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ABSTRACT

Researchers and practitioners have widely studied road network traffic data in differ-

ent areas such as urban planning, traffic prediction and spatial-temporal databases.

For instance, researchers use such data to evaluate the impact of road network

changes. Unfortunately, collecting large-scale high-quality urban traffic data requires

tremendous efforts because participating vehicles must install Global Positioning Sys-

tem(GPS) receivers and administrators must continuously monitor these devices.

There have been some urban traffic simulators trying to generate such data with

different features. However, they suffer from two critical issues (1) Scalability: most

of them only offer single-machine solution which is not adequate to produce large-

scale data. Some simulators can generate traffic in parallel but do not well balance

the load among machines in a cluster. (2) Granularity: many simulators do not

consider microscopic traffic situations including traffic lights, lane changing, car fol-

lowing. This paper proposed GeoSparkSim, a scalable traffic simulator which extends

Apache Spark to generate large-scale road network traffic datasets with microscopic

traffic simulation. The proposed system seamlessly integrates with a Spark-based spa-

tial data management system, GeoSpark, to deliver a holistic approach that allows

data scientists to simulate, analyze and visualize large-scale urban traffic data. To im-

plement microscopic traffic models, GeoSparkSim employs a simulation-aware vehicle

partitioning method to partition vehicles among different machines such that each

machine has a balanced workload. The experimental analysis shows that GeoSpark-

Sim can simulate the movements of 200 thousand cars over an extensive road network

(250 thousand road junctions and 300 thousand road segments).
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Chapter 1

PROBLEM OVERVIEW

1.1 Introduction

In modern life, we have to face many troubles one of which is traffic congestion

becoming more serious day after day. Traffic congestion can be attributed to a num-

ber of factors, including the high volume of vehicles on the road, irrational urban

sprawl and development. Irrational urban sprawl means the unrestricted growth of

housing, commercial development and road street. There are many studies widely on

traffic issues and researchers have been trying to solve these problems in past century

Greenshields et al. (1935). The first step is to understand physical road network traffic

data. Traffic data gives researchers information about how travel speed in a particu-

lar street change over time which is critical to road network related analysis because

these data affect travel times and thus the relevant results. Urban road network anal-

ysis includes route planning, urban planning, closest facility, and accessibility. Traffic

reflects a significant impact on time-dependent road network analysis. For example,

if a person plans the route without taking account of traffic, the expected journey

time may be far from accurate. Moreover, he might lose the chance to schedule an

efficient path with less travel time by avoiding the slower, more congested roads.

GeoSparkSim is a system that can generate traffic data and many related fields will

take advantages of the traffic predictions, for example, site evaluation, transportation

system, route planning, autonomous car, and data mining. The following paragraphs

will discuss it and study some cases in each field.

1



1.2 Scenarios

Site Evaluation. Site evaluation gives a review of the characteristics and prop-

erties of the building or construction and thus improves the site selections. Travel

costs have been an essential factor for site evaluation. It’s necessary to compute the

dynamic traffic changes to examine the impact of travel costs on-site evaluation. For

example, an investor may build a new restaurant having minimum distance with the

targeted customers. Nevertheless, traffic density is another critical factor to make

the site assessment. If the traffic density in a specific area is higher than surrounding

regions, the site in this area will have more chance for exposure, but also may suffer

from traffic congestion and higher rent cost problem. In other words, if the density is

quite low in a particular area, the land prices may be relatively more economical and

have a better commute. The investor may have many location options, and he may

evaluate the traffic volume in a particular area because traffic enhances the exposing

opportunities for customers and bring possible business. Additionally, the site also

makes an impact on traffic. For instance, if the government wants to build a light rail

or add a new subway line in the road network, they evaluate the current traffic flow

and decide the best route. In the construction stage, they may analysis traffic over

time and choose the best time to install the infrastructures to minimize the impact

on current traffic. With GeoSparkSim, the predicted traffic data helps them make a

better decision.

Transportation System. The transportation system includes all the equipment

and logistics of transporting objects which are aimed at coordinating the movement

of pedestrian, vehicles, and goods to utilize routes most efficiently and safely. Traffic

data is considered as the key to designing collaborated transportation rules. For exam-

ple, customizing traffic signals duration to control and enlarge the traffic throughput.
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Besides, traffic data is used to create a model and detect the accident. An accident

happens when the reaction distance and responses time is not in a safe range. For ex-

ample, a truck driver takes brake without having enough distance towards intersection

which is very dangerous. The traffic data generated from GeoSparkSim incorporates

many traffic models, and GeoSparkSim tries to match it with real GPS data. These

generated data helps design a more reliable transportation system.

Route Planning. Route planning defines the optimal path between the source

and the destination location. The optimal path can be the route with the shortest

distance or the shortest journey time and Section 5.2 will have a more detailed in-

troduction. Traffic data supports the improvements on route planning algorithms,

like the shortest path algorithm in Google Map. When you enter your source and

destination location, Google Map weights the live traffics and offers alternatives for

you. GeoSparkSim helps the developer to implement, test and debug the algorithm.

Data mining. Data mining is a process to find the latent patterns and features

behind the data which makes use of a range of techniques like machine learning,

statistics, database management system, etc. Researchers and scientist applied data

mining technologies in traffic data, such as traffic flow forecasting. The versatile traffic

data make benefits on innovative application across different subjects and fields. For

example, GasBuddy (2019), a web-based company which lets users search for gas

price, makes suggestions for the cheapest gas station nearby. With predicted traffic

data, we could improve the gas station finding algorithm to return results with less

journey time. Getting the most accurate results for the driver is critical because

it helps them to avoid traffic congestion and fill the tank quickly. GeoSparkSim

generates traffic data to make more possibilities in novel technologies and emerging

fields.
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Autonomous Car Testing and Planning. The driverless vehicles with radars

or computer vision technologies could automatically avoid surrounding vehicles and

the researches indicate countless benefits and significant impacts from these vehicles

Litman (2017). One of the provisions in the future is to build a world with all cars

without drivers and there are no traffic lights at roads. The researchers from MIT

proposed such a smart city for autonomous vehicles MIT (nd). Autonomous car study

traffic rules and acts all driving behaviors without having control from the driver. In

the process, traffic is a significant part to accommodate autonomous cars’ driving

behaviors. GeoSparkSim can simulate growing number of autonomous vehicles and

collect the trajectories with full driving events. This simulation and collection play

an essential role in validation before releasing the car.

1.3 Problems and Solutions

Road network traffic data contains the trajectories of a set of vehicles moving over

time. Each path consists of a sequence of Global Positioning System (GPS) coordi-

nates which capture the vehicle locations at every audited time step. These data are

classified as historical and live traffic. Historical traffic is the stored data collected by

research or scientist, while live traffic is generated from real-time GPS. Unfortunately,

although there are millions of vehicles driving in big cities, collecting large-scale high-

quality live traffic data requires tremendous efforts since participating vehicles must

install GPS receivers and administrators must continuously monitor these devices.

Researchers from Microsoft Research spent more than five years on collecting 17621

trajectories over 182 volunteers Zheng et al. (2010). Even we get these data, this kind

of historical data has many constraints, such as location, volume, and quality. For

example, New York taxi trip data NYCTraffic (2018) is a dataset of records includ-

ing pick-up and drop-off dates/times, pick-up and drop-off locations, trip distances,
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itemized fares, rate types, payment types, and driver-reported passenger counts. The

dataset is focusing on New York location, taxi type of vehicle and taxi status. In

order to get complete mobility, researchers need extraordinary efforts to clean and

process it. The disciplines mentioned above are also affected by these problems. For

example, it is hard to get a long period of traffic data for site planning and trans-

portation system. Data mining, route planning, and autonomous car planning require

a large-scale amount of data to build the model and improve the algorithm.

To remedy that, researchers turn to traffic data simulators which can generate

massive synthetic road network traffic data. Traffic simulator is the mathematical

modeling of transportation system building on the application of computer software

where researchers have spent many years in studying traffic simulators. Chapter

2 is a literature review of existing simulators. These mathematical traffic models

are related to many facts which are very computation-intensive. GeoSparkSim is an

extensible microscopic traffic simulator to handle these problems that can generate a

large amount of traffics in a short period.

Giving this outlook, this rest of this thesis is presented as follows: Chapter 2

studies the related works. An overview and user documents of GeoSparkSim is given

in Chapter 3. Chapter 4 introduces road network graph. Chapter 5 demonstrate

vehicles generations and VehicleRDD. The vehicle partitioning method and micro-

scopic simulation details are explained in Chapter 6. A comprehensive experimental

analysis is given in Chapter 7. Chapter 8 concludes the paper.
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Chapter 2

LITERATURE REVIEW

There are many existing traffic simulators with different features. This chapter at-

tempts to give a brief overview of the state-of-art in traffic simulators and lastly

provides literature with the comparison.

2.1 Simulators

Traffic simulators are classified as macroscopic and microscopic. A microscopic

simulator is targeted at the detailed mobility patterns of individual vehicles. On the

other hand, the macroscopic traffic simulator focuses on the whole vehicular traffic

flow without taking into account the current traffic pressures, vehicle distributions

and road network constraints, such as traffic lights, one road, crossroad, etc. There are

many classic traffic simulators proposed in the past two decades, such as BerlinMOD

Düntgen et al. (2009), Brinkhoff Brinkhoff (2002), SUMO Krajzewicz et al. (2002),

TRANSIMS Nagel and Rickert (2001), MATSim Waraich et al. (2009), Vissim Vissim

(2019), ParamGrid Klefstad et al. (2005) and Smarts Ramamohanarao et al. (2017).

This chapter will discuss relevant terminologies and these simulators in details.

Macroscopic traffic simulator. Simulators in this category focus on general

vehicular flow in the transportation road network. All vehicles drive similarly and

merely move from the sources to the destinations step by step. Brinkhoff proposed

a simulator Brinkhoff (2002) that generates moving objects for every single road seg-

ment in a simulation period. BerlinMOD Düntgen et al. (2009) is a popular moving

object benchmark including a set of queries and a data generator which is able to

generate road network traffic data for a number of identifiable vehicles. MNTG Mok-
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Figure 2.1: Brinkhoff Moving Objects Visualization

bel et al. (2013) develops a wrapper of Brinkhoff framework and BerlinMOD and

provides a web service with a user-friendly and more accessible interface. Macro-

scopic simulators can quickly yield a massive amount of data because they are less

computation-intensive. But the produced data may not be very useful because the

vehicles do not follow real traffic rules and there are many vehicle collisions (e.g.,

vehicles have the same GPS locations). Figure 2.1 is Brinkhoff moving objects visu-

alization which is a typical example of a macroscopic simulator.

Microscopic traffic simulator. Compare to macroscopic simulators, micro-

scopic traffic simulators pay more attention to the detailed mobility of each vehicle

and takes into account many different driving behaviors including lane changing, car
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Figure 2.2: Sumo Traffic Visualization

Intersection between South Rural Rd and East Apache Blvd

following, traffic signals and different traffic rules. SUMO Krajzewicz et al. (2002)

is one of the most popular open source microscopic simulators. It supports many

microscopic traffic models such as lane changing, different right-of-way rules, and

traffic lights. Besides that, it also provides the user with opportunities to customize

simulation data for various objects, such as vehicles, pedestrian, bicycles and railway.

Microscopic traffic simulators are too computation-intensive because the driving be-

havior of a vehicle is affected not only by its specified status but also its surroundings

like nearby vehicles and traffic lights. For example, to simulate the next location

of a vehicle, the simulator needs to check whether it is in a safe distance to other

vehicles. Therefore, although microscopic simulators can generate realistic data, they

suffer from the scalability issue. Figure 2.2 is SUMO traffic visualization which is an

example of microscopic traffic simulator.
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2.2 Related Works

2.2.1 Brinkhoff

Professor Thomas Brinkhoff designed a framework for generating network-based

moving objects (Brinkhoff). Network-based moving objects generation means the

object distribution is correlated to the density of the network. He adopts uniform

distribution to initiate moving object, computing the fastest path and provide the

interactive visualization interface for results.

• Motion Computing. The lifetime of a moving object is defined from start-

ing, moving by trajectories, arriving and die. The moving object born at a

certain point in the road network, change location step by step following iden-

tical trajectories and disappear after arriving the last coordinate in trajectory

set. By increment the trajectory index, the object moves from time t to t+1.

Professor Brinkoff proposed three approaches to generate the start node of a

moving object. First is the data-space oriented approach(DSO) which com-

putes a coordinate (x, y) by using a two-dimensional distribution function and

do map matching to find the nearest node in the road network. Second is the

region-based approach(RB). Each cell has a value describing the probability of

the cell to adapt the object into the network and the starting point is based

on the value. Last is the network-based approach(NB) adopting in Brinkhoff

traffic generator. The distribution of starting nodes is associated with the road

network distribution. After that, the generator randomly generates the travel

length and compute the destination by the created starting node and the ran-

domized length.
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Figure 2.3: Brinkhoff UI Snapshot

• Framework summary. The input of Brinkhoff framework is the road net-

work data and some relevant parameters. After triggering generation, source-

destination pair will be generated by the motion computing algorithm men-

tioned in the last paragraph and the shortest path between source and destina-

tion computed by Dijkstra and A star pathfinder algorithm. The trajectories

will be collected and reported in text or database by Java Database Connectivity

(JDBC). These results could be read from the user interface and visualization

the mobility in a certain road network. Figure 2.3 is Brinkhoff Moving object UI

and the right side is the simulation summary on the console. Brinkhoff moving

objects generator is developed in Java and the user can install it in any platform.

Brinkhoff generator preprocesses road network to a compatible format, such as

edge and node. After imported the road network data, Brinkhoff computes the

moving objects and show it in GUI. User can modify the configuration file and

the parameters in UI to make personal results.
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2.2.2 BerlinMOD

BerlinMOD is a benchmark for moving object databases based on SECONDO

DBMS Guting et al. (2005), an extensible DBMS architecture and prototype for

generating data. BerlinMOD used the approaches from Brinkhoff to create the start

and destination node. Travel assumptions are used to clarify the movement of object.

