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Figure 1: Using our method, the human modeler simply drags-and-drops the shape primitives into approximate position; the

system provides real-time precise geometric snapping feedback and infers geosemantic constraints between the primitives.

(Total modeling time: one minute.)

Abstract

Modeling 3D objects from sketches is a process that requires several challenging problems including segmentation,

recognition and reconstruction. Some of these tasks are harder for humans and some are harder for the machine.

At the core of the problem lies the need for semantic understanding of the shape’s geometry from the sketch. In this

paper we propose a method to model 3D objects from sketches by utilizing humans specifically for semantic tasks

that are very simple for humans and extremely difficult for the machine, while utilizing the machine for tasks that

are harder for humans. The user assists recognition and segmentation by choosing and placing specific geometric

primitives on the relevant parts of the sketch. The machine first snaps the primitive to the sketch by fitting its

projection to the sketch lines, and then improves the model globally by inferring geosemantic constraints that link

the different parts. The fitting occurs in real-time, allowing the user to be only as precise as needed to have a good

starting configuration for this non-convex optimization problem. We evaluate the accessibility of our approach

with a user study.

Categories and Subject Descriptors (according to ACM CCS):
I.3.6 [Computer Graphics]: Methodology and Techniques—
Interaction techniques I.3.5 [Computer Graphics]: Compu-
tational Geometry and Object Modeling—Geometric algo-
rithms, languages, and systems

1. Introduction

Sketching in two-dimensions remains easier than 3D model-
ing for professional 3D modelers and novices alike. Profes-
sional 3D modelers nearly always begin the modeling pro-
cess by sketching, either on paper or in a 2D sketching appli-
cation. Sketching allows artists to focus on creativity rather

than technical issues in the early, exploratory stages design.
At the same time, novices are capable of sketching, but are
unfamiliar with 3D modeling tools. Although 2D sketches
are expressive, 3D models allow better understanding of the
shape’s structure and proportions. It would be nice if sim-
ple 3D models could be created easily from 2D sketches for
quick previews and as a starting point for further editing and
creation of more complex models. This would facilitate the
advantages of both techniques for both experts and novices.

Creating a 3D model from a sketch is in general an ill-
defined problem it is highly non-linear and non-convex. The
challenge can be separated into two orthogonal tasks: Se-
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Figure 2: An overview of our method (from left to right): a sketch is loaded into the system and its strokes are classified as

feature curves or silhouette curves. Then, when a primitive is dragged onto the sketch, automatic matching is used to associate

it with strokes in the sketch. Real-time snapping of the individual primitive refines its position and orientation in the sketch as

the user drags. When a primitive is released and other primitives have already been placed, automatic inference of geosemantic

constraints guides the final snapping.

mantic and Geometric. Modeling from a sketch requires in-
terpreting and understanding the semantics of the sketch in-
cluding the segmentation and recognition of its parts. This
includes both understanding individual strokes and their
combinations representing 3D structures and parts. Second,
modeling involves the complex task of fitting and recon-
structing the geometry that matches the intended shape and
its semantics. The need to interpret the sketch before recon-
structing the geometry requires a high-level cognitive en-
deavor that machines are still weak at compared to humans.
Furthermore, fitting primitives is a very difficult optimiza-
tion problem, as it is non-convex, and strongly depends on
a good starting configuration for the optimization. On the
other hand, reconstructing a geometry that admits external
and internal constraints is a meticulous task that is hard and
tedious for humans, and better fits the type of computations
machines are designed for.

In this paper we present a semi-automatic interactive system
for modeling simple 3D models from a sketch, that is care-
fully designed to minimize user efforts. We do not intend to
replace precise tools for editing and modeling 3D geometry;
rather, we offer a way to create a 3D preview where the user
can rotate the “sketch” and quickly grasp its 3D properties.
Our approach is based on identification and decoupling of
the semantic and geometric tasks, and converting semantic
relations to constraints that are geosemantic. We believe that
a large number of these can be implied automatically using a
simple set of rules. This allows the user to explicitly perform
only the minimal semantic tasks that the machine is weak at
or that cannot be implied. These rules automatically bridge
the gap between what the user explicitly provides and what
is actually needed to solve the fitting problem and preserve
internal structural relations.

