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Since June 2013, GEOS-5 forecasts of the Arctic sea-ice dis-

tribution were provided to the Sea-Ice Outlook project. The 

seasonal forecast output data includes surface fields, atmos-

pheric and ocean fields, as well as sea ice thickness and area, 

and soil moisture variables. The current paper aims to docu-

ment the characteristics of the GEOS-5 seasonal forecast 

system and to highlight forecast biases and skills of selected 

variables (sea surface temperature, air temperature at 2 m, 

precipitation and sea ice extent) to be used as a benchmark 

for the future GMAO seasonal forecast systems and to facili-

tate comparison with other global seasonal forecast systems.
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Abstract Ensembles of numerical forecasts based on per-

turbed initial conditions have long been used to improve 

estimates of both weather and climate forecasts. The God-

dard Earth Observing System (GEOS) Atmosphere–Ocean 

General Circulation Model, Version 5 (GEOS-5 AOGCM) 

Seasonal-to-Interannual Forecast System has been used rou-

tinely by the GMAO since 2008, the current version since 

2012. A coupled reanalysis starting in 1980 provides the 

initial conditions for the 9-month experimental forecasts. 

Once a month, sea surface temperature from a suite of 11 

ensemble forecasts is contributed to the North American 

Multi-Model Ensemble (NMME) consensus project, which 

compares and distributes seasonal forecasts of ENSO events. 
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CMAP  CPC merged analysis of precipitation

CMIP5  Coupled model intercomparison project 

phase 5

CPC  Climate Prediction Center

CTD  Conductivity-temperature-depth

DMSP  Defense Meteorological Satellite 

Program

EnKF  Ensemble Kalman filter

EnOI  Ensemble optimal interpolation

ENSO  El Niño/Southern oscillation

ESMF  Earth System Modeling Framework

GDAC  Argo Global Data Assembly Center

GEOS-5  Goddard earth observing system model, 

version 5

GEOS-iODAS  Goddard earth observing system inte-

grated ocean data assimilation system

GEWEX  Global energy and water cycle exchanges 

project

GMAO  NASA Global Modeling and Assimila-

tion Office

GPCP  Global Precipitation Climatology Project

IDM  Indian Ocean Dipole Mode SST index

LSM  Land surface model

MERRA  Modern-era retrospective analysis for 

research and applications

MOM4  Modular ocean model, version 4

MSSS  Mean square skill score

NMME  North American multi-model ensemble

NSIDC  National Snow and Ice Data Center

NOAA  National oceanic and atmospheric 

administration

OI  Optimal interpolation

OOPC  Ocean observations panel for climate

PIRATA  Prediction and Research Moored Array 

in the Atlantic program

RAMA  Research moored array for African–

Asian–Australian monsoon analysis and 

prediction

SAFE  Spatial approximation of forecast errors

SETIO  Southeastern Tropical Indian Ocean SST 

Index

SMMR  Scanning multi-channel microwave 

radiometer

SSM/I  Special scanning microwave imager

SSMIS  Special scanning microwave imager/

sounder

SST  Sea surface temperature

T2M  2-m air temperature

TA  Tropical Atlantic index

TAO/TRITON  Tropical atmosphere ocean program 

triangle trans-ocean Buoy Network

TASI  Tropical Atlantic SST Index

WTIO  Western Tropical Indian Ocean SST 

Index

XBT  Expendable bathythermographs

1 Introduction

Deterministic numerical weather prediction forecasts have 

a forecasting window that is limited to about 15 days (e.g., 

Lorenz 1963, 1993). As noted by Palmer and Anderson 

(1993, 1994) and others, useful predictability is possible 

beyond this limit in part because boundary forcing such as 

sea surface temperatures or soil moisture (Koster and Suarez 

2001) may vary slowly and reliably, and may then influ-

ence statistics of the atmosphere. In 2010, the US National 

Academies reported on the state of seasonal-to-interannual 

predictability, and suggested avenues for progress (Weller 

et al. 2010). Among the recommendations was the need to 

establish and evaluate a multi-model ensemble, which was 

recognized as a viable strategy for resolving forecast uncer-

tainty (e.g., Kirtman et al. 2014). The NASA Global Mode-

ling and Assimilation Office (GMAO) has participated in the 

North American Multimodel Ensemble (NMME; Kirtman 

et al. 2014) since its inception. The purpose of the NMME 

is to advance the capabilities of the climate prediction mod-

els, and utilize the system in a near-operational mode to 

demonstrate feasibility. The GMAO system is based on its 

use and experience with data assimilation methods that have 

been developed for mission support and to enhance NASA’s 

program of earth observations. The development and use of 

the seasonal forecasting system enhances the use of NASA 

data and contributes to observing system science by improv-

ing assimilation systems and atmosphere and ocean mod-

eling tools. Evaluation of the GMAO system has previously 

been conducted with a focus on the predictability of the El 

Niño/Southern Oscillation phenomenon (ENSO; Ham et al. 

2014a, b; Vernieres et al. 2012). In this paper, we provide a 

more comprehensive assessment of current forecasting sys-

tem as it reaches the end of its life cycle. As the system has 

now progressed through several years within the NMME 

near-operational mode, this paper critically examines recent 

performance.

The layout of the paper is as follows. Section 2 provides 

an overview of the GMAO Goddard Earth Observing 

System (GEOS) Atmosphere–Ocean General Circulation 

Model, version 5 (GEOS-5 AOGCM) Seasonal Forecast 

System. Section 3 details the initialization procedure for 

each system component, and the means of ensemble gen-

eration through field perturbations and sampling in time. 

Section 4 presents an assessment of the forecast sea sur-

face temperature (SST). Section 5 presents the bias and 

skills of the relevant atmospheric fields, including 2-m air 
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temperature (T2M) and precipitation. Section 6 examines 

the prognostic sea ice cover. Conclusions are presented in 

Sect. 7.

2  Overview of the GEOS-5 seasonal forecast 

system: model components

The GEOS-5 AOGCM has been developed to simulate 

climate variability on a wide range of time scales, from 

synoptic time scales to multi-century climate change, and 

has been tested in coupled simulations and in data assimi-

lation mode. The ocean and atmosphere exchange fluxes 

of momentum, heat and freshwater through a “skin layer” 

interface which includes parameterization of the diurnal 

cycle and a sea ice model. All components are coupled 

together using the Earth System Modeling Framework 

(ESMF, Hill et al. 2004). The goal in having a multi-scale 

modeling system with its different components commu-

nicating through a unified interface (ESMF) is to be able 

to propagate improvements made to a physical process in 

one component to the other components smoothly and effi-

ciently. The GEOS-5 AOGCM was configured to partici-

pate in the Coupled Model Intercomparison Project phase 

5 (CMIP5), which provides a standard protocol for evalu-

ation of coupled GCMs. To evaluate the model’s ability to 

simulate the Earth’s climate, it was validated against obser-

vational data and reanalysis products.

2.1  Atmospheric component

The atmospheric component of the GEOS-5 AOGCM is 

Fortuna-2.5, the same that was used for the Modern-Era 

Retrospective Analysis for Research and Applications 

(MERRA; Rienecker et al. 2011), but with adjusted param-

eterization of moist processes and turbulence (Molod et al. 

2012). The model has a finite volume dynamical core (Lin 

2004), which is integrated with various physical packages 

through the ESMF.

The physics package includes parameterization of moist 

processes, radiation, turbulent mixing and surface fluxes. 