For instance, a person leaves home node at 8 am + T1, drive to work node, stay there

until 4 pm + T2 and then returns to the home node. T1 and T2 is the variable to

define the variation of moving object time frame.

• Trip Generation. The input is the start node, destination node and travel

starting time. BerlinMOD uses well-known shortest path to compute the route

like Dijkstra, and loop all the ongoing visiting node in the road. If the moving

object not arrive at the next node in path and the rest distance to the node

is larger than 50 meters, apply an acceleration event to the trip when current

speed less than the maximum speed, randomly choose either deceleration event

or stop activity depending on the distance when current driving speed is larger

than speed limits. Otherwise, reducing the velocity. Object move 5 meters each

step and apply the possible events in moving steps.

• Benchmarking Queries. BerlinMOD provides two sets of queries for bench-

mark the moving objects. Data model and operations are predefined and the

user can do SQL-like queries for moving objects. For example, select distinct

LL. License as Licence, C.Model as Model from dataScar C, QueryLicences LL

where C.Licence = LL.License. The query returns the license and model of a

moving object when the object’s license is equal to the license in the license

table. The queries include range and point queries, relations queries and near-

est neighbor query. Range and point queries perform the necessary operations
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Figure 2.4: Multimodality

to objects, like object identity, dimension, interval, condition, and aggregation.

Relations kind of query discovers the relationship between the query elements.

NN queries observe the historical moving objects and return distance semantics.

2.2.3 SUMO

Simulation of urban mobility(SUMO) Krajzewicz et al. (2002) is an open source

continuous, microscopic and multi-modal traffic simulation package developed by the

Institute of Transportation Systems at the German Aerospace Center. Multi-modal

means the movement model includes not only a car but also pedestrian, public trans-

portation system, etc. For example, a person may leave at home on feet, travel by

car, left the main street and walk to class. Figure 2.4 is an example of the compound

route.

• Components. The car-following model used in SUMO is Gipps-model Wiki

Gipps’ model (2019) which can display the traffic features. This kind of car

driver model moderates the safe velocity and helps to avoid collisions. Traffic

lights are deployed in SUMO and plays a vital role in traffic management.

SUMO developed a network converter to convert various road network data
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Figure 2.5: SUMO Front-end Interface

into XML-description. Dijkstra shortest path algorithm is used to compute the

route.

• Usability. SUMO supports different types of moving objects, such as a car,

pedestrian, train, subway, ship, etc. By inputting the types of moving objects,

simulation numbers and region-rectangle, a visual simulation interface is pro-

vided by SUMO. The user could customize data and explore the insights behind

the simulation results. Figure 2.5 is a web front-end for SUMO and 2.6 is the

simulation GUI and console results. By selecting an arbitrary rectangle in the

front-end interface and entering the required parameters, SUMO prepares the

road network and simulation results. When it gets ready, the simulation GUI

will open and begin to simulate effects.

2.2.4 TRANSIMS

Parallel implementation of the TRansportation ANalysis and SIMulation System

(TRANSIMS) is a traffic micro-simulator. TRANSIMS parallelize simulation process

by design strategies to utilize multi-threads which called domain decomposition. For
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Figure 2.6: SUMO Traffic Simulation GUI

example, a road network graph is partitioned to several domains as the number of

CPUs and each CPU simulates the traffic on its domain. Moreover, TRANSIMS

proposed the methods to minimize message passing cost and achieve load balancing.

• Domain Decomposition. Domain decomposition is a process to cut the geo-

graphical region into several similar size domains. TRANSIMS cuts the network

streets in the middle of the links rather than intersections. Each CPU computes

the local simulation from time t to t+1 and CPUs communicate and exchange

the boundaries messages for time step t, then update locally.

• Graph Partitioning. Three factors need to be considered to make an efficient

graph partitioning. First is to minimize the number of split links. Because

more links require more computing capability to perform partition. Second, the

number of domains each CPU shares links to should be minimized. After each

local simulation, a simulator is asked for exchange messages. Less shared links

make benefits to synchronize the boundaries information. TRAMSIMS uses

the METIS Library (nd) to cut network graph. METIS is a library to do serial

graph partitioning which includes graph coarsening phase, initial partitioning
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Figure 2.7: Vissim GUI

phase, and uncoarsening phase. During the process, TRANSIMS calculates

accumulated computational loads at the nodes and recursively pick domains.

• Adaptive Load Balancing. To be efficient, the loads on different CPUs

should be as similar as possible while the load depends on the actual vehicle

traffic in respective domains. TRAMSIMS adapts the actual execution time

of each link and each intersection to partitioning algorithm. Estimated first

simulation iteration determines how to partition the road network graph.

2.2.5 Vissim

Vissim (2019) is a microscopic multi-modal traffic simulation software developed

by PTV Planung Transport Verkehr AG in Karlsruhe, Germany. Vissim is a widely

used microscopic simulation software indicates the detailed driving behaviors and

provide plenty of customization solutions. Figure 2.7 is an intersection example in

Karlsruhe.

15



Figure 2.8: MATSim Simulation UI

Figure 2.9: MATSim Traffic Visualization GUI

2.2.6 MATSim

Multi-Agent Transport Simulation Toolkit (MATSim) Waraich et al. (2009) is an

open source toolbox to run and implement large-scale agent-based transport simu-

lations. Multi-agent system consists of agents and their context. In such a system,
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it is difficult to consider an individual agent without interacting with other agents.

MATSim offers a set of the flexible toolkit that user can customize the modules and

do personalized simulation job. MATSim makes the most of the CPUs by multi-

threading simulation job. Multithreading can execute multiple processes or thread

concurrently. Figure 2.8 is MATSim simulation UI. By configuring the simulation

parameters, the user can generate traffic data iteratively and visualize it by the GUI

in Figure 2.9 which is an example for Zurich.

• Simulation Models History. Generally, the approach to simulate agent in

MATSim is to take advantage of the queue. The queue is a collection in com-

puter science that the elements follow Fist-In-First-Out (FIFO) data structure.

This means the first element added to the queue will be the first one to be

removed. MATSim applied a queue to execute the operations in road net-

work links, like a street. Each link has a queue to report the entry time of

agent and adjacent links collaborate and exchange agents and corresponding

messages to make sure simulating correctly. Based on this approach, MAT-

Sim designed QueueSim in C++, a fixed-increment time advance model that

agents move along in fixed time steps of a second. In order to make it faster,

MATSim implemented Deterministic Event-Driven Queue-Based Traffic Flow

Micro-Simulation (DEQSim). Instead of fixing the time steps, the agent changes

state by discrete actions related to the event-based model, such as entering a

street, leaving a road street, etc. And MATSim parallelizes DEQSim to im-

prove the simulation performance. In the end, MATSim corporate QueueSim

and DEQSim in Java version to make it more maintainable, called JDEQSim.

• Parallel JDEQSim. JDEQSim contains three main components, simulation

units, messages and scheduler. Simulation units in MATSim are mainly about
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vehicles and links. Messages are the information exchange medium including

vehicle simulation knowledge, such as a vehicle leave a street and enter another

street. The schedule is a message priority queue which sorts message time and

message type that controls the agent’s actions. For example, the first vehicle in

the link queue will be the first vehicle to leave the link because the vehicle has

the earliest entering time. The road network is divided into two parts in the

vertical direction and the roughly the same number of events assigned to each

subset. By round robin to assign the same amount of event handlers to each

thread, MATSim handles simulation events in parallel. The messages of the

vehicle passing across different parts are synchronized between the threads. For

example, if one thread schedules a message from another thread, synchronized

access to the queue object is required. By the end, in order to make sure

synchronization correctness, a small time delta is defined to fetch message and

process to message executor thread.

2.2.7 ParamGrid

ParamGrid Klefstad et al. (2005) is a distributed, scalable, and synchronized

framework for large-scale microscopic traffic simulation.

• Network Division. In ParamGrid, a vast traffic network is divided into tiles

of equal size area with the number of rows and columns. In the dividing pro-

cess, boundary zones are generated when source and destination zones are in

different network. Cutter determines the bounding box, calculates rows and

columns, partitions the network items, splits link and add the boundary zones.

ParamGrid develops a demand divider to generate a set of the origin-destination

matrix which stores the approximate simulation workload of the vehicle. The

matrix will be applied to the cutting process and proximate balance the work-
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load. When a routing vehicle travels across tiles, with knowledge of all boundary

zones, global route services will synchronize these vehicles.

• Components. ParamGrid uses Pramics Website (2019), a suite of microscopic

simulation modeling tools, to do traffic simulation job. Paramics serves as the

single-CPU simulator for ParamGrid. Common Object Request Broker Ar-

chitecture (CORBA) Vinoski (1997) is a standard designed to facilitate the

collaboration between systems. The ACE ORB (TAO) Wiki TAO (nd) is an

open source c++ implementation of CORBA based on Adaptive Communica-

tion Environment(ACE) which acts as middleware to CORBA communication

standards. TAO provides distributed communication between machines.

• Architecture. ParamGrid follows master-slave distributed computing archi-

tecture. The master controller manages three services, global routing service,

CORBA naming service and event service. Master cuts the network, globally

assign the name and location to each tile, handles cross tiles vehicles and pro-

vide a broadcast channel to synchronize simulation time frame. The slaves take

charge of three plug-ins, object request broker, vehicle movement handler, sim-

ulation synchronization handler. A slave is responsible for the sub-network tile

from manage vehicle movement, receive transferred vehicles and synchronize

the simulation.

2.2.8 Smarts

Scalable Microscopic Adaptive Road Traffic Simulator (SMARTS) Ramamoha-

narao et al. (2017) is a distributed large-scale microscopic simulator which is able to

utilize multiple processes in parallel.
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Figure 2.10: SMARTS Simulation Interface

• Architecture. SMARTS provides a comprehensive set of simulation features

and it is mainly in three categories: input, simulation, and output. Road net-

work, routes, and a setup script is the input for SMARTS. The road network

data extracted from OpenStreetMap OSM (2019) by loading the external OSM

file. The vehicle trajectories generated by the standard shortest path algorithm,

Dijkstra and a route contains the vehicle’s ID, start time, type and a sequence

of nodes that the vehicle will visit. The setup script is a simulator configura-

tion description of simulation parameters, such as maximum number of steps,

number of internally generated random vehicles, maximum impeding distance,

number of updates per second, etc. After preparation, the simulation will imme-

diately run and SMARTS uses several microscopic simulation models to make

more close traffic prediction, such as car-following, lane-changing, traffic light,

route changing, traffic rules, and calibrations. The simulation results will be

stored in the disk and visualize in a graphical user interface.
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Figure 2.11: SMARTS Snapshot

• Spatial Workload balancing. The start coordinate of vehicles are generated

following network distribution; thus they assume the simulation workload is

approximately equal to network distribution. A set of grids divided from road

network data and each grid is assigned to an ID. SMARTS adopts a typical

master-slave distributed computing model in which the master machine man-

ages the simulation configuration jobs, such as assigning workload to slave and

a slave is an executor to run the local simulation.

• Synchronization. SMARTS proposed two simulation synchronization strate-

gies: centralized synchronization (CS) and decentralized synchronization (DS).

In CS, the server asks all the workers to exchange information and simulate

traffic at each time step. For instance, in each time step, the master will sched-

ule all the job and workers will respond when they received the command.

Compared to CS, the master doesn’t play such a critical role and hold fewer

pressures in DS. Master only assign the first simulation job, and the worker will

automatically run the simulation step by step after that.
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2.3 Related Works Comparison

There are several classic traffic simulators proposed in the past two decades in-

cluding Brinkhoff (2002) and BerlinMod Düntgen et al. (2009). The caveat of using

these approaches is that they do not consider microscopic traffic models Krajzewicz

et al. (2002), and hence cannot simulate individual vehicle driving behaviors and do

not consider a variety of road simulation scenarios such as traffic signals, intersections,

traffic rules, speed limitation and so on. For example, a vehicle will not stop in red

light and moderate speed on the distance to heading vehicle. Most moving objects

overlap in the simulator and this kind of data is not useful when the researches need

traffic data in a certain quality. Microscopic traffic models are beneficial in practice

since they can generate and simulate data matching the real-time traffic. A vital fact

is that whether it is a pedestrian, bicycle or a car, all the moving objects in the world

maintain a safety provision. These objects pay attention to the environment, check

possible dangers, communicate with other moving objects and make corresponding

changes. Computing these actions in simulation need to check front and back objects

in the current lane and desired road lane. The more objects simulator to test, the

more safety actions objects have. However, a simulation involving many characteris-

tics is computation-intensive. For example, traditional microscopic simulators such as

SUMO Krajzewicz et al. (2002) are only able to simulate a limited number of vehicles

over a small size of the road network.

Recently, there have been several research works that proposed scalable micro-

scopic simulators which can horizontally parallelize the simulation workload by adding

more machines. However, performing microscopic traffic simulation in a distributed

environment is very challenging because:

• Workload balance. A scalable simulator needs to partition the workload
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to small chunks and assign them to different machines in a cluster. However,

whenever a vehicle tries to change lane or accelerate, it has to check the sur-

roundings, like the distance to nearby vehicles, traffic lights, etc. A proper

partitioning method should take into account the spatial proximity of vehicles

and minimize cross-partition data exchange, communications costs, and simu-

lation synchronization.

• Dynamic distribution. The spatial distribution of moving vehicles will dy-

namic changes over time. Nearby vehicles in last moment may soon become

far from each other. Simulators have to employ proper mechanisms to handle

dynamic events.

