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Geospatial Immune Heterogeneity Reflects 
the Diverse Tumor–Immune Interactions in 
Intrahepatic Cholangiocarcinoma 
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Guangyu Ding1, Zhenyu Peng5, Haorong Lu5, Xiaoying Wang1, Jian Zhou1,6, Jia Fan1,6, Kui Wu2,3, and 
Qiang Gao1,6,7

ABSTRACT Intrahepatic cholangiocarcinoma (iCCA) exhibits extensive intratumoral hetero-
geneity and an extremely high mortality rate. Here, we performed whole-exome 

sequencing, RNA sequencing, T-cell receptor (TCR) sequencing, and multiplexed immunofluorescence 
on 207 tumor regions from 45 patients with iCCA. Over half of iCCA displayed intratumoral het-
erogeneity of immune infiltration, and iCCA were classified into sparsely, heterogeneously, and highly 
infiltrated subgroups with distinct immunogenomic characteristics. Sparsely infiltrated tumors dis-
played active copy-number loss of clonal neoantigens, and heterogeneous immune infiltration played 
an important role in the subclonal evolution across tumor subregions. Highly infiltrated tumors were 
characterized by extensive immune activation and a similar TCR repertoire across tumor subregions, 
but counteracted with T-cell exhaustion and pervasive antigen presentation defects. Notably, FGFR2 
mutations and fusions correlated with low mutation burden and reduced immune infiltration. Our work 
delineated the dynamic tumor–immune interactions and developed a robust classification system to 
divide patients with iCCA into high and low immune evasion groups with different prognoses.

SIGNIFICANCE: This study elucidates the impact of spatial immune heterogeneity upon tumor evolution 
of iCCA and reveals distinct immune evasion mechanisms developed in different immune microenviron-
ments, which can be exploited for the development of personalized immunotherapy strategies.
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INTRODUCTION
Intrahepatic cholangiocarcinoma (iCCA) is the second 

most common primary liver cancer, with increasing inci-
dence worldwide (1). Characterized by high invasiveness and 
frequent postoperative recurrence, iCCA exhibits one of the 
highest mortality rates among human cancers. Despite the 
recent progress with novel therapies targeting IDH1 mutation 
(2) and FGFR2 fusion (3–5), iCCA is still incurable in most 
cases. Immune-checkpoint inhibitors (ICI) have revolution-
ized the standard treatment for patients with cancer, but the 
objective response rates range from only 3% to 22% in biliary 
cancers (6). One major challenge is the poor understanding of 
the tumor–immune interaction in iCCA, which impedes the 
identification of patients for effective immunotherapy.

The tumor–immune interaction is a dynamic and con-
tinuous process. Infiltrated immune cells hold the potential 
of killing malignant cells, representing the major external 
selection pressure to orchestrate tumor evolution (7). We 
have previously illustrated the spatiotemporal genomic evolu-
tion of iCCA through multiregion sampling–derived cancer 
cell cultures, linking with drug resistance, but we did not 
focus on the immune microenvironment (8). Single-cell RNA 
sequencing (RNA-seq) analyses have emphasized the impact 
of transcriptomic diversity of cancer cells on patient survival 
and treatment response in iCCA (9, 10). Accumulating studies 
have uncovered the effect of the tumor–immune interaction 
on tumor progression, drug resistance, and immune tolerance 
in many other cancers (11–13). Likewise, a recent study has 
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also characterized the high intratumoral heterogeneity (ITH) 
and “cold” tumor microenvironment in patients with IDH-
mutant iCCA (14). An in-depth exploration of such a relation-
ship in iCCA may have the promise to enable more precise 
development for targeted therapy and immunotherapy (15).

Herein, we collected 207 tumor samples from 45 patients 
with treatment-naïve iCCA and performed whole-exome 
sequencing (WES), transcriptome sequencing, T-cell receptor 
sequencing (TCR-seq), and multiplex staining to portray the 
immuno genomic landscape of iCCA. Our results demon-
strate the diversity of immune infiltration in iCCA, and those 
with sparse, heterogeneous, or high immune infiltration have 
different genetic characteristics and escape mechanisms. The 
integration of immunogenomic analyses provides a novel 
insight into how iCCA’s genetic makeup affects immune 
composition and function and vice versa.

RESULTS
Early Branch Evolution and Potential Therapeutic 
Targets in iCCA

To elucidate the immunogenomic landscape of iCCA, we 
prospectively assembled 207 tumor samples, together with 
paired nontumor liver tissues and peripheral blood, from 
45 patients (four to six tumor regions per patient), and 
performed high-depth WES, RNA-seq, TCR-seq, and multi-
plex immunofluorescence (Supplementary Fig. S1A and S1B; 
Supplementary Table S1). None of the patients had received 
preoperative anticancer treatments. Two tumor samples were 
excluded for further analysis due to low tumor purity (<0.1). 
The average depth of WES was 284.7×  for tumor samples 
(range, 196.5–584.7) and 247.5×  for normal controls (range, 
150.8–527.9), respectively. In total, we identified 30,348 
somatic mutations (range, 47–509, averaging 148 per tumor 
sample), including 27,749 (91.4%) point mutations and 2,599 
(8.6%) indels (Supplementary Table S1).

We observed considerable intratumoral genomic heteroge-
neity, with a median of 65.1% (range, 43.6%–89.3%) of single-
nucleotide variations (SNV) and 66.0% (range, 9.1%–100%) 
of copy-number variations (CNV) identified as subclonal 
(Fig.  1A). The median pairwise SNV ITH and CNV ITH 
were 42.8% (range, 23.8%–71.4%) and 41.1% (range, 3.6%–
81.8%), respectively, suggesting that over 40% of the SNVs 
and CNVs were distinct among tumor subregions within the 
same patients (Fig. 1A; Supplementary Table S1). There was 
a moderately positive correlation between SNV ITH and CNV 
ITH (Spearman correlation  =  0.402, P  =  0.006), indicating 
that tumor evolution coexisted at the mutational and chro-
mosomal levels (Fig. 1B). Loss-of-function mutations in BAP1 
can damage genomic stability and DNA repair (16), and iCCA 
patients with BAP1 mutations showed significantly higher 
levels of SNV ITH (Fig. 1C).

We identified a total of 510 driver mutations (range, 4–30 
per patient, averaging 11.4), of which 237 (46.5%) were clonal 
and 273 (53.5%) were subclonal. We further investigated the 
timing of recurrent driver mutations by integrating three recent 
multiregion sampling studies of iCCA (refs. 8, 14, 17; Fig. 1D; 
Supplementary Fig.  S1C). Generally, TP53, KRAS, BAP1, and 
PBRM1 mutations were clonal, highlighting their essential roles 
in tumorigenesis. IDH1/2, ARID1A, SMAD4, ATM, and PIK3CA 
mutations were primarily clonal but also subclonal in some 
patients, implying their dual roles in driving tumorigenesis and 
progression. We found that subclonal driver mutations could 
also induce pathway alterations of tumor cells in correspond-
ing subregions (Supplementary Fig. S2). For example, P41–R3 
with ARID1A mutation displayed downregulated DNA double-
strand break repair compared with other subregions in P41, 
consistent with ARID1A’s role in mismatch repair (18).

FGFR2 fusions were identified in four patients of our 
cohort, with the same breaking point but different partner 
genes (Supplementary Fig. S3A). The occurrence of the FGFR2  
fusion was validated in all tumor subregions and nearly 
all tumor cells using Sanger sequencing and fluorescent 
in situ hybridization (FISH), respectively, suggesting that 
it occurred early during tumor evolution (Fig.  1E; Sup-
plementary Fig.  S3A). Meanwhile, clonal FGFR2 mutations 
were detected in another two patients, and the six cases with 
FGFR2 alterations exhibited significantly higher expression of 
FGFR2 than wild-type (Fig. 1F). We also obtained multiomics 
data from the Clinical Proteomic Tumor Analysis Consor-
tium (CPTAC) iCCA cohort (n  =  249; ref. 19) and analyzed 
the CNV of FGFR2. The frequency of FGFR2 loss was similar 
between our cohort and the CPTAC cohort (15.6% vs. 13.7%), 
whereas a lower frequency of FGFR2 gain was observed in 
ours (8.3% vs. 17.3%; Supplementary Fig. S3B). Focal FGFR2 
amplification was only found in one patient in our cohort, 
co-occurred with FGFR2 fusion, and existed in all tumor 
subregions on FISH images (Supplementary Fig. S3C). There 
was no significant difference in FGFR2 expression between 
samples with FGFR2 copy-number neutral and gain in both 
cohorts, in contrast to its mutation/fusion-induced higher 
expression (Supplementary Fig. S3D).