The moist component contains parameterization of convec-

tion using the Relaxed Arakawa-Schubert scheme (Moor-

thi and Suarez 1992), and the large-scale precipitation and 

cloud cover model as described in Bacmeister et al. (2006). 

The radiation component includes parameterization for long 

wave (Chou 1990, 1992) and short wave radiation processes 

(Chou et al. 1994). The turbulence component consists of 

parameterization for vertical diffusivity, the planetary 

boundary layer and gravity wave drag. The free atmospheric 

turbulent diffusivities are based on the gradient Richardson 

number. The parameterization of the boundary layer is based 

on Lock et al. (2000) scheme, acting together with scheme 

of Louis and Geleyn (1982). The Lock et al. (2000) scheme 

includes a representation of non-local mixing (driven by 

both surface fluxes and cloud-top processes) in unstable 

layers, either coupled to or decoupled from the surface, 

and an explicit entrainment parameterization. The original 

scheme was extended in GEOS-5 to include moist heating 

and entrainment in the unstable surface parcel calculations. 

GEOS-5 incorporates two gravity wave drag parameteriza-

tions, an orographic gravity wave drag formulation based 

on McFarlane (1987), and a formulation for non-orographic 

waves based on Garcia and Boville (1994). The surface 

exchange of heat, moisture and momentum between the 

atmosphere and land, ocean or sea ice surfaces are treated 

with a bulk exchange formulation based on Monin–Obukhov 

similarity theory.

The atmospheric model uses a Cartesian grid with a 

1° × 1.25° horizontal resolution and 72 hybrid vertical lev-

els with the upper most level at 0.01 hPa.

2.2  Ocean component

The ocean component of the GEOS-5 AOGCM is the Mod-

ular Ocean Model version 4 (MOM4) developed at Geo-

physical Fluid Dynamics Laboratory (Griffies 2012). It is 

a non-Boussinesq, hydrostatic, primitive equations model 

with a staggered Arakawa B-grid or C-grid and general-

ized level (vertical) coordinate based on depth or pressure. 

A tripolar grid is used to resolve the Arctic Ocean without 

polar filtering (Murray 1996). The nominal resolution of the 

ocean grid is ½°, with a meridional equatorial refinement to 

¼°. It is a regular Cartesian grid south of 65°N, and curvi-

linear north of 65°N, with two poles located on land to elim-

inate the problem of vanishing cell area at the geographic 

North Pole. The resulting tripolar grid has a minimum and 

maximum resolution of 15 and 52 km, respectively. The 

ocean topography is derived from the ETOPO5 data set 

(Smith and Sandwell 1997). The topography is represented 

as a partial bottom step to better simulate topographically 

influenced advective and wave processes. Vertical mixing 

follows non-local K-profile parameterization of Large et al. 

(1994) and includes parameterizations of tidal mixing on 

continental shelves (Lee et al. 2006) as well as breaking 

internal gravity waves (Simmons et al. 2004). Mesoscale 

eddy transport uses the method developed by Ferrari et al. 

(2010), modifying the isoneutral method developed by 

Gent and McWilliams (1990). The restratification effect 

of submesoscale eddies uses the theory developed by Fox-

Kemper et al. (2008) and implementation by Fox-Kemper 

et al. (2011). The horizontal viscosity uses the anisotropic 

scheme of Large et al. (2001) for better representation of 

equatorial currents. The exchange with marginal sea is 

parameterized under coarse resolution as discussed in Grif-

fies et al. (2004).
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2.3  Sea ice component

The sea ice component of the GEOS-5 AOGCM is the 

Community Ice CodE, version 4 (CICE; Bailey et al. 2010; 

Hunke 2008) developed at Los Alamos National Labora-

tory. The model includes several interacting components to 

allow for semi-implicit coupling between the atmosphere 

and ice surface: a thermodynamic model that computes 

local growth rates of snow and ice due to vertical conduc-

tive, radiative and turbulent fluxes, along with snowfall; a 

model of ice dynamics, which predicts the velocity field of 

the ice pack based on a model of the material strength of the 

ice; a transport model that describes advection of the area 

concentration, ice volumes and other state variables; and a 

ridging parameterization that transfers ice among thickness 

categories based on energetic balances and rates of strain. 

A skin layer interface is used for the exchange of basal heat, 

salt, and freshwater fluxes with the underlying MOM4 ocean 

model; ice pressure is not exerted on the ocean. The CICE 

model is configured with standard settings but without the 

use of melt ponds.

2.4  Land component

The land surface model in the GEOS-5 AOGCM is a catch-

ment-based hydrological model described in Koster et al. 

(2000). In this model, subgrid heterogeneity in surface mois-

ture state is treated statistically. The applied subgrid scale 

distributions are related to the topography, which exerts 

a major control over much of the subgrid variability. The 

catchment model is coupled to the multi-layer snow model 

described in Stieglitz et al. (2001).

3  Overview of the GEOS-5 seasonal forecast 

system: initial state generation

3.1  Atmosphere initialization

In the coupled model initialization, selected atmospheric 

variables are constrained with the Modern-Era Retrospec-

tive Analysis for Research and Application (MERRA; 

Rienecker et al. 2011). These variables include surface 

pressure, pressure thickness, zonal and meridional winds, 

specific humidity, ozone concentration, and potential 

temperature.

3.2  Ocean and sea-ice initialization

The Goddard Earth Observing System integrated Ocean 

Data Assimilation System (GEOS-iODAS) is used for both 

ocean state and sea ice initialization for the production of 

analysis products (MERRA-Ocean). The ocean and sea-ice 

initialization methodology is described in detail in Vernieres 

et al. (2012). An overview of the initialization procedure 

relevant to the hindcasts is presented here.

The assimilated observing system consists of:

• sea surface temperature observations from CMIP5 (Hur-

rell et al. 2008) prior to 1982 and Reynolds et al. (2007) 

from 1982 to present;

• temperature and salinity profiles from eXpendable Bath-

ythermographs (XBTs) and Conductivity Temperature 

Depth (CTD) sensors extracted from the EN3 data base 

(Ingleby and Huddleston 2007) with time-varying XBT 

corrections applied according to Levitus et al. (2009), the 

tropical moored buoy array (McPhaden et al. 2010)—

TAO/TRITON, PIRATA, and RAMA arrays and Argo 

floats, with profiles from the Argo Global Data Assembly 

Center (GDAC);

• sea ice concentration from the National Snow and Ice 

Data Center (NSIDC).

The NSIDC sea-ice concentrations product is based on 

passive microwave observations of ice concentration from 

the Nimbus-7 Scanning Multi-channel Microwave Radiom-

eter (SMMR) and the Defense Meteorological Satellite Pro-

gram (DMSP) Special Scanning Microwave Imager (SSM/I) 

and Special Scanning Microwave Imager/Sounder (SSMIS). 

It has a 25 km spatial resolution for both the north and south 

polar regions. Temporal resolution is every other day from 

October 1978 to July 1987 (SMMR), then daily from August 

1987 to present (SSM/I, SSMIS). Ice concentrations from 

CMIP5 and Reynolds are used in areas that are not measured 

due to orbit inclination (poleward of 87.2° for SSM/I and 

84.5° for SMMR).

The above observations are assimilated using an ensem-

ble optimal interpolation technique (Oke et al. 2010; Wan 

et al. 2010) with 5-day window from 1979 to present. The 

model is also weakly constrained to the World Ocean Atlas 

2009 (WOA09) gridded climatology (Antonov et al. 2010; 

Locarnini et al. 2010) of T(z) and S(z) at 1° resolution and 

from 0 to 4500 m and of Sea surface salinity (SSS) to cor-

rect some of the model’s biases, particularly prior to the 

Argo era.