To deal with the challenges, TRANSIMS Nagel and Rickert (2001) opts to use

graph partitioning approaches to partition road networks but does not consider their

spatial distribution. The road network based partitioning methods may not accurately

balance the vehicle simulation workload because most roads in a road network are

idle and only major streets are full of vehicles. ParamGrid Klefstad et al. (2005)

proposes to partition the geographical space to uniform grids which do not work well

if the cars and road network have skewed distribution. SMARTS Ramamohanarao

et al. (2017) comes up with an approach that partitions the area into small chunks

numbered in a Z-curve Zhang et al. (2003) like order. It then assigns nearby pieces to

the same machine. However, it makes an unrealistic assumption of the fixed spatial

distribution of moving vehicles.

Besides, most existing scalable simulators are designed upon inefficient distributed

computing models. For instance, Parallel BerlinMod Lu and Guting (2012) uses

Hadoop MapReduce Hadoop (nd) and SMARTS Ramamohanarao et al. (2017) lever-

ages simple TCP sockets. Apache Spark, on the other hand, provides a novel data
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abstraction called Resilient Distributed Datasets (RDDs) Zaharia et al. (2012) that

are collections of objects partitioned across a cluster of machines. Each RDD is built

using parallelized transformations (filter, join or groupBy) that could be traced back

to recover the RDD data. In memory RDDs allow Spark to outperform existing

models.

It requires tremendous efforts to develop a scalable traffic simulator that fits a

distributed environment because the simulator has to deal with a new problem that

is how to balance the spatial workload to minimize data shuffle. Researchers have

come up with many different approaches, explained below (see Table 2.1). A study

of distributed execution models used in these simulators is given in Appendix A.

2.4 Simulator Scalability

Non-spatial partitioning approach. Some existing solutions partition the

workload without taking into account the spatial proximity of the moving vehicles.

Parallel-BerlinMOD Lu and Guting (2012) integrates BerlinMOD with a distributed

DBMS called Parallel-Secondo Lu and Guting (2012) to deliver a scalable solution. It

partitions the vehicles using generic partitioners such as hash partitioner and round-

robin partitioner and parallelizes the computation to a set of Hadoop MapReduce

operations Hadoop (nd). This approach is easy yet inappropriate for microscopic

simulators because vehicles running on the same road segment are simulated by dif-

ferent machines. On the other hand, a microscopic simulator TRANSIMS Nagel

and Rickert (2001) proposes to use graph cuts to partition the large road network

then apply the same partitions to vehicles. It leverages message passing interface

MPI Gabriel et al. (2004) to coordinate different machines in a cluster. TRANSIMS

may yield balanced network partitions such that each partition has a similar number

of road nodes and segments but ignores an important fact: most road networks are
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idle and only major streets are full of vehicles because most traffic are gathered in

the center of the city.

Spatial partitioning approach. Most scalable microscopic simulators use spa-

tial partitioning methods to strike balanced workloads. MATSimWaraich et al. (2009)

comes up with a technique that splits the space to uniform grids (say, 5km*5km) then

uses these grids to partition road networks and vehicles. It uses multi-threads to par-

allelize the computation. ParamGrid Klefstad et al. (2005) uses a partitioning method

similar to MATSim but utilizes CORBA Vinoski (1997) framework which internally

uses RPC. SMARTS Ramamohanarao et al. (2017) partitions the space to some small

cells and order them into a curve close to Z-curve. Cells that have the same ID are

assigned to the same machine. Although these approaches take into account spatial

proximity, GeoSparkSim still outperforms because (1) their partitioners cannot well

balance vehicles due to their skewed spatial distribution. GeoSpark Yu et al. (2018)

and SpatialHadoop Eldawy et al. (2015) both show that KDB-Tree and Quad-Tree

partitioning approaches are better. (2) The spatial distribution of moving vehicles

keeps changing during the simulation. Instead of using fixed partitions, GeoSparkSim

uses a spatial-temporal partitioning approach to dynamic automatically repartition

vehicles over time.

Distributed computing models. Most existing solutions are designed upon in-

efficient distributed models. Many of them still use message passing services and do

not employ advanced computation models and job schedulers. SMARTS Ramamo-

hanarao et al. (2017) leverages simple TCP sockets, TRANSIMS Nagel and Rickert

(2001) uses MPI Gabriel et al. (2004), and MATSim Waraich et al. (2009) only uti-

lizes multi-thread synchronization. On the other hand, Parallel BerlinMod Lu and

Guting (2012) uses Hadoop MapReduce Hadoop (nd). Although the Hadoop-based

approach achieves high scalability, it still exhibits slow run time performance since it
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persists all intermediate data on disk. Apache Spark provides a novel data abstraction

called Resilient Distributed Datasets (RDDs) Zaharia et al. (2012) that are collec-

tions of objects partitioned across the node in a cluster of machines. Each RDD is

built using parallelized transformations (filter, join or groupBy) that could be traced

back to recover the RDD data. In memory RDDs allow Spark to outperform existing

models.
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Chapter 3

SYSTEM ARCHITECTURE

GeoSparkSim has developed in Java and Scala programming language which can

be deployed in standalone or distributed mode to achieve traffic prediction in high-

performance. User can easily install it in any platform and customize their simulation.

This chapter will discuss the application architecture, user interface, contribution and

how to use it.

3.1 System Overview

3.1.1 Apache Spark

Apache Spark Zaharia et al. (2010a) is an open source distributed computing en-

gine for large-scale real-time data processing and analytics. Figure 3.1 shows Spark

architecture. Spark provides a set of libraries, Spark SQL, Spark streaming, Machine

learning, and GraphX that user can query, construct and streaming data, run ma-

chine learning models and graph algorithms. Spark uses a master/slave architecture.

Master is the entrance of driver program and manages the application, while slaves

parallel computes jobs assigned by the master. Resilient Distributed Datasets Za-

Figure 3.1: Apache Spark
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Figure 3.2: Apache GeoSpark

haria et al. (2010b) (RDDs) is a collection of data partitioned across the nodes of the

cluster that can perform operations in parallel. GeoSparkSim builds models in RDDs

and runs the simulation based on Apache Spark.

3.1.2 Apache GeoSpark

Apache GeoSpark Yu et al. (2018) is an in-memory cluster computing framework

for processing large-scale spatial data. Figure 3.2 is GeoSpark architecture. The

framework is based on Spark and provides two layers, spatial RDDs (SRDD) layer,

and spatial query processing layer. SRDD layer offers a wrapper for spatial data

in RDD and provides spatial partition mechanism on Spark RDDs, such as R-tree,

Quad-tree, etc. Spatial query processing layer designed many spatial operations on

RDDs, such as spatial range, join, k-nearest neighbors algorithm (KNN) that user can

directly use these algorithms in the distributed environment. GeoSparkSim creates

simulation models on general SRDD in GeoSparkSim and utilizes the spatial partition

algorithm in GeoSpark.
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Figure 3.3: GeoSparkSim Architecture

3.1.3 Hadoop Distributed File System (HDFS)

Apache Hadoop (nd) is an open source framework that allows large-scale offline

data processing across a cluster of computers by utilizing the MapReduce model.

Hadoop ecosystem consists of Hadoop Common, Hadoop Distributed File System,

Hadoop YARN and Hadoop MapReduce. The user can process, manage and store

data in Hadoop. GeoSparkSim stores data in HDFS and distributes data to comput-

ers.

3.1.4 GeoSparkSim Architecture

GeoSparkSim consists of a Graphic User Interface (GUI) and four layers: (1)

Vehicle and road network layer (2) VehicleRDD layer (3) simulation-aware route par-

titioning layer (4) microscopic traffic computing layer. GeoSparkSim works in concert

with GeoSpark Spatial RDDs and Spark to deliver a holistic approach that allows data
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scientists to simulate, analyze and visualize large-scale urban traffic data.

Graphic user interface (GUI). Users can interact with GeoSparkSim by the

front-end map interface which provides two functions: (1) it takes input parameters

from users including the number of to-be-simulated vehicles, simulation region, ve-

hicle context, time step, simulation period and so on. A user can directly draw a

rectangular window on the map and fill in necessary parameters. Then GeoSparkSim

backend will download the road network of the specified region, generate simulated

traffic data and visualize back to GUI.

Vehicle and road network. Each vehicle has several driving behaviors and

attributes such as acceleration/deceleration, velocity, safe distance and so on. The

values of these attributes are randomized in a specific reasonable range, so each vehicle

has its personalized behavior. The user can also control attribute values via a vehicle

configuration file. Besides that, each vehicle also has its status to record its current

simulated speed, GPS locations, and acceleration state. Road network describes

the road situation of the specified simulation region and consists of three RDDs,

NodeRDD, LinkRDD, and SignalRDD. NodeRDD contains all road junctions, and

LinkRDD contains all road segments. Besides that, there is a SignalRDD to describe

specific scenarios in the road network.

VehicleRDD. VehicleRDD is a specialized Spark RDD which consists of millions

of individual vehicle records. GeoSparkSim first creates the initial status vehicles

in this layer. Then it randomly generates sources, destinations and route length

in a particular range for every vehicle following on the specified distribution. It

leverages an open source library to build an index over the static road network.

This index contains lots of pre-computed shortest paths, so GeoSparkSim parallel

computes routes for every source and destination pair on top of it, gather the results

and convert to VehicleRDD.
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Simulation-aware vehicle partitioning. After route planning, every vehicle

in VehicleRDD has a planned route. These vehicles will precisely follow the expected

path, but each of them will show different microscopic driving behaviors. To simulate

the microscopic model of a single vehicle, GeoSparkSim needs to know the status

of nearby vehicles and road network information. To scale out such simulation to

millions of vehicle in VehicleRDD, GeoSparkSim repartition the VehicleRDD and

road network according to their spatial proximity such that it can perform local

microscopic simulation inside each VehicleRDD partition. The repartitioning occurs

periodically to reflect the vehicle distribution because vehicles may move to different

locations on the road network after a while.

Microscopic traffic computing. Given a VehicleRDD and the road network

partitioned by the vehicle partitioner, GeoSparkSim will then run the microscopic

simulation in each VehicleRDD partition and its corresponding road network parti-

tion. This local simulation generates traffic with individual object mobility pattern

which consists of vehicle status at each time step. Each vehicle has a safe distance to

avoid collisions. A vehicle will moderate the speed if its next movement invades the

safe distance to nearby vehicles or objects. Traffic signals at road intersections also

affect the traffic.

Distributed Computing. GeoSparkSim distributes the simulation work in

master-worker mode. Master is responsible for handle simulation requests from the

user, fetch road network data, vehicle generation, and visualization. After assigning

data preparation and simulation task, the cluster will run tasks in parallel. Figure

3.4 is the distributed GeoSparkSim Architecture.

32



Figure 3.4: Distributed GeoSparkSim Architecture

Figure 3.5: GeoSparkSim GUI

3.2 Graphic User Interface (GUI)

GeoSparkSim provides a graphic user interface that allows users to interact with

the system. The user can issue simulation requests and see visualized simulation

results via this interface. Figure 3.5 is a GUI example.

33



Figure 3.6: GeoSparkSim Traffic Visualization

Interface components. GeoSparkSim user interface contains three main parts:

input panel, map panel and report panel. The input panel on the right-top is the place

where the user can describe their personalized simulation request by checking several

options and fill the parameters. The map panel on the left shows the viewport of a

road network with map background. Users can zoom in/out and pan on this panel

to see different regions. The report panel on the right-bottom designed to show

the description of each processing step, like completion time, and keep track of the

simulating process.

Issue a simulation request. The user can begin to enter the number of moving

object, select VehicleRDD initialization approach and the simulation period on the

input panel. Then the user is required to draw a rectangle on the map panel to specify

the simulation region.
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Visualize the simulation result. Once the simulation is done, the user can

opt to ask for visualized simulation results. The GUI will create a new simulation

graphical frame in order to render all road network elements and simulated vehicle

locations to segments and points by every simulation time step. In each time step,

the graphical painter will update and redraw the points from simulation results to

show the latest simulation locations and update all road network objects events. The

simulation panel is created by Java Swing which can run in any platform, and the

simulator renders the real road network at scale. The GUI keeps listening to the

user events from the mouse wheel and mouse motion. If the user zooms in or zooms

out the simulation, the panel will repaint all the elements coordinate projection in

the simulators panel. If the user drags and moves the center of the simulation, the

panel will make corresponding coordinates projection changes. Figure 3.6 is an traffic

visualization example for Arizona State University.

3.3 User Documentation

GeoSparkSim can be packaged as a Java ARchive (JAR) file which is a package

file format used for aggregate java class file, needed dependencies, resources, and

metadata into one file for use and distribution. The user can run the following

command to start GeoSparkSim.

• Command setting. GeoSparkSim provides option fields with which user can

interactively play with GeoSparkSim and personalize their requests. For exam-

ple, −o means showing the user interface. By default, GeoSparkSim configures

some default values to provide a sample simulation. Figure 3.7 is the GeoSpark-

Sim help command interface. It shows all the available optional parameters. By

default, GeoSparkSim will not show the visualization if the number of vehicles

is larger than 5000 or the area size is larger than 8,000,000 square meters.
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Figure 3.7: GeoSparkSim Command Line Tools

Output Description

map.osm Raw OpenStreetMap map data by user selected rectangle

node.parquet Node data processed from map.osm

way.parquet Way data processed from map.osm

map-gh Route planning map index

edges.json Structured edges data

signals.json Structured traffic signals data

intersections.json Structured uncontrolled intersections data. (exclude signal intersection)

vehicles.json Structured vehicle data

reports Simulation results by step

Table 3.1: Outputs Description

• Output. User can set the output path and GeoSparkSim will save all the road

network, vehicle route and simulation results all in the path.

• User-defined traffic model. GeoSparkSim by default uses intelligent driving

model Kesting et al. (2010a) and MOBIL Kesting et al. (2007a) (minimizing

overall braking induced by lane change) models to moderate velocity and per-

form lane changing. GeoSparkSim allows the user to plug in his or her traffic

model such the simulation result can fit in any specific scenario.
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GeoSparkSim provides two abstract classes, car follow and movement control.