The basic interactive modeling operation in our system is
an easy-to-use ‘drag-and-drop’ operations, where primitive
shapes are selected and dragged over the sketch to their ap-
proximate intended position. The user first loads a sketch,

such as one created in illustrator or even a pencil-and-paper
scan (see Figure 1). The user then identifies and chooses
appropriate 3D primitives that compose the shape, such as
cylinders and cones, and drags them to approximate loca-
tions on the sketch, while roughly orienting them. Through-
out the drag, the system automatically matches curves on
the primitive to lines in the sketch and snaps the primitive in
real-time for preview. The real-time preview allows the user
to be only as precise as is necessary to provide a good start-
ing configuration for the optimization process to correctly fit
the primitive.

After dropping the primitive, the system performs the final
snapping by fitting the primitive to the sketch while adher-
ing to geosemantic relations with other 3D parts that have
already been modeled. For instance, it can detect and im-
pose almost-relations to be precise-relations such as paral-
lelism, collinearity, perpendicularity, and more. Using this
procedure the user assists the recognition and segmentation
by explicitly defining only what approximately goes where,
while the rest is performed by an automatic, computational
process. Despite the non-linearity and non-convexity of the
problem, both the preview and the final snapping are per-
formed by a very fast optimization technique using an aug-
mented Lagrangian method.

2. Related Work

Image-Based Modeling. The method we present in this pa-
per shares similarities with the approach taken in [GIZ09]
and [LSMI10], in which a shape is modeled by the user ex-
plicitly placing primitives and specifying constraints in the
form of semantic “annotations.” Unlike our work, these tech-
niques require manual placement of primitives and annota-
tions.

Tsang et al. [TBSR04] presented a system that assists users
in tracing curves from guide images by snapping user input
and suggestively completing user input curves with curves
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from a database. In our system, users operate at a higher level
of abstraction, by dragging and dropping primitives, and our
system infers geosemantic constraints.

Given a photograph of an object and a database of 3D models
in the object class, Xu et al. [XZZ∗11] presented a system for
creating a 3D model to match the photograph requiring only
minimal user input. In contrast, our system takes a sketch as
input—users are modeling rather than reconstructing—and
does not require a database of similar models, but just a set
of prescribed primitives.

Several systems have explored interactive modeling from
multiple photographs or video sequences. In [DTM96,
SSS∗08, vdHDT∗07] users mark edges or polygons or place
3D primitives in multiple photographs or frames. The sys-
tems align them and extract 3D positions for the geometry
to create textured 3D models. In our approach, there is only
a single image of an imprecise sketch, so common vision
techniques that assume accurate and consistent input cannot
be directly applied.

Primitives and constraints. Modeling with geometric con-
straints has been a part of graphical design since Sketch-
pad [Sut63], the first graphical CAD program, and continues
to be a part of professional CAD systems (such as AutoCAD,
SolidWorks, CATIA, etc.). These systems require substan-
tial training, since users are required to explicitly specify the
constraints manually. (Constraints have also been used ef-
fectively in more accessible sketch-based modeling systems;
see below.) Moreover, these systems provide no direct way
to use sketches as part of the creative process. In contrast, our
system is accessible to novices, is designed to allow users
to model from a 2D sketch, and automatically infers con-
straints.

The 2D drawing program Pegasus [IKTM98] uses a “predic-
tive” interface, which is reminiscent of our optimistic snap-
ping procedure. The recent GlobFit technique [LWC∗11]
automatically infers constraints from noisy and incomplete
3D point clouds, which are then used to reconstruct a sur-
face, but cannot be applied to model from 2D sketches.
Zeleznik et al. [ZHH96] introduced SKETCH, a 3D model-
ing system based on the idea of placing primitives by sketch-
ing gestures. Unlike our system, SKETCH does not sup-
port modeling from a guide image or constraints. Pereira et
al. [PJBF03] introduced a “calligraphic” interface for CAD
modeling based on sketched commands; their gluing opera-
tion would be convenient in our system as well.