The resulting analysis (MERRA-Ocean) has been exten-

sively diagnosed through The Ocean Reanalyses Intercom-

parison Project (Balmaseda et al. 2015) in terms of various 

parameters such as mixed-layer depth, thermocline depth, 

heat and salinity content, overturning circulation, etc.

3.3  Land

An important aspect of the GEOS-5 initialization con-

cerns the treatment of the land. Observed precipitation 

data are used to construct a corrected version of the hourly 
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MERRA (or GEOS-5 forward processing) precipitation 

fields, which are then used to force the land surface and 

generate enhanced soil moisture initial conditions for ini-

tializing the GEOS-5 seasonal forecasts. The corrections to 

the precipitation are obtained using the Global Precipita-

tion Climatology Project version 2.1 (GPCPv2.1, provided 

by the NASA/Goddard Space Flight Center’s Laboratory 

for Atmospheres, which develops and computes the data-

set as a contribution to the GEWEX Global Precipitation 

Climatology Project) and Climate Prediction Center (CPC) 

Merged Analysis of Precipitation (CMAP, provided by the 

NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from 

their web site at http://www.esrl.noaa.gov/psd/) pentad 

precipitation data following Reichle et al. (2011). As the 

first step, the CMAP dataset is rescaled to match the (sea-

sonally variable) long-term climatology of the GPCP. Dur-

ing the second step, hourly MERRA total precipitation is 

time averaged and re-gridded to the scale of the correcting 

CMAP dataset (i.e., to pentad and 2.5° resolution). Next, 

separately for each pentad of each year and for each 2.5° 

grid cell, a scaling factor is computed by determining the 

ratio of the (climatologically adjusted) CMAP estimate to 

the MERRA data (i.e., on the grid and at the time scale of 

the correcting observations). Finally, these scaling factors 

are re-gridded back to the MERRA grid and a scaling factor 

derived for a given grid cell and year/pentad is applied to 

the MERRA precipitation rates (large-scale precipitation, 

convective precipitation, and snowfall separately) in each 

of the 120 h time steps within that pentad. By construction, 

the corrected MERRA precipitation is nearly identical to 

the CMAP estimates at the pentad and 2.5° resolution. The 

diurnal cycle, the frequency and relative intensity of rainfall 

events at the sub-pentad scale, and the sub-2.5° spatial vari-

ations are entirely based on MERRA estimates.

3.4  Sampling in time

Each month, the GMAO produces an ensemble of 12 (13 

in November) real-time GEOS-5 coupled model forecasts. 

The ensemble is produced by initializing the model every 

5 days (Table 1) prior to the start of the month, except for 

the date closest to the start of the month when additional 

GEOS-5 forecasts are generated by various perturbation 

methods (Tables 2, 3). The perturbations are produced 

using a breeding approach (perturbing the atmosphere 

and/or ocean), and a simple scaled differencing approach 

Table 1  Seasonal forecast schedule

Jan Feb Mar Apr May Jun

12 12 1 11 2 10 3 12 4 11 5 11

12 17 1 16 2 15 3 17 4 16 5 16

12 22 1 21 2 20 3 22 4 21 5 21

12 27 1 26 2 25 3 27 4 26 5 26

1 1 1 31 3 2 4 1 5 1 5 31

1 6 2 5 3 7 4 6 5 6 6 5

Jul Aug Sep Oct Nov Dec

6 10 7 10 8 9 9 8 10 8 11 12

6 15 7 15 8 14 9 13 10 13 11 17

6 20 7 20 8 19 9 18 10 18 11 22

6 25 7 25 8 24 9 23 10 23 11 27

6 30 7 30 8 29 9 28 10 28 12 2

7 5 8 4 9 3 10 3 11 2 12 7

11 7

Table 2  Ensemble members’ 

perturbation combinations
Initial conditions (IC) perturbations

Ensemble member 1 2 3 4 5 6 7

IC type

 Ocean O O B− O B+ O I− O I+ O O B+

 Atmosphere A A B− A B+ A I− A I+ A I− A

http://www.esrl.noaa.gov/psd/
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involving nearby (in time) atmosphere and ocean states. We 

note that due to time constraints only 11 ensemble mem-

bers are delivered to the North American Multi-Model 

Ensemble (NMME) project (forecasts are due by the 8th 

of the month).

In addition to the forecasts, the GMAO produced a suite 

of hindcasts (1982–2012) used to calibrate/bias correct the 

forecasts and assess forecast skill. The ensemble members 

for the hindcasts are produced in the same way as for the 

forecasts and span the period 1982–2012.

Table 1 shows the start dates for the ensemble members 

of the GMAO Seasonal forecasts and hindcasts. The bold 

shaded values denote the closest dates to the start of the 

month for which additional ensemble members are generated 

using various perturbation methods.

3.5  Perturbations

Ensembles of numerical forecasts based on perturbed ini-

tial conditions have long been used to improve estimates of 

both weather and climate forecasts. The GEOS-5 seasonal 

forecast is arranged so that it uses a set of 7 members for 

the forecast initialized on the day closest to the beginning 

of the month, and one member otherwise for a combined 

ensemble of 11 members. Initial perturbation method, that 

adds small perturbation to analysis initial conditions, is 

used to generate the ensemble forecast. Since one goal 

has been the use of the ensemble spread as an indicator 

of expected forecast skill, bred vectors (Toth and Kalnay 

1993) have been used as perturbations to capture the fast-

est growing modes on weather time scales. More recently, 

the coupled breeding method was developed for coupled 

atmosphere ocean systems to capture the dominant mode 

of coupled instabilities associated with the El Niño/South-

ern Oscillation (ENSO) (Cai et al. 2003; Yang et al. 2006, 

2008; Ham et al. 2012).

The breeding is applied from 1980 with the aim of 

capturing the fastest-growing errors in the seasonal fore-

casts. Two-sided breeding is applied, which means posi-

tive and negative bred runs are restarted every month by 

adding and subtracting the bred vector to the initial condi-

tions generated from the Ensemble Optimal Interpolation 

(EnOI) option of the GEOS ocean data assimilation system, 

forced with NASA’s Modern-Era Retrospective analysis 

for Research and Applications (MERRA) (Rienecker et al. 

2011).

The rescaling interval chosen for the breeding is 30 

days. The rescaling norm is the RMS difference of the 

instantaneous sea surface temperatures (SSTs) from the 

positive and negative bred runs; the region for defining the 

norm is the tropical Pacific domain over 120°E–90°W, and 

10°S–10°N. At every re-initialization during the breeding 

cycle, perturbations are re-scaled so that the magnitude 

of the norm is reduced to 10% of the natural variability of 

SST over the norm region (i.e. 0.48° C). Another method 

to perturb initial conditions is based on the GEOS-5 analy-

sis on two different days. Similar to breeding, the pertur-

bations are re-scaled and the magnitude of the norm is 

reduced to 10% of the natural variability of SST over the 

norm region (i.e. 0.48° C). A combination of these two 

methods is used in generating the ensemble members for 

the seasonal forecast.

Tables 2, 3 and 4 illustrate the perturbations of the initial 

conditions for all ensemble members generated at the begin-

ning of the month that are submitted to NMME. Additional 

ensemble members utilize satellite altimetry data, which do 

not cover the full NMME hindcast period.

