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Abstract

Background: Geostatistical techniques that account for spatially varying population sizes and

spatial patterns in the filtering of choropleth maps of cancer mortality were recently developed.

Their implementation was facilitated by the initial assumption that all geographical units are the

same size and shape, which allowed the use of geographic centroids in semivariogram estimation

and kriging. Another implicit assumption was that the population at risk is uniformly distributed

within each unit. This paper presents a generalization of Poisson kriging whereby the size and shape

of administrative units, as well as the population density, is incorporated into the filtering of noisy

mortality rates and the creation of isopleth risk maps. An innovative procedure to infer the point-

support semivariogram of the risk from aggregated rates (i.e. areal data) is also proposed.

Results: The novel methodology is applied to age-adjusted lung and cervix cancer mortality rates

recorded for white females in two contrasted county geographies: 1) state of Indiana that consists

of 92 counties of fairly similar size and shape, and 2) four states in the Western US (Arizona,

California, Nevada and Utah) forming a set of 118 counties that are vastly different geographical

units. Area-to-point (ATP) Poisson kriging produces risk surfaces that are less smooth than the

maps created by a naïve point kriging of empirical Bayesian smoothed rates. The coherence

constraint of ATP kriging also ensures that the population-weighted average of risk estimates

within each geographical unit equals the areal data for this unit. Simulation studies showed that the

new approach yields more accurate predictions and confidence intervals than point kriging of areal

data where all counties are simply collapsed into their respective polygon centroids. Its benefit over

point kriging increases as the county geography becomes more heterogeneous.

Conclusion: A major limitation of choropleth maps is the common biased visual perception that

larger rural and sparsely populated areas are of greater importance. The approach presented in this

paper allows the continuous mapping of mortality risk, while accounting locally for population

density and areal data through the coherence constraint. This form of Poisson kriging will facilitate

the analysis of relationships between health data and putative covariates that are typically measured

over different spatial supports.
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Background
Public health officials frequently use cancer mortality
maps to identify areas of excess and their potential causes
(e.g. environmental exposure or socio-demographic fac-
tors), as well as to guide surveillance and control activi-
ties. The interpretation and analysis of those choropleth
maps faces three major hurdles: 1) the presence of
extreme unreliable rates that typically occur for sparsely
populated areas and/or less frequent cancers, 2) the visual
bias resulting from the aggregation of health data within
administrative units of widely different sizes and shapes,
and 3) the mismatch of spatial supports for cancer rates
and explanatory variables that prevents their direct use in
correlation analysis and often implies an aggregation to
the coarser geography. Common pitfalls include devoting
unwarranted attention to a few oversized geographical
units located in low population density areas or conduct-
ing regression analysis at scales that distort the true expo-
sure/response relationship (i.e. ecological fallacy) [1].
What is needed is a coherent spatial methodology that
allows both the filtering of the noise caused by the small
number problem and the mapping of results as continu-
ous surfaces without subjective administrative bounda-
ries. Creation of isopleth risk maps from aggregated
disease rates (i.e. areal data) has been the topic of several
papers in the statistical and health science literatures.
Geostatistical methods range from straightforward point
kriging [2-5] to complex random field models that require
distributional assumptions and computationally inten-
sive parameter estimation using Markov Chain Monte
Carlo (MCMC) techniques [6,7].

The simplest approach to create isopleth risk maps con-
sists of assigning the aggregated rates to the geographic
centroids of the administrative units, which are then inter-
polated to the nodes of a regular grid using point kriging.
In these studies, the noise attached to rates estimated from
small populations was either ignored [2], filtered using
empirical Bayes smoothers prior to the interpolation [3],
or incorporated in the interpolation procedure using
binomial [4] or Poisson kriging [5]. When performing
point kriging of areal data, the user makes the practical
assumption that all the habitants of the administrative
unit live at the same location and the measured rate thus
refers to this specific location. This assumption is reason-
able whenever the units of aggregation are small with
respect to the spacing of the interpolation grid. For exam-
ple, Oliver et al. [4] mapped the risk of childhood cancer
over a 2 km grid in the West Midlands of England using
binomial kriging and rates measured within small elec-
toral wards. More recently, Ali et al. [5] created dysentery
and cholera incidence maps using Poisson kriging and
rates measured for patrilineally-related clusters of house-
holds. The assumption of point measurement support
becomes clearly inappropriate when the administrative

units are counties or states [2,3], which calls for specific
methods to incorporate the shape and size of those units
in the analysis.

In theory, the system of kriging equations is flexible
enough to incorporate data measured over a wide variety
of supports and to accommodate either punctual or areal
(classically termed "blocks" in the geostatistical literature)
prediction supports [8,9]. Practical implementation of
kriging in presence of irregular geographical units is, how-
ever, challenging mainly for the derivation of the areal
covariance terms used in the kriging system [10]. Indeed,
the covariance between two areas is approximated as the
average of the point-support covariance computed
between any two points discretizing these two areas. The
first challenge is that the point-support semivariogram
model cannot be inferred directly from the observations
since only areal data are available. Instead, the semivario-
gram of areal data needs to be modelled, then deconvo-
luted to yield the point-support model. Second, the
discretization of all the measurement and prediction sup-
ports, followed by the averaging of covariance values, can
be CPU intensive. This partly explains why most geostatis-
tical studies were restricted to the use of punctual data to
conduct interpolation at punctual locations or over areas
of regular size, such as blocks to be mined or environmen-
tal exposure units to remediate.

The geostatistical analysis of areal data has received
increasing attention as kriging becomes more popular in
the fields of remote sensing, social science, and medical
geography. In particular, several authors [11-14] have
implemented kriging of areal data to predict punctual or
areal values, an approach referred to as "area-to-point"
(ATP) or "area-to-area" (ATA) kriging following the termi-
nology in Kyriakidis [14]. ATP kriging allows mapping the
variability within geographical units while ensuring the
coherence of the prediction so that, for example, disaggre-
gated estimates of count data are non-negative and their
sum is equal to the original aggregated count. Gotway and
Young [12] applied ATA kriging to the mapping of the
number of low birth weight (LBW) babies at the Census
tract level, accounting for county-level LBW data and cov-
ariates measured over different spatial supports, such as a
fine grid of ground-level PM10 concentrations or tract pop-
ulation.