Sketch-based modeling. One approach to 3D modeling is
the so-called sketch-rotate-sketch workflow. This approach
was introduced in Teddy [IMT99] and inspired a large body
of follow-up work; see [OSSJ09] for a survey. These ap-
proaches are not designed for modeling from an existing
sketch, since the viewpoint rotates throughout the modeling
process. Our approach is for modeling from sketches, not
modeling by sketching.

Constraints are also employed in many sketch-based mod-
eling systems for beautification or to “regularize” the 2D-
to-3D mapping problem. An early example is VIKING
[Pug91], in which users “sketch” (in a manner quite different
than present sketch-based modeling approaches) and then in-
teractively label and apply constraints to drawings. Another
early system for interactively sketching 2D and 3D objects
with constraints was introduced in [EHBE97]. Notably, inci-
dence and right-angle constraints for strokes in 2D are auto-
matically applied. More recent sketch-based modeling sys-
tems that employ constraints include iLoveSketch [BBS08]
and Analytic Drawing [SKSK09]. Because the viewpoint ro-
tates in these systems, however, users can not model from an
existing sketch.

Sketch recognition techniques are designed to convert a
given 2D line drawing into a 3D solid model. A variety of
restrictions are placed on the line drawings, such as the max-
imum number of lines meeting at single point, and the im-
plied 3D models are assumed to be, for example, polyhedral
surfaces. Lipson and Shpitalni [LS96] introduced an early
work in this area (as well as many later ones); SMARTPA-
PER [SC04] extends their algorithm in a variety of ways, in-
cluding the ability to sketch over existing 3D models. For
a recent survey of line-drawing interpretation algorithms,
see [Coo08]. In a related approach, Chen et al. [CKX∗08]
allows for imprecise, sketched input by matching input to
a domain-specific database of architectural geometry. (See
ChemInk [OD11] and MathPad2 [LZ04] for examples of
sketch-recognition approaches applied to domains other than
geometric modeling.)

3. Overview

The basic operation in our system is the snapping of 3D
primitives being dragged-and-dropped over a sketch. This
snapping places the primitive in 3D space, gradually con-
structing a 3D representation of the object one primitive at a
time. We use a set of parametric 3D primitives—generalized
cylinders, boxes, and spheres—whose parameter values are
optimized during snapping, subject to constraints. The ob-
jective function fits the projection of the primitive to certain
2D curves of the sketch. The constraints involve both the
internal structure of the primitive (internal structure con-

straints) and its relationship with other previously placed
primitives (geosemantic constraints). With this mode of in-
teraction, the system does not perform any recognition or
segmentation of the sketch—the user chooses and places
the primitives herself. However, by fitting primitives to the
sketch and automating geosemantic constraint inference, the
system provides an easy-to-use interface for constructing a
3D object from a sketch.

An overview of the workflow of our system is presented in
Figure 2. First, a sketch is loaded into the system. We as-
sume that the input is a 2D orthographic sketch defined by
a set of parametric stroke curves. The conversion of a raster
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sketch into a vector sketch with clean stroke curves is be-
yond the scope of our paper (see, for example, [NHS∗12]).
These curves are separated into two semantic types: fea-

ture curves and silhouette curves. Feature curves are non-
view-dependent curves of the 3D object (the top and bot-
tom circles of a cylinder, the outline of a sphere, and the 12
edges of a box), and silhouette curves are view-dependent
curves corresponding to the boundaries of the object in the
sketch (the sides of a cylinder; see, e.g., [CGL∗08]). This se-
mantic task is performed semi-automatically: the user marks
some curves, and our system propagates tags according to
the heuristic that curves likely belonging to a cylinder should
alternate between silhouette and feature tags, while those of
a box and sphere should not (over 80% success rate in our
examples). This classification is very easy for the user to pro-
vide and greatly increases the success rate of the automatic
curve matching described below.

Once the strokes of a sketch are classified, the user picks a
primitive that can be scaled, rotated, and dragged over the
sketch. The system performs an automatic, real-time match-
ing between the silhouette (resp. feature) curves of the prim-
itive and the silhouette (resp. feature) curves of the sketch.
Whenever a valid match is found, real-time snapping is per-
formed. This real-time snapping uses only the fitting ob-
jective function and internal structure constraints. When the
user is satisfied with the fit, she releases the primitive (ends
the drag) and a full optimization, using the fitting objec-
tive function, internal structure constraints, and geosemantic
constraints, is performed.