Chromosome 6q loss (where HLA class I molecules are 
located) occurred early, implying an immediate decline of anti-
gen presentation after tumor initiation (Fig. 1G). Loss of TP53 
(17p) and CDKN2A (9p) was also an early event, whereas gain 
of EGFR (7p) and BRAF (7q) was a late event. We then analyzed 
mutation signatures and found different distribution between 
clonal and subclonal mutations (Supplementary Fig.  S3E). 
Signature 16 (special signature in liver cancer) and signature 
1 (spontaneous deamination of 5-methylcytosine correlating 
with age) were dominant in clonal mutations, whereas the sig-
natures of subclonal mutations were more diverse, including 
signatures 1, 5, 8, 9, 15, and 25. Taken together, iCCA showed 

Figure 1.  Clonal architecture and therapeutic targets of iCCA. A, Timing of genetic profile and associated clinicopathologic characteristics. LNM, lymph 
node metastasis. B, Correlation of SNV ITH and CNV ITH; Spearman test. TNM, tumor–node–metastasis. C, Comparison of SNV ITH between patients with and 
without BAP1 mutations; Student t test. The mean and the first and third quartiles are indicated by the thick horizontal line and whiskers of the scatter plot, 
respectively. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ns, not significant. Mut, mutation; WT, wild-type. D, Timing of recurrent driver mutations in four multiregion 
sampling studies of iCCA. E, FGFR2 fusion validated by FISH in P09-R1. The green and red fluorescent probes target the proximal end (3′) and distal end (5′) 
of the FGFR2 gene, respectively. F, Comparison of FGFR2 expression among tumor samples with FGFR2 fusions, FGFR2 mutations, and WT; Student t test. 
G, Clonality of chromosome arm copy-number alterations. The numbers on the top represent actual patient numbers with copy-number alterations. H, The 
illustration of clonal evolution trajectory of iCCA. I, Mutation frequencies of indicated mutations in four iCCA cohorts. TCGA, The Cancer Genome Atlas. 
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evolutionary branches at the early stage, with both driver gene 
alterations (TP53, KRAS, BAP1, FGFR2, PBRM1) and CNVs 
(6q loss, 8p loss, 17p loss, and 1q gain) in tumor initiation, 
together with persistent events contributing to the complex 
landscape of genomic ITH (Fig. 1H).

The clinical success of ivosidenib (2) and pemigatinib 
(3) may be attributed to the clonality of IDH1 mutation 
and FGFR2 fusion, respectively (Fig.  1A). Considering the 
prevalence of driver mutations in three other iCCA cohorts 
(19–21), we identified KRAS, PIK3CA, ARID1A, ATM, BRCA1, 
and BRCA2 mutations as the most promising therapeutic 
targets (Fig. 1I). KRAS mutations occurred in 7.5% to 26.7% of 
patients with iCCA, presenting as hotspot mutations such as 
KRASG12D and KRASG12V. Recently, multiple small molecules, 
including AMG510, MRTX849, and JNJ-74699157, have been 
developed to target KRASG12C specifically (22–24). However, 
KRASG12D, instead of KRASG12C, was the dominant mutant 
in iCCA but still lacked specific inhibitors. Gain-of-function 
mutations in PIK3CA occurred in 3.2% to 8.9% of patients, 
and those patients were ideal candidates for alpelisib treat-
ment (25). Loss-of-function alterations in BRCA1, BRCA2, 
ATM, and ARID1A, occurring in 15.0% to 37.8% of patients, 
damaged homologous recombination repair and conferred 
sensitivity to PARP inhibitors such as olaparib (26).

Heterogeneous Immune Infiltration and Extensive 
T-cell Exclusion

To explore the influence of genomic ITH on the immune 
microenvironment, we used the immune signature by Dana-
her and colleagues (27) to characterize the immune context 
(Supplementary Fig. S4A and S4B; Supplementary Table S2). 
At the tumor region level, unsupervised hierarchical cluster-
ing stratified 205 tumor regions into two distinct clusters: 
high (85 regions from 33 patients) and low (120 regions from 
38 patients) immune infiltration (Fig. 2A). Nearly all immune 
cell subgroups exhibited positive correlations, especially for 
lymphocyte subsets (Supplementary Fig.  S4C). Strong posi-
tive correlations of transcriptomic immune deconvolution 
with multiplexed immunostaining results and histologic 
tumor-infiltrating lymphocyte (TIL) estimates were observed 
(Supplementary Fig.  S4D and S4E). As expected, the high-
infiltration cluster showed a significantly higher level of 
histologic TILs, intense immunostaining densities of CD3+ 
T cells, CD8+ T cells, and CD68+ macrophages (P  <  0.001; 
Supplementary Fig.  S4F and S4G), and elevated cytolytic 
activity (CYT; ref.  28) and IFNγ  signature (29), demonstrat-
ing stronger immune responses in these regions (P < 0.001; 
Supplementary Fig. S4H). Intriguingly, the high-infiltration 
cluster displayed comparable tumor mutation burden (TMB) 
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but significantly higher tumor neoantigen burden (TNB), 
implying that the immunogenicity of mutations might direct 
immune infiltration (Supplementary Fig. S4I).

At the patient level, the 45 patients were stratified into 
three immune groups: sparsely infiltrated (uniformly low 
immune infiltration across subregions, 12 patients contain-
ing 52 regions), heterogeneously infiltrated (heterogeneous 
immune infiltration among subregions, 26 patients con-
taining 120 regions), and highly infiltrated (uniformly high 
immune infiltration across subregions, 7 patients contain-
ing 33 regions; Fig.  2A). Heterogeneous infiltration among 
different tumor regions was further confirmed by multi-
plex immunostaining and histology (Fig. 2B; Supplementary 
Fig.  S4J). We applied four published transcriptome-based 
immunophenotypic classifiers (30–33) to stratify our multi-
region samples, revealing that the heterogeneously infiltrated 
group harbored higher proportions of tumor subregions 
distributed in different immunophenotypes within the same 
patients (Fig.  2C; Supplementary Fig.  S5A). Likewise, the 
IFNγ signature was also more variant in this group (Supple-
mentary Fig. S5B). The results highlighted the challenges in 
the immune stratification and immunotherapy prediction of 
iCCA patients with a single biopsy.

As evaluated by multiplexed immunostaining on tumor 
microarrays (TMA; including matched tumor subregions, 
tumor margin, and nontumor liver; Supplementary Fig. S1B), 
the three immune groups displayed comparable densities 
of CD3+ T cells, CD8+ T cells, and CD68+ macrophages in 

tumor margins and nontumor livers but significantly dif-
fered in tumor subregions (Fig.  2D). T-cell exclusion was 
sequentially aggravated from highly infiltrated to sparsely 
infiltrated tumors (Fig.  2E). In contrast, macrophages were 
more abundant in tumor regions than in surrounding tissues 
(Supplementary Fig.  S5C), suggesting that T cells were the 
targets of exclusion. Immunogenomic analysis showed that 
highly infiltrated tumors displayed comparable cancer testis 
antigen (CTA) load, chromosomal instability, and ploidy with 
heterogeneously and sparsely infiltrated tumors but had sig-
nificantly higher TNB and the lowest tumor purity (Fig. 2F). 
Sparsely infiltrated tumors had comparable TMB and TNB 
with heterogeneously infiltrated tumors but exhibited uni-
versally fewer immune and stromal cells. Meanwhile, multiple 
chemokines, including CXCL9, CXCL10, and CXCL11, were 
inadequate in sparsely infiltrated tumors compared with 
highly infiltrated tumors, and heterogeneously infiltrated 
tumors displayed the distinct distribution of chemokines 
between tumor subregions with low and high immune infil-
tration (Fig. 2F; Supplementary Fig. S5D). We then compared 
transcriptomic features among the three immune groups 
using hallmarks from the Molecular Signatures Database 
(MSigDB; ref. 34). Immune-related pathways, angiogenesis, 
and classical cancer pathways were upregulated in highly 
infiltrated tumors, while sparsely infiltrated tumors upregu-
lated cell-cycle signaling and several metabolic pathways such 
as oxidative phosphorylation and cholesterol homeostasis 
(Supplementary Fig.  S5E). These results revealed distinct 
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immune landscape, genomic, and transcriptomic characteris-
tics among the three immune groups. We further calculated 
an immune ITH index for each patient and observed signifi-
cant positive correlations between ITH of genomic features 
and immune contexts, indicating their potential interaction 
(Supplementary Fig. S5F).