Both ATA and ATP kriging have great potential for the
analysis of cancer mortality maps, enabling the shape and
size of administrative units to be incorporated into the
smoothing of choropleth maps and the creation of isop-
leth risk maps, respectively. These methods must however
account for the fact that disease rates are comprised of a
numerator and a denominator, leading to data with vary-
ing degrees of reliability. Poisson kriging was recently
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introduced to incorporate varying population sizes and
spatial patterns in the processing of cancer mortality data
[15,16]. Its implementation was facilitated by the initial
assumption that all geographical units are the same size
and shape, which allowed the use of geographic centroids
in semivariogram estimation and kriging. Another
implicit assumption was that the population at risk is uni-
formly distributed within each unit. Although these
assumptions were reasonable for filtering cancer mortality
maps that consist of geographical units of similar sizes,
point Poisson kriging does not allow a rigorous treatment
of the change of support, prohibiting for example the cre-
ation of continuous risk surfaces.

It is noteworthy that the increasingly popular full Baye-
sian modeling approach is overwhelmingly used with the
conditional auto-regressive (CAR) model for defining the
random effect associated with spatial autocorrelation [17-
19]. This computationally convenient choice is reasona-
ble if all geographical entities are of similar size and
arranged in a regular pattern but it is not particularly
attractive otherwise [6]. There have been several attempts
to model the spatial correlation as a function of the dis-
tance between centroids of geographical units instead of
using the arbitrary neighborhood relationship underlying
the CAR model [20]. To quote Kelsall and Wakefield [6],
"This approach is quite simplistic, however, and again does not
acknowledge the differing shapes and sizes and relative orien-
tation of the areas". The same authors describe one of the
rare Bayesian models that accounts properly for the spa-
tial support of the data, although it was implemented
under the assumption of uniform population distribution
within each area. Using semivariograms to model the spa-
tial autocorrelation, they estimated the continuous under-
lying relative risk function for colorectal cancer mortality
in 39 wards of the UK district of Birmingham.

This paper presents the first geostatistical study where the
size and shape of administrative units, as well as the pop-
ulation density, is incorporated into the filtering of noisy
mortality rates and the mapping of the corresponding risk
at a fine scale (i.e. disaggregation). This generalization of
the Poisson kriging algorithm introduced by Monestiez et
al. [21,22] capitalizes on recent developments in the field
of change of support and deconvolution of semivario-
gram estimated from irregular areal data [10]. The
approach is illustrated using age-adjusted lung and cervix
cancer mortality rates recorded for white females in two
contrasted county geographies: 1) state of Indiana that
consists of 92 counties of fairly similar size and shape, and
2) four states in the Western US (Arizona, California,
Nevada and Utah) forming a set of 118 counties that are
vastly different geographical units. Simulation studies are
conducted to compare the performances of the new meth-
odology to simple geostatistical approaches (i.e. point

kriging of raw or empirical Bayesian smoothed rates) for
the same two county geographies. Performance criteria
include the accuracy of the prediction of the underlying
risk and the quantification of the attached uncertainty.
The lack of realistic spatial models in a full Bayesian
approach, coupled with the absence of user-friendly soft-
ware to implement this type of model [23], prohibited the
inclusion of this approach in the comparison study of iso-
pleth mapping algorithms.

Methods
Data

The methodology to account for spatial support and pop-
ulation density in Poisson kriging will be illustrated using
directly age-adjusted mortality rates for a frequent (lung)
and less frequent (cervix) cancer. These data are part of the
Atlas of Cancer Mortality in the United States [24] and
were downloaded from http://www3.cancer.gov/atlas
plus/download.html. The analysis focuses on white
female rates recorded over the 1970–1994 period and
adjusted using the 1970 population pyramid. Two areas
with contrasted county geographies were considered: 1)
state of Indiana (Region 1), and 2) four states in the West-
ern US (Arizona, California, Nevada and Utah) that will
be referred to as Region 2. The choice of these two specific
geography areas was guided by the need to assess perform-
ances in two contrasted settings: 1) all geographical units
have a fairly similar size and shape, which is the "ideal"
situation for methods that ignore the spatial support of
the data, and 2) geographical units display a wide range of
sizes and shapes, which should favour any approach that
implicitly accounts for the spatial support of the data in
the analysis. The West coast provided a perfect example
for the second type of geography (i.e. set of 118 vastly dif-
ferent counties), while Indiana includes a reasonable
number (i.e. 92) of counties that are geometrically fairly
similar.

Figure 1 (top graphs) shows the spatial distribution of
age-adjusted mortality rates per 100,000 person-years for
lung cancer in Region 1 and cervix cancer in Region 2. Fol-
lowing the recommendations of several studies on map
color schemes [25,26], a double-ended color scheme with
10 equally-weighted classes (i.e. boundaries correspond
to deciles of the histogram) was used: a gradient of red is
used for rates higher than the median, while a gradient of
blue is used for lower rates. The population-weighted
average of mortality rates is 23.7 per 100,000 person-years
for lung cancer and 2.85 per 100,000 person-years for cer-
vix cancer. For Region 1, the population at risk in each
county was computed as: 100,000 × the total number of
"lung cancer" deaths over the 1970–1994 period divided
by the corresponding age-adjusted mortality rate; both
datasets are available on the website of the National Can-
cer Institute (NCI) of the US (URL as given above). A sim-

http://www3.cancer.gov/atlasplus/download.html
http://www3.cancer.gov/atlasplus/download.html
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ilar procedure was conducted in Region 2, except that the
most frequent breast cancer was used to avoid zero popu-
lation estimates for a few sparsely populated counties
where no cervix cancer mortality was reported during that
period. The population sizes are mapped in Figure 1 (mid-
dle row) using a rainbow color scheme to avoid any con-
fusion with the rate maps.

A visual inspection of the cervix cancer mortality map con-
veys the impression that rates are particularly high in the
centre of the study area (Nye and Lincoln Counties), as
well as in a few Northern California counties. This result
must, however, be interpreted with caution since the pop-
ulation is not uniformly distributed across the study area
and rates computed from sparsely populated counties
tend to be less reliable. This effect, known as "small
number problem" [27], is illustrated by the bottom scat-
tergrams in Figure 1. In particular, cervix cancer mortality
in excess of 5 deaths per 100,000 person-years is observed
only for counties with a 25 year cumulated population
smaller than 105. The use of administrative units to report
the results (i.e. counties in this case) can also bias the
interpretation: had the two counties with the highest rates
been much smaller in size, these high values likely would
have been perceived as less problematic. The higher fre-
quency of lung cancer mortality, coupled with the nar-
rower range of county sizes in Indiana, makes the
interpretation of Region 1 cancer mortality map less haz-
ardous. The highest rate is in fact reported for the most
populated county (Marion) whose seat is Indianapolis.