Primitives. Our primitives are boxes (rectangular cuboids),
spheres, and various generalizations of cylinders: standard
cylinders defined by an axis and radius; truncated cones de-
fined by an axis and radii at either end; “straight” generalized
cylinders defined by an axis along which the radius varies;
and “bent” generalized cylinders defined by a space curve
along which the radius varies. Our approach can be extended
to additional primitive types; doing so requires defining the
new primitive type’s feature curves, which are used to infer
and impose geosemantic constraints, and a suitable objective
function for fitting the new primitive type to matched sketch
curves (Section 5).

4. Curve Matching

Recall that the input to our system is a 2D sketch defined by
a set of parametric stroke curves. Prior to modeling, the user
classifies these strokes into silhouette and feature curves. At
this time, our system also computes the per-pixel distance
to each stroke curve, (Figure 3, left) resamples every stroke
curve uniformly in arc length, and ignores feature curves to
which a reasonable ellipse fit cannot be found.

As the user drags a primitive over the sketch, the system
matches silhouette and feature curves from the primitive to
silhouette and feature curves of the sketch. This matching

Figure 3: Left: examples of the per-pixel distance field to

the two highlighted strokes. Right: an example of bad snap-

ping when primitive curves are matched to incorrect sketch

curves.

occurs in real-time and is described as follows. We begin
by solving the bipartite graph matching problem between
silhouette (resp. feature) primitive curves as the nodes of
one side of the bipartite graph and silhouette (resp. feature)
sketch curves as the nodes of the other side; the weight on
each edge is the integral of the per-pixel distances from the
primitive curve to the sketch curve [Kuh55]. However, there
are many cases where this matches primitive curves to in-
consistent sketch curves, which leads to an erroneous snap
(see Figure 3, right). Although this could be resolved by the
user positioning the primitive more accurately, our goal is
to minimize manual and tedious human operations. So, we
perform additional, primitive-specific filtering on the bipar-
tite match. (Spheres contain only a single curve, so there is
no further processing to be performed.)

For cylindrical primitives, which are composed of two (cir-
cular) feature curves and two silhouette curves, we select the
better (lower weight) silhouette curve match and search, in
the sketch, for the closest feature curve near each end-point.
If nearby feature curves are found, we search for the clos-
est additional silhouette curve near either feature curve and
use as our resulting match the two silhouette curves and one
or two feature curves. Otherwise, our resulting match is the
two silhouette curves found by the bipartite matching. (Bent
generalized cylinders cannot snap unless both silhouette and
feature curves are matched.)

The box primitive is composed of twelve feature curves
(the edges) that meet in triplets at three corners. We eval-
uate whether each such triplet of feature curves matches
to three feature curves in the sketch forming a “cubic cor-
ner” [Coo08]. If multiple such cubic corners are found, the
resulting match is the one where the distance from the cubic
corner to the corresponding box corner is smallest.

5. Primitive Fitting

Once matching sketch curves are found, we perform an op-
timization procedure to fit the primitive to the sketch. This
produces an initial 3D fit (up to placement in depth) at inter-
active rates as the user drags the primitive.

We use parametric representations for our primitives: a
sphere is defined by a center point and radius; a box by a cor-
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Figure 4: The feature curves of a cylinder are defined by

the cylinder’s parameters. When the feature curves partici-

pate in geosemantic constraints they affect the primitive they

belong to.

ner point and three orthonormal vectors; straight cylinders
by an axis and one, two, or many radii; and bent cylinders by
a 3D, planar ploy-line as its spine with a radius at each spine
point. These are the degrees-of-freedom in our optimization
procedure. Primitives’ feature and silhouette curves are also
defined in terms of these variables (e.g. Figure 4).

To perform snapping, an objective function φ is constructed
for the primitive and minimized subject to the primitive’s
internal structure constraints. Note that as the sketch is 2D
in nature, our fitting objective functions are ambiguous up
to translation in depth. Primitives are initially centered on
the z = 0 plane. During the final snapping, geosemantic con-
straints determine the relative placement of primitives.