FGFR2 Alteration Correlates with Less 
Immune Infiltration

A specific genetic profile could affect the infiltration and 
composition of immune cells in the tumor microenvironment 
(35). We combined the multiomics data of our cohort and the 
CPTAC iCCA cohort to investigate the correlations between 
recurrent gene alterations and immune groups (Fig. 3A; Sup-
plementary Table S3). The result showed that iCCA with KRAS 
mutations had a tendency for more myeloid infiltration but 
fewer lymphocytes (Fig. 3A), reflecting its role in reprogram-
ming the local milieu to support tumor progression (36, 37). 
Contrarily, negative correlations were found between BAP1 
or ARID1A mutations and neutrophil infiltration (Fig.  3A). 

Recent studies reported that IDH1/2 mutations could shape 
a “cold” immune microenvironment in iCCA (14, 38), but 
patients with IDH1/2 mutations displayed more T-cell infil-
tration in our cohort. We found that three of the eight cases 
with IDH1/2 mutations were highly infiltrated tumors, with 
two of them having hepatitis B virus (HBV) infection and 
the rest showing a relatively high TNB (ranking 2/45 in our 
cohort). HBV infection positively correlated with lymphocyte 
infiltration in iCCA, similar to the finding in hepatocellular 
carcinoma (39), irrespective of IDH1/2 mutation or wild-type 
(Supplementary Fig. S6A and S6B). Thus, the immune impact 
of IDH1/2 mutations could be influenced by coexisting fac-
tors such as hepatitis and neoantigenicity, which may explain 
the unexpected genotype–immune correlations in our cohort. 
Indeed, in patients with HBV infection (n = 69) and liver cir-
rhosis (n  =  22) from the CPTAC cohort, IDH1/2 mutations 
also showed a trend of positive correlations with immune 
infiltration (Supplementary Fig. S6C).

FGFR2 fusion is a fascinating drug target in iCCA (6), but its 
influence on the immune microenvironment remains unclear. 

Figure 3.  The impact of FGFR2 alterations on the immune microenvironment. A, Correlations between recurrent gene alterations and immune infiltra-
tion in our cohort (top) and the CPTAC cohort (bottom); Mann–Whitney test. Consistent relationships are highlighted with the red frame. DC, dendritic cell; 
NK, natural killer; Treg, regulatory T cell. B, Box plots comparing TMB (left) and TNB (right) between iCCA samples with and without FGFR2 alterations in 
our cohort and the CPTAC cohort; Mann–Whitney test. Mut/Mb, mutations per megabase; WT, wild-type. C, Box plots comparing CD3+ T cells, CD20+ B cells, 
and CD15+ neutrophils as measured by immunostaining between tumors with FGFR2 alterations and WT in the CPTAC cohort; Mann–Whitney test, *, P < 0.05; 
**, P < 0.01; ***, P < 0.001. D, Representative photographs, hematoxylin & eosin (H&E) staining, and indicated immunostaining images of mouse KPF and 
KP tumors. (continued on following page) 
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Notably, FGFR2 alterations (fusion and mutation) were consist-
ently associated with fewer immune cells, including total TILs, 
CD4+ T cells, and macrophages, together with lower TMB and 
TNB, in both our cohort and the CPTAC cohort (Fig. 3A and B).  
Downregulation of immune-related pathways and genes of 
cytotoxicity, chemotaxis, immune exhaustion, and inhibition 
was noted in iCCA with FGFR2 alterations (Supplementary 
Fig.  S7A and S7B). Immunostaining on the TMA (n =  177) 
of the CPTAC cohort verified that iCCA with FGFR2 altera-
tions had fewer CD3+ T cells (P  =  0.033), CD20+ B cells 
(P  =  0.003), and CD15+ neutrophils (P  =  0.030) than wild-
type tumors (Fig. 3C; Supplementary Fig. S7C). Furthermore, 
we constructed murine iCCA models with or without an 
FGFR2::BICC1 fusion by a hydrodynamic tail-vein injection. 
KRAS/p19/FGFR2 (KPF) and KRAS/p19 (KP) models led 
to macroscopic isolated iCCA tumors, whereas AKT/YAP/
FGFR2 (AYF) and AKT/YAP (AY) models resulted in diffuse 
iCCA nodules in the liver (Fig. 3D; Supplementary Fig. S7D). 
KPF and AYF tumors had fewer CD4+ T cells, CD8+ T cells, 
and F4/80+ macrophages than KP and AY tumors, respec-
tively, highlighting the repressed immune microenvironment 
by the FGFR2::BICC1 fusion protein (Fig. 3E; Supplementary 
Fig.  S7E). RNA-seq analysis identified 3,055 differentially 
expressed genes between KPF and KP tumors, including 
downregulation of Cxcl2, Ccl6, Cd163, Cd24a, Cd177, and Ctla4 
in KPF tumors (Fig. 3F). Downregulated genes in KPF tumors 
were enriched in immune responses like Th1/Th2 differen-
tiation, TCR signaling, and immune checkpoint pathways, 
whereas upregulated genes were involved in pathways of mul-
tiple metabolic processes (Fig. 3G), consistent with the above 
findings in human samples.

Distinct Neoantigen Depletion Mechanisms among 
Three Immune Groups

Neoantigen depletion is a common immune escape mech-
anism of tumors (40). Like mutations, neoantigens also 
showed significant ITH where only a median of 36.1% (range, 
9%–60%) were identified as clonal (Supplementary Fig. S8A; 
Supplementary Table  S4). Highly infiltrated tumors tended 
to have more clonal and subclonal neoantigens, but the 
ratios of clonal neoantigens were comparable among the 
three immune groups (Supplementary Fig.  S8B and S8C). 
Considering the complex process from gene mutations to 
neoantigen presentation, we only analyzed clonal neoanti-
gen depletion at DNA (through copy-number loss), mRNA 
(through expression silence), and presentation levels [through 
loss of heterozygosity (LOH) of HLA]. At least half of clonal 
neoantigens could not be presented, where copy-number loss, 
expression silence, and HLA LOH led to the depletion of 2.2%, 
47.1%, and 3.8% of clonal neoantigens, respectively (Fig. 4A).

Copy-number loss of clonal neoantigens occurred in 17.6% 
(36/205) of tumor regions, leading to 2.3% (46/2,034), 2.9% 
(152/5,164), and 0.9% (29/3,239) of clonal neoantigen deple-
tion in sparsely, heterogeneously, and highly infiltrated 
tumors, respectively (Supplementary Fig.  S8D). We com-
pared clonal neoantigens with nonneoantigenic, nonsyn-
onymous clonal mutations to determine whether clonal 
neoantigen loss is an active event as previously described 
(40). Clonal neoantigen loss occurred more frequently than 
their nonneoantigenic counterparts in sparsely (P  =  0.002) 
and heterogeneously infiltrated tumors (P  =  0.046), indi-
cating active clonal neoantigen loss in those tumors but 
not in highly infiltrated tumors (P = 1.00; Fig. 4B). Further 
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Figure 4.  Neoantigen depletion in iCCA. A, A diagram illustrating clonal neoantigen depletion in iCCA. WT, wild-type. B, The odds ratio of clonal neo-
antigen depletion through copy-number loss compared with nonneoantigenic, nonsynonymous clonal mutations in the three immune groups; Fisher exact 
test, *, P < 0.05; **, P < 0.01; ***, P < 0.001; ns, not significant. Values >1 suggest that clonal neoantigens are more likely to exist in regions of copy-number 
loss than their nonneoantigenic counterparts. C, Box plots showing immunoediting scores of tumor regions with clonal neoantigen (CN) loss and those 
without clonal neoantigen loss; Mann–Whitney test. D, Comparison of the proportions of expressed clonal neoantigens among the three immune groups; 
Mann–Whitney test. E, Events of clonal and subclonal HLA LOH in the three immune groups. F, The odds ratio of expressed clonal neoantigens compared 
with nonneoantigenic, nonsynonymous clonal mutations in the three immune groups divided by HLA LOH or not; Fisher exact test. Values >1 suggest that 
clonal neoantigens are more likely to be expressed than their nonneoantigenic counterparts. (continued on following page) 
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dissection of heterogeneously infiltrated tumors showed 
that tumor regions with low infiltration, instead of high 
infiltration, actively abandoned clonal neoantigens through 
copy-number loss, authenticating the above assumption 
(Supplementary Fig.  S8E). We then quantified the DNA 
immunoediting score in each tumor region, where the lower 
score indicates stronger DNA immunoediting (28). Intrigu-
ingly, tumor regions with clonal neoantigen loss exhib-
ited weaker DNA immunoediting than those without clonal 
neoantigen loss in sparsely and heterogeneously infiltrated 
tumors (Fig. 4C), suggesting that DNA immunoediting was 
a supplement to clonal neoantigen loss.