To highlight the limitations of collapsing administrative
units into their geographic centroids, the spatial distribu-
tion of population within each county is mapped at the
top of Figure 2. These maps were produced by allocating
the county-level population estimates of Figure 1 to a grid
of 25 km2 cells discretizing each study area, leading to
3,751 and 48,474 cells in Regions 1 and 2, respectively.
The relative proportion of the county-level population
within each 25 km2 cell was retrieved from the readily
available 2000 census block level data. These population
maps illustrate the non-uniform repartition of popula-
tion, in particular for the vast counties in Region 2. To
account for the shape of geographical units and their het-
erogeneous population density, the distance between any
two counties is here estimated as a population-weighted
average of Euclidian distances between points discretizing
the pair of counties:

where Pα and Pβ are the number of points us and us' used
to discretize the two units or blocks vα and vβ, respectively.

The quantity n(us) represents the population size within
the 25 km2 cell centred on the discretizing point us. For
the examples of Figure 1, the discretizing points are iden-
tified with the nodes of the 5 km grid, yielding a total of 9
to 69 points per county in Indiana, and 11 to 2,082 dis-
cretizing points for the West Coast counties. The set of
block-to-block distances (Equation (1)) are plotted
against Euclidian distances between polygon centroids
depicted by red dots in Figure 2 (middle maps). The scat-
terplots at the bottom of Figure 2 indicate a high correla-
tion between the two sets of distances; discrepancies
essentially occur for neighboring counties (i.e. for small
distances). The correlation is slightly smaller for Region 2
where county shapes and sizes vary greatly. Block-to-block
distances are numerically very close to the distances com-
puted between population-weighted centroids depicted
by blue triangles in Figure 2 (middle maps).

Poisson kriging: the centroid-based approach

The geostatistical methodology for the estimation of risk
values from empirical frequencies, and its performance
relative to common smoothers, is described in details in
Goovaerts [15]. This section provides a brief recall of the
centroid-based implementation of Poisson kriging (PK)
for prediction of aggregated risk values. The approach is
then generalized to account for spatial supports and pop-
ulation density in both the case of area-to-area and area-
to-point predictions.

For a given number N of geographical units vα (e.g. coun-
ties), denote the observed mortality rates (areal data) as
z(vα) = d(vα)/n(vα), where d(vα) is the number of recorded
mortality cases and n(vα) is the size of the population at
risk. Let us assume for now that all units vα have similar
shapes and sizes, with a uniform population density. A
straightforward approach to implement geostatistics is to
assume that each unit or measurement support is a single
point. This simplification amounts at assigning each
measured rate to the geographic centroid of the unit over
which it has been recorded. For example, let uα = (xα, yα)
be the vector of spatial coordinates for the centroid of the
unit vα . The disease count d(uα) is interpreted as a realiza-
tion of a random variable D(uα) that follows a Poisson
distribution with one parameter (expected number of
counts) that is the product of the population size n(uα) by
the local risk R(uα).

The risk over a given unit vα is estimated as a linear com-
bination of the rate observed for that unit, z(uα), and in
(K-1) neighboring units:
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Geographic distribution of age-adjusted lung and cervix cancer mortality rates and the populations at riskFigure 1
Geographic distribution of age-adjusted lung and cervix cancer mortality rates and the populations at risk. For 
the two top maps, the fill color in each county represents the age-adjusted mortality rates per 100,000 person-years recorded 
over the period 1970–1994 for white females (class boundaries correspond to deciles of the histogram of rates). The middle 
maps represent the population at risk which was back-calculated from the rate and count data (lognormal scale). The bottom 
scatterplots illustrate the larger variance of rates computed from sparsely populated counties, in particular for the least fre-
quent cervix cancer.

Lung cancer mortality      Cervix cancer mortality 
(rate/100,000 person-years)     (rate/100,000 person-years) 

Population at risk Population at risk
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High-resolution population maps and their use to compute population-weighted distances between countiesFigure 2
High-resolution population maps and their use to compute population-weighted distances between counties. 
The county-level population estimates of Figure 1 were allocated to a grid of 25 km2 cells according to the 2000 census block 
level data. The scattergrams plot Euclidian distances between county geographic centroids, depicted by red dots in the middle 
maps, versus a "block distance" that accounts for the shape of counties and the distribution of the population (Equation 1). 
Population-weighted centroids are depicted by blue triangles in the middle maps.

     

Lung cancer        Cervix cancer   

WF population WF population

Region 1               Region 2

Centroids:

Geographic

Population-weighted  
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where λi(uα) is the weight assigned to the rate z(ui) when
estimating the risk at uα . The K weights are the solution of
the following system of linear equations:

where δij = 1 if ui = uj and 0 otherwise, and m* is the pop-
ulation-weighted mean of the N rates. The "error vari-
ance" term, m*/n(ui), leads to smaller weights for less
reliable data (i.e. rates measured over smaller popula-
tions). The prediction variance associated with the esti-
mate (2) is computed as:

To solve the kriging system (Equation 3), one needs a
model for the covariance of the risk, CR(h), or equiva-
lently its semivariogram γR(h) = CR(0)-CR(h). Following
Monestiez et al. [21,22] the semivariogram of the risk is
estimated as:

The different spatial increments [z(uα)-z(uα+h)]2 are
weighted by a function of their respective population
sizes, n(uα)n(uα + h)/(n(uα) + n(uα + h)), a term which is
inversely proportional to their standard deviation. More
importance is thus given to the more reliable data pairs
(i.e. smaller standard deviations).