Spheres. The simplest objective function φsphere fits a
sphere’s feature curve, a circle with center c = (cx,cy,cz)
and radius r, to a 2D sketch curve S = {si}:

φsphere(p,r) =
N

∑
i=1

[‖cxy − si‖
2 − r2]2

(Recall that all sketch curves are sampled uniformly in arc
length during preprocessing.)

Cylinders and cones. Fitting cylindrical primitives is based
on an objective function that fits their feature curves, 3D cir-
cles, to 2D sketch curves. The functional for fitting a 3D
circle centered at c with normal direction n and radius r to a
2D sketch curve S = {si} is

φcircle(c,n,r)=
N

∑
i=1

[

‖nz(cxy − si)‖
2 +

(

nxy · (cxy − si)
)2

− (rnz)
2
]2

This equation is based on the observation that a 2D point
lies on the projection of a 3D circle if, for some z coordi-
nate, it resides on the plane defined by the circle’s center and
normal, and the distance from the circle’s center equals the
radius.

When a cylinder’s circular feature curve is not matched to a
sketch curve, the following objective function is used, where
p and q are the 2D dangling end-points of the sketch silhou-
ette curves matched to the primitive:

φ 0
circle(c,n,r) =

(

‖p− cxy‖
2 − r2

)2
+
(

‖q− cxy‖
2 − r2

)2

For cylinders and cones, the fitting objective function is sim-
ply the average of the fitting objective functions of the two
feature curves. That is, for a cone with axis a, bottom cen-
ter c, radii rbottom and rtop and length l, the fitting objective
function is

φcone =
1

2
φcircle(c,a,rbottom)+

1

2
φcircle(c+ la,a,rtop)

(A cylinder’s fitting objective function is the same as a
cone’s, with rbottom = rtop.)

Straight generalized cylinders. A straight generalized
cylinder has a more complex objective function due to its
varying radii. First, we pre-analyze the matched feature and
silhouette curves in the sketch to obtain an estimate of the
primitive’s bottom p and top q (the 2D centers of ellipses fit
to the two feature curves) and radii {r0

i } along the spine (the
average distance from the matched sketch silhouette curves
to evenly sampled points between p and q in the direction
perpendicular to pq). Then the objective for a straight gen-
eralized cylinder with axis a, bottom feature curve center c,
length l and radii {ri} is

φsgc(a,c, l,r)=





1
2 φcircle(c,a,r1)+

1
2 φcircle(c+ la,a,rN)

+‖p− cxy‖
2 +‖q− (c+ la)xy‖

2

+∆r+ 1
N ∑

N
i=1(ri − r0

i )
2





(The ∆r term penalizes non-smooth radii.)

The straight cylinder objective functions, φcone and φsgc, are
minimized subject to the internal structure constraint ‖a‖2 =
1.

Bent-generalized cylinders. The objective function of bent
generalized cylinders also includes a pre-analysis of the
matched sketch curves. To generate target spine points, we
smooth and resample the two silhouette curves, and then
average successive points along them. After an additional
smoothing and resampling step, we obtain the target 2D
spine points {s0

i }. Target radii {r0
i } are obtained by comput-

ing the minimum distance of {s0
i } to the silhouette curves.

Recall that a bent generalized cylinder has a planar spine
curve. Let u and v be orthonormal vectors of the spine curve
plane, c be the bottom center point in R

3, a and b be the
bottom and top 3D circular feature curve normals in uv co-
ordinates, {si} be a sequence of points in uv coordinates rep-
resenting the spine, and ri be the respective radii. Finally, let
P(s, t) = c+ su+ tv be the function mapping a point in uv

coordinates to R
3, and let V (s, t) = su+ tv be the function

mapping a vector in uv coordinates to R
3. Then the objec-
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tive function for the bent generalized cylinders is

φbgc =

φcircle(P(s1),V (a),r1)+φcircle(P(sN),V (b),rN)

+
N

∑
i=1

‖P(si)xy − s0
i ‖

2 +∆r+
N

∑
i=1

(ri − r0
i )

2

subject to the internal structure constraints ‖u‖2 = 1, ‖v‖2 =
1, and u ·v = 0 (basis orthonormality); ‖a‖2 = 1 and ‖b‖2 =
1 (unit-length feature curve normals); si = 0 (the “bottom”
center is actually the bottom center); and a · (s1 − s2)

⊥ = 0
and b · (sN − sN−1)

⊥ = 0 (feature curve normals are tangent
to the spine).