Mutated gene silence could be directed by mutation itself 
or transcriptional regulation. A median of only 52.0% (range, 
12.5%–100%) of clonal neoantigens were expressed in iCCA, 
and the proportion was significantly lower in heterogene-
ously infiltrated tumors (median, 48.8%) than in sparsely 
infiltrated tumors (median, 55.6%; P < 0.001; Fig. 4D), partly 
reflecting the selection of neoantigen expression under 
immune pressure. However, this proportion rebounded to 
53.8% in highly infiltrated tumors, possibly due to the exten-
sive defects in antigen presentation machinery and T-cell 
exhaustion in this group (described below). Alternatively, 
other potential mechanisms, such as epigenetic silence by 
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DNA methylation (41), may also exist, which is beyond the 
scope of this study. We indeed observed a higher frequency 
of HLA LOH in highly infiltrated tumors (71.4%, 5/7) than 
heterogeneously (34.6%, 9/26) or sparsely infiltrated (33.3%, 
4/12; Fig. 4E) tumors. For highly infiltrated tumors, clonal 
neoantigens tended to be expressed more frequently than 
their nonneoantigenic counterparts in tumor regions with 
HLA LOH (P  <  0.001; Fig.  4F), suggesting that HLA LOH 
might liberate clonal neoantigen from expression silence. 
Meanwhile, increased copy-number loss of B2M, TAP1/TAP2, 
and HSPA1A/HSPA1B in highly infiltrated tumors further 
damaged antigen presentation to avoid expression silence 
of clonal neoantigens compared with heterogeneously infil-
trated tumors (Supplementary Fig. S8F and S8G).

Parallel evolution is a common phenomenon as a result of 
positive selection in tumors (42). We observed parallel clonal 
neoantigen depletions through distinct mechanisms in 17 of 
45 tumors, more so in highly infiltrated tumors (5/7, 71.4%) 
than in sparsely (3/12, 25.0%) and heterogeneously infiltrated 
(9/26, 34.6%; P = 0.086) tumors. For example, the copy-number 
loss of ZFP90C145T occurred in P38-R3, whereas the subclonal 

loss of HLA-B 39:01 damaged the presentation of the neopep-
tide ENYSYLVSL derived from ZFP90C145T in P38-R2 and R4, 
resulting in the depletion of ZFP90C145T-derived neoantigens in 
P38-R2, R3, and R4 (a highly infiltrated tumor; Fig. 4G).

We also compared the clonal neoantigen depletion derived 
from driver and nondriver mutations. Copy-number loss of 
clonal nondriver mutation–derived neoantigens (225/9,872, 
2.3%) occurred more frequently than those from driver muta-
tions (2/565, 0.4%; Supplementary Fig. S8H). As such, signifi-
cantly higher proportions of clonal driver mutation–derived 
neoantigens (499/565, 88.3%) were expressed than nondriver 
mutation–derived neoantigens (4,874/9,872, 49.4%) in all 
three immune groups (Fig.  4H). In terms of immunogenic-
ity, driver mutations were predicted to produce significantly 
fewer and also less immunogenic neoantigens than nondriver 
mutations, which may represent innate immune evasion 
(Supplementary Fig. S8I).

The assessment of subclonal neoantigen depletion may be 
complicated by sequencing depth and tumor purity. Alterna-
tively, we calculated subclonal TNB for each tumor, defined 
as the sum of subclonal neoantigen numbers multiplied by 
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Figure 4. (Continued) G, Parallel clonal neoantigen depletion in P38. H, The odds ratio of expressed clonal driver mutation–derived neoantigens 
compared with clonal nondriver mutation–derived neoantigens in three immune groups; Fisher exact test. Values >1 suggest that clonal driver mutation–
derived neoantigens are more likely to be expressed than clonal nondriver mutation–derived neoantigens. I, A typical example of heterogeneously 
infiltrated tumors in which subclonal TNB shows a negative correlation with TIL score. Coxcomb plot presenting the subclonal architecture (left) and 
histogram showing the subclonal TNB and TIL score (right) in different tumor regions of P40. The length of the coxcomb plot represents the clonal fre-
quency of tumor subclones, and the neoantigen number of each subclone is noted. J, Comparisons of subclonal TNB (left) and subclonal mutation burden 
of nonneoantigenic, nonsynonymous subclonal mutations (right) between tumor regions with low and high infiltration within heterogeneously infiltrated 
tumors; paired Wilcoxon test.
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corresponding cancer cell fractions (Supplementary Fig. S8J). 
Overall, within each patient, tumor regions with higher TIL 
scores exhibited significantly lower subclonal TNB compared 
with other regions (P  =  0.009, linear mixed model). Such 
negative correlation was mainly contributed by heteroge-
neously infiltrated tumors (P  =  0.007; Fig.  4I), as it disap-
peared in highly (P = 0.114) and sparsely infiltrated tumors 
(P = 0.555). To dissect the role of tumor purity, we calculated 
the subclonal burden of nonneoantigenic, nonsynonymous 
mutations using the same method. Indeed, subclonal TNB, 
rather than subclonal nonneoantigenic mutation burden, 
was significantly lower in regions with high versus low infil-
tration within heterogeneously infiltrated tumors (Fig.  4J). 
These findings highlighted the influence of heterogeneous 
immune infiltration on iCCA subclonal evolution.

Suppressive Microenvironment and T-cell 
Exhaustion Damage the Antitumor Effect

To further evaluate T-cell quality, we performed TCR-seq 
on all tumor samples and peripheral blood (one patient using 
nontumor liver tissue) and obtained an average of 18,776 
(range, 52–115,446) unique TCRβ  rearrangements per tumor 
region. Compared with sparsely and heterogeneously infil-
trated tumors, highly infiltrated tumors displayed more 
unique TCR clones but comparable TCR clonality (Supple-
mentary Fig. S9A and S9B). The peripheral blood of patients 
with highly and heterogeneously infiltrated tumors displayed 
more unique TCR clones but also comparable TCR clonality 
compared with the peripheral blood of patients with sparsely 
infiltrated tumors (Supplementary Fig.  S9A and S9B). Then, 
we investigated the overlap of TCR clones across different 
tumor regions. Consistent with previous studies (43, 44), most 
TCR clones were unique to individual tumor regions, rang-
ing from 38.7% to 79.9%, whereas there were also TCR clones 
ubiquitous among all regions of the tumor, with as little as 
0.9% and at most 30.6% (Fig. 5A). The percentages of shared 
TCR clones across tumor regions and between tumor and 
peripheral blood were both significantly higher in highly infil-
trated tumors, indicating that extensive intratumoral immune 
responses could also cause perturbations in the peripheral 
TCR repertoire (Supplementary Fig. S9C). The Morisita–Horn 
index (44) was calculated to measure the similarity of the TCR 
repertoires between two tumor regions within a tumor, and 
highly infiltrated tumors exhibited more similar TCR profiles 
across regions as expected (Supplementary Fig. S9D).