Area-to-Area (ATA) Poisson kriging

In presence of geographical units with very different
shapes and sizes, it is overly simplistic to assimilate each
unit vα to its geographic centroid uα . The spatial support
of each unit needs to be accounted for in both the semi-
variogram inference and kriging. Following the terminol-
ogy in Kyriakidis [14], ATA kriging refers to the case where
both the prediction and measurement supports are areas
instead of points. The PK estimate (2) for the areal risk
value r(vα) thus becomes:

The weights λi(vα) are computed by solving the following
kriging system:

The main difference between systems (3) and (7) is that

point-to-point covariance terms CR(ui - uj) are replaced by

area-to-area covariances R(vi, vj) = Cov{Z(vi), Z(vj)}.

Those covariances are numerically approximated by aver-

aging the point-support covariance C(h) computed

between any two locations discretizing the areas vi and vj:

where Pi and Pj are the number of points used to discretize
the two areas vi and vj, respectively. The weights wss' are
computed as the product of population sizes within the
square cells centred on the discretizing point us and us':

The kriging variance for the ATA kriging estimator is com-
puted as:

where R(vα, vα) is the within-area covariance that is

computed according to Equation (8) with vi = vj = vα.

Area-to-Point (ATP) Poisson kriging

A particular case of ATA kriging is when the prediction
support is so small that it can be assimilated to a point us,
leading to the following area-to-point kriging estimator
and kriging variance:

The kriging weights and the Lagrange parameter µ(us) are
computed by solving the following system of linear equa-
tions:

The ATP kriging system is similar to the ATA kriging sys-

tem (Equation 7), except for the right-hand-side term

where the area-to-area covariances R(vi, vα) are replaced
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by area-to-point covariances R (vi, us) that are approxi-

mated as:

where Pi is the number of points used to discretize the area
vi and the weights ws's are computed according to expres-
sion (9).

ATP kriging can be conducted at each node of a grid cov-
ering the study area, resulting in a continuous (isopleth)
map of mortality risk and reducing the visual bias that is
typically associated with the interpretation of choropleth
maps. Another interesting property of the ATP kriging esti-
mator is its coherence: the population-weighted average
of the risk values estimated at the Pα points us discretizing
a given entity vα yields the ATA risk estimate for this entity:

Constraint (15) is satisfied if the same K areal data are
used for the ATP kriging of the Pα risk values. Indeed, in
this case the population-weighted average of the right-
hand-side covariance terms of the K ATP kriging systems
is equal to the right-hand-side covariance of the single
ATA kriging system:

per relations (8), (9) and (14). Therefore, the following
relationship exists between the two sets of ATA and ATP
kriging weights:

Deconvolution of the semivariogram of the risk

To solve both ATA and ATP kriging systems, one needs to
know the point-support covariance of the risk C(h), or
equivalently the point-support semivariogram γ(h). This
function cannot be estimated directly from the observed
rates, since only aggregated data are available. Derivation
of a point-support semivariogram from the "regularized"
experimental semivariogram computed from areal data is
called "deconvolution" [14,28]. Unlike the mining appli-
cations that have led to the initial development of geosta-
tistical deconvolution [8], the size and shape of
geographical units in health science applications can vary
greatly, which makes the deconvolution much more chal-
lenging. Goovaerts [10] developed an innovative

approach to conduct the deconvolution in presence of
irregular units and heterogeneous population distribu-
tions. Like most inverse problems, the deconvolution is
best tackled using an iterative procedure. The basic idea is
to seek the point-support model that, once regularized, is
the closest to the model fitted to areal data. Only the most
salient features of the deconvolution procedure are
described hereafter, and the reader is referred to Goovaerts
[10] for a detailed presentation of the algorithm and dem-
onstration of its performances in simulation studies.

The deconvolution is based on the following relationship
between the regularized semivariogram model γv(h) fitted
to areal data and area-to-area semivariogram values that
are a function of the unknown point-support model γ(h):

γv(h) = (v, vh) - h(v, v)  (Equation 18)

The area-to-area semivariogram value (v, vh) represents

the mean value of the point-support semivariogram

between an arbitrary point in the support v and another in

the translated support vh. Because each area (e.g. county)

has potentially a different size and shape, one needs to

consider any two areas that can be encountered across the

study area and average the semivariogram values over all

N(h) pairs of areas separated by the distance h. More pre-

cisely, the area-to-area semivariogram value is estimated

as:

The semivariogram value between any two areas, vα and
vα+h, separated by the population-based distance h (Equa-
tion 1) is computed as:

where Pα and Pα+h are the number of points used to discre-
tize the two areas vα and vα+h, respectively.

The second term in the regularization expression (Equa-

tion 18) is the within-area semivariogram value h(v, v).

It fluctuates as a function of the separation distance h

since the size of the areas used in semivariogram compu-

tation varies as a function of the distance between them:

smaller areas tend to be paired at shorter distances, while

larger areas can only be paired for distances that exceed

half their minimum dimension. This quantity is estimated

as the arithmetical average of within-area semivariogram

values for any pair of areas separated by a given distance h:
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where (vα, vα) and (vα+h, vα+h) are computed using

Equation (20) with h = 0.

The deconvolution procedure starts with the choice of an

initial point-support model γ(0)(h); for example the

model γR(h) fitted to the areal data. This model is regular-

ized according to expression (18), and the theoretically

regularized model, (h), is compared to the model

inferred from areal data, γR(h). The optimization criterion

is the relative difference between the two curves, denoted

D. A new candidate point-support semivariogram γ(1)(h)

is derived by rescaling of the initial point-support model

γ(0)(h), and then regularized according to expression (18).

Model γ(1)(h) becomes the new optimum if it lowers the

deviation between the theoretically regularized semivario-

gram model (h) and the model fitted to areal data,

that is if D(1) <D(0). Rescaling coefficients are then updated

to account for the difference between (h) and γR(h),

leading to a new candidate model γ(2)(h) for the next iter-

ation. The procedure stops when the maximum number

of allowed iterations has been tried (e.g. 35 in this paper)

or the decrease in the D statistic becomes negligible from

one iteration to the next. The use of lag-specific rescaling

coefficients provides enough flexibility to modify the ini-

tial shape of the point-support semivariogram and makes

the deconvolution insensitive to the initial solution

adopted.