Table 3  Format of IC perturbations

Ensemble member Perturbation type

1 Ocean and atmosphere IC are not perturbed

2 Ocean and atmosphere IC are perturbed using 

negative bred vectors

3 Ocean and atmosphere IC are perturbed using 

positive bred vectors

4 Ocean and atmosphere IC are perturbed using 

negative rescaled difference between two 

analyses

5 Ocean and atmosphere IC are perturbed using 

positive rescaled difference between two 

analyses

6 Atmosphere IC are perturbed using negative 

rescaled difference between two analyses

7 Ocean IC are perturbed using positive bred 

vectors

Table 4  List of perturbed variables

Perturbed variables

Ocean model grid Temperature and salinity

Ocean velocities

Surface temperature, salinity and velocities

Sea level and frazil

Ice velocity and strain rate components

Ice strength, extent and stress tensor 

components

Atmosphere model grid Wind components

Potential temperature

Surface pressure

Specific humidity

Skin layer tiles Skin temperature, salinity and depth
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4  Forecast skill: SST

The forecast accuracy of the coupled model forecasts is 

assessed by the amplitude and phase of SST anomaly meas-

ured for specified regions and by the global patterns of SST. 

The forecast accuracy of the atmosphere-land forecasts will 

be assessed by the patterns and amplitude of the precipita-

tion and surface temperature anomalies. For the arctic sea 

ice forecasts evaluation, the sea ice extent is compared with 

observations and against other similar systems participating 

in the Ice Outlook project.

Figure 1 depicts the regions that are used to compute the 

SST indices routinely used to assess the forecast skills. Other 

regions of interest, used for the case studies of the 2 m air 

temperature and precipitation, are also shown.

In the equatorial Pacific Ocean the easternmost Niño 

1 + 2 region boundaries are 0°–10°S, 90°W–80°W, 

the eastern Niño 3 region boundaries are 5°N–5°S, 

150°W–90°W, the central Niño 3.4 region boundaries 

are 5°N–5°S, 170°W–120°W and the western Niño 4 

region boundaries are 5°N–5°S, 160°E–150°W. In the 

Indian Ocean the Western Tropical Indian Ocean (WTIO) 

SST anomaly index is calculated in the box 50°E–70°E, 

10°S–10°N, the Southeastern Tropical Indian Ocean 

(SETIO) SST anomaly index is calculated in the 

box 90°E–110°E, 10°S–0°; the Dipole Mode Index (DMI) 

is calculated as the difference of the WTIO and SETIO 

indices (Saji et al. 1999). The Tropical Atlantic SST Index 

(TASI) is defined as the difference between the North 

Atlantic Tropical (NAT) and the South Atlantic Tropical 

(SAT) SST indices, computed in the boxes 40°W–20°W, 

5°N–20°N and 15°W–5°E, 20°S–5°S respectively (Chang 

et al. 1997).

4.1  Forecast drift

Forecast drift is an artifact of the imperfect models. For the 

seasonal forecast it is necessary to properly account for the 

drift and calibrate the forecast accordingly. A continuous 

coupled analysis and a complete set of retrospective fore-

casts for the entire training period are required to consist-

ently de-trend the forecast. In GEOS-5 system the drift is 

calculated as the average of these hindcasts from 1981 to 

2010 for every ensemble member. It is subsequently sub-

tracted from the production forecasts. This method of drift 

removal follows the convention established by Stockdale 

(1997) and others. The forecast bias characteristics are also 

important to understand for evaluating the performance of 

the current and the future seasonal-to-interannual forecast 

systems. Comparison of the retrospective forecasts to the 

observations is helpful in determining the model’s skill.

4.1.1  Global bias

Figure 2 shows the global forecast drift from Reynolds 

SST Climatology for December. Nine panels (top to 

bottom, left to right) correspond to initial conditions 1 

month prior to December, 2 months prior and so on, the 

last panel shows the forecast for December initialized in 

April. This is the average drift of all the ensemble mem-

bers. Immediately one can see from the first panel the 

cold bias appearing during the first month of the forecast 

in the northwestern Atlantic ocean where subpolar sur-

face water displaces the warm, salty water of the North 

Atlantic Current (Large and Danabasoglu 2006) and off 

the east coast of South America at the confluence of the 

Brazil current and the Antarctic Circumpolar Current 

exiting Drake Passage. Just as quickly the warm biases 

Fig. 1  Regions used in SST forecast skill assessment are shown by the colored, blue and green, annotated rectangles, Niño 3.4 region is 

hatched. The three regions shown by pink rectangles are used in the 2 m air temperature and precipitation evaluation
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develop in the coastal areas off the west coasts of South 

America and southern Africa and off the east coasts of 

Asia and North America. The biases described above are 

present in all the forecast regardless of the initialization 

time. The coupled model exhibits a cooling trend in the 

equatorial Pacific Ocean and in the Southern Ocean, but it 

takes about 4 to 5 months for the large scale SST biases in 

these regions to reach their maximum value of about 3 °C 

(see panels in the middle row of Fig. 2, the December 

forecasts initialized in August and July). There is a cold 

bias in the southeastern tropical part of every of the three 

major ocean basins (Indian, Pacific, Atlantic) developing 

over the same time period.

Figure 3 shows the model drift for the last (lead 9) target 

month for each remaining forecast. The top left panel on 

this figure would contain the lead 9 drift of the December 

forecast (initialized in April, shown on the bottom-right 

panel of the Fig. 2, thus omitted here). The order of pan-

els is schematically listed in its place: predicted (target) 

month first and next to it in parenthesis the initialization 

month. Thus the top row shows the model bias for winter 

(initialized in Apr–Jun), the second row shows the bias 

for spring (initialized in Jul–Sep), etc. The model clima-

tology is colder than Reynolds along the equator in the 

Pacific Ocean during all seasons, but especially so in the 

fall and winter (initialized in Jan–Mar). The southeastern 

tropical Pacific and southeastern tropical Atlantic cold 

biases are also present throughout the year, but more pro-

nounced in the boreal winter (Dec–Mar) season (initialized 

in Mar–Jul). In the Indian Ocean, the cold bias in the tropi-

cal southeastern part and along the equator and concurrent 

warm bias off the western Australia coast is present only 

during Dec–Mar (initialized in Apr–Jul).

The SST bias in the northern Pacific Ocean has the 

strongest seasonality: there is a dipole structure with 

warm mid latitudes and cold tropics in Jul–Sep (initial-

ized in Nov–Jan) with the differences between the model 

and observed climatologies as large as +3 and −2 °C. At 

the same time a similar pattern of warm mid latitudes/

cold tropics bias appears in the Atlantic ocean, but the 

Fig. 2  Monthly mean SST forecast drift with respect to Reynolds climatology for December for every forecast lead time, i.e. December forecast 

initialized at the beginning of December (lead 1), at the beginning of November (lead 2), up to the December forecast initialized in April (lead 9)
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magnitude of the bias is smaller, with warm bias about 

1 °C and cold about 2 °C.

4.1.2  ENSO, IDM and TASI SST indices

Figure 4 shows the mean ensemble bias for the Pacific Ocean 

Niño 3, Niño 4, Niño 3.4 and Niño 1 + 2 indices, WTIO, 

SETIO, IDM and TASI computed with respect to Reynolds 

SST. In the western and central equatorial Pacific Ocean 

(Niño 4, Niño 3.4) the model has an exaggerated seasonal 

cycle with a cold bias of up to 2 °C in the boreal fall and 

winter for all forecasts targeting this time period. The fastest 

drift away from the observations appears in the forecasts ini-

tialized in summer (July, August). The forecasts initialized 

in winter and early spring (Jan–Mar) tend to stay close to 

the observations until the onset of summer. In the eastern-

most Pacific Ocean (Niño 1 + 2 region) the model is biased 

warm up to 2 °C throughout the year with the exception of 

winter target months, when all forecasts return close to the 

observations. The Niño 3 region has the smallest bias and 

the most accurate seasonal cycle represented by the model. 