Of particular interest was P25 (a highly infiltrated tumor), 
who exhibited clonal copy-number loss of B2M and HLA-B 
58:01, along with wide parallel subclonal mutations in the 
remaining B2M allele, including B2M p.L13 frameshift dele-
tions in R1, R3, and R5, and a B2M 72–78 nonframeshift 
deletion in R2 (Supplementary Fig.  S9E). Within P25, R4 
exhibited the strongest subclonal immunoediting with the 
lowest immune infiltration and TCR clonality, whereas the 
other four regions developed B2M mutations to further 
destroy antigen presentation (Supplementary Fig. S9E). Inter-
estingly, TRBV4-1-TRBJ1-4 (CDR3aa: CASSQGQGREKLFF) 
and TRBV15-TRBJ1-2 (CDR3aa: CATSSGLSGADYGYTF) 
were dominant in P25-R1, R3, and R5, whereas P25-R2 exhib-
ited a distinct TCR repertoire, which might be the result of 
different B2M mutation patterns and a subclonal neoantigen 

profile, implying the interaction between tumor evolution 
and TCR composition.

Multiple immune checkpoints, including PD-1, PD-L1, 
and CTLA4, were serially overexpressed from sparsely infil-
trated tumors to highly infiltrated tumors (Supplementary 
Fig.  S9F). Sparsely infiltrated tumors exhibited comparable 
proportions of PD-1+CD8+ T cells with corresponding tumor 
margins and nontumor livers, whereas highly and hetero-
geneously infiltrated tumors showed significantly increased 
proportions over paired tumor margins and nontumor livers, 
indicating that CD8+ T cells were gradually programmed 
into an exhaustion phenotype (Fig.  5B; Supplementary 
Fig. S9G). Also, a higher proportion of PD-L1+ stromal cells 
was observed in highly infiltrated tumors (Fig.  5B; Sup-
plementary Fig.  S9H), and CD8+ T-cell exhaustion scores 
sequentially increased from sparsely to heterogeneously to 
highly infiltrated tumors (Supplementary Fig. S9I). In addi-
tion, highly and heterogeneously infiltrated tumors displayed 
more CD4+FOXP3+ regulatory T-cell (Treg) and CD206+ 
M2-like macrophage infiltration than sparsely infiltrated 
tumors (Fig. 5C; Supplementary Fig. S9J and S9K). All three 
groups exhibited a significantly higher proportion of Tregs 
and a lower ratio of CD8+ T cells/Tregs in tumor regions 
than in corresponding tumor margins and nontumor livers, 
highlighting the widespread immunosuppressive role of Treg 
accumulation in iCCA (Fig. 5C; Supplementary Fig. S9L).

We then integrated immune infiltration status and immune 
evasion mechanisms to predict patient prognosis, consid-
ering that immune diversity (i.e., sparse, hetero, and high 
immune groups) itself had minimal prognostic significance. 
Patients were classified as the low evasion group (highly or 
heterogeneously infiltrated with no evidence of HLA LOH or 
extreme CD8+ T-cell exhaustion) and the high evasion group 
(sparsely infiltrated or exhibiting evidence of HLA LOH or 
extreme CD8+ T-cell exhaustion; Fig. 5D). In our cohort, the 
high evasion group had significantly shorter recurrence-free 
survival than the low evasion group (HR  =  2.24, P  =  0.040; 
Fig.  5E). We also divided the CPTAC iCCA cohort into low 
and high evasion groups, and patients with high evasion abil-
ity had shorter overall survival (HR = 1.90, P = 0.011; Fig. 5F). 
Notably, immune evasion ability remained as an independ-
ent prognosticator in multivariable analysis in both cohorts 
(Supplementary Table S5). Again, a similar result was found 
in The Cancer Genome Atlas (TCGA) iCCA cohort (n =  32, 
HR  =  3.62, P  =  0.046), corroborating the robustness of the 
prognostic classification system (Fig. 5G).

Intrahepatic Metastases Share Similar Immune 
Features with the Original Clones

Intrahepatic metastasis (IM) is a common metastatic route 
of iCCA. We plotted phylogenetic trees and CNV profiles of 
four tumors with IMs and inferred the most likely tumor 
region origin for each metastasis (Fig. 6A and B). For exam-
ple, P11-IM2 and P11-R2 had the closest clonal evolutionary 
trajectories and CNV profiles, indicating that P11-IM2 was 
disseminated from tumor clones in P11-R2 (Fig. 6A). There 
was no special enrichment of driver mutations or CNVs in 
metastases, and metastases could derive from tumor clones 
of different regions, suggesting that the whole tumor, rather 
than special clones, had the potential to disseminate.
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Then, we performed unsupervised clustering based on 
the top 3,000 variant genes in each of the four patients 
(Supplementary Fig.  S10A). There was no obvious separa-
tion between primary tumors and IMs, and the metastases 
even clustered together with the original tumor regions in 
75.0% (6/8) of pairs. Unsupervised clustering using immune 
signatures of Danaher and colleagues (27) for each patient 
(Fig.  6C) showed that the IMs also clustered with original 
tumor regions in 75.0% (6/8) of pairs. Further immunostain-
ing revealed that IMs exhibited similar infiltration of T cells 
and macrophages with their original tumor regions in P13 

and P22 (Fig.  6D; Supplementary Fig.  S10B). Overall, the 
metastatic clones with similar genomic and transcriptomic 
characteristics to primary clones within the same organ can 
shape a homologous immune microenvironment. Otherwise, 
distant metastases out of the original organ may generate 
distinct transcriptomic and immune profiles, despite stable 
genomic traits (45). Likewise, the TCR repertoire and high-
frequency TCR clones were similar between paired primary 
tumors and IMs (Supplementary Fig. S10C and S10D), pos-
sibly due to the fact that they shared genomic features and 
consequently neoantigen profiles.

0

20

40

60

80

100

Tumor region Tumor margin Nontumor liver

PD-1+CD8+

PD-L1+CK19−

PD-L1+CK19+

Number
(cells/mm2)

Number
(cells/mm2)

Percentage

***

*
**

*

***

*
**

*

*
PD-1+CD8+%

PD-L1+CK19−%

PD-L1+CK19+%

20
100
500

1,000

* ** *

**

0.01
0.1
0.2

0.4

0.6

20
100
500

1,000

0.01
0.1
0.2

0.4

1
10
20

40

Percentage

Ratio

CD4+

CD4+FOXP3+

CD206+CD68+

CD8+/CD4+

* *****

**
***

** *
***

*
*

**
*** *

* *

*

*

CD4+FOXP3+%

CD206+CD68+%

CD8+/
CD4+FOXP3+

0

1

2

3

4

5

6

7

T
C

R
 c

lo
ne

s 
(%

)

Unique
33%
40%
50%
60%
66%
75%
80% or 83%
Ubiquitous
Sample count

A

0

20

40

60

80

S
ha

re
d 

T
C

R
 c

lo
ne

s 
(%

)

Het
er

o
High

*

*ns

B

C

PD-1
CD8

CK19

DAPI

PD-L1

P10-IM1 (high) P19-R3 (sparse)

FOXP3

CD8
CD68

DAPI

CD206
CD4

P01-R1 (sparse)P25-R5 (high)

P
16

P
35

P
19

P
20

P
24

P
01

P
14

P
15

P
43

P
23

P
42

P
37

P
30

P
28

P
03

P
44

P
40

P
41

P
07

P
18

P
21

P
32

P
45

P
22

P
12

P
36

P
04

P
33

P
31

P
34

P
09

P
39

P
29

P
17

P
06

P
02

P
11

P
13

P
27

P
10

P
26

P
25

P
38

P
05

P
08

Sparse

Spa
rse

Hetero
High

Tumor region Tumor margin Nontumor liver

Het
er

o
High

Spa
rse

Het
er

o
High

Spa
rse

Het
er

o
High

Spa
rse

Het
er

o
High

Spa
rse

Het
er

o
High

Spa
rse

Het
er

o
High

Spa
rse

Figure 5.  TCR landscape and suppressive microenvironment. A, Proportions of the top 0.02% of TCR clones detected in all regions, partial regions, 
and a single region of tumors (left) and box plots comparing the percentage of shared TCR clones among the three immune groups (right); Student 
t test, *, P < 0.05; **, P < 0.01; ***, P < 0.001; ns, not significant. The number of sampling tumor regions is indicated by the red line. B, Representative 
immunostaining images (left) of immune checkpoints in a highly and sparsely infiltrated tumor: CD8 (green), PD-1 (cyan), CK19 (red), PD-L1 (yellow), and 
DAPI (blue). Scale bars, 100 μm. Circle plots (right) showing mean and standard deviation (SD) of densities and proportions of indicated cells in tumor 
regions, tumor margin, and nontumor livers of the three immune groups; Mann–Whitney test. C, Representative immunostaining images (left) of Tregs and 
macrophages in a highly and sparsely infiltrated tumor: CD8 (green), CD68 (red), CD206 (yellow), CD4 (purple), FOXP3 (cyan), and DAPI (blue). Scale bars, 
100 μm. Circle plots (right) showing mean and SD of densities and proportions as indicated in tumor regions, tumor margin, and nontumor livers of the 
three immune groups; Mann–Whitney test. (continued on next page) 