The user can easily extend them and implement abstract methods such as safe

distance check and movement control. Safe distance check takes as input a

vehicle and road network information and returns vehicles or traffic lights ahead

of the input vehicle. The user can define the checking mechanism for different

vehicles and assign priorities to different vehicles. Given the current status of

a vehicle, movement control computes the next movement of this vehicle, such

as acceleration, velocity and lane change.

3.4 Contribution

This paper presents GeoSparkSim, a scalable microscopic traffic simulator, which

extends Apache Spark to generate large-scale road network traffic data with various

microscopic traffic models. The proposed system seamlessly integrates with a Spark-

based spatial data management system, GeoSpark, to deliver a holistic approach

that allows data scientists to simulate, analyze and visualize large-scale traffic data.

Specifically, the proposed system has the following contributions:

• GeoSparkSim converts road networks to Spark graphs and simulated vehicles

to VehicleRDDs. Then it parallelizes each step in traffic simulation into a set of

RDD transformations. Such transformation efficiently distributes the computation-

intensive simulation workload to every machine in a cluster.

• GeoSparkSim takes into account microscopic traffic models such as traffic lights,

lane changing, and car following. To achieve that, it employs a simulation-aware

vehicle partitioning method to partition vehicles among different machines such that

each machine takes a roughly similar amount of simulation workload to achieve load

balance. This partition mechanism intuitively considers both temporal attribute and

spatial attribute of vehicles to handle the dynamic spatial distribution.
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• A full-fledged prototype of GeoSparkSim is implemented in Apache Spark. Our

experimental analysis shows that GeoSparkSim can simulate the movements of 200

thousand vehicles over a very large road network (250 thousand road junctions and

300 thousand road segments).

38



Chapter 4

ROAD NETWORK

The road network is a system interconnecting streets segments and holding vehicles

and pedestrian traffic. Figure 4.1 shows a road network map example for metropolitan

Phoenix area with live traffic. Green to red or black lines show the speed changes from

fast to slow. Road network is the fundamental base of traffic simulator. The quality

and complexity of these data make a huge difference in the simulation. In order to

achieve high performance in the processing road network, GeoSparkSim handles all

road network elements in Spark and convert it to serializable and big data framework

compatible structure that user can do various large-scale of analysis on it. Figure 4.2

is the road network converter architecture. After a user selects the region, road

network OpenStreetMap will be downloaded and a sinker is used for split and process

node and way from XML. Node and way are saved as parquet format in HDFS or

local disk. GeoSparkSim read node and way into data frames and do some relational

operations to get ideal data. Lastly, these data will be converted to RDDs, do a set

of transformation and convert to road network graph. GeoSparkSim possesses three

road network data structures, NodeRDD, LinkRDD, and SignalRDD generated from

OpenStreetMap. This chapter presents its internals and explains how to process and

structure them in Spark.

4.1 OpenStreetMap

OpenStreetMap(OSM) is an open source user-generated world map database. As

Google Map, OSM gives sophisticated and continuously updated street information

in high quality. There are a large number of frameworks related to or support OSM in
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Figure 4.1: Phoenix Road Network with Traffic

Roads and Freeways in Metropolitan Phoenix with Live Traffic in Google Map

(March 15 2019 Friday 13:10)

Figure 4.2: Road Network Process Architecture

40



Figure 4.3: Tempe City Portrait in OpenStreetMap

different disciplines, programming language and platform supports. These framework

functions from accessing, processing, generating, displaying to navigating, such as

Mapbox, a great interactive map. Figure 4.3 shows the Tempe City map portrait in

OSM. There are three main elements in OSM: nodes, ways, and relations.

• Node. Nodes define all the points in the space which includes node id, coor-

dinate and tags. Node ids are a unique identification of the node in the area,

coordinate in degrees uses the standard WGS84 projection GeoSystem (nd), and

tags represent the map features for nodes, for example, Tag : traffic signals =

signal.

• Way. Ways define the linear features and area boundaries which includes way

id, tags, and nds. An ID is the unique key of way, tags describe the way

segment’s features and nds is a sequential collection of the nodes Id in the way.

• Relation. Relations are used to explain how elements work together, like a bus

route is composed of many ways.

OSM uses tags to label node, way or relation’s characters. The tagging system

describes specific map features by utilizing the key-value pair. Key is attribute name
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and value is associated with the attribute, such as highway=footway, maxspeed=50.

Following is an example showing a street way with id 5090250 and characteristics

when the contributor sets up the data for the street. Nds are the nodes along the

way in sequence and ref is the unique id for the node which is same to the node

id. Tags are the features for the road and the example way is a residential highway,

name Clipstone Street and a one direction way. GeoSparkSim cut ways in following

segments and each segment consists of two nodes. All ways features are attached to

those segments. Listing 4.1 is an example of OSM XML.

<?xml version="1.0" encoding="UTF-8"?>

<osm version="0.6" generator="Overpass API 0.7.55.5 2ca3f387">

<note>The data included in this document is from www.openstreetmap.org. The data is made available

under ODbL.</note>

<meta osm_base="2019-03-17T08:11:02Z"/>

<bounds minlat="33.4108960" minlon="-111.9506450" maxlat="33.4331220" maxlon="-111.9225800"/>

<node id="41459438" lat="33.4245016" lon="-111.9275146" version="5" timestamp="2017-02-04T18:03:38Z"

changeset="45811624" uid="292665" user="Dr Kludge"/>

<node id="41520505" lat="33.4307934" lon="-111.9442680" version="4" timestamp="2014-09-28T23:30:45Z"

changeset="25735513" uid="227972" user="Your Village Maps">

<tag k="noexit" v="yes"/>

<tag k="source" v="Bing"/>

</node>

<node id="41529691" lat="33.4231268" lon="-111.9304264" version="6" timestamp="2017-02-04T18:03:38Z"

changeset="45811624" uid="292665" user="Dr Kludge">

<tag k="highway" v="traffic_signals"/>

</node>

<way id="544156292" version="1" timestamp="2017-12-02T15:35:03Z" changeset="54273258" uid="1378289"

user="ParagonPrime">

<nd ref="5260201424"/>

<nd ref="5260201425"/>

<nd ref="5260201426"/>

<nd ref="5260201427"/>

<tag k="highway" v="service"/>

<tag k="service" v="parking_aisle"/>

</way>

<way id="597596576" version="2" timestamp="2019-03-15T06:49:28Z" changeset="68163203" uid="8407158"
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user="shadty">

<nd ref="41830285"/>

<nd ref="41885773"/>

<nd ref="3983483036"/>

<nd ref="41604298"/>

<nd ref="3983483052"/>

<nd ref="5341183673"/>

<nd ref="6339179807"/>

<nd ref="5341183648"/>

<nd ref="5341183677"/>

<tag k="bicycle" v="yes"/>

<tag k="cycleway" v="lane"/>

<tag k="highway" v="tertiary"/>

<tag k="lanes" v="2"/>

<tag k="lanes:backward" v="1"/>

<tag k="lanes:forward" v="1"/>

<tag k="name" v="South College Avenue"/>

<tag k="smoothness" v="good"/>

<tag k="surface" v="asphalt"/>

</way>

<relation id="56412" version="6" timestamp="2017-03-25T17:05:53Z" changeset="47157684" uid="665748"

user="sebastic">

<member type="way" ref="28822157" role="outer"/>

<member type="way" ref="28822679" role="inner"/>

<tag k="addr:city" v="Tempe"/>

<tag k="addr:country" v="US"/>

<tag k="addr:housenumber" v="1050"/>

<tag k="addr:state" v="AZ"/>

<tag k="addr:street" v="South Forest Mall"/>

<tag k="alt_name" v="ED"/>

<tag k="building" v="yes"/>

<tag k="name" v="H B Farmer Education Building"/>

<tag k="ref" v="ED"/>

<tag k="type" v="multipolygon"/>

</relation>

</osm>

Listing 4.1: OSM XML example
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4.2 Data Importing

Even for the small size of the region, it is common to have a large amount of

OSM data because the size of the road network is mainly depended on the complex-

ity. Geofabrik is a company having a close collaborative relationship with OSM. In

their website GeoFabrik (nd), the compressed Europe street data takes more than

19 gigabytes and more than 30 gigabytes for non-compressed data. Handling a large

amount of OSM data is also a challenging task in GeoSparkSim.

A user can select any region in the world and GeoSparkSim will identify the bound-

ing box of the area, for example, top-left coordinates and bottom-right coordinates.

Then construct the URL, download arbitrary region in XML format by overpass API

and extracts all OSM elements. The Overpass API Overpass (nd) is an interface to

select customized OSM map data which acts as a web database. A user can customize

their request and send it through API and get results back from the server database.

Following is the example of querying OSM data from Overpass.

http://overpass-api.de/api/map?bbox=left,bottom,right,top

Osmosis (nd) is a Java library for processing OSM data. GeoSparkSim leverages

Osmosis XML sinker to parser each OSM element and output OSM in the desired

format. First, it filters the unallowable and irrelevant ways, formats the data to

the schema shown in Figure 4.2. In order to save storage and encode the schema,

GeoSparkSim processes the road network data in parquet format. Apache Parquet

(nd) is a columnar storage format which is compatible with any projects in the Hadoop

ecosystem. The OSM data comes in the nested data structure and each data field has

the same format. The most data processing operation in GeoSparkSim is based on

the column instead of the whole role. For instance, GeoSparkSim converts the nodes

array in the way to segments in the graph which involves the flatten transformation
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Figure 4.4: OpenStreetMap Schema

operations. Store data in parquet format could take advantages of efficient schema

encoding and data compression. For example, the raw data takes more than 100

megabytes and takes less than 700 kilobytes after convert into parquet format which

reduces size more than 100 times. GeoSparkSim decomposes the OSM data into node

parquet and way parquet files, and store it in the Hadoop Distributed File System

(HDFS (nd)) among the cluster.

4.3 Network Converter

GeoSparkSim creates three serializable classes, lane, segment link, and segment

node to parse data and perform a set of operations in Spark. Serialization is the

process to translate data structure and status to a storable, transmittable and recon-

structable structure. In order to build an object in Spark RDD and distribute given

operations, the objects and functions used in the operations should be serialized. Ev-

erything needed and referenced for the operations should be packaged, serialized and

send to executors to run. Executor in Spark is regarded as a managing agent respon-

sible for executing tasks, and it will send the serialized objects and operations for
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Attribute Type

ID Int

HeadLine Coordinate

TailLine Coordinate

Head Coordinate

Tail Coordinate

Table 4.1: Lane Class

workers to run. When the worker finished tasks, gathering the results from workers

back and deserialize it to origin format. It is a widely held view that serialization is

another challenge for computing simulation in Spark because not all the objects or

data structure could be easily serialized. This section will introduce network structure

and how GeoSparkSim converts the network to these classes.

Lane contains id, boundary coordinates, and central coordinates. Lane id is the

unique identifier generated when we compute lane geometries from way’s information.

In this case, lane id is in the range from 0 to a total number of the lane. Boundary

coordinates determine the envelope of the road lane and central coordinates are used

for compute moving object trajectories. Table 4.1 shows the lane class schema.

SegmentNode contains node id, coordinate, signal and uncontrolled intersection.

Table 4.2 is SegmentNode class schema. SegmentLink class represents processed

road network segments which include way id, head segmentNode, tail segmentNode,

distance in meter, speed in meter per seconds or mile per hour, driving direction and

the number of lanes. Table 4.3 is SegmentLink class schema.

GeoSparkSim builds a road network graph on Spark GraphX Xin et al. (2013) by

parsing nodes into vertices and ways into edges. We filter the nodes never showing

in ways which means the useless nodes and split the nodes into two sets. One is
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Attribute Type

ID Long

Coordinate Coordinate

Signal Boolean

Intersect Boolean

Table 4.2: SegmentNode Class

Attribute Type

ID Long

Head SegmentNode

Tail SegmentNode

Distance Double

Speed Int

DriveDirection Int

Lane Int

Table 4.3: SegmentLink Class

intersection nodes set, and another is non-intersection nodes which lay down along

the segments between two vertices. The raw OSM data contains nodes and ways, but

a necessary representation of the directed graph needs vertices and edges. Vertices

are used to represent intersections along the road and edges represent the link that

connects two intersections. The development of road network includes three primary

operations, find the intersection nodes among the nodes array in the way, split way to

segment edge links and build the graph by the intersection node vertexes and segment

link edges.

1. Process Nodes
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A node usually is the junction, turning point or end point of the way. The

node schema in the last figure shows id, latitude, longitude, and tags. Read

node parquet to the dataset in Spark, convert key-value pair from tag column

to a map and filter the nodes which contain the key of highway and value of

traffic signal. Format the traffic signal datasets, join it with node dataset and

mark signal node in the signal column.

2. Process Nodes from Ways

A way consists of a sequential collection of nodes, and the intersection is a

junction where two or more roads meet or cross which can be classified by

the segment ways. Identify the intersection nodes by aggregate and filter the

nodes showing more than once in the ways. Label these nodes as intersection

nodes which will represent the vertex in the graph. In order to gather all road

network relation, the nodes processed from the last step are fully joined with

the intersection nodes.

3. Process Ways to Segment Links

After identifying all way nodes, we need to convert the road relation to simu-

lation information. For example, the non-directional way geometries should be

converted to directional divided lane geometries. In the way transformation, we

extract way id, way tag map and node sequence. In the tag map, format speed

limits, report lanes, select driving direction, identify one-way road and round-

about road and label the bidirectional way. Since the nodes come in sequence in

the way, the segment link is generated by sliding the nodes array with windows

size 2. The sequential identifier labels the head node and the tail node in the

segment. The detailed information of the road is stored in the segment link,

such as maximum speed, tail node, head node, distance cost, drive direction,
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and total lanes. The distance cost is the distance in the mile between the head

node and the tail node which combines the maximum speed to calculate the

route. The maximum speed in mile per hours is the maximum allowed speed

for a vehicle running in the road which will be used to not only to calculate

the route but also compute the simulation objects because all the way has the

driving direction and lane information. We split way and corresponding lane

count by the direction label.