Simple approaches to perform area-to-point kriging

A couple of geostatistical approaches have been proposed
in the health science literature to derive continuous maps
of health outcomes from areal data. The most straightfor-
ward method is to interpolate the raw rates to the nodes
of a regular grid using point ordinary kriging [2]:

The corresponding kriging variance is computed as:

The weights λi(us) are the solution of the following ordi-
nary kriging system:

The covariance C(h) is derived from the model fitted to
the experimental semivariogram of raw rates that is calcu-
lated as:

This approach overlooks two critical facts: 1) rates can be
very unreliable if recorded over sparsely populated geo-
graphical units, and 2) the spatial support of the data (i.e.
county) can not be simply equalled to the prediction sup-
port (i.e. grid node). In other words, it is unrealistic to col-
lapse vastly different administrative units into their
geographic centroids. Another limitation of this approach
is its lack of coherence: there is no guarantee that the aver-
age of kriging estimates for all Pα points discretizing the
county vα yields the areal data z(vα):

To correct for the "small number problem", Berke [3] pro-

posed to replace the raw rates z(ui) in Equations (22) and

(25) by rates GBS(ui) obtained using global empirical

Bayes smoothers. Each smoothed rate is easily computed

as a linear combination of the raw rate z(ui) and the glo-

bal mean m*:

GBS(ui) = λ(ui)z(ui) + [1 - λ(ui)]m*  i = 1,...,N  (Equa-

tion 27)

The Bayes shrinkage factor λ(ui) is computed as:

where m* and s2 are the population-weighted sample

mean and variance of rates, and  is the average popula-

tion size across the study area. Whenever the rate z(ui) is

based on small population sizes n(ui) relative to the aver-

age size , the factor λ(ui) is small and the Bayesian esti-

mate (Equation 27) is close to the global mean m*.

The kriging of empirical Bayesian smoothed rates suffers
from the same shortcomings as the kriging of raw rates:
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lack of coherence and ignorance of the spatial support of
the data. To attenuate the smoothing effect caused by the
use of a global mean in the Bayes smoother (Equation
27), in this paper kriging was also applied to local Bayes
estimates. Local Bayes smoothers are calculated similarly
except that all the statistics (i.e. the population-weighted
sample mean and variance, population size) are com-
puted within local search windows [29]; for example
using the K neighboring observed rates. The estimator
thus becomes:

LBS(ui) = λ(ui)z(ui) + [1 - λ(ui)]m* (ui)  (Equation 29)

where m*(ui) is the population-weighted average of the
rates within the search window. The Bayes shrinkage fac-
tor λ(ui) is now computed as:

As for global Bayes smoothers, the relative weight λ(ui)
assigned to the observed rate z(ui) is smaller for less
densely populated counties. For counties with similar
population sizes, the factor λ(ui) is also smaller in regions
of greater homogeneity, as measured by a lower local var-
iance s2(ui).

Results and discussion
Analysis of lung and cervix cancer data

County-level estimates of mortality risk

Figure 3 (top graphs, red curve) shows the omnidirec-
tional semivariograms of lung and cervix cancer mortality
risk computed from county-level rates using estimator (5)
and the distance measure (1). The experimental semivari-
ogram was fitted using a spherical model with a range of
113 km for lung cancer in Indiana and 437 km for cervix
cancer in Region 2. Each model was deconvoluted using
the iterative procedure and the high-resolution popula-
tion maps displayed in Figure 2. For both regions, the pro-
cedure stopped once a small (i.e. <1%) decrease in the D
statistic occurred three times, after 28 iterations for Region
1 and 10 iterations for Region 2. As expected, the point-
support semivariogram model (green curve) has a higher
sill since the punctual process has a larger variance than its
aggregated form. The difference between the sills is partic-
ularly large for Region 1, which confirms the stronger
impact of regularization for processes with smaller range
of autocorrelation [[30], p. 465]. Applying expression
(18) to the point-support model yields a theoretically reg-
ularized semivariogram model (blue curve) that is close to
the one fitted to experimental values, which validates the
consistency of the deconvolution.

The deconvoluted semivariogram models were used to
estimate aggregated risk values at the county level in both
regions (ATA kriging); see Figure 4 (bottom maps). Figure
4 also shows the maps produced by global and local
empirical Bayes smoothers. In all cases, the estimation
was based on K = 32 closest observations which were
selected according to the population-weighted distance
between counties for ATA kriging and the Euclidian dis-
tance between the county population-weighted centroids
for the two other methods. All maps are smoother than
the map of raw rates since the noise due to small popula-
tion sizes is filtered. The smoothing is particularly strong
for the less frequent cervix cancer with a one order of mag-
nitude drop in the variance; see Table 1 (top rows). The
variance of smoothed mortality rates is half the variance
of raw rates for lung cancer. Table 1 indicates that for both
cancers the smoothing is slightly smaller for ATA kriging
versus local Bayes smoothers. The global EBS estimates are
the least variable, in particular for cervix cancer.

The three risk maps of Region 1 are relatively similar; see
Figure 4 (left column). All methods smoothed low lung
cancer rates recorded in a few North-western and North-
eastern counties characterized by smaller population
sizes. For example, after application of Poisson kriging the
minimum rate increased from 9.071 to 13.22 deaths/
100,000 habitants; see Table 1. Since the highest lung can-
cer mortality rates are observed in the most populated
counties in Indiana, the maximum rates remain practi-
cally the same after smoothing.

Differences between methods are much more pro-
nounced for cervix cancer mortality in Region 2; see Figure
4 (right column). Unlike the case of lung cancer, both
high and low cancer rates are smoothed. Except on the
local EBS map, the high risk area formed by two central
counties in Figure 1 faded, which illustrates the potential
pitfalls associated with the interpretation of the map of
observed rates. The highest risk (4.081 deaths/100,000
habitants for ATA kriging) is predicted for Kern County,
just west of Santa Barbara County (California). Zero cervix
cancer mortality rates recorded in sparsely populated
counties in Utah were also smoothed, leading to mini-
mum values of 1.92–2.28 deaths/100,000 habitants. Glo-
bal empirical Bayes method causes a strong smoothing of
the raw rates, in particular in Utah where outside Salt Lake
City most county rates shrunk towards the global mean of
2.85 per 100,000 person-years. The two other methods
(ATA kriging and local EBS) create risk maps that show a
large contrast between a low risk cluster in Utah and a
high risk cluster in Southern California and Southern
Nevada. Still, these two maps exhibit important differ-
ences: rates recorded in the vicinity of urban areas (i.e. low
rates around Reno and Phoenix, or high rates around
Eureka) are smoothed less by ATA kriging. Conversely,

r̂

λ( )