In the Indian Ocean the model in general is less biased: the 

Fig. 3  Lead 9 monthly mean Forecast SST forecast bias with respect 

to Reynolds climatology for Jan–Nov predicted months; the month 

when the forecast was initialized is shown in parenthesis; lead 9 

shown [the order of panels is shown in the place of Dec (Apr) pre-

dicted (initialized) month]
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warm bias is slightly larger in the east than in the west, thus 

the IDM (Indian Ocean dipole mode index) is slightly biased 

towards negative values during the summer and fall. The 

Tropical Atlantic SST Index (TASI)—the difference between 

the northern and the southern Atlantic ocean control regions 

(refer to Fig. 1 for their definition)—is negatively biased by 

approximately 1 °C throughout the year, underestimating 

the absolute value of the gradient between the north and the 

south index poles in the summer and fall, and overestimating 

it in the spring.

4.2  Forecast skill

Similarly to the forecast drift discussion, the SST global 

skill maps are presented first, followed by the analysis of the 

regional indices. Anomaly Correlation Coefficient (ACC) is 

used as a measure of potential skill and Mean Square Skill 

Score (MSSS) as a measure of actual skill. MSSS is com-

puted with respect to climatology, i.e. zero anomaly case, 

as follows,

here Tfcst(i) is the temperature anomaly of the ith hindcast 

and T
clim

(i) ≡ 0.

4.2.1  Global anomaly correlation skill

Figure 5 shows the global SST ACC computed for all fore-

cast from all initializations months combined, with each 

panel representing the leadmonths. Leadmonth 1 has high 

correlation (above 0.8) with Reynolds SST in all the ocean 

basins. By leadmonths 2 and 3, the high correlation remains 

only in the tropical Pacific and Atlantic oceans. The Atlan-

tic Ocean skill drops below 0.6 by leadmonth 6, but still 

remains high in the north Atlantic Iceland Basin region. 

Only in a portion of the Equatorial Pacific (Niño 3.4 region) 

ACC remains above 0.6 by leadmonth 9. From the signifi-

cance point of view, the skill across equatorial regions in 

all oceans and in the north Atlantic Iceland Basin region 

remains viable until the final months of the forecast.

4.2.2  Oceanic indices skill

Figures 6 and 7 show the Hovmöller diagrams of SST ACC 

and MSSS vs. the forecast initialization month for various 

SST indices. These illustrate the seasonal variability of the 

forecast skill. The drift period computed for the anomalies 

is 1993–2010 and the period used for the skill computa-

tion is 1993–2014. This period overlaps with the ensemble 

MSSSclim =
MSEclim − MSEfcst

MSEclim

, where MSE
fcst

[clim]

=
1

n

n�
i=1

⎛
⎜⎜⎜⎝
T

fcst

[clim]

(i) − Tobs(i)
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2

Fig. 4  Monthly mean SST forecast drift with respect to Reynolds for 

equatorial Pacific, Indian and Atlantic Ocean indices. The forecasts 

are color-coded by their initialization month
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members that use the altimeter data. For the ACC, a Pearson 

correlation significance test with p-value at 0.01 is applied.

Top left panels in Fig.  6 show ACC of the western 

(Niño 4) the eastern (Niño 3) equatorial Pacific indices. 

Overall, albeit significant, the ACC is lower in the Niño 4 

region for most of the spring and especially summer start 

months. In the Niño 3 region the ACC is very high (>0.8) 

for Jun–Sep start months, which coincides with the ampli-

tude growth phase of El Niño/La Niña. In the Niño 4 region 

the highest ACC is attained during the late fall and winter 

forecasts, i.e. when an El Niño/La Niña is at its peak and 

begins to wind down. In the central Pacific Ocean (Niño 

3.4 region, top row second from the right panel in Fig. 6), 

the anomaly correlation skill is robustly high (>0.7) for 

February to September start months throughout the 9 

month forecast. ACC drops sharply beyond May in Niño 3 

and Niño 3.4 regions for most forecast started in Septem-

ber–January, which is an indication of the spring predict-

ability barrier. In the Niño 4 region the spring barrier is 

not as pronounced, with the significant anomaly correlation 

skill retained through June for all forecasts initialized in 

late autumn and winter months (Oct–Feb). The relatively 

abrupt drop in ACC for forecasts starting in Jun–Aug may 

be related to the rapid model drift during the first lead 

months for these forecasts. In the Niño 1 + 2 region (top 

right most panel in Fig. 6), ACC spring predictability bar-

rier occurs earlier than in the equatorial regions, in March, 

with the skill dropping below significance level after two 

months in January and December, and 3 months in Novem-

ber forecast. The best seasons in forecasting this area are 

late spring and early summer.

SST forecast skill in the Indian Ocean is characterized 

by the presence of its own predictability barrier. This drop 

in the prediction skill occurs at the onset of the boreal sum-

mer monsoon and is found at both IDM poles (Waisowicz 

2007). ACC skill is high beyond the first month only for the 

WTIO forecasts initialized in Jan–Feb and SETIO forecasts 

initialized in Jul–Aug. In the SETIO ACC there is a second 

Fig. 5  Global monthly SST ACC for all forecast initial months combined together; Reynolds monthly SST is used as observations; nine lead 

months are shown top-to-bottom, left-to-right. Pearson correlation significance test is applied with p-value at 0.01 (Pearson 1896)
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Fig. 6  SST ACC for all ocean regions. The Pearson correlation significance test with p-value at 0.01 is applied. Forecast start months are along 

the y-axis and lead months are along the x-axis

Fig. 7  SST MSSS for all ocean regions. Forecast start months are along the y-axis and forecast lead months are along the x-axis



7347GEOS-5 seasonal forecast system  

1 3

predictability barrier is December, but the skill apparently 

returns later for the forecasts starting in Jul–Sep (left bot-

tom panels in Fig. 6). The IDM index defined as the differ-

ence between WTIO and SETIO indices. Forecasting the 

relative variability of the two regions in each of which the 

skill is not very robust proves to be a difficult task, although 

some significant skill beyond the first month is observed in 

the forecasts initialized in May–Nov. Here the December 

predictability barrier hinted at by the SETIO ACC values 

is strongly evident.

The TASI SST anomaly index is an indicator of the 

meridional surface temperature gradient in the tropical 

Atlantic Ocean. It was defined by Chang et al. (1997), where 

it was associated with a potential decadal ‘dipole’ mode of 

coupled variability in the tropical Atlantic. The GEOS-5 

ability to predict the TASI values is robust but short lived: 

for all initialization months except Aug–Oct (and Feb–Mar), 

the ACC drops below the significance level after 2–3 months 

(bottom right panel in Fig. 6). The higher skill for these fore-

casts may be associated with the strength of the TASI signal: 

the amplitude of the index is peaking during these phases 

of the seasonal cycle (see the bottom right panel of Fig. 4).