4. Format Segment Links to Simulation Links

In this step, we use the segment link direction angle to make a distance bias

and thus calculate the lane coordinates. The direction angle means the angle

between the edge and x positive axis.

5. Build the Road Network Graph

Formatting the vertices from node dataset and structuring the link to the edge,

apply these vertices and edges to graph build API from GraphX. The graph

will be used to generate trip data, computing the trips and run the simulation.

Figure 4.5 shows how to convert way into segment link. In the diagram, way1

and way2 come across, and there are five nodes. Node2 is the shared node

and intersection for way1 and way2. The way1 has three nodes in the diagram,

node1, node2 and node3 with four lanes and 45 miles per hour maximum speed.

We slice way1 into 4 segments, s1 from node1 to node2, s2 from node2 to node3,

s3 from node3 to node2 and s4 from node2 to node1, mark each segment with

2 lanes and 45 mph maximum allowed speed, calculate distance between the

node and linear interpolate the points between the head node and tail node.

If the number of nodes is N and the number of ways is M, the time complexity
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Figure 4.5: Convert Ways to Segments

Algorithm 1: Road Network Converter
Data: rawnodes, rawways

Result: nodes, links, lights

1 Filter light nodes from rawnodes;

2 Explore and flat a sequence of nodes from rawways and format into ways;

3 Join light nodes with explored ways by node ID and format into wayDF;

4 Convert wayDF to segmentRDD by segment node sequence;

5 Build lane coordinate reference system and convert segmentRDD into linkRDD;

6 Filter light node from linkRDD and format into signalRDD;

7 return Road Network(nodeRDD, linkRDD, lightRDD)
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of the Algorithm 1 is O(N ∗M) because of the join operations between nodes and

ways. If the number of partition is P, the time complexity is O(N ∗M/P ) because

the operations run in parallel.

NodeRDD. NodeRDD contains all needed vertexes from an arbitrarily selected

region, and each vertex is a road junction that connects two road segment links.

Each vertex has three attributes (1) ID: the unique ID of this vertex (2) location: the

spatial coordinate of this vertex (3) type: a vertex can be on a highway or residential

street. It may have traffic lights or being an uncontrolled intersection.

LinkRDD. LinkRDD accommodates all necessary edges, and each edge is a road

segment which is a straight way between two vertexes. Each edge consists nine

attributes (1) the ID of the way (2) way source vertex (3) way destination vertex (4)

total length of the edge (5) speed limit (6) drive direction (7) lane count (8) direction

angle (9) lane geometries.

SignalRDD. SignalRDD includes all signal vertexes in the simulation region.

Each signal contains three main attributes (1) the node ID (2) the controlled way ID

(3) coordinate.
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Chapter 5

VEHICLE

The moving agent in GeoSparkSim is a different type of vehicles, such as truck and

car which has different characteristics and moving attributes. For instance, the truck

has longer length and higher speed limits than the compact car. These vehicles

play a fundamental role in construct traffic in the road network. This chapter will

introduce the algorithm to initialize vehicles, compute the shortest path, seed up it

in multithreading and convert to vehicleRDD.

5.1 Initialization

The vehicle model in GeoSparkSim is time-continuous coordinates list. A vehi-

cle leaves a place (coordinate) at a particular time (step), follows the path step by

step and disappears when reaching the destination (coordinate). The first step is to

initialize these parameters.

Source Coordinate. There are some existing approaches to generate the moving

objects source node, such as the data-space oriented approach (DSO) and network-

based approach (NB) proposed by professor Brinkhoff (2002). The DSO approach

generates source points based on a specific spatial distribution and run map matching

to match points to their nearest nodes in the road network. This spatial distribution

can be the density of the human population or the thickness of buildings. Regions

with high density will produce more sources node. The NB approach randomly selects

road junctions as sources. GeoSparkSim provides these two options for the user.

Route Length. For observation purpose, the route length should not be too short

or very long. We define a minimum route length 1 kilometer, and the maximum route
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Figure 5.1: Vehicle Initialization

length is the length of the diagonal line from the selected region divide by 10. If the

region is smaller than the defined width, the minimum and maximum value will scale

as well to meet the requirements. Figure 5.1 is an example of the relationship between

the region and vehicle initialization. The region is bounded by top-left and bottom-

right coordinates and all the source node is generated in this region. GeoSparkSim

will create a region buffer with the maximum length in the following equation to hold

the destination node.

maximum length = distance(top− left, bottom− right)/10

Destination Coordinate. Destination Coordinate is computed by source co-

ordinates, route length and a randomly generated angle [0, 360]. Route length is

random generate in the range mentioned in the last paragraph. Assume GeoSpark-

Sim in Cartesian Coordinate System, like Figure 5.2, the source is the center of the

circle and the radius is the route length. Randomly generate the center angle and

calculate the destination by the equation.

longitude = source.longitude+ length ∗ sin(angle)
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Figure 5.2: Souce Destination Cartesian Coordinate System

latitude = source.latitude+ length ∗ cos(angle)

Vehicle Attributes. Vehicle extends JTS (nd) LineString and each vehicle has

three components: vehicle, intelligent driving mode and lane-changing model. The

JTS is a Java Library for creating and manipulating geometry.

1. The vehicle contains attributes with type in Table 5.1. The ID is the unique

identification of vehicle created by a random combination with length 5 of upper-

case characters and number 0-9. The source and target coordinates are gener-

ated in the method mentioned above. Edgepath is an array of edge id (OSM

way id) where the vehicle will stop by. The cost for each edge is stored in

the cost array. The full path is the trajectories of the vehicle which expected

path is the temporal path storing the LineString coordinates. Front coordinate

represents the vehicle head while rear labels the vehicle back position. Edge

index indicates the current edge from edge array where the vehicle is running.

Vehicle attributes is a representation of the vehicle’s basic information. Vehicle

encapsulates as an individual class and the user could customize it to represent

a different kind of vehicle.
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Attribute Type

ID String

Source Coordinate

Target Coordinate

Edge Path Long Array

Costs Double Array

Full Path Coordinate List

Front Coordinate

Rear Coordinate

Edge Index Integer

Car Length Double

Current Lane Integer

Is Arrive Boolean

Current Link Link

Table 5.1: Vehicle Attributes

2. Intelligent Driving Model (IDMVehicle) incorporates several parameters to con-

trol the driving behavior of a vehicle showing in Table 3.2. Start position is the

position in the current lane. Head signal keep tracks of the nearest signal po-

sition in the vehicle’s path. During the simulation, every vehicle moves along

its planned route over and over, but each time it may stop at different traf-

fic lights, run in separate lanes and generate various acceleration/deceleration

events based on IDM. The detailed movement illustration will be the next chap-

ter.

3. Lane-changing Model (MOBILVehicle) consists of several attributes required
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Attributes Value or Type

Acceleration 2.5 (m/s2)

Brake Deceleration 3 (-m/s2)

Start Position 0 (meter)

Safe Distance 3 (meter)

Default Speed Limit 17.88 (m/s)

Current Speed Double

Head Signal Traffic Light

Table 5.2: IDMVehicle Attributes

Attributes Value or Type

Politeness Factor 0.3

Maximum Safe Deceleration 4 (-m/s2)

Threshold Acceleration 0.4

Table 5.3: MOBILVehicle Attributes

Table 5.3 to calculate the lane change criterion. The details of MOBIL will be

discussed in the next chapter.

GeoSparkSim first initializes the status of vehicles which will generate a trip source

and a destination for every vehicle such that the vehicles will move from their sources

to destinations during the simulation. Their specific routes will be generated in the

next step.
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5.2 Route Planning

After vehicle initialization, route planning layer read road network, process it with

graph structure and compute the shortest path of each vehicle. GeoSparkSim explores

three engines to computes the path and decides to leverage Graphhopper to do route

planning. This sections will discuss route planning approach on these three engines

and discuss the pros and cons for these three approaches.

5.2.1 Open Source Routing Machine

Open Source Routing Machine OSRM (nd) is an open source application with

solutions to find the shortest path in the OSM road network. OSRM is implemented

in C++ and developed two preprocessing pipelines: contraction hierarchies (CH)

Geisberger et al. (2008) and multi-level Dijkstra (MLD) Holzer et al. (2009). Con-

traction hierarchies is a technique to speed up the shortest path finding process by

precomputing the short cut between graph connection. Multi-level Dijkstra is based

on the standard Dijkstra algorithm with preprocessed multiply graph layers, such as

highway layer. OSRM provides back-end, front-end and docker image for the user to

utilize the routing engine. Before querying the path, OSRM requires the user to do

road network data preprocessing. For example, if you want to calculate the shortest

path from ASU to Phoenix, you need to download OSM data and run preprocessing

command from OSRM. Unfortunately, this preprocessing takes a huge chunk of time.

For instance, the Arizona state OSM road network data takes around two hours to do

preprocessing. Even the routing performance is close to Graphhopper Section 5.2.3,

OSRM unable to do faster preprocessing from raw data and thus is unsuitable for

real-time traffic simulation.
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5.2.2 Apache GraphX

GraphX implements many classic graph-related algorithms, wrap it with API and

thus provides a set of Apache Spark APIs for parallel graph computation. Rather than

the link cut from TRANSIMS mentioned in Chapter 2, GraphX partitions graph by

intersection. TRANSIMS do graph decomposition more from simulation side since

they think the simulation scenarios are more complicated in the intersection than

links. But GraphX considers it more from graph algorithm side, like message passing.

Graph traversal is a typical process in the graph, and it will visit the node in the graph

in specific ways, such as Depth First Search(DFS) and Breath First Search(DFS). The

message need to be computed will pass from node to node by the connecting link,

like path message.

Chapter 4 discussed the conversion from the road network to vertexRDD and

edgeRDD. We build the graph in Spark GraphX and develop the Dijkstra algorithm

in GraphX pregel Malewicz et al. (2010). Figure 5.3 shows an example of the road

network graph on GraphX. Vertex table is the table representing vertex informa-

tion in which GraphX uses the ID to identify and make communication. Edge table

is regarded as the table to maintain the directional graph relationship by point-

ing srcId, DstId and corresponding property. Pregel API is an implementation of

bulk-synchronous message-passing API, especially for graph computing. Pregel API

enables message computation over edges, read computation message both from a ver-

tex and its attributes and iteratively passing estimate from one vertex to all neigh-

bor edges and vertex. Algorithm 2 is the pseudocode of Dijkstra implementation in

GraphX. Initiate message with destination ID, infinite costs and an empty list to store

the ongoing visite node. Utilized pregel API, graph passing message from a source

to all neighbor vertex, calculate and update costs. In the end, merge the results in
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Figure 5.3: A Road Network Graph Example in Apache GraphX

the graph. Unfortunately, without advanced graph preprocessing and indexing, the

Dijkstra algorithm implementation in Pregel GraphX over a large road network is

very slow. For example, compute the shortest path from ASU brickyard to Walmart

in E Southern Ave over Tempe, AZ area takes around 1 minute to complete. Because

of the limitations, GeoSparkSim requires real-time quick route planning and GraphX

is not a good idea.

5.2.3 GraphHopper

GraphHopper Karich and Schröder (2014) is an open source route planning li-

brary to compute the shortest path for every source and destination pair. Graphhop-

per supports various routing algorithms, such as Dijkstra and A star that provides

three modes for the user depending on different purposes, such as speed mode, flex-

ible mode, and hybrid mode. Speed mode preprocesses road network to contraction

hierarchies, and the flexible mode comes without CH. Graphhopper supports many

different types of input, such as OSM, Shapefile, Navteq, etc. We use Graphhopper to

preprocess OSM and overwrite the API to return the data GeoSparkSim needs, such
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Algorithm 2: SSSP Dikstra Implementation in Pregel GraphX
Data: Road network graph, source Id, destination Id

Result: Shortest Path

1 load road network graph;

2 val initialMsg = Route(destId, Infinity, List())

3 val spGraph = graph.mapVertices{ (vid, vertex) =>route }

4 //Execute Dijkstra

5 val pregel = Pregel(spGraph,

6 initialMsg

7 spGraph.vertices.count(), //Maximum Iterations

8 EdgeDirection.Out)(

9 vprogf = (id, msg) =>route with minimum cost //Update

10 sendMsgf = triplet =>compare costs //Compute Msg

11 combinef = (m1, m2) =>msg with minimum cost //Combine msg

12 )

13 pregel.filter(destination == last Id in list).map(route)

14 return Route from source id and destination id

as edge path. Compared to Open Street Routing Machine, Graphhopper has much

less preprocessing time. For example, processing Arizona OSM data takes around two

hours in OSRM while Graphhopper takes a couple of minutes to complete. Moreover,

Graphhopper takes less route computing time than the implementation in GraphX.

For the sake of routing speed, GeoSparkSim leverages GraphHopper Karich and

Schröder (2014). GeoSparkSim first uses GraphHopper to build an index over the

imported road network. This index pre-computes short paths among common road

junctions. Then GeoSparkSim queries the pre-built index to calculate the route for

every vehicle.
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Figure 5.4: Vehicle to VehicleRDD

5.3 Parallel Vehicle Generation

Graphhopper is a routing machine focusing single shortest path algorithm. In

order to speed up the shortest path computing process and take most of the CPU

computing resources, GeoSparkSim parallel process the requests in multi-threads.

By default, GeoSparkSim uses a thread pool with eight threads to generate the

vehicle and compute the shortest path in parallel. Each thread contains a spatial

coordinate generator and a routing engine. Figure 5.4 is an example to generate ve-

hicles in parallel. User requests simulation with 100,000 vehicles. GeoSparkSim will

divide the number of the vehicle to 8 threads. Each thread sequentially produces ve-

hicle status and compute the shortest path. When the thread finished route requests,

GeoSparkSim will gather results in a list of vehicle and convert to vehicleRDD. After

all the requests finished, the thread pool will be shut down immediately.