( ) ( )/ ( )

( ) ( )/ ( ) ( )/ ( )u

u u u

u u u u ui

i i i

i i i i i

s m n

s m n m n=
−

− +

∗

∗ ∗

2

2
iff 

otherwise

s m ni i i
2

0

( ) ( )/ ( )u u u≥








∗



International Journal of Health Geographics 2006, 5:52 http://www.ij-healthgeographics.com/content/5/1/52

Page 11 of 31

(page number not for citation purposes)

Semivariogram models used by the different geostatistical approaches for mapping lung and cervix cancer mortalityFigure 3
Semivariogram models used by the different geostatistical approaches for mapping lung and cervix cancer 
mortality. The top graphs show the experimental semivariogram of the risk estimated from county-level rate data (red 
curve), and the results of its deconvolution (green curve). The regularization of the point-support model yields a curve (blue 
line) that is very close to the experimental one. Bottom graphs show the semivariogram of raw rates, as well as the semivario-
grams of global and local empirical Bayes estimates.
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County maps of lung and cervix cancer mortality risks computed using alternative estimatorsFigure 4
County maps of lung and cervix cancer mortality risks computed using alternative estimators. The fill color rep-
resents the risk estimated using the following approaches: global and local empirical Bayes smoothers (EBS), and area-to-area 
(ATA) Poisson kriging. The color legend applies to all the maps of the same region; the class boundaries correspond to the 
deciles of the histogram of original rates.
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more smoothing occurred in sparsely populated Eastern
Nevada, leading to higher risk on the ATA kriged map ver-
sus local EBS. In summary, ATA kriging seems to weigh
more heavily the population size in the filtering of the
noisy rate maps.

Point-level estimates of mortality risk

To eliminate the visual bias associated with the interpreta-
tion of the choropleth maps of Figure 4, continuous risk
surfaces were created for lung and cervix cancer mortality.
The most straightforward mapping techniques amount at
conducting a point kriging of the county-level raw or
smoothed rates, which are simply assigned to the popula-
tion-weighted centroids of those counties. In other words,
one implicitly assumes that all the habitants of a county
live at the same location and the measured rate thus refers
to this specific location. Note that to ensure that both ATP
and point kriging incorporate information on the spatial
distribution of county population, the population-
weighted centroids displayed in Figure 2 (middle maps)
were used for semivariogram estimation and point kriging
throughout the analysis. These centroids will be referred
to as county centroids, as opposed to geographic centro-
ids, hereafter. A prerequisite for kriging is a semivariogram
model that is fitted to experimental values computed

from centroid-based rate data using estimator (25). Figure
3 (bottom graphs) shows that the largest semivariogram
values are observed for raw rates (blue curve), which is
expected because of the additional random variability
caused by the small number problem. Since cervix cancer
is less frequent than lung cancer, its mortality rates are
more likely to be impacted by the small number problem
and display higher levels of noise, leading to a sill that is
one order of magnitude larger than for the other curves
(Figure 3, right bottom graph). The semivariogram of
empirical Bayes estimates has the smallest values since the
smoothing reduces the variance of raw rates, in particular
for cervix cancer. The use of local versus global empirical
smoothers has little impact on the semivariogram for the
frequent lung cancer while, as expected, the global
smoothers lead to a much lower sill for the semivariogram
of cervix cancer. For that cancer, the semivariogram of
local EBS risk estimates (green curve) has a concave shape
which reflects the presence of a trend that is apparent on
the smoothed risk map of Figure 4 (i.e. low rate in Utah
and high rates in Southern California). This semivario-
gram was modelled using a cubic model [6,31] with a
range of 2,041 km, while the semivariogram model for
local EBS estimates consists of two exponential models
and a large nugget effect; see Figure 3 (left bottom graph).

Table 1: Summary statistics for county-level and point-level estimates of lung and cervix cancer mortality.