MSSS is a characteristic of how well the anomaly ampli-

tude is forecasted. Even when correlation skill is high, the 

systematic over/under-prediction of the anomaly would lead 

to a lower MSSS. In equatorial Pacific Ocean indices MSSS 

becomes negative across the spring barrier. In the Niño 4 

region this can be related to an overextension of the warm 

pool to the west, and thus a consistent overestimation of 

the warm SST anomalies. Figure 1 of the Online Resource, 

showing the historic performance of the GEOS-5 Niño 4 

index, illustrates this point: the El Niño amplitude was over-

estimated in 1982/83, 1991/92, 1997/98, 2002/03, 2006/07 

and 2015/16 cases. Additionally, and this is evident in all 

three equatorial indices, the system tends to falsely predict 

a warming trend (as opposed to the neutral condition in real-

ity) for the following spring/summer for forecasts starting 

in boreal winter. This contributes to the drop in anomaly 

correlation skill (spring barrier) and the low amplitude skill.

For the Indian Ocean, while ACC/MSSS skills for the 

Western and Southeastern indices appear to be significant/

positive for most of the forecasts, both skills for the IDM 

index are low except for the May–November starts, and even 

for these, the predictable lead time is 2–5 months. This is 

comparable to other dynamic models (Shi et al. 2012). The 

Tropical Atlantic Ocean index skill shows forecast outper-

forming climatology in terms of error absolute value, as well 

as anomaly correlation, for the short term predictions (2–4 

months).

4.2.3  Case study: major El Niño event of 15/16

Figure  8 shows spaghetti plots of the ensemble mean 

forecasts for each start month for 2015–2016 (in color). 

Observations from Reynolds SST are shown by a solid 

black line, ocean analysis is shown by a dashed black line. 

The color scale represents the ratio between the forecast 

absolute departure from the observations and the stand-

ard deviation of the ensemble at that particular lead time. 

High values of this measure may be indicative of ensem-

ble under dispersion. The 2015/2016 El Niño was con-

sidered a Central Pacific event so of all the indices, the 

Niño 4 index in the Western Pacific exhibited the smallest 

observed anomaly compared to other Pacific Ocean indices 

and Niño 3.4 had the highest observed anomaly. GEOS-5 

overpredicted the magnitude of the SST anomaly at the 

peak of the El Niño in the western central Pacific (Niño 4 

index) by as much as 1.5 °C. The timing was also missed 

by summer and fall (Jun–Nov, 2015) forecasts, they all 

showed the maximum in January 2016, while it occurred 

in Nov 2015. So great was the forecasts departure from the 

observations, that the latter barely fit within the ensem-

ble envelope in October, 2015 through January, 2016, the 

ensemble mean being as far from the observations as 4 

standard deviations of the ensemble. The maximum of 

the cooling phase was also overpredicted by more than 

1 °C, and the timing was too early: the winter and spring 

(Jan–Jun, 2016) forecasts showed the lowest temperature 

in August 2016, while in reality, the cooling gradually 

took place over the course of 2016.

GEOS-5 accurately predicted surface warming in the 

Niño 3 region as early as March 2015. The following fore-

casts, starting in boreal summer (Jun–Aug, 2015), showed 

the warming being too early by about 2 months, however the 

timing of the peak SST anomaly in November 2015–January 

2016 was predicted well by all spring and summer forecasts 

except August 2015, which showed the peak in February 

2016. This was also the warmest of all the predictions; the 

rest of the forecasts were within 0.5 °C of observations, 

which corresponds to roughly one standard deviation of 

the ensemble. The amplitude of the cooling following the 

El Niño peak in this region was overpredicted by the fore-

casts initialized in April and May 2016 (they called for a 

moderate La Niña), while the rest of the forecasts, earlier 

(Jan–Mar, 2016) and later (June, 2016 onwards) predicted 

neutral conditions.

Note the peak of the 2015/2016 El Niño event that 

occurred in the NDJ season for the equatorial indices. The 

GEOS-5 model predicted the correct timing and magnitude 

of this peak for the Niño 3.4 index starting in February 

2015. This index is the one most widely used for ENSO 

forecasting, thus intercomparison between various models 

is readily available. GEOS-5 model performs similarly to 
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most other models involved in NMME, although more often 

than not, it tends to have stronger ENSO events than other 

models.

The Niño 1 + 2 region reached its peak anomaly in July 

2015. The GMAO model predicted the timing of this event 

starting in March but underestimated the magnitude by 

0.5 °C. The June forecast was very close to the observations 

in timing and magnitude. In all regions, the forecast of the 

cooling phase of the ENSO starting in May, 2016 was exag-

gerated for all four indices. By July, 2016, start time, the 

equatorial indices forecasts picked up the transition to the 

neutral conditions.

Figure 9 shows the evolution of the SST and the next fig-

ure (Fig. 10) shows the equatorial subsurface temperature 

during the onset of the 2015/2016 El Niño. The overexten-

sion of the warm water anomaly to the west of the date line 

clearly shows the forecast difficulty in the Niño 4 region. 

It is consistent with lower skills in this area, as noted in 

Ham et al. (2014b). The GEOS-5 system exhibited simi-

lar behavior during the previous ENSO events (1997/98 

El Niño and 1982/83 El Niño, see Online Resource 1–6 

illustrating the historic SST indices values in the GEOS-5 

forecasts).

5  Forecast bias and skill: T2M and precipitation

Similarly to the SST, but for temperature at 2 m (T2M) and 

precipitation, we first present the global forecast bias maps 

and then discuss the regional skills and case studies of two 

extreme events.

5.1  Global bias

The bias shown in Figs. 11 and 12 is the systematic depar-

ture in predicted and observed climatology during the 

30 year (1982–2011) period. For both T2M and precipi-

tation, MERRA-2 (Bosilovich et al. 2016; Molod et al. 

2015) data was used as the observational validation refer-

ence. The first lead month and the third lead month bias 

Fig. 8  Niño 4, Niño 3, Niño 3.4 and Niño 1 + 2 monthly mean SST 

forecasts; the solid color lines show the ensemble mean, the black 

line is observations (Reynolds SST), the dashed black line is the 

ocean analysis from which the initial conditions for the forecasts were 

generated. The color scale represents the ratio between the forecast 

absolute departure from the observations and the standard deviation 

of the ensemble at that particular lead time
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Fig. 9  Evolution of the equatorial Pacific Ocean SST during the onset of the 2015–2016 El Niño. Left panel is the monthly mean forecast SST 

from May 2015 initial conditions. Right panel is the concurrent MERRA ocean analysis
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Fig. 10  Evolution of the subsurface equatorial Pacific Ocean temperature during the onset of the 2015–2016 El Niño. Left panel is the forecast 

monthly mean T from May 2015 initial conditions. Right panel is the concurrent MERRA-ocean analysis
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for winter and summer are showed. The largest bias for 

T2M is over the winter Arctic Ocean and it increases with 

lead time. GEOS-5 underestimates the sea ice temperature 

in winter. For the northern hemisphere summer, GEOS-5 

tends to overestimate T2M over land, especially in Asia and 

the west coast of North America. Overall the bias for T2M 

remains small over the tropical oceans in all seasons over 

the full length of the forecast. The bias for precipitation 

varies slightly with lead time for both winter and summer. 

Larger bias is found in the summer than in the winter over 

land in the northern hemisphere. This is possibly due to the 

fact that summer precipitation over land is more likely to 

be affected by regional and local factors, thus uncertainty in 

model parameterization as vegetation cover, cloud physics 

etc. could play larger roles in the precipitation bias.

