2 = 1,. . . , nqz: [loop over neighbours of node q 2 )  

If C(q,,m,) = 0 then; 

Set C(q,,m,) = 41;  

Set T(q,,m,) = t ;  
go to 0 ;  

end; 

end; 
Else if C(q , ,m , )  = q,  and T(q, ,m,)  # t ,  then: 

Set t,,, = T(q, I m1 1; 
Tkiangles t and t,,, are neighbours ! 
Set in,, = index of the side between nodes q,  and q, in t,,, ; 
set w ( t , i )  = t,,,; (Insert entries into adjacency matrix) 

go to *; 
set 4tne , , ineJ  = t ;  

end; 
end; 

done side i in triangle t ;  
end; 

end; 
finish; 

Figure C1. (a) A pseudo-code algorithm for calculating the triangle containing the test point X .  (b) A pseudo-code algorithm for calculating 
the adjacency matrix. Two other lists which describe aspects of the Delaunay triangulation are obtained as by-products. 

where the three vertices of face i contain the nodes in just the same way as the walking triangle algorithm, 
(p,, p k ,  pl). If this condition is met for any face i ,  then we although now the faces may be sampled in any order. If 
move into the tetrahedron on the other side of the face and many points are to  be located then it may be more efficient 
start again. In this way the algorithm moves through to calculate, and store in advance, the terms in (c2) that do 
arbitrarily sized and oriented tetrahedra towards the point x not depend on x. This can be done with the scalar in the 
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Parametrization zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAusing natural neighbours 857 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure C2. An example of the path (shaded triangles) taken by the 
walking triangle algorithm. The initial triangle is in the lower right 
corner (black) and the final triangle is in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtop left corner (black). 
The nearly direct path taken by the algorithm enables it to locate 
efficiently a point in any triangle. 

first curly brackets and the cross product in the second curly 
brackets. With these values stored, the evaluation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(C2) 

requires only the dot product of two vectors for every new zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C2 Calculating the adjacency matrix 

The main prerequisite for the walking triangle algorithm 
(and the circum-triangle search in Appendix B) is the 

adjacency function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw ( t ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi), or adjacency matrix R, (where 
Q, ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= w(t, i)). Lawson (1977) and Lee & Schachter (1980) 
do not give a method for determining this matrix. Sloan 
(1987) calculates it as a by-product of a 2-D Delaunay 
triangulation algorithm. A simple ‘brute force’ method 
would be to search for all pairs of triangles with two vertices 
in common. The time taken for this type of approach would 
increase in proportion to the square of the number of 
triangles, which can be very inefficient when the number of 
nodes is large. In Fig. Cl(b) we present an approach which 
requires only a single loop over the triangles. The time 
taken by this algorithm has only a linear increase with n, and 
is therefore much more efficient when the number of nodes 
becomes large. 

The input to the algorithm is the triplet of global node 
indices for each triangle, which we denote by v,, 
(i = 1,2, 3; t = 1, . . . , NT), where NT is the total number of 
triangles. This is the data structure which defines the 
Delaunay triangulation, and is the output of the quickhull 
algorithm discussed in Section 2.  Two by-products of the 
new method are the matrices C,,p and T,, ( p  = 
1,. . , , n(q);  q = 1,. . . , N ) ,  which give the indices of the 
pth natural neighbour and the pth triangle connected to 
node q ,  respectively, where n(q )  is the number of natural 
neighbours to node q ,  and N is the total number of nodes. 
(In practice the new arrays may be calculated and stored in 
a compact format which eliminates all zero entries.) 
Although cyclic order is used in the algorithm to define the 
indices j and k ,  the order in which the sides of each triangle 
are visited is not important. Once i is fixed we need only set 
j and k to the other two local indices, in any order. 
Therefore the algorithm can be extended to work in 3-D by 
simply increasing the number of local nodes (in each 
tetrahedron) from 3 to 4. 
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