Estimators Lung cancer Cervix cancer

County-level 
estimates

Mean Variance Min-max Mean Variance Min-Max

Observed rates 21.19 18.48 9.071–31.79 2.851 2.446 0.000–8.138

Global EBS 21.95 10.57 13.91–31.68 3.052 0.092 2.281–4.051

Local EBS 22.10 10.79 13.36–31.71 2.838 0.224 2.041–4.014

ATA Poisson 
kriging

21.58 10.96 13.22–31.56 2.851 0.264 1.921–4.081

Point estimates

Kriged rates 21.15 4.970 15.46–26.85 2.972 1.003 0.470–6.702

Kriged global EBS 21.90 3.703 17.09–27.92 3.085 0.010 2.731–3.444

Kriged local EBS 22.02 4.520 16.25–28.24 2.883 0.154 2.061–3.519

ATP Poisson 
kriging

21.22 9.510 12.13–33.90 2.985 0.266 1.906–4.308

Aggregates of point estimates

Kriged rates 21.22 4.832 16.14–26.29 2.849 0.641 0.955–5.084

Kriged global EBS 21.99 3.529 17.74–27.11 3.052 0.011 2.765–3.314

Kriged local EBS 22.12 4.390 16.94–27.43 2.842 0.157 2.064–3.406

ATP Poisson 
kriging

21.58 10.96 13.22–31.56 2.851 0.264 1.921–4.081

Mean, variance and range of cancer mortality rates per 100,000 person-years estimated at the county level or at the nodes of a 5 km grid using four 
alternative methods: point kriging of observed rates, point kriging of global and local empirical Bayesian smoothed (EBS) rates, area-to-area (ATA) 
and area-to-point (ATP) Poisson kriging. Statistics for the county-level aggregates of point estimates are listed at the bottom of the table.
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Figures 5 and 6 show the risk values estimated at the
nodes of a 5 km grid using the following methods: point
kriging of raw rates, point kriging of global and local
empirical Bayesian smoothed rates (EBS), and area-to-
point Poisson kriging (ATP). In all four cases, the estima-
tion was based on K = 32 closest county-level rates (local
search window). To enforce the coherence constraint,
within a given county each grid node was estimated using
the same 32 county-level rates; that is the proximity is
measured in terms of distance between the centroids of
both the prediction and the data counties instead of the
distance between the grid node in the prediction county
and the centroid of the data county. For lung cancer, the
maps created by point kriging of raw and EBS rates show
only minor differences; higher EBS risk estimates are
found close to the Northeast and Northwest borders
where low rates in sparsely populated counties were
smoothed by the empirical Bayes method. The ATP kriged
map displays much more details, with the presence of
clearly delineated areas of lower and higher rates. These
visual impressions are confirmed by the statistics listed in
Table 1: the variance of the set of ATP kriging estimates
(9.510) is twice the variance calculated for the other meth-
ods (3.703–4.970). Similar conclusions can be drawn
from the comparison of the ATP and EBS kriging maps for
Region 2: the variance of ATP kriging estimates (0.266) is
twice the variance obtained for the kriging of local EBS
(0.154) and more than one order of magnitude larger
than for the global empirical Bayes smoother (0.010). The
isopleth map of GBS risk estimates is very smooth because
of the large nugget effect of the corresponding semivario-
gram model (recall Figure 3, left bottom graph). Con-
versely, the kriged map of raw rates is the most variable
since it is based on the interpolation of unstable cervix
cancer mortality rates, and one can distinguish very clearly
the location of several county centroids.

Although the interpretation of spatial patterns is beyond
the scope of this methodology paper, comparison of ATP
and local EBS kriging maps for Region 2 offers interesting
insights about the spatial distribution of cervix cancer
mortality risk:

• The impact of low or high rates recorded in the vicinity
of urban areas (i.e. low rates around Reno and Phoenix, or
high rates around Eureka) is much more apparent on the
ATP kriged map. This short-scale variability in the risk
map results from the greater weight assigned to popula-
tion density and areal data through the coherence con-
straint in area-to-point kriging.

• Lower cervix cancer mortality is clearly confined to Utah
on the ATP kriging map, while these low rates expand to
Eastern Nevada on the maps of kriged local EBS.

• ATP kriging highlights a cluster of high mortality risk in
Southern California. A similar cluster was identified with
Kern County on the choropleth map of ATA kriged risk in
Figure 4. The isopleth risk map shows that high risks are
not confined to this sole county but potentially spread
over four counties. This information, which is important
for designing prevention strategies, is blurred by the use of
county-level estimates.

Figures 7 and 8 show the maps of the kriging variance
associated with the risk estimates of Figures 5 and 6. Dif-
ferences among interpolation methods are much more
pronounced in terms of prediction variance than esti-
mated risk. The point kriging variance is mainly influ-
enced by the location of county centroids (i.e. data
geometry): prediction variances are small in the vicinity of
county centroids and increase in extrapolation situation,
e.g. close to the state borders for the maps of Region 1
(Figure 7). The location of county centroids is particularly
obvious on the global EBS map in Region 2 because of the
large nugget effect of the corresponding semivariogram.
Furthermore, the variance map for local EBS is very
smooth as a result of the highly continuous behaviour of
the cubic semivariogram model at the origin; recall Figure
3 (right middle graph, green curve). The pattern of these
point kriging variance maps essentially reflects the pres-
ence of two clusters of small counties (i.e. nearby county
centroids) in Northern California and in Utah. The point
kriging variance indirectly accounts for the spatial distri-
bution of population within each county through the use
of population-weighted centroids, yet differences in pop-
ulation sizes among counties is ignored. This information
is incorporated directly into the computation of the ATP
kriging variance leading to increased uncertainty in
sparsely populated areas. This effect is particularly appar-
ent in Region 2; compare the bottom right map in Figure
8 with the top population map. One can easily associate
the location of pockets of low variance with urban centers,
such as Los Angeles, San Francisco, Salt Lake City, Las
Vegas or Tucson. In both regions, the variance of EBS
point risk estimates is the smallest since the smoothing
leads to semivariograms with the lowest sills; recall Figure
3.

Coherence of estimation techniques

The isopleth risk maps displayed in Figures 5 and 6 can be
viewed as the product of the disaggregation of the choro-
pleth maps of Figure 4. One should thus expect that the
aggregation of point kriging risk estimates within each
county returns the areal data for that county. This "coher-
ence constraint" is not implicit to the point kriging
approach, and Table 1 (bottom rows) confirms that the
distributions of aggregated point risk estimates and of the
county-level rates used in point kriging do not share the
same statistics. Because of the smoothing effect of kriging,
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Map of lung cancer mortality rates in Region 1, and the risk estimated by the different forms of krigingFigure 5
Map of lung cancer mortality rates in Region 1, and the risk estimated by the different forms of kriging. The fill 
color represents the age-adjusted mortality rate per 100,000 person-years recorded over the period 1970–1994 (top graph) 
or the risk estimated using the following approaches: point kriging of raw rates, point kriging of global and local empirical Bayes 
smoothers (EBS), and area-to-point (ATP) Poisson kriging. The color legend applies to all the maps; the class boundaries corre-
spond to the deciles of the histogram of original rates.
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Map of cervix cancer mortality rates in Region 2, and the risk estimated by the different forms of krigingFigure 6
Map of cervix cancer mortality rates in Region 2, and the risk estimated by the different forms of kriging. The 
fill color represents the age-adjusted mortality rate per 100,000 person-years recorded over the period 1970–1994 (top 
graph) or the risk estimated using the following approaches: point kriging of raw rates, point kriging of global and local empiri-
cal Bayes smoothers (EBS), and area-to-point (ATP) Poisson kriging. The color legend applies to all the maps; the class bound-
aries correspond to the deciles of the histogram of original rates.
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White female population map for Region 1, and the prediction variance for the different forms of krigingFigure 7
White female population map for Region 1, and the prediction variance for the different forms of kriging. The 
fill color represents the population at risk (lognormal scale) or the kriging variance associated with the risk maps of Figure 5. 
The following estimation techniques were used: point kriging of raw rates, point kriging of global and local empirical Bayes 
smoothers (EBS), and area-to-point (ATP) Poisson kriging. The units for the kriging variance maps are (age-adjusted mortality 
rate per 100,000 person-years)2, and the class boundaries correspond to the deciles of the histogram of variance.
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White female population map for Region 2, and the prediction variance for the different forms of krigingFigure 8
White female population map for Region 2, and the prediction variance for the different forms of kriging. The 
fill color represents the population at risk (lognormal scale) or the kriging variance associated with the risk maps of Figure 6. 
The following estimation techniques were used: point kriging of raw rates, point kriging of global and local empirical Bayes 
smoothers (EBS), and area-to-point (ATP) Poisson kriging. The units for the kriging variance maps are (age-adjusted mortality 
rate per 100,000 person-years)2, and the class boundaries correspond to the deciles of the histogram of variance.
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the variance of aggregated estimates is 50 to 80% smaller
than the variance of areal data. This is not the case for ATP
kriging where the coherence constraint (Equation 15)
ensures that the population-weighted variance, as well as
the population-weighted mean, of ATP kriging estimates
equals the variance and mean of ATA kriging estimates;
see Table 1. This coherence constraint explains the greater
level of details noticed in the ATP kriging map versus the
risk maps created by the simple point kriging techniques.