5.4 VehicleRDD

GeoSparkSim VehicleRDDs are in-memory distributed datasets that extend tra-

ditional RDD to accommodate vehicle objects in Apache Spark. VehicleRDD is con-

structed by a set of vehicles with its randomized driving models and status such
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that yields arbitrary trajectories. Each VehicleRDD consists of many partitions and

each partition contain thousands of vehicles. GeoSparkSim performs simulation in

each partition and these partitions compute simulation in parallel by distributing the

VehicleRDDs across the cluster.

VehicleRDD transformation. To simulate the traffic of numerous vehicles in

a specific period, GeoSparkSim generates GPS locations of these vehicles for every

simulation time step. For instance, if the period is one day and the simulation time

step is 1 hour, GeoSparkSim will take a snapshot of the traffic every hour from 0:00

am to midnight. To achieve that, GeoSparkSim first creates an initial VehicleRDD,

and all vehicles stay at the origins of their routes. Then it keeps transforming the

VehicleRDD via a map operation. Each RDD transformation will compute the new

running status of vehicles according to their driving models. Every transformation

produces a new VehicleRDD based on its ancestor VehicleRDD. The running status

computation uses microscopic simulation models and will be detailed in Chapter 6.

In other words, a VehicleRDD is a snapshot of current vehicle movements over the

road network.
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Chapter 6

SIMULATION

This chapter will explain the driving behaviors and driving models being consid-

ered in GeoSparkSim. Spatial distribution and workload balancing have a significant

impact on simulation which will be discussed in this chapter. Also, the simulation

algorithm, partition strategy, and parallel simulation computation will be explained

in this chapter.

6.1 Driving Behaviors

Driving behaviors describes the moving objects in the simulation. GeoSparkSim

is a microscopic traffic simulator, in which the single vehicle-driver behaviors are

characterized by all the simulated vehicle in a given time. For example, the vehicle

change lane where there is no obstacles side by side, accelerate when there is no close

vehicle ahead and stop when the light is red. GeoSparkSim is a microscopic traffic

simulator simulating single vehicle-driver units, so the dynamic variables for the model

represent the moving object behaviors, like the position, change lane, velocity change,

brake, stop, etc. GeoSparkSim is a time-continuous simulator following the car-

following Gipps (1981) and lane-changing Kesting et al. (2007a) model that describes

the dynamic driving behaviors in ordinary differential equation(ODE).

• Keep Safe Distance to Surrounding Objects. Based on the vehicle tra-

jectory, GeoSparkSim will check next following road to determine the nearest

front object, vehicle or traffic signal. Get the relative speed; the vehicle will keep

a safe distance between the object and make corresponding actions. Because

sometime the vehicle may have randomized driving behaviors, a checking buffer
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Figure 6.1: Safe Distance Check

is added to a safe distance check. Figure 6.1 shows the example of checking

buffer.

• Traffic Signal Intersection. In the intersection with a traffic signal, GeoSpark-

Sim assigns the same signal when two roads are in the same angle. During the

simulation, the simulator will update the signals, and the vehicle will respond

to corresponding lights. Vehicles keep the same passing speed at a green light,

decelerate at a red light and check the safe distance to pass at a yellow light.

• Moderate Speed in Every Step. In each simulation steps, the vehicle will

check the heading objects and moderate speed to keep a safe distance. Next

section will have a detailed introduction of the model.

• Change to More Safety Lane. GeoSparkSim simulate vehicle in the multi-

lane road network. The simulator will switch the vehicle to less traffic lane to

distribute traffic and simulate the real scenarios. Next section will introduce

the lane change mode.
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6.2 Microscopic Simulation Models

On each partition, GeoSpark runs a generic simulation algorithm which allows

pluggable microscopic traffic models.

Car-following. GeoSparkSim adopts the Intelligent-Driver Model(IDM) Kesting

et al. (2010b)to update the speed, position, and gap. The bumper-to-bumper gap is

the distance between the vehicle and the front vehicle. IDM is the model decides

the acceleration and moderate speed every timestamp in simulation, like accelera-

tions and braking deceleration of the drivers. The influencing factors of IDM include

desired speed(v0) referring to the maximum speed of the street, headway time(T),

acceleration factor(a), braking deceleration factor(b), minimum bumper-to-bumper

distance(s0) to the front vehicle and acceleration exponent(delta). The following is

the IDM model equation. The car-following model helps GeoSparkSim better de-

scribe the microscopic driving behaviors and define the vehicle’s location more pre-

cisely without overlaying other objects. If nearby vehicles are within the safe distance

buffer, this model will make the vehicle decelerate. If there are no nearby vehicles,

the model may accelerate the vehicle.

dv

dt
= a[1− (

v

v0
)δ − (

s∗(v,△v)

s
)2] (6.1)

where

s∗(v,△v) = s0 +max[0, (vT +
(v△v)

2
√
ab

)] (6.2)

Lane-changing. GeoSparkSim uses a general lane-changing model called MOBIL

Kesting et al. (2007b). Safety criterion and a specific probability will trigger lane

change. For instance, if the vehicle changes the lane and can get a more safety
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context to surrounding objects, the lane change will happen. Otherwise, it will stay

in the same lane.

Some lanes information is from OpenStreetMap and default lane is bidirectional

with one lane each direction. Taking the acceleration decision from IDM, the MO-

BIL calculates if the targeted new lane is allowed. The following equation is MO-

BIL which includes politeness factor (p), maximum safe braking deceleration(bsave),

threshold(athr) and bias to the right lane Delta b.

acc′(M ′)− acc(M) > p[acc(B′)− acc′(B′)] + athr (6.3)

where

acc′(B′) > −bsave

Traffic lights. GeoSparkSim assigns initial signal randomly, and it exactly follows

the green-yellow-red sequence. The time duration for green light is 55 seconds, yellow

light 5 seconds and red light 60 seconds. When a traffic light appears in the safe

distance of a vehicle, GeoSparkSim will check the status of this light. The speed of

this vehicle will be changed to 0 right away if the signal is red. If the light becomes

green in the next time steps, the vehicle will start to accelerate.

6.3 Simulation Architecture

Figure 6.2 is the general simulation architecture in GeoSparkSim. Chapter 4

and chapter 5 explained the generation of LinkRDD, SignalRDD and VehicleRDD.

Considering a user issues a simulation request for 10 minute and 1 second per step,

600 simulation steps will be computed. In each simulation step, GeoSparkSim first

calculates signal timing and update the next signal and then loop all the vehicle calcu-

lating the next movement. For each vehicle, GeoSparkSim will check nearby objects
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Figure 6.2: Simulation Architecture

following the trajectory. Based on these objects and their relative status, update

new acceleration event and moderate speed. Calculate the possible lane to change

and compute new coordinate by the speed, simulation interval, and lane coordinate

reference. Finally, remove the vehicle from the last position and add it to the new

road. Each Simulation step will generate new signal and vehicle events, and these

events will be reported as the StepReportRDD output. A user can use the result for

visualization or analytic.

6.4 Distributed Simulation

The simulator will iteratively run simulation steps calculated from period and time

per step and compute results. GeoSparkSim is developed as a distributed system and

implemented on Apache Spark following a master/slave architecture that requires

one master process and one or more slave processes, referred to as workers. The

master is responsible for data preparation, simulation management, partition, and

visualization. The worker is responsible for process data, compute driving models

and update simulation objects. The master and worker can be run in the same

machine and serve the corresponding jobs. Master and workers can be configured in
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Figure 6.3: Distributed Simulation

internet connected computers across the cluster by Apache Spark. The master is able

to communicate with all the slaves in cluster and workers only follow the master’s

commands.

Figure 6.3 is the simulation work distribution in GeoSparkSim. Temporal simu-

lation is a partial period of simulation and will be explained in Section 6.7. General

speaking, a simulation task has many iterations. For example, ten minutes simu-

lation and one second per steps have 600 iterations. Current iteration simulation

computation is depended on the last iteration results. In each iteration, GeoSpark-

Sim distributes works to workers and each worker-run simulation in parallel. Since

workers parallel compute the traffics, the simulation time can be significantly reduced

compared to run it in a single worker. How to distributes workload will be discussed

in Section 6.5 and the workload balancing approach will be introduced in Section 6.7.
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Figure 6.4: Spatial Workload Distribution

6.5 Spatial Workload Distribution

GeoSparkSim is a distributed simulator, and the workload distribution in the

cluster has a significant impact on performance. For example, if two workers are

running the simulation at the same time, the total simulation time depends on the

worker who takes the longest time to complete. Balanced workload helps system to

make full use of computation resources. If the workload is unbalanced, all the workers

need to wait to process the next steps, and at that time these workers do nothing and

perform idle.

GeoSparkSim partitions simulation works by the spatial attributes, like coordi-

nate and trajectory. Granularity describes the simulation details and density of a

partitioning grid, such as streets, traffic lights, vehicle movement and lane change

which is a representation of simulation workload. Figure 6.4 is a comparison between

partition simulation by the road network and the vehicle density. The background

network describes the road network granularity, and the yellow vehicle represents the

vehicle granularity. These two figures are on the same road network and have equal
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vehicle distribution. The left diagram shows the road network partition plan. Parti-

tion 1 (P1) and partition 2 (P2) have the same road network density. However, the

number of vehicles in P2 is larger than P1. Simulator computes vehicle movement

in each step, and the major workload is related to the vehicle; thus P2 have heav-

ier simulation workload than P1, and when P1 finished works, it will cause an idle

time for P1 to wait for the completion of P2. It is inefficient to partition simulation

by road network because of the unbalanced workload issue. The right figure shows

the approach partition simulation by vehicle. P1 has a larger region area size than

P2, but the vehicle density is the same in two grids. This approach tries to balance

simulation workload which will have benefits on computation resources.

6.6 Spatial Resilient Distributed Dataset (SRDD)

Spatial partition is the process to divide a space into several regions. This section

will introduce three types of spatial partition tree, Quad-tree, KDB-tree, and R-tree.

Spatial Resilient Distributed Dataset extends Spark RDDs with spatial objects that

efficiently partition spatial data across Apache Spark cluster, and GeoSparkSim wraps

all simulation objects into SRDDs in the cluster that can efficiently build a spatial

index and distribute the simulation work in the cluster by the spatial proximity.

6.6.1 Spatial Partitioning Tree

Spatial partition system partitions space into many parts by the spatial proximity

and this subspace will be organized into a tree, called a space-partition tree. A Quad-

tree Finkel and Bentley (1974) is a tree data structure in which each internal node has

exactly four children. A KDB-tree Robinson (1981) (k-dimensional B-tree) is a tree

data structure for subdividing a k-dimensional search space and provide the search

efficiency of a balanced k-d tree. An R-tree Guttman (1984) is a tree data structure
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building multi-dimensional index for spatial objects.

6.6.2 SRDD Partitioning

GeoSparkSim creates three simulation objects, vehicle referred to as Point, link

referred to as LineString and signal as Point. Coordinate represents the Point in the

spatial system, and LineString represents the line segment with at least two coor-

dinates. GeoSparkSim loads raw data into memory physically splits its in-memory

(hashing partitioning) and distributes an equal number of partitions to each worker

node. This kind of partitioning doesn’t consider the spatial proximity which is essen-

tial for simulation-related analytic. For example, a vehicle trajectory is a sequence

coordinates following spatial proximity. Also, all the simulation objects combined by

their spatial proximity. With the increasing complexity of simulation and transporta-

tion system, spatial proximity preserves the spatial relationship which is crucial for

zipping spatial objects together.

The partition algorithm first builds a global grid file at the master node. Spatial

RDDs represents a vastly distributed dataset, and it is very time-consuming to con-

struct a partitioning tree on the original RDDs. The algorithm takes a sample from

the original RDDs and builds the selected spatial structure on the collected sample

on the master. The grids are retrieved from the built spatial structure and if the

spatial object intersects

1. Build a global spatial grid file. The spatial objects are loaded and split

by spatial distribution to achieve load-balancing. In these steps, the sample is

taken from each subset and the sample keeps the spatial proximity. After that,

a spatial partitioning tree is used to split the sampled data into partitions at

the Spark master node.
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2. Assigning a grid cell ID to each object. After building a global grid file,

the original Spatial RDDs need to be repartitioned by the spatial structure. The

global grid file will be broadcast to each Spatial RDD with grid ID and each

Spatial RDD will begin to check the internal objects against the grid file. A new

Spatial RDD will be created to store the results with key-value pair schema. If

the object intersects or spans across with several grids, the duplicated object

will be created in each grid.

3. Re-partitioning SRDD across the cluster. The key is the grid ID and the

value is the object. In this step, Spatial RDD is repartitioned by key and the

object with the same key are grouped into the same partition. The data will be

shuffled and partitioned across the nodes in the cluster.

6.7 Spatial Workload Balancing

Simulation measures the dynamic object events in transportation system over

time. The last section discussed the importance of vehicle for simulation and this

section would discuss the spatial simulation-aware partitioning approach in GeoSpark-

Sim which try to make equal simulation workload for each partition in the cluster

over time. The vehicle life cycle is beginning with source coordinate, travel path co-

ordinates and destination coordinate. Initially, the workload could be distributed by

the vehicles’ source coordinate. But the vehicle movement may cause spatial distribu-

tion different than the beginning. Conclusively, the spatial distribution in simulation

dynamic changes over time.