5.2  Forecast skill

Seasonal skills of T2M (Fig. 13) and precipitation (Fig. 14) 

are calculated as anomaly correlations between GEOS-5 

forecast and observations. GEOS-5 performs well for T2M 

for the first lead month for all seasons, especially over the 

tropical oceans. Although the T2M skills over the tropical 

oceans remains high even after 6 months, the skills over 

land diminish quickly after the first lead month. Precipita-

tion skills are generally lower than those of T2M, and there 

is hardly any skill after the first month for the extratropics. 

However, over the East Pacific Ocean, where ENSO has a 

dominant influence on precipitation, the anomaly correlation 

remains high until the sixth lead month.

5.2.1  Regional average skills and case studies

For the discussion in this section we consider special 

regions of particular socio-economic interest: the Amazon 

basin bounded by 80°W–50°W, 20°S–10°N, the Great Plain 

between 30°N–50°N, 110°W–100°W and Southern India 

between 10°N–15°N, 77°E–80°E. These areas are shown 

by pink rectangles in Fig. 1 and labeled Amazon, GP and 

SI respectively.

A closer look (Fig. 15, top row) at the broad region 

encompassing the Amazon River basin reveals a good 

Fig. 11  An example of 2 m air temperature seasonal forecast bias for 1 and 3 months lead times. Winter and summer observed and predicted 

fields are shown in the two top rows. The bottom row shows the differences between the model and the observations
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overall skill in terms of anomaly correlation for both T2M 

and precipitation throughout the seasonal forecast. For the 

initialization months Jan–May, it stays above 0.4 up to lead-

month 9 and for Jun–Jul it starts above 0.6 for the first month 

and drops below 0.4 only after month 6.

Seasonal forecasts serve as an important prediction tool 

for extreme events. At the current stage, there are uncer-

tainties and difficulties in seasonal forecasts to accurately 

capture certain events. However, it is intriguing to see how 

GOES-5 performs in various extreme events. Two exam-

ples of such extreme events will be discussed next: drought 

over the Great Plains in 2012 and flood over the southern 

India coast in 2015. Figure 15 (middle and bottom panels) 

shows the T2M and precipitation anomaly correlation skill 

in these regions. One can see that there is little correlation 

between the observations and the predicted precipitation, 

yet the strong signal during the extreme events may give an 

opportunity for the forecast to capture its characteristics.

In the scatter plots in Fig. 16, one to four month lead 

forecasts of T2M and precipitation are plotted against 

the observations for the two events. The anomalies are 

standardized using the corresponding standard deviation. 

In the case of the Great Plain drought, GEOS-5 underesti-

mates the deficit in both temperature and precipitation for 

all lead months. The underestimations are most obvious 

in the spring initialized forecasts and gradually decrease 

closer to summer. By May and June, GEOS-5 clearly pre-

dicts hotter and drier conditions for that summer, although 

the magnitude of the drought is less than in observations. 

The Great Plain is a region where the local water cycle is 

sensitive to the land surface representations and therefore 

is sensitive to land initializations. This characteristic of the 

region is also presented in this scatter plot. For the case 

of the southern India flood, GEOS-5 shows a much larger 

model spread for every initialization month. However, the 

large model spread highlights the low predictability of 

the seasonal forecast. The southern India flood is highly 

related to the location and strength of the Indian winter 

monsoon. The winter monsoon predictability therefore 

highly restrains the performance of the GEOS-5 seasonal 

forecast for floods.

Fig. 12  An example of precipitation seasonal forecast bias for 1 and 3 months lead times. Winter and summer observed and predicted field are 

shown in the two top rows. The bottom row shows the differences between the model and the observations
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6  Sea ice outlook

Seasonal forecasting systems focus on the ability of cou-

pled atmosphere/ocean models to predict variability in the 

tropical Pacific Ocean and it’s associated higher latitude 

teleconnections (Kirtman et al. 2014). For middle and high 

latitudes, predictability derived from local oceanic sources 

has been thought to be limited (e.g., Barsugli and Battisti 

1998). But Arctic sea-ice cover has a decorrelation time 

scale of up to 5 months (Blanchard-Wrigglesworth et al. 

2011). Moreover, model experiments have indicated sea-

ice predictability on seasonal time scales and longer, with 

indications of signal re-emergence beyond 1 year (Holland 

et al. 2010; Tietsche et al. 2014; Guemas et al. 2016). The 

prospect of a predictability reservoir has received consider-

able interest (Richter-Mengeet al. 2012; Stroeve et al. 2014; 

Hamilton and Stroeve 2016). Potentially, seasonal forecasts 

of sea ice have utility for a variety of human endeavors 

including commerce, mineral exploration, and indigenous 

activities (Stroeve et al. 2015). Arctic sea-ice extent is 

also considered a climate variable. Mechanisms control-

ling its variability and trend are the subject of extensive 

observational and modeling studies (e.g., Perovich and 

Richter-Menge 2009; Vaughan et al. 2013). The presence of 

floating ice on the ocean radically alters surface properties; 

it has immediate influence on the exchange of energy and 

moisture between the ocean and the overlying atmosphere. 

Model experiments have demonstrated the impact of ice 

cover on regional Arctic climate, including air temperature 

and precipitation (Deser et al. 2010; Alexander et al. 2004), 

and studies have also suggested an influence on large-scale 

conditions extending beyond the immediate Arctic Basin 

(Thomas et al. 2014). In 2008, a challenge was formulated 

for comparing and evaluating experimental seasonal pre-

dictions of the September Arctic sea-ice extent (ARCUS 

2008), which became known as the Sea Ice Outlook. Many 

of the seasonal forecasting systems involved with NMME 

have participated, including the GMAO. Results have been 

mixed. Assessments have shown that predictions have 

reduced skill in years where the observed ice cover departs 

significantly from the long-term trend (Hamilton and Stro-

eve 2016). Subsequent evaluation of models participat-

ing in the Sea Ice Outlook has shown that forecasts have 

difficulty surpassing the skill of damped persistence, and 

difficulty predicting each other (Blanchard-Wrigglesworth 

et al. 2015).

Forecasts submitted to the Sea Ice Outlook were com-

posed of the ensemble members initialized at every 5 days 

Fig. 13  Monthly mean 2 m air temperature anomaly correlation for seasonal forecast and observations (MERRA-2)
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of the prior month, along with ten members initialized at 

the beginning of the month. Unlike the ENSO forecasts and 

the ensemble members submitted to NMME, the sea ice 

forecasts made use of three experimental members, which 

were produced in hindcast mode beginning in 1993. These 

experimental members featured the inclusion of altimeter 

data, which was obtained from the Archiving, Validation 

and Interpretation of Satellite Oceanographic data project 

(AVISO; http://www.aviso.altimetry.fr/) and used in the 

ocean assimilation.