Boxes. Recall that the matching function for the feature
curves of a box primitive (Section 4) involves the detection
of a cubic corner in the sketch. Following Perkins [Per68],
we recover an orthonormal basis W0, H0, and D0 and di-
mensions w0, h0, and d0 from the cubic corner (let c0 be its
2D position). Then for a box parameterized by orthonormal
vectors W , H, and D, dimension scalars w, h, and d, and a
central point c, the fitting objective is

φbox(c,W,H,D,w,h,d) =

α
(

h0d0‖W −W0‖
2 +w0d0‖H −H0‖

2 +w0h0‖D−D0‖
2
)

+(w−w0)
2 +(h−h0)

2 +(d −d0)
2 +‖cxy − c0‖2

subject to the internal structure constraints ||W ||2 = 1,
||H||2 = 1, ||D||2 = 1, W ·H = 0, W ·D = 0, and H ·D = 0
to ensure that the resulting basis stays orthonormal. (In all of
our examples, α = 0.1.)

The optimization algorithm we use to minimize these objec-
tive functions is described in Section 7.

6. Geosemantic Relations

Following a line of previous works where semantic rela-
tions are inferred and imposed automatically [GSMCO09,
LWC∗11, XZZ∗11, LWC∗11], we detect several geometric
relations among existing 3D primitives under some toler-
ance, and convert them to precise constraints. These con-
straints operate on primitives’ feature curves. Geosemantic
relations are detected and imposed as constraints only dur-
ing the final snapping of a new primitive, once the drag is
finished. For the purposes of geosemantic relations, the fea-
ture curves of boxes are grouped into six faces. We detect
and impose the following geosemantic relations.

Parallelism. Two feature curves are parallel. This is applied
if the angle between two feature curves’ 3D normals is less
than 20 degrees. The constraint is that the two normal vectors
n1,n2 must satisfy n1 ×n2 = 0.

Orthogonality. Two feature curves are perpendicular. This
is applied if the angle between two feature curves’ 3D nor-

mals is between 70 and 110 degrees. The constraint is that
the two normal vectors n1,n2 must satisfy n1 ·n2 = 0

Collinear centers. The centers of three or more fea-
ture curves lie on the same line. This is applied if the
2D triangle formed by three feature curve centers has
an angle greater than 170 degrees. The constraint is that
the feature curve centers c1,c2,c3, . . . ,cN must satisfy
(c1 − ci)× (c1 − ci+1) = 0 for all i > 1.

Concentric. The centers of two or more feature curves are
equal. This is applied if the 2D distance between two feature
curve centers is within 5% of the screen width or height. It
is also applied if two feature curves are snapped to the same
curve on the sketch. The constraint is that the feature curve
centers c1,c2 must satisfy c1 = c2 (in 3D).

Coplanar. Two or more feature curves lie in the same plane.
This is applied if:
• Two primitive feature curves are matched to the same

sketch feature curve.

• Two feature curves are parallel (see above), and the dis-
tance d of each feature curve’s center to the other fea-
ture curves’ planes is within 5% of the sum of their sizes,
where size is the radius of a circle or one-third the perime-
ter of a rectangle.

• The 2D projection of a feature curve from the new prim-
itive is contained by the projection of an existing primi-
tive’s feature curve. (If this is true for both feature curves
of the new primitive, then the bottom-most feature curve
is chosen, corresponding to back-to-front modeling or-
der.)

The constraint is that the (two or more) feature curve centers
c1,c2, . . . ,cN and corresponding normals n1,n2, . . . ,nN must
satisfy (c1 − ci) ·n1 = (c1 − ci) ·ni = 0 for all i > 1.