6.7.1 Partition by Vehicle Source Coordinate

Consider if simulation workload is spliced by the distribution of vehicle source

coordinate, Figure 6.5 shows the partitioned road network consisting three grids, par-
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Figure 6.5: Partition by Vehicle Source Coordinate

Figure 6.6: Partition by Vehicle Trajectory

tition 1 (P1), partition 2 (P2) and partition 3 (P3). As the partition is based on

vehicle, the area size of these partitions is different. Vehicle 1 (V1) will move follow-

ing the red line and dynamic update the locations over the simulation. If the vehicle

reaches the boundary between P1 and P2, a message exchange process is required to

continue to simulate V1 which will lead to additional message exchange costs. In ad-

dition, this approach doesn’t consider the dynamic changed spatial distribution since

it maintains the same partition all the time which will cause unbalanced workload

with increased simulation steps.
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Figure 6.7: Simulation-aware Partitioning

6.7.2 Partition by Vehicle Trajectory

Assume the simulation workload is partitioned by the vehicle trajectory and Fig-

ure 6.6 displays the partitions. The trajectory is a collection of coordinates vehicle

will follow in simulation and a minimum bounding rectangle (MBR) will be created

by the coordinates, the yellow dash rectangle in the figure. GeoSpark provides an

approach to do spatial partitioning with a spatial partitioning tree. The trajectory

MBR may go across several partitions and will have a copy in each of them. This

means the vehicle will compute three times in total if the simulator computes traffic in

parallel. This approaches may have significant overhead and a waste of computation

resources in the cluster.

6.7.3 Simulation-aware Partition

GeoSparkSim proposed a simulation-aware partition (SP) approach trying to bal-

ance the workload distribution over time. SP partitions initial simulation workload

by the source coordinates and periodically repartition by the new vehicle location.

Figure 6.7 is a SP illustration. Redline is the temporal simulation path. For exam-

ple, if simulator repartition workload in every 2 minutes, the temporal simulation is

2 minutes. In the figure, GeoSparkSim dynamic update partitions over the time to
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achieve spatial workload balancing and make full use of computation resources.

The repartition period is dynamic determined by the simulation precomputation.

GeoSparkSim takes samples from VehicleRDD, LinkRDD and SignalRDD, distributed

simulate samples in different repartition period, and records the period with the

minimum execution time. The sample keeps the same ratio against the original

data, and the spatial distribution of the samples is exactly same as the original data.

By doing that, the repartition period is more flexible to the simulation period, and

GeoSparkSim always tries to give the best repartition strategy with the minimum

overhead.

6.8 Simulation Algorithm

In repartition criterion Algorithm 3, GeoSparkSim takes 1% samples from ve-

hicleRDD, LinkRDD and SignalRDD. Segmenting five repartition periods from the

simulation period and check the best repartition period with best workload balancing

and minimum simulation time. Algorithm 3 flexible determines the best repartition

period with minimum computation overhead.

GeoSparkSim set a repartition time and run temporal simulation iteratively which

will shuffle the vehicleRDD, LinkRDD and SignalRDD in the simulation. If the

simulation period is too short, like 2 minutes, GeoSparkSim will initially partition

the vehicle once by coordinates, otherwise, periodically do repartition.

In simulation Algorithm 4, GeoSparkSim periodically do repartition for vehi-

cleRDD and apply same partition mechanism to LinkRDD and SignalRDD. Because

an entire road network contains vehicles, links, and signals, VehicleRDD, LinkRDD,

and SignalRDD are zipped by objects’ spatial proximity. After partitioning the RDDs,

GeoSparkSim is ready to run the local microscopic simulation on each RDD parti-

tion. All vehicles will follow their trajectory in this temporal partition. Every route
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starts from the last location of the vehicle. This algorithm first calculates the num-

ber of GPS locations(step) needed to be simulated for every vehicle in this temporal

partition. This number can be easily computed via the following equation:

locations per vehicle =
temporal partition size

time step size

where time step is the granularity of simulated trajectories (say, 1 second). It also

indicates the number of simulation iterations needed to run by GeoSparkSim. The

algorithm then runs a set of iterations, and in each iteration, it first computes all signal

next timing and update light and calculate every vehicle movement. The vehicle will

search the nearest objects, like vehicle or traffic light ahead from links. In each local

simulation, links will be initialized to a Map with way ID key and link object value.

Vehicle trajectory contains the way information, such as coordinates, distance costs,

and way ID. The vehicles are able to get link object by way ID from links map. In

order to avoid collisions, GeoSparkSim computes the relative speed to nearest objects

and update the next acceleration. Calculate the following position in the lane by time

step and acceleration and remove the vehicle from the last place. GeoSparkSim also

considers multi-lanes roads and will check the possible lane change opportunities and

update vehicle to the new lane. The new coordinate calculated by the lane coordinate

reference and the position in the road lane. Finally, update the vehicle in the link

map. After the local simulation on each RDD partition, GeoSparkSim will update

VehicleRDD and SignalRDD status and persist the simulation results on HDFS.

If the number of simulation iterations is N, E street links, V vehicles, S traffic

signals and considering the microscopic simulation model computation is a constant

time cost C, the time complexity of Algorithm 4 is O(N ∗ (S + CV )). Because

GeoSparkSim distributed run traffic simulation, if the number of spatial partition is
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P, the time complexity of the algorithm is reduced by P which shows in the following

equation.

time complexity =
N ∗ (S + V ∗ C)

P

Algorithm 3: GeoSparkSim Repartition Algorithm
Data: Iterations, VehicleRDD, LinkRDD and SignalRDD

Result: BestRepartition

1 Initialize minTime and bestRepartition;

2 for repartition← iterations/10 to iterations/2 do

3 Initialize time;

4 Run GeoSparkSim With VehicleRDD, LinkRDD and SignalRDD Samples;

5 if time <minT ime then

6 bestRepartition = repartition ;

7 return Best repartition period
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Algorithm 4: GeoSparkSim Simulation Algorithm
Data: Iterations, VehicleRDD, LinkRDD and SignalRDD

Result: StepReportRDD

1 Initialize SignalRDD and LinkRDD;

2 foreach temporalpartition in iterations do

3 Partition VehicleRDD by current location;

4 Apply same partition to LinkRDD and SignalRDD;

5 Zip VehicleRDD, LinkRDD and SignalRDD by spatial proximity;

6 foreach partition in zipped RDDs do

7 foreach iteration in temporal simulation do

8 Initialize vehicles in links;

9 foreach Signal S do

10 Update S timing and light;

11 foreach vehicle V do

12 if V not arrive destination then

13 Search the closest vehicle and traffic signal ahead;

14 Compute V acceleration and velocity;

15 Remove V from links;

16 Compute V position P in lane;

17 Check possible lane change;

18 Compute coordinate by P and new lane;

19 Update V and add to links;

20 else

21 reborn V ;

22 Update vehicleRDD and SignalRDD by the latest status;

23 Write steps reports;

24 return Simulation results
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Chapter 7

EXPERIMENT

7.1 Preprocessing

This section focuses on the data preparation experiments, and it contains two

parts, road network graph preprocessing and vehicle generation. When we do traffic

simulation, a user will issue the request from UI; the corresponding road network will

be download and then do vehicle generation and simulation.

Experiment Setting. Because SUMO is not scalable, the preprocessing experi-

ments are on Apache standalone mode. Compared to cluster mode, standalone mode

runs the program in a single machine. The machine has a Intel(R) Core(TM) i7-4790

CPU @ 3.60GHz (8 cores), 32 GB memory, and 500 GB HDD. Apache Hadoop 2.6

and Apache Spark 2.3.2.

Road Network Graph. In this experiment, we study the impact of road network

graph converting. The approaches to handle the OSM road network was introduced

in Chapter 4. We conduct the experiments with different road network area and

comparison with SUMO road network converting process. Figure 7.1 shows the road

network experiment settings and Table 7.1 performance companion for SUMO and

GeoSparkSim. The area increase, the execution time will increase. By taking advan-

Road Network Area (square mile) GeoSparkSim Execution Time SUMO Execution Time

Rectangle 1 325 32 seconds 1080 seconds

Rectangle 2 226 28 seconds 196 seconds

Rectangle 3 22 20 seconds 22 seconds

Table 7.1: Road Network Graph Computing Comparison

79



Figure 7.1: Experiment Rectangle

tages of parallel computing, the preparation process takes less time than SUMO.

Vehicle Generation. After the road network being processed, vehicles will be

initialized and GeoSparkSim will generate the individual shortest path for them. The

increasing number of vehicles will have a huge impact on the real-time simulation per-

formance. In table 7.2, with more vehicles, the execution time increases. Since the

application has launch time, the execution time is not a linear grow. By taking ad-

vantages of multi-threading approach introduced in Chapter 5, the vehicle generation

will not have a big influence on the simulator.
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Figure 7.2: Vehicle Generation Results

(a) Ganglia (b) Spark Cluster

Figure 7.3: Ganglia and Spark Master UI

7.2 Cluster Setting

All compared approaches are implemented with Apache Spark. We conduct the

experiments on a cluster which has one master node and four worker nodes. Each

machine has an Intel Xeon E5-2687WV4 CPU (12 cores, 3.0 GHz per core), 100 GB

memory, and 4 TB HDD. We also install Apache Hadoop 2.6 and Apache Spark

2.3.2. We assign 10 GB memory to the Spark driver program that runs on the master

machine, which is quite enough to handle any necessary global computation.

In the evaluation phase, several monitors are using to measure the experiments

81



(a) Spark Backend UI (b) Spark DAG

Figure 7.4: Spark Back-end Monitor

and cluster status, such as Spark master UI, Spark context web interface and Ganglia.

Spark master UI can be accessed from 8080 port in master IP address in which listed

nodes across the cluster, along with its number of CPUs(Cores) and memory. Spark

context web interface can be accessed by opening http : // < driver − node >: 4040

in the web browser that displays scheduler stages and tasks, a summary of RDD sizes

and memory usage, environmental and executors information for running application.

Ganglia is a distributed monitoring system that can check the current CPU, mem-

ory, network utilization of the cluster. Figure 7.3a shows the running GeoSparkSim

status in cluster. Four machines are deployed and left grids show the workload distri-

bution among machines. Top four diagrams show metrics loads, memory, CPU, and

network. GeoSparkSim uses it to evaluate workload distribution among machines.

Figure 7.3b shows GeoSparkSim master UI and GeoSparkSim uses the monitoring to

know launched workers and the setting for Spark programs, such as the number of

CPUs and memory. Figure 7.4 shows Spark backend UI and GeoSparkSim uses it to
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monitor application status, such as preprocessing and simulating.

7.3 Simulation

7.3.1 Experiment Setting

Parameters. We change the following parameters throughout the experiments

(values listed in Table 7.2): (1) Number of vehicles: the number of vehicles that

need to be simulated. (2) Time step: the time interval between two generated GPS

locations. It is the simulation granularity. Time step has a significant influence on

simulation time. For example, if the period is 10 minutes and 1 second per step, it

requires 600 simulation iterations. If it is 0.8 second per step, 10 minutes need 750

steps. (3) The number of partitions: the number of partitions applied to RDDs (4)

Repartition period: the period to recut RDDs. For example, the repartition period

is 1 minute means that GeoSparkSim will run the temporal simulation and divide

RDDs for every 1 minute. (5) Simulation period: the overall period that GeoSpark-

Sim wants to simulate. By default, GeoSparkSim sets the temporary partition period

to 2 minutes. In other words, it will invoke the vehicle partitioning layer to repar-

tition the VehicleRDD after simulating every 2-minute traffic. For instance, assume

a simulation workload (time step = 1 second, temporal partition size = 2 minute,

simulation period = 8:00 to 8:15), GeoSparkSim will simulate the vehicle GPS loca-

tions from 8:00 to 8:15 at the granularity of 1 second. GeoSparkSim will repartition

VehicleRDD Eight times (8:00, 8:02, 8:04, 8:06, 8:08, 8:10, 8:12, 8:14, 8:15). Besides,

GeoSparkSim uses the KDB-tree partitioning method from GeoSpark Yu et al. (2018)

in its spatial partitioning step. If the simulation period is less than the repartition

period, GeoSparkSim will not invoke the repartition layer.

Evaluation metrics. We use execution time to measure the performance of each
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Parameter Range

Number of vehicles (thousand) 100, 200, 300

Time step (second) 1, 0.8, 0.6, 0.4, 0.2

Number of partitions 1000, 1500, 3000

Repartition period (minute) 1, 2, 4, 8, 10

Simulation period (minute) 10, 30, 60, 120

Table 7.2: Parameters

approach. Execution time is the time to finish a program. In the simulation, execution

time is the total time to complete a simulation. In graph processing, execution time

is the whole time to process the road network data in Apache Spark. In general,

the execution time is the total time to generate vehicles and compute each vehicle’s

specific routes.

Tested data. We use the full road network of the Phoenix metropolitan area in

the experiment. It consists of Maricopa and Pinal counties, comprising a total area

of about 325 square miles. Rectangle 2 in Figure 7.1 and Table 7.1. The entire road

network contains 250 thousand road junctions and 300 thousand road segments.

7.3.2 Number of Vehicle

In this experiment, we study the impact of different numbers of vehicles and par-

titions combination. We vary the vehicle number from 100 thousand to 300 thousand

and measure the execution time. 10 minute are simulated, the temporal partition size

is 2 minute, the number of partition is 1500 and the time step is 1 second. Figure

7.5a shows that simulation and repartition time linear increases with more vehicles.

Figure 7.5b It shows the simulation results size increases with more vehicle. These
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(a) Execution time (b) Data size

Figure 7.5: The Impact of the Number of Vehicles

(a) Execution time (b) Data size

Figure 7.6: The Impact of Simulation Period

make sense because more vehicles lead to more computation and more results.

7.3.3 Simulation Period

In this experiment, we further examine the impact of different simulation periods.

We vary the simulation period from 10 minutes to 120 minutes. One hundred thou-

sand vehicles are simulated, the temporal partition size is 2 minutes, the number of
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(a) Execution time (b) Data size

Figure 7.7: The Impact of Time Steps

partition is 1500 and the time step is 1 second. We report the results in Figure 7.6.