As shown in Fig. 17, the GMAO system has performed 

well in comparison to other models over the period in 

which it has participated in the Sea Ice Outlook. For 

the previous three Outlooks, the average extent error is 

0.32 ± 0.22 × 106  km2 for the GMAO system as compared 

to 0.57 ± 0.42 × 106  km2 for the average of all dynamical 

predictions. The uncertainty denotes the standard devia-

tion of the forecast errors. Figure 18 also indicates that 

the spatial patterns for the September 2014 forecast were 

similar to the observed pattern. Over the hindcast period 

of 1998 to 2015, the June forecast explains 49 percent of 

the observed September ice extent variance, which may 

be considered of marginal skill. But this belies several 

critical issues with the forecast system, which are largely 

associated with initial conditions. As previously noted, 

the MERRA atmospheric reanalysis is used in the ocean 

assimilation. Cullather and Bosilovich (2012) found near-

surface air temperatures in MERRA are as much as 10 °C 

too warm in the late Arctic spring, owing to an errone-

ously low, fixed sea-ice albedo used in the uncoupled 

atmospheric reanalysis. The surface temperature bias and 

its effects on the GEOS-iODAS oceanic temperatures led 

to an anomalous reduction in forecast ice cover initial-

ized during early summer months. Figure 20 indicates the 

increase in forecast error in summer months, such that fore-

cast skill actually becomes reduced with decreasing lead 

time. This inhibits contributions to the Sea Ice Outlook for 

one- and two-month lead times to the September Arctic 

ice minimum. The June Outlook contributions are based 

on the prior month’s initialization. Analysis of hindcasts 

also finds low ice cover for spring forecasts initialized dur-

ing the first ODAS data stream covering the period until 

1993, as shown in Fig. 19. Low ice volume associated with 

this stream and the interaction with the erroneously warm 

atmospheric forcing in the analysis results in poor ice fore-

casts over the time period. Hindcast skill improves in the 

later GEOS-iODAS stream and with the introduction of 

altimetry-based forecast ensemble members after 1993; as 

Fig. 14  Monthly mean precipitation anomaly correlation for seasonal forecast and observations (MERRA-2)

http://www.aviso.altimetry.fr/
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seen in Fig. 19, variability in the ensemble mean forecast is 

comparable to observed values after 1998. The period from 

1998 to the present is used for a simple bias correction 

in the forecast to account for differences with the NSIDC 

Sea Ice Outlook. This is a common practice among Sea 

Ice Outlook participants. Over the full period, forecast ice 

cover for the Southern Ocean is patchy and not comparable 

to observation.

The lessons learned from this initial seasonal forecast-

ing system exercise are useful in the construction of new 

forecast systems. First, the contrast in the competitiveness 

of the system shown in Figs. 17 and 18 with the difficulties 

indicated in Figs. 19 and 20 suggest the continued exper-

imental nature of sea-ice forecasts on these time scales, 

but also that some significant improvement is relatively 

straightforward—for example, with improved atmospheric 

temperature forcing of the ocean analysis in the melt season 

such as in MERRA-2 (Bosilovich et al. 2016). The util-

ity of hindcasts for the general characterization of the sea-

ice forecast system suggests that the anomaly forecasting 

Fig. 15  The anomaly correlation for T2M (left) and precipitation 

(right) between the forecast and MERRA-2 for Amazon River basin 

(top), Great Plain (middle) and Southern India (bottom) regions. Tar-

get month (x-axis) represents the date of the forecast, and the lead 

month (y-axis) represents how long that forecast was in months, i.e. 

target month May with lead 4 means May forecast initialized in Feb-

ruary
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approach of NMME is also advantageous for the Arctic. 

But the simple bias correction approach that has been here-

tofore used is likely problematic. Bias correction of the 

hemisphere-summed ice extent is a means of addressing 

an inadequate representation of seasonality in the model, 

but it is mostly used here to address the mismatch of the 

land-sea mask between various models and observing sys-

tem grids (see for example, Blanchard-Wrigglesworth et al. 

2016). A better methodology for sea-ice intercomparison 

between models and observations is required. The issues 

shown here emphasize the role of initial climate conditions 

for improved forecasts. This includes an investigation for 

improving the representation of sea-ice characteristics in 

the analysis state.

7  Conclusions

In this study we provide the details of the GEOS-5 seasonal 

forecast system setup, which is used in particular to pro-

vide monthly contributions to the NMME project. The SST, 

T2M, precipitation and sea ice extent skills are documented 

for the comparison with other systems and to track the dif-

ferences, hopefully, improvements, with the future system 

currently under development. Notable problems in the cur-

rent system are the large SST drift in the northern Atlantic 

Ocean (strongest for the forecasts initialized in winter and 

spring), in the equatorial Pacific Ocean (strongest for the 

forecasts initialized in winter and spring), in the northern 

Pacific Ocean (for the forecasts initialized in late fall and 

winter) and in the Southern Ocean (for the forecasts initial-

ized in austral winter). Anomaly correlation SST skill is 

poor in the western Pacific Ocean (Niño 4 index) relative 

to the central and eastern equatorial regions (Niño 3 and 

Niño 3.4 indices). This is related to the overextension of 

the warm water anomaly to the west during the El Niño 

Fig. 16  Case studies of the drought over the Great Plains in 2012 and 

the flood over the Southern India coast in 2015. One to four month 

lead forecasts of T2M and precipitation are plotted against the obser-

vations (MERRA-2). For the Great Plain the target month is July 

2012, for the South India region the target month is November 2015. 

The anomalies are standardized using the corresponding standard 

deviation

Fig. 17  Comparison of forecast September Arctic ice extent error 

from submitted June Sea Ice Outlook models for the period 2014–

2016. Yellow dashed line indicates the average error over the 3 years. 

Error is computed as the difference of the forecast value minus the 

extent from passive microwave data (Cavalieri et al. 1996)
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events. Ham et al. (2014b) attributes this to the weak ther-

mal damping and the erroneous zonal advective feedback 

as a response of the wind-driven current to the wind forc-

ing. The strong ocean sensitivity to the wind forcing may 

be mitigated in the future by coupling the ocean with the 

new improved atmospheric analysis (MERRA-2), in which 

the surface winds are significantly improved compared to 

MERRA (Bosilovich et al. 2016), in particular, over the 

western equatorial Pacific Ocean.

The largest (negative) bias for T2M is over the winter 

Arctic Ocean related to the fact that GEOS-5 underestimates 

the sea ice temperature in winter. The largest positive T2M 

bias occurs during the northern hemisphere summer over 

land, especially in Asia and the west coast of North Amer-

ica. T2M is not significantly biased over the tropical oceans. 

The largest precipitation bias is found in the summer over 

land in the northern hemisphere, likely related to the uncer-

tainty in model parameterization of vegetation cover, cloud 

physics etc. Anomaly correlation T2M skill is high for at 

least 6 lead months for all seasons over the tropical oceans, 

but drops quickly (after 1 month) over land. Significant pre-

cipitation skills in terms of anomaly correlation are found 

only over the equatorial eastern Pacific Ocean, where ENSO 

has a dominant influence on precipitation. Everywhere else 

the anomaly correlation drops to near zero after the first 

month of the forecast.

The experimental sea ice forecast provides a benchmark 

for the future system evaluation. The current GEOS-5 sys-

tem is on par with other comparable models based on the 

3 year comparison within the Sea Ice outlook project. Yet 

there are known shortcomings in the sea ice initialization 

and ocean and atmospheric feedbacks. In addition to pro-

viding better forcing to the ocean model via MERRA-2 

analysis, the sea ice forecast has a potential to benefit from 

assimilating new types of observations during the ocean and 

sea ice initialization procedure, such as sea surface height 

and ice thickness.

The GEOS-5 seasonal forecast system has been in service 

since early 2012. Since its inception, new versions of the 

models have become available, and the new ensemble ocean 

and sea ice assimilation system that is capable of processing 

Fig. 18  September 2014 forecast and the observed spatial pattern of Arctic sea ice

Fig. 19  September mean sea ice extent from NSIDC Sea Ice Index 

(solid black line; Fetterer et  al. 2016), and from ensemble members 

of the June forecast (grey lines). The ensemble mean is indicated with 

a black dashed line, and a bias-correction is indicated with a dotted 

line, in  106  km2
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new data types has been put in place. As the next system is 

being developed, this paper will be among those providing 

reference for evaluating its performance.
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