D
ow

nloaded from
 http://aacrjournals.org/cancerdiscovery/article-pdf/12/10/2350/3211186/2350.pdf by guest on 29 Septem

ber 2023



Lin et al.RESEARCH ARTICLE

2362 | CANCER DISCOVERY OCTOBER  2022 AACRJournals.org

Figure 6.  Clonal evolution and immune microenvironment of IMs. A, Clonal structure and phylogenetic trees of four tumors with IMs. Subclones with 
mutation numbers greater than or equal to 5 are shown, and the area of the circles is proportional to the cancer cell fraction of the corresponding subclone 
(left). The branch lengths are proportional to the number of mutations in each cluster in phylogenetic trees (right). The dotted lines indicate the inferred 
trajectories of intrahepatic dissemination. B, Circos plots showing CNV profiles of the primary and metastatic tumors. C, Hierarchical clustering of 
immune cell subgroups for four tumors. DC, dendritic cell; NK, natural killer. D, Representative immunostaining images of different regions in P22 for CD3 
(yellow), CD68 (purple), CD8 (green), and DAPI (blue). Scale bars, 100 μm.
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Figure 5. (Continued) D, A diagram for classifying patients into high and low immune evasion groups. E and F, Classification of patients into high 
and low immune evasion groups and corresponding Kaplan–Meier curves in our cohort (E) and the CPTAC cohort (F); log-rank test. TNM, tumor–node–
metastasis. G, Kaplan–Meier curves for overall survival according to high and low immune evasion in the TCGA iCCA cohort; log-rank test.

LVVVGADGV (KRASG12D) Is a Potential Target for 
Personalized Immunotherapy

Neoantigens derived from driver mutations, such as 
TP53R175H and KRASG12D, could activate a T-cell response, and 
neoantigen-specific T-cell clones could be used for adoptive 
cell therapy (46–48). Here, a total of 32 predicted neopeptides 

from driver mutations of TP53, KRAS, IDH1, IDH2, and BAP1 
were synthesized to systematically estimate their poten-
tial as immunotherapeutic targets (Fig.  7A; Supplemen-
tary Fig.  S1C; Supplementary Table  S6). We used tetramer 
exchange experiments to evaluate the affinity of mutant 
peptides with HLA-A 02:01, HLA-A 24:02, and HLA-A 11:01 
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Figure 7.  Screening of immunogenic neoantigens derived from 
recurrent driver mutations. A, Diagram of the screening pro-
cess. DC, dendritic cell; MHC, major histocompatibility complex. 
B, Affinity of neopeptides with three HLA-A molecules estimated 
by tetramer exchange experiments. C, Typical examples of high 
exchange efficiency of neopeptides (peptides #20 and #30) to the 
HLA-A 02:01 tetramer. (continued on following page) 
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(the three most common HLA-A subtypes). The binding of 
peptides to HLA-A molecules was specific, where the same 
peptide could have completely different affinities with dif-
ferent HLA-A molecules (Fig. 7B; Supplementary Fig. S11A). 
The exchange efficiency was as high as 97.2% between peptide 
#3 and HLA-A 02:01, but as low as 7.8% between peptide #3 
and HLA-A 11:01 (Fig.  7B), with 15.7% (13/83) of peptide–
major histocompatibility complex (MHC) pairs defined as 
high affinity (exchange efficiency >75%; Fig. 7C).

In addition to the affinity with HLA molecules, the 
immunogenicity of peptides also determines their ability to 
stimulate immune cells. We isolated peripheral blood mono-
nuclear cells (PBMC) from three healthy donors and per-
formed an enzyme-linked immunospot (ELISpot) assay to 
quantify IFNγ secretion against different peptides (Fig. 7D). 
Strong reactivity against peptide #19 (LVVVGADGV, 
KRASG12D), peptide #29 (SQEQPRCHY, IDH2R37C), and pep-
tide #30 (RLFERDGLKV, BAP1L183R) was detected in donor 
#1, whereas donors #2 and #3 showed only moderate reactiv-
ity against peptide #19 (Fig. 7D). Because dendritic cells are 
powerful antigen-presenting cells to prime T-cell responses 
(49), we further isolated peripheral monocytes from donor 
#4 and loaded them with antigen peptides (peptides #19, 
20, 29, and 30 and the combined peptide pool) during 

the differentiation into dendritic cells. Paired T cells were 
then cocultured with mature dendritic cells. Subsequent 
flow cytometry analysis of T-cell activation markers 4-1BB 
and CD107a demonstrated the enhanced reactivity of both 
CD4+ and CD8+ T cells against peptide #19 (LVVVGADGV, 
KRASG12D), which was superior to other peptides and compa-
rable with the combined peptide pool (Fig. 7E; Supplemen-
tary Fig. S11B).

To identify peptide #19–specific TCR repertoire, we 
isolated activated 4-1BB+ cells stimulated by peptide #19 
or DMSO (control) from donors #1 to 3 and performed 
TCR sequencing. TRBV9-TRBJ2-1 and TRBV25-1-TRBJ2-1 
rearrangements were significantly enriched in the top 100 
CDR3s whose frequencies varied mostly between peptide 
#19 and DMSO groups (Fig. 7F). We then used the GLIPH 
algorithm (50) to cluster potential peptide #19–specific 
activated CDR3 library (Supplementary Fig.  S11C), and 
most of the TCRβ  sequences fell in one or few related 
TCR repertoires, among which the motifs RAGQ and KVD 
were identified (Fig.  7G). This preliminary screening indi-
cated that LVVVGADGV (KRASG12D) had strong immu-
nogenicity that can induce specific V–J rearrangements 
and TCRβ  motifs, which could be further exploited for 
personalized immunotherapy.
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DISCUSSION
Through the integration of genomic, transcriptomic, and 

immunophenotypic data, our study elucidates the dynamic 
interactions between iCCA evolution and the immune micro-
environment. We observed intratumoral heterogeneous 
immune infiltration in more than half of iCCA, posing a 
great challenge for the immune classification of patients 
and the prediction of immunotherapeutic efficacy by sin-
gle biopsy. Tumors were classified into three immune groups 
with distinct immune microenvironment characteristics and 

neoantigen depletion mechanisms (Supplementary Fig. S11D),  
providing a novel insight to guide future immuno-oncologic 
therapeutic strategies.

Despite extensive genomic ITH in iCCA, some recurrent 
gene alterations, such as TP53, KRAS, FGFR2, BAP1, PIK3CA, 
ATM, and IDH1/2, were primarily clonal, providing con-
siderable reliability to assess these mutations from a single 
biopsy and highlighting their potential as therapeutic targets. 
Among them, we found that FGFR2-altered iCCA displayed 
higher FGFR2 expression and less immune infiltration, 
together with low TMB and TNB. Recently, Palakurthi and 
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colleagues (51) combined an FGFR inhibitor (erdafitinib) and 
anti–PD-1 therapy to treat an FGFR2-mutated lung cancer 
mouse model and induced significant tumor regression, with 
increased cytotoxic T-cell infiltration and decreased Tregs, 
macrophages, and PD-L1 expression. The finding raises  
the possibility that FGFR2 inhibitors may drive the immu-
nologic alterations and sensitize FGFR2-altered iCCA to 
anti–PD-1 therapy. Surprisingly, we revealed that IDH1/2 
mutations may not uniformly lead to sparse immune infiltra-
tion, but rather may be reversed by hepatitis virus infection and 
comutation profiles. This is analogous to Epstein–Barr virus–
associated iCCA, which had abundant lymphocyte infiltration 
and was sensitive to ICIs compared with non–virus-associated  
iCCA (52).