As shown in Figure 7.6a, as the simulation period increases, GeoSparkSim spends

more time on simulating the traffic which makes sense because the system has to cal-

culate the vehicle movements for more time steps. The vehicle partitioning time is also

longer for the more extended simulation period. This happens because GeoSparkSim

repartitions the VehicleRDD, 5, 10, and 15 times for different periods. It is worth

noting that, the simulation period can be considerable because it will only increase

the execution time linearly. GeoSparkSim will always partition the period to tempo-

ral partitions and simulate them one by one. Figure 7.6b shows more steps leading

to a larger output size since it computes a more extended period.

7.3.4 Time Steps

In this experiment, we explore the impact of the different simulation time step. We

vary the time step from 1 second to 0.2 seconds. One hundred thousand vehicles are

simulated, the temporal partition size is 2 minutes, the number of partition is 1500 and

the simulation period is 10 minutes. We report the results in Figure 7.7. The results

show with the decreasing time step, the simulation execution time increases and larger
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Figure 7.8: The Impact of Number of Partitions

output file. Time step means the period per updating steps. It is reasonable because

the smaller time steps cause more steps and therefore more simulation computation.

For example, 10 min simulation period and 1 second will have 600 times simulating

step. However, 0.8-time step and the same simulation period will have 750 steps.

Smaller time step leads to more computation and more results.

7.3.5 Number of Partitions

In this experiment, we seek the impact of a different number of partitions. We vary

the numbers from 1000 to 3000. One hundred thousand vehicles are simulated, the

time step is 1 second, the repartition period is 1 minute and the simulation period is

10 minutes. We report the results in Figure 7.8. In the figure, it displays a decreasing

trend and then increasing with the rising number of partitions. It is supposed to

have faster simulation time with more partitions since more partitions mean more

simulation works run in parallel. However, more partitions in the same simulation

will cause more overlapping situations and more data shuffle time. Because each

partition will have a smaller size, the vehicle has a higher probability of going across
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Figure 7.9: The Impact of Repartition Period

one partition to another. This also indicates the importance of simulation-aware

repartition strategy.

7.3.6 Repartition Period

In this experiment, we analyze the impact of different repartition period. We vary

the repartition period from 1 minute to 10 minutes, 100 thousand vehicles are simu-

lated, the time step is 1 second, the number of partition is 1500 and the simulation

period is 10 minutes. We report the results in Figure 7.9. In the figure, it shows a de-

creasing trend from 1 minute to 2 minutes, increases between 2 to 8 minutes and then

decrease after that. Shorter length leads to less computation in temporal simulation

and more possible partitions. However, this procedure will trigger new computation

for all vehicles and signals and more repartition time. But longer repartition period

may cause unbalanced workload, thus increasing the simulation time and repartition
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Figure 7.10: SUMO and GeoSparkSim

time as well. The decreasing trend from 8 minutes to 10 minutes is because 10 min-

utes just do a primary partition for data and the repartition time is very low. There

is a trade-off in repartition period.

7.3.7 SUMO and GeoSparkSim

In this experiment, we compare the preprocessing time and simulation time be-

tween GeoSparkSim and SUMO in one thousand vehicles; the simulation period is

1 minute and 1-second time step. The simulation region is showing in rectangle 2

in Table 7.1 and Picture 7.1. SUMO and GeoSparkSim adopt same driving models,

intelligent driving model, and MOBIL lane change model, but SUMO is not scal-

able. In Figure 7.10, GeoSparkSim completes road network preprocessing 10X faster

and finish simulation more than 100X faster than SUMO. Traffic simulation is a very

computing-intensive work, and GeoSparkSim makes a great contribution to distribute

the simulation works among cluster and scale the simulation workload.
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(a) Simulation Time (b) Speed Up

Figure 7.11: Smarts and GeoSparkSim

7.3.8 SMARTS and GeoSparkSim

speedup =
simulation period

time cost
(7.1)

In this experiment, we compare the simulation time and speed up factor between

GeoSparkSim and SMARTS in 10 thousand vehicles, simulation period from 10 min-

utes to 120 minutes, 1-second time step with the same environment. Speed up is

defined by the requested simulation period divided by simulation time cost. For ex-

ample, if the user requests 20 minutes of simulation and simulator take 10 minutes to

generate traffic, the speedup factor is 2, and it evaluates the traffic generation perfor-

mance. SMARTS and GeoSparkSim use the same traffic models, intelligent driving

model, and MOBIL lane change model. The simulation output for SMARTS is a

collection of vehicle simulation GPS coordinate by step, while GeoSparkSim contains

not only the GPS trajectories but also vehicle events in each step, such as acceleration

and velocity. In Figure 7.11a, the simulation time is very close in 10 minutes, but

GeoSparkSim has better performance with more extended simulation period. This
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is because GeoSparkSim considers the dynamic vehicle spatial distribution over time

and try to balance workload by periodically perform repartition. Figure 7.11b also

indicate that GeoSparkSim can speed up simulation even when the request period is

very long.
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Chapter 8

CONCLUSION AND FUTURE WORK

In this paper, we presented GeoSparkSim, a scalable traffic simulator which ex-

tends Apache Spark to generate large-scale road network traffic data with microscopic

traffic models. The proposed system seamlessly integrates with a Spark-based spa-

tial data management system, GeoSpark, to deliver a holistic approach that allows

data scientists to simulate, analyze and visualize large-scale traffic data. Moreover,

GeoSparkSim equips VehicleRDD and parallelizes the simulation workload to a set of

VehicleRDD transformations. The proposed system also employs a simulation-aware

vehicle partitioning method to partition the workload among different machines. The

experimental analysis shows that GeoSparkSim can simulate the movements of 200

thousand vehicles over a very large road network (250 thousand road junctions and

300 thousand road segments). GeoSparkSim source can be retrieved GeoSparkSim

Source (2019) and a video demo can be viewed GeoSparkSim Demo (2019)

In the future, GeoSparkSim will include more driving models and perform more

driving behaviors. Moreover, designing more APIs to connect the functions and li-

braries in Apache Spark and GeoSpark to do traffic analytic. In addition, GeoSpark-

Sim currently unable to visualize large-scale data and may use graphics processing

unit (GPU) to improve it in the future.
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Krajzewicz, D., G. Hertkorn, C. Rössel and P. Wagner, “Sumo (simulation of urban
mobility)-an open-source traffic simulation”, in “Proceedings of the 4th middle East
Symposium on Simulation and Modelling (MESM20002)”, pp. 183–187 (2002).

Litman, T., Autonomous vehicle implementation predictions (Victoria Transport Pol-
icy Institute Victoria, Canada, 2017).

Lu, J. and R. H. Guting, “Parallel Secondo: Boosting Database Engines with
Hadoop”, in “International Conference on Parallel and Distributed Systems”, pp.
738 –743 (2012).

Malewicz, G., M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser and
G. Czajkowski, “Pregel: a system for large-scale graph processing”, in “Proceedings
of the 2010 ACM SIGMOD International Conference on Management of data”, pp.
135–146 (ACM, 2010).

94



METIS Library, “METIS Library”, http://glaros.dtc.umn.edu/gkhome/metis/
metis/overview (n.d.).

MIT, “Senseable City”, http://senseable.mit.edu/wave/, [Online; accessed 15-
March-2019] (n.d.).

Mokbel, M. F., L. Alarabi, J. Bao, A. Eldawy, A. Magdy, M. Sarwat, E. Waytas
and S. Yackel, “Mntg: an extensible web-based traffic generator”, in “International
Symposium on Spatial and Temporal Databases”, pp. 38–55 (Springer, 2013).

Nagel, K. and M. Rickert, “Parallel implementation of the transims micro-
simulation”, Parallel Computing 27, 12, 1611–1639 (2001).

NYCTraffic, “Yellow Taxi Trip Data”, Https://data.cityofnewyork.us (2018).

OSM, “OpenStreetMap”, http://www.openstreetmap.org/ (2019).

Osmosis, “Osmosis”, https://github.com/openstreetmap/osmosis (n.d.).

OSRM, “Open Street Routing Machine”, http://project-osrm.org/ (n.d.).

Overpass, “Overpass”, http://overpass-api.de/ (n.d.).

Parquet, “Parquet”, https://parquet.apache.org/ (n.d.).

Pramics Website, “Paramics Microsimulation”, https://www.paramics.co.uk/en/
(2019).

Ramamohanarao, K., H. Xie, L. Kulik, S. Karunasekera, E. Tanin, R. Zhang and
E. B. Khunayn, “Smarts: Scalable microscopic adaptive road traffic simulator”,
ACM Transactions on Intelligent Systems and Technology (TIST) 8, 2, 26 (2017).

Robinson, J. T., “The kdb-tree: a search structure for large multidimensional dynamic
indexes”, in “Proceedings of the 1981 ACM SIGMOD international conference on
Management of data”, pp. 10–18 (ACM, 1981).

Vinoski, S., “Corba: integrating diverse applications within distributed heterogeneous
environments”, IEEE Communications magazine 35, 2, 46–55 (1997).

Vissim, “PTV Vissim”, Http://vision-traffic.ptvgroup.com/en-us/products/ptv-
vissim/ (2019).

Waraich, R. A., D. Charypar, M. Balmer and K. W. Axhausen, “Performance im-
provements for large scale traffic simulation in matsim”, in “9th STRC Swiss Trans-
port Research Conference: Proceedings”, vol. 565 (Swiss Transport Research Con-
ference, 2009).

Wiki Gipps’ model, “Gipps’ model”, https://en.wikipedia.org/wiki/Gipps\%27_
model (2019).

Wiki TAO, “Wiki TAO”, https://en.wikipedia.org/wiki/TAO_(software) (n.d).

95



Xin, R. S., J. E. Gonzalez, M. J. Franklin and I. Stoica, “Graphx: A resilient dis-
tributed graph system on spark”, in “First International Workshop on Graph Data
Management Experiences and Systems”, p. 2 (ACM, 2013).

Yu, J., Z. Zhang and M. Sarwat, “Spatial data management in apache spark: The
geospark perspective and beyond”, Geoinformatica (2018).

Zaharia, M., M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J. Franklin,
S. Shenker and I. Stoica, “Resilient Distributed Datasets: A Fault-Tolerant Ab-
straction for In-Memory Cluster Computing”, in “Proceedings of the USENIX
Symposium on Networked Systems Design and Implementation, NSDI”, pp. 15–
28 (2012).

Zaharia, M., M. Chowdhury, M. J. Franklin, S. Shenker and I. Stoica, “Spark: Cluster
computing with working sets.”, HotCloud 10, 10-10, 95 (2010a).

Zaharia, M., M. Chowdhury, M. J. Franklin, S. Shenker and I. Stoica, “Spark: Cluster
computing with working sets”, in “USENIX Workshop on Hot Topics in Cloud
Computing, HotCloud’10, Boston, MA, USA, June 22, 2010”, (2010b).

Zhang, C.-T., R. Zhang and H.-Y. Ou, “The z curve database: a graphic representa-
tion of genome sequences”, Bioinformatics 19, 5, 593–599 (2003).

Zheng, Y., X. Xie and W.-Y. Ma, “Geolife: A collaborative social networking service
among user, location and trajectory.”, IEEE Data Engineering Bulletin 33, 2, 32–39
(2010).

96



APPENDIX A

MACROSCOPIC SIMULATORS AND DISTRIBUTED MODELS

97



Macroscopic traffic simulator. Simulators in this category focus on general
vehicular flow in the transportation road network. All vehicles drive similarly and
merely move from the sources to the destinations step by step. Brinkhoff proposed
a simulator Brinkhoff (2002) that generates moving objects for every single road seg-
ment in a simulation period. BerlinMOD Düntgen et al. (2009) is a popular moving
object benchmark including a set of queries and a data generator which can generate
road network traffic data for a number of identifiable vehicles. MNTG Mokbel et al.
(2013) extends the functions, encapsulates Brinkhoff framework and BerlinMOD gen-
erators and provides a web service with a user-friendly and more accessible interface.
Macroscopic simulators can quickly yield a massive amount of data because they are
less computation-intensive. But the produced data may not be realistic and contain
many vehicle collisions (e.g., vehicles have the same GPS locations).

Non-spatial partitioning approach. Some existing solutions partition the
workload without taking into account the spatial proximity of the moving vehicles.
Parallel-BerlinMOD Lu and Guting (2012) integrates BerlinMOD with a distributed
DBMS called Parallel-Secondo Lu and Guting (2012) to deliver a scalable solution. It
partitions the vehicles using generic partitioners such as hash partitioner and round-
robin partitioner and parallelizes the computation to a set of Hadoop MapReduce
operations Hadoop (nd). This approach is easy yet inappropriate for microscopic
simulators because vehicles running on the same road segment are simulated by dif-
ferent machines. On the other hand, a microscopic simulator TRANSIMS Nagel and
Rickert (2001) proposes to use graph cuts to partition the large road network then
apply the same partitions to vehicles. It leverages MPI Gabriel et al. (2004) to co-
ordinate different machines in a cluster. However, TRANSIMS may yield balanced
network partitions such that each partition has a similar number of road nodes and
segments but ignores an important fact: most road networks are idle and only major
streets are full of vehicles.

Distributed computing models. All existing solutions are designed upon inef-
ficient distributed models. Many of them still use message passaging services and do
not employ advanced computation models and job schedulers. SMARTS Ramamo-
hanarao et al. (2017) leverages simple TCP sockets, TRANSIMS Nagel and Rickert
(2001) uses MPI Gabriel et al. (2004), and MATSim Waraich et al. (2009) only uti-
lizes multi-thread synchronization. On the other hand, Parallel BerlinMod Lu and
Guting (2012) uses Hadoop MapReduce Hadoop (nd). Although the Hadoop-based
approach achieves high scalability, it still exhibits slow run time performance since
it persists all intermediate data on disk. Apache Spark, on the other hand, provides
a novel data abstraction called Resilient Distributed Datasets (RDDs) Zaharia et al.
(2012) that are collections of objects partitioned across a cluster of machines. Each
RDD is built using parallelized transformations (filter, join or groupBy) that could be
traced back to recover the RDD data. In memory RDDs allow Spark to outperform
existing models.
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