For each of these constraints, we define an objective func-
tion ψ for the primitives involved. Note that these are 3D
constraints; as such, they determine the relative depth of
primitives in 3D. (The entire model is still ambiguous up to
translation in depth.) The optimization algorithm uses these
constraints along with the 2D fitting constraints for the final
optimization stage.

7. Optimization

While dragging a primitive, we optimize only the dragged
primitive using its corresponding objective functions φ be-
tween sketch curves and the primitives’ curves and its in-
ternal structure constraints. This is performed at interactive
rates as only a single primitive is involved and no constraints
ψ inferred from geosemantic relations are used. In the final
optimization, we minimize the sum of all primitive objective
functions subject to all inferred geosemantic relations (and
all internal structure constraints). This second optimization
is more computationally expensive, but, because it occurs
only once the drag is finished, it need not run in real-time.
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As our fitting problem is a non-linear, non-convex opti-
mization problem subject to equality constraints, we use
an augmented Lagrangian method to solve the optimiza-
tion problem using a sequence of unconstrained problems
[NW06]. Each unconstrained problem is solved using L-
BFGS [LN89]. The primary advantage of the augmented La-
grangian method over the squared penalty method is that the
solution is less subject to distortions of the objective function
caused by large penalty weights. The augmented Lagrangian
method never gives the squared penalty term a large weight,
instead approximating the Lagrange multipliers that lead to
constraint satisfaction.

We use automatic differentiation [GW08] to compute the
gradients of our objective functions and constraints. We use
reverse-mode automatic differentiation, which allows us to
compute gradients extremely efficiently by building an ex-
pression tree for each objective function φ and constraint
ψ . The expression trees are created automatically using our
software package which we have made available to oth-
ers†. Automatic, efficient gradient computation allows us to
state our objective functions and constraints in a simple and
straightforward manner; in fact, this makes it possible for ad-
vanced users to extend our system with additional primitives
and constraints. (We hope to explore this in the future.)

8. Results

Modeling with our tool is extremely rapid (see Figure 5 and
the video materials, which contains unedited modeling ses-
sions). All models took at most several minutes to create.
The real-time snapping optimization allows users to wan-
tonly drag primitives and drop them as soon as the fit appears
as desired. The user can work at high speed, dynamically ad-
justing the precision of her drag. The result is that humans
spend the vast majority of their time performing high level
operations (choosing primitives and dragging them in an ap-
proximate manner).

Many geosemantic constraints are correctly inferred.
Thresholds for our inference procedures have been chosen
conservatively, so the user must manually specify them in
some cases. This occurred for only two of our examples,
the phone handset and the trumpet. (Manual specification for
the phone handset can be seen in the accompanying video at
3:55 m:s.) The annoyance of false positives associated with
too-aggressive constraint inference could be mitigated with
a suggestive interface; we hope to investigate this in the fu-
ture.

Note that models sometimes do not adhere closely to the
sketch. This is because sketches are typically inconsistent or
“impossible”, especially when geosemantic constraints such
as collinearity, coplanarity, and concentricity are taken into

† http://autodiff.codeplex.com/

account. (See [SKKS09] for a discussion of inconsistencies
in sketches.) Despite the inconsistency of typical sketches,
our approach is able to rectify the primitives to produce a
plausible and consistent 3D model.

8.1. User Study

To evaluate the accessibility of our approach to novices, we
performed a user study with 10 users (5 female/5 male),
all of whom were fluent computer users. Users modeled
from the following sketches: wine glass, goblet, handset,
tap, street lamp, and candelabra (menorah) from Figure 5
top-right, second-row-left, third-row-right; Figure 1; Fig-
ure 5 bottom-left, and third-row-left, respectively. Users
were given a 20 minute tutorial of the system, and then be-
gan modeling with no stated time limit. For each model,
users first tagged the sketch (Section 3) and then dragged-
and-dropped primitives to create the 3D models.

Eight of the ten users were able to successfully create all
seven models; the remaining two users were able to create
all but the handset model. The user-created models appear
similar to those shown in the figures. User modeling sessions
can be seen in the video materials, and timing results are
shown in Table 1.