A tumor must have developed immune evasion mechanisms 
to survive and grow in vivo. Neoantigen depletion could reduce 
the immunogenicity of tumor cells and serve as a major escape 
mechanism, which was observed during tumor recurrence (53), 
metastasis (54), and immunotherapy (55). Consistent with 
the finding in lung cancer (40), active clonal neoantigen loss 
mainly occurred in low-infiltration tumor regions in iCCA. We 
further found that DNA immunoediting, which reflects the 
reprogramming of somatic mutations to produce fewer neo-
antigens (28), was complementary to clonal neoantigen loss 
in low-infiltration tumor regions. Both of them may represent 
tumor-intrinsic ways at the genomic level to immune escape. 
Previous studies in colorectal cancer and hepatocellular carci-
noma have shown that DNA immunoediting was prevalent in 
tumors with abundant T-cell infiltration but always lacking in 
those with HLA LOH (44, 54). These phenomena collectively 
suggest that different immune escape mechanisms may be 
dominant in distinct contexts, and pervasive antigen presenta-
tion disruption may explain the relatively low level of DNA 
immunoediting in highly infiltrated iCCA in our study.

At the mRNA level, expression silence of clonal neoanti-
gens was prevalent, especially in heterogeneously infiltrated 
tumors. Of note, highly infiltrated tumors displayed a com-
parable expression ratio of clonal neoantigens with sparsely 
infiltrated tumors. One hypothesis is that frequent anti-
gen presentation defects may relieve the expression silence, 
because highly infiltrated tumors with HLA LOH exhibited 
a significant increase of expressed clonal neoantigens com-
pared with their nonneoantigenic counterparts. We assume 
that highly infiltrated iCCA resemble microsatellite insta-
bility–high (MSI-high) colorectal cancers in the following 
aspects: (i) abundant immune infiltration, (ii) high neoan-
tigen burden, (iii) frequent disruption to antigen presenta-
tion, and (iv) overexpression of immune checkpoints (56, 
57). These similarities suggest that highly infiltrated iCCA 
could be suitable candidates for immune-checkpoint block-
ade. Considering that DNA hypermethylation is one of the 
important causes of neoantigen expression silence in iCCA 
(17, 58), heterogeneously infiltrated tumors may be optimal 
for the combination of epigenetic regulators and anti–PD-1 
(Supplementary Fig.  S11D). These conclusions are based 
on an in-depth analysis of the multiomics data, and further 
functional validation would solidify the findings.

Extrinsic immune escape mechanisms also played a critical 
role in tumor immune tolerance (59). T-cell exclusion was 

extensive in iCCA, engendering the formation of immune-
privileged microenvironments, especially in sparsely infil-
trated tumors. Imbalanced CD8+ T cell/Treg was an essential 
characteristic of iCCA regardless of the abundance of immune 
infiltration as previously reported (60). Unsurprisingly, high 
immune infiltration was also accompanied by immune-
checkpoint overexpression and CD8+ T-cell exhaustion, 
explaining why tumors can still exist in “hot” microenviron-
ments (61, 62). Meanwhile, abundant PD-L1+ myeloid cells and 
stromal cells such as cancer-associated fibroblasts increased in 
highly infiltrated tumors, which may further weaken antitu-
mor–immune response (63–65). These immunosuppressive 
cells help promote the cultivation of a high-infiltrated but 
useless or even tumor-promoting microenvironment. As a 
result, immune infiltration alone may not be sufficient to 
distinguish the outcomes of patients with iCCA, and thus we 
developed a simple but robust prognostic classification system 
based on immune evasion ability.

Although driver mutations produced fewer and less immu-
nogenic neoantigens, they underwent weak immunoediting 
compared with passenger mutations, which indicates that 
driver mutation expression is required for tumor cell fit-
ness but also exposes vulnerability to targeted or immune 
therapy. Therefore, driver mutation–derived neoantigens 
were better targets than passenger mutation–derived neo-
antigens because the latter can be easily edited through 
neoantigen depletion. In this regard, we screened a panel 
of recurrent mutation–derived neoantigens and demon-
strated strong immunogenicity and high affinity to HLA-A 
02:01 of LVVVGADGV (KRASG12D). Recently, Kadam and 
colleagues (66, 67) combined anti–PD-1 and vaccination of 
LVVVGADGV peptide to treat a KRASG12D lung cancer mouse 
model and induced 80% tumor eradication, further support-
ing it as an ideal target for personalized immunotherapy (68). 
Specific V–J rearrangements and TCRβ motifs were also iden-
tified by us, which may help design engineered TCR T cells 
(69) for patients with KRASG12D in the future.

In conclusion, our study comprehensively illustrated 
tumor–immune interactions by integrating multiomics in 
iCCA, demonstrating the spatiotemporally heterogeneous 
immunogenomic features across patients and within tumors. 
Future studies of paired pre- and posttreatment samples using 
high-resolution spatial omics and single-cell profiling may 
provide a greater understanding of these processes. Based on 
current and ongoing knowledge, new combinational immu-
notherapies may ultimately renovate the treatment paradigm 
and improve clinical outcomes of this fatal malignancy.

METHODS
Patients and Samples

We prospectively collected 207 tumor samples from 45 patients 
with iCCA who underwent curative resection from January 2019 to 
December 2019 at the Zhongshan Hospital of Fudan University. A 
cut fully bisecting the resected tumor was made, and representative 
spatially separated regions were collected at least 5 mm away from 
each other and tumor margin. Tumor margins (defined as the region 
within 500 μm on each side of the border; ref.  70) and nontumor 
liver tissues (>2 cm away from tumor margin) were sampled from 
formalin-fixed, paraffin-embedded tissues to construct a TMA. This 
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study was approved by the Research Ethics Committee of Zhongshan 
Hospital (B2017-060R) with written informed consent from each 
patient and was conducted in accordance with ethical guidelines 
(Declaration of Helsinki).

WES, Variant Calling, and RNA-seq
WES and RNA-seq were performed by the DNBSEQ Platform 

(MGI Tech Co., Ltd.). Somatic mutations of tumor samples were 
detected using the blood samples or nontumor liver tissues as con-
trols, and raw RNA data were processed as previously described (44). 
Detailed tissue preparation, data processing, and somatic mutation 
detection are described in Supplementary Materials and Methods.

Immune Infiltration Estimation
A total of nine published in silico immune tools (27, 28, 71–77) were 

collected and tested in our data (Supplementary Fig. S4A and S4B; 
Supplementary Table  S2) as previously described (40). The propor-
tion of genes in each method that met the criteria was calculated 
and further compared with multiplex immunofluorescence. Due to 
the lack of a CD4+ T-cell estimate in Danaher and colleagues (27), 
we used the estimate of CD4+ T cells from Shen and colleagues (75). 
Pathologic TILs were estimated using internationally established 
guidelines (www.tilsincancer.org; ref. 78).

Multiplexed Immunofluorescence
Multiplexed immunofluorescence was performed as we previously 

described (79). A total of four staining regimens were performed, 
and detailed information on antibodies is listed in Supplementary 
Table S2. Multispectral images of TMAs were scanned using Vectra 
3.0 (PerkinElmer), and spectral unmixing was conducted using the 
inForm Advanced Image Analysis Software (v2.3 PerkinElmer) with 
built spectral libraries. Cutoff value for positivity was determined 
according to the staining patterns and intensities, and cell frequency 
was counted using R script.