On average, users completed the semi-automatic tagging
step in under a minute and none reported the process to be
tedious or difficult, so we conclude that the step can be eas-
ily learned and is not overly burdensome. We observed that
some users under-used the semi-automation: they tagged
half of the sketch in a single batch operation, leaving only
the remaining half of the sketch to be automatically tagged.

The drag-and-drop modeling took less a minute, average and
median, for the simple models (wine glass and goblet) and
approximately 5–7 minutes for the more complex models
(handset, tap, street lamp, and candelabra). We believe that
this validates our approach, as even first-time users were able
to create models extremely rapidly. We report, however, that
users pointed out annoyances resulting from the “research”
quality of our code.

Global optimization, which occurs whenever a primitive is
“dropped”, takes anywhere from less than a second to a few
seconds per step depending on the complexity of the model
(see the video materials, which have not been edited to re-
move wait times). To quantify the portion of time spent wait-
ing for the system versus modeling, we asked an expert user
to model the candelabra (Figure 5 third-row-left), which is
among the most complex of our models, five times. On aver-
age, 28% of the total modeling time was spent waiting (35.4
out of 127.6 seconds, with standard deviation of 3.4 and 7.9
seconds, respectively). For novices, we speculate that the
wait time constitutes an even smaller fraction, because their
total modeling time is longer than an expert’s. None of our
novice users reported discomfort due to optimization time.

c© 2013 The Author(s)
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20 seconds 15 seconds 10 seconds

15 seconds 25 seconds 10 seconds

2 minutes 1.5 minutes

2 minutes 3 minutes

Figure 5: Modeling results by expert users. Modeling sessions can be seen in the video materials.

tagging modeling

sketch average std. dev. median average std. dev. median

wine glass 0:23 0:12 0:21 0:40 0:25 0:33
goblet 0:21 0:09 0:20 0:44 0:20 0:44
handset 0:48 0:14 0:48 6:49 1:28 6:22
tap 1:03 0:32 1:00 6:05 1:42 5:37
street lamp 0:53 0:27 0:50 6:05 2:27 5:05
candelabra 1:04 0:37 0:49 6:38 2:55 5:04

Table 1: Timing results from the user study. Times are ex-

pressed in minutes:seconds.

9. Conclusions

We have made a highly non-linear and non-convex optimiza-
tion problem tractable by defining a flexible collection of
parameterized primitives, designing a simple user interface
around providing a good starting point for an augmented La-
grangian optimization. The key is snapping geometric prim-
itives guided by the sketch, together with an inference mech-
anism that detects and imposes beautifying geosemantic re-
lationships among a collection of primitives. By merely re-
quiring the user to drag-and-drop primitives over the sketch,
we have separated that which is easy for humans and chal-
lenging for machines, from that which is easy for machines

and challenging for humans. The machine does not have to
identify the primitives or categories of shapes that belong in
the sketch; it has only to infer and enforce geometric rela-
tionships and precisely align shapes to match the sketch.

Limitations and Future Work. Our system is currently lim-
ited to and geared towards mechanical parts composed of
various kinds of generalized cylinders, spheres, and boxes.
This includes most shapes whose parts can be created on a
lathe or out of boxes, as well as shapes with “bent spines.”
This does not however, include polyhedra other than cubes,
or tubular shapes with non-circular cross sections. While this
could include characters, or any models that merit a skele-
tonization, our geosemantic constraints are not designed for
naturally-posed characters. In the future, we plan to support
additional, possibly more complex, primitives and geose-
mantic constraints in order to support a wider range of mod-
els. We would also like to support a wider range of sketches.
At present, sketched occlusions present a challenge to our
system, and may be impossible (Figure 6) or require the
user to manually annotate geosemantic relations on the oc-
cluded feature curves. We would also like to be able to op-
erate on raster sketches and without requiring the user to tag
any strokes as silhouettes or feature curves. Finally, we wish

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.
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Figure 6: This trombone sketch cannot be properly modeled

in our system due to the sketched occlusion.

to explore techniques to speed the global optimization pro-
cedure involving all primitives, which currently can become
lengthy with a large number of primitives and geosemantic
constraints.
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