Mouse Model Construction
Six-week-old, female FVB/N mice were ordered from the Shanghai 

Branch of Beijing Vital River Laboratory Animal Technologies Co. 
Ltd. The experiments were performed following the institutional 
guidelines strictly and were approved by the Institutional Animal 
Care and Use Committee (IACUC) of the Shanghai Branch of 
Beijing Vital River Laboratory Animal Technologies Co. Ltd. (2017-
0014). pT3-EF1α-HA-myr-Akt (mouse, Addgene, 31789, RRID: 
Addgene_31789) and pT3-EF1a-YAPS127A (human, Addgene, 86497, 
RRID: Addgene_86497) were obtained from Addgene (https://www.
addgene.org/). The FGFR2::BICC1 fusion gene and KRASG12D gene 
were synthesized and cloned into the pT3 vector, and the CRISPR/
Cas9 single-guide RNA (sgRNA)-p19 was designed, synthesized, 
and cloned to the pX330 vector (Shanghai Xitubio Biotechnology 
Co., Ltd.). For the construction of AKT/YAP, AKT/YAP/FGFR2, 
KRAS/p19, and KRAS/p19/FGFR2 murine iCCA models, plasmids 
were injected into mice by the hydrodynamic tail-vein injection at 
a 10:1 ratio of transposon to SB-luc transposase-encoding plasmid 
(20  μg of pT3-EF1α-HA-myr-Akt plasmid, 30  μg of pT3-EF1a-
YAPS127A plasmid, 10  μg of pT3-EF1α-HA-FGFR2 fusion plasmid, 
25 μg of pT3-EF1a-KRASG12D plasmid) as well as 10 μg of the PX330-
CRISPR/Cas9 sgRNA-p19 plasmid with the solution into the tail 
vein with a total volume corresponding to 10% of the body weight 
in 6 to 8 seconds. Vectors for hydrodynamic delivery were produced 
using the Qiagen Plasmid Plus Mega Kit. Equivalent DNA concen-
tration between different batches of DNA was confirmed to ensure 
reproducibility among experiments. Mice were sacrificed 6 weeks 
after injection.

IHC and Quantification of Immune Cells
IHC and quantification of immune cells were performed as 

described previously (80). Primary antibodies used in the IHC stain-
ing of mouse liver tumors are listed in Supplementary Table S2. Five 
microscopic fields (magnification, × 200) of regions of interest were 
selected and captured. Positively stained cells were counted using 
Image-Pro Plus (81), and the density of positive cells was calculated 
by averaging.

Neoantigen Prediction and Depletion
Neoantigens were predicted by NetMHC (v4.0; ref.  82) and 

NetMHCpan (v4.1; ref. 83) with the following criteria: (i) the length 
of the peptide was 9 to 10 mer and (ii) minimum IC50 <500 nmol/L 
in either software. Copy-number loss of clonal neoantigen was 
detected if the corresponding copy number of the SNV allele was 
0. If the read count of the mutation site identified by RNA-seq 
was more than 5 with at least 3 mutated reads, the neoantigen was 
defined as expressed neoantigen and otherwise unexpressed as previ-
ously described (40). Neoantigens bound to the lost HLA allele were 
defined as loss of presentation.

Peptide–MHC Tetramer Assay
Peptide–MHC tetramer assays were performed to estimate the 

affinity between peptide and HLA sites as we previously described 
(44). Neoantigen peptides were synthesized according to the stand-
ard procedure (ABclonal Inc.) with purity  >95%. An HLA-A*11:01 
tetramer kit (TB-7304-K1, MBL International), an HLA-A*24:02 tet-
ramer kit (TB-7302-K1, MBL International), and an HLA-A*02:01 
tetramer kit (TB-7300-K1, MBL International) were used according 
to the manufacturer’s instructions.

Culture and Expansion of T Cells
PBMCs of donors were obtained using Lymphoprep (07851, Stem-

cell) and then cultured with ImmunoCult-XF T Cell Expansion 
Medium (10981, Stemcell) and 10 ng/mL human recombinant IL2 
(78036, Stemcell). ImmunoCult Human CD3/CD28 T Cell Activator 
(25  μL/mL; 10971, Stemcell) was added to the cell suspension and 
incubated for 3 days. Then the volume of the cell suspension was 
expanded every 2 days according to the manufacturer’s instructions.

ELISpot Assay
ELISpot assays were performed according to the manufacturer’s 

instructions. In brief, we incubated 5 × 104 cells with 10 μg/mL of the 
synthesized peptide in each well at 37°C in ELISpot plates (2110003, 
DAKEWE) for 20 hours. The plates were washed and incubated with 
antihuman IFNγ  and then streptavidin–HRP. Finally, the streptavi-
din–HRP was stained using the AEC solution, and ELISpot plates 
were scanned and counted using an ImmunoSpot plate reader and 
associated software (Cellular Technologies, Ltd.).

Coculture of Dendritic Cells and T Cells
The differentiation of monocytes into dendritic cells was con-

ducted using the ImmunoCult Dendritic Cell Culture Kit (10985, 
Stemcell) according to the manufacturer’s instructions. We first 
obtained PBMCs from a healthy donor and then incubated the cells 
with a serum-free medium at 37°C for 2 hours. Suspension cells were 
collected for T-cell expansion, and ImmunoCult dendritic cell dif-
ferentiation medium with differentiation supplement was added to 
induce the differentiation of adherent monocytes. The medium was 
replaced every 2 days. Synthesized peptides were added at 50 μg/mL 
and allowed immature dendritic cells to uptake and process on day 5. 
Maturation supplement was added on day 6 to induce the maturation 
of dendritic cells. Then mature dendritic cells were obtained on day 8 
and cocultured with expanded T cells for 24 hours.
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Flow Cytometry
For flow cytometry, antibodies used were anti-CD3 (563800,  

SK7, BD Biosciences, RRID: AB_2744384), anti-CD8 (557945, RPA-
T8, BD Biosciences, RRID: AB_396953), anti-CD107a (328608, 
H4A3, BioLegend, RRID: AB_1186040), and anti–4-1BB (309804, 
4B4-1, BioLegend, RRID: AB_314783). Data were collected using the 
flow cytometers BD LSRFortessa and Celesta (BD Biosciences), and 
analyzed by FlowJo (TreeStar).

Peptide Stimulation and 4-1BB+ Cell Separation
We incubated 107 cells with 10 μg/mL of peptide #19 or DMSO in 

2 mL culture media at 37°C for 24 hours. 4-1BB+ cells were obtained 
using the CD137 MicroBead Kit (130-093-476, Miltenyi Biotec) 
according to the manufacturer’s instructions.

TCR-seq
Genome DNA from peripheral blood, tumor-adjacent tissues, and 

tumor tissues was collected for TCR-seq. We used the Multiplex PCR 
(MPCR) primers as described previously (84, 85), which includes 30 
forward V primers and 13 reverse J primers, to amplify the rearranged 
CDR3 regions of TCRs and the sequencing was performed using a 
BGISEQ-500 platform (MGI Tech Co., Ltd.) following the manufac-
turer’s protocol. Detailed data processing and TCR clonotype detec-
tion are described in Supplementary Materials and Methods.

Prognostic Classification System
A simple prognostic classification system was developed based on 

immune evasion ability for iCCA. Immune infiltration status was 
determined based on the unsupervised clustering of immune signa-
tures by Danaher and colleagues (27). HLA LOH was called using 
LOHHLA (86) and CD8+ T-cell exhaustion scores were calculated 
with single-sample gene set enrichment analysis using the signature 
by Kang and colleagues (62), in which the top 10% of tumor samples 
were defined as extreme CD8 exhaustion.

Statistical Analysis
Statistical analyses were conducted using SPSS 25.0 software 

(IBM). The Chi-square test, Fisher exact test, Mann–Whitney U test, 
Kruskal–Wallis test, and Student t test were used appropriately. 
Kaplan–Meier plots (log-rank test) and Cox proportional hazards 
regression analysis were used to describe survival curves and identify 
independent prognostic factors, respectively. A two-tailed P  <  0.05 
was considered significant. The results of group comparisons pre-
sented as box plots followed these rules: The maximum and mini-
mum are indicated by the extreme points, the median is indicated by 
the thick horizontal line, and the first and third quartiles are indi-
cated by box edges; whiskers indicate 1.5 times the interquartile range 
above the first quartile and below the third quartile. The schematic 
diagrams were drawn using BioRender.

Public Data Sets
Six public data sets were analyzed. We collected multiomics data 

of the CPTAC iCCA cohort (ref. 19; https://www.biosino.org/node/
project/detail/OEP001105), somatic mutation data of Zou and col-
leagues (21) from GeneBank (SRP045202), and the data sets from 
TCGA. The somatic mutation data of Xiang and colleagues (14), 
Dong and colleagues (8), and Chen and colleagues (17) were also used 
to verify our results.

Data Availability
Sequence data have been deposited at the National Omics Data  

Encyclopedia, which is hosted by the Shanghai Institutes for Biological  
Sciences, Chinese Academy of Sciences (accession no. OEP002560),  

and at CNSA (CNGB Sequence Archive; https://db.cngb.org/cnsa/) 
of the China National GeneBank DataBase (CNGBdb), with the 
accession code CNP0002045.
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