Point Poisson kriging versus ATA Poisson kriging

In earlier papers on the use of Poisson kriging for filtering
noise in cancer mortality maps [15], a point kriging
approach was implemented whereby only county geo-
graphic centroids were considered for semivariogram esti-
mation and kriging. To investigate the impact of these
simplifying assumptions on the computation of the krig-
ing estimate and variance the results of ATA and point
Poisson kriging are compared in Figure 9. Estimation of
the mortality risk is fairly robust with respect to the use of
centroid geography, in particular for Region 1 where all
counties have similar size and shape. Discrepancies
between both approaches are much more pronounced for
the kriging variance: ignoring the spatial support of
county-level data leads almost systematically to larger
kriging variance; see Figure 9 (bottom graphs). This result
is consistent with the "change-of-support" theory that pre-
dicts smaller error variances for block versus point estima-
tion. The magnitude of the overestimation by point
kriging is the largest for Region 2 that includes very large
counties and has a wide range of county sizes and shapes.

Simulation studies

Figures 3 through 8 illustrated the major differences
between alternative approaches for creating isopleth risk
maps from aggregated rates. An objective assessment of
the prediction performances of the various techniques
requires, however, the availability of the underlying risk
maps, which are unknown in practice. Simulation pro-
vides a way to generate multiple realizations of the spatial
distribution of cancer mortality rates that can be analyzed
using alternative approaches. Predicted risks can then be
compared to the risk maps used in the simulation.

For both lung and cervix cancers, L = 100 maps of county-
level mortality rates {z(l)(vα), α = 1,..., N; l = 1,..., L} were
simulated using the following procedure:

1. Continuous maps of mortality risk values, {r(l)(us), s =
1,..., S}, are first simulated using non-conditional sequen-
tial Gaussian simulation (see [16,9], p. 380 for a descrip-
tion of the algorithm). The simulation grid, which has a 5
km spacing, consists of S = 3,751 and S = 48,474 nodes for
Regions 1 and 2, respectively. Five different risk maps (i.e.
L = 5) were generated for each cancer, and two realizations

for each region are displayed at the top of Figures 10 and
11. Each realization reproduces the histogram of raw can-
cer mortality rates, while the deconvoluted semivario-
gram models of Figure 3 were used in the simulation
algorithm: exponential model with a range of 75 km for
Region 1 and a spherical model with range of 425 km for
Region 2. Both models have a zero nugget effect and a unit
sill.

2. Each simulated risk map was combined with the popu-
lation maps of Figure 2 to compute a number of deaths for
all grid nodes. Both simulated death counts and popula-
tion data were then aggregated within each county, and
their ratio defines the simulated county-level mortality
risk:

The maps of aggregated risk values, {r(l)(vα), α = 1,..., N},
are displayed in the middle of Figures 10 and 11.

3. For each cancer and each of the five risk maps, 20 real-
izations of the number of deaths recorded over each
county vα were generated by random drawing of a Poisson
distribution whose mean parameter is r(l)(vα) × n(vα). The
division of the simulated death counts by the county pop-
ulation leads to 5 × 20 = 100 sets of simulated mortality
rates for each cancer; see bottom of Figures 10 and 11 for
the first realization generated for the risk maps displayed
in the same figures. The noise caused by the small number
problem is particularly apparent for cervix cancer. For
example, a couple of counties in the North central part of
realization #1 display high mortality rates, while the
underlying risk value is low.

Comparison of prediction performances

Each map of simulated rates {z(l)(vα), α = 1,..., N} under-
went a (geo)statistical analysis in order to estimate point
risk values using four alternate approaches: point kriging
of raw rates, point kriging of global and local empirical
Bayesian smoothed rates (EBS), and area-to-point Poisson
kriging (ATP). In all four cases, the estimation at each grid
node was based on K = 32 closest areal data (local search
window). For each realization, the semivariogram needed
for each type of kriging was estimated before being auto-
matically modelled and deconvoluted in the case of ATP
kriging.

Figure 12 shows the different semivariogram models for
the two simulated maps of lung and cervix cancer mortal-
ity displayed at the bottom of Figures 10 and 11. The ref-
erence point (black curve) and areal (yellow curve)
support models are the semivariograms fitted directly to
the original simulated risk maps before and after aggrega-
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tion to the county level; see Figure 12 (left column). Mod-
els resulting from the deconvolution procedure are
plotted as green curves. Comparison of the green and
black solid curves indicates that the deconvolution yields
point-support models that are reasonably close to the
underlying ones in terms of range values. Each deconvo-

luted model was regularized according to Equation (18),
and the resulting model (blue curve) agrees fairly well
with the risk semivariogram model fitted to areal data (red
curve), which demonstrates the convergence of the itera-
tive deconvolution procedure. Note also how this risk
semivariogram model is close to the reference areal sup-

Impact of ignoring the spatial support and population distribution on Poisson kriging resultsFigure 9
Impact of ignoring the spatial support and population distribution on Poisson kriging results. Top scatterplots 
illustrate the similarity of the cancer mortality risk estimated using punctual and area-to-area (ATA) Poisson kriging. Ignoring 
the shape and size of counties (i.e. collapsing county rates to their population-weighted centroids) leads to an overestimation 
of the kriging variance, in particular for the set of vastly different counties in Region 2.
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County maps of lung cancer mortality rates simulated under two scenarios for the underlying continuous risk mapFigure 10
County maps of lung cancer mortality rates simulated under two scenarios for the underlying continuous risk 
map. The number of cases for each county was simulated by random sampling of a Poisson distribution that is defined by the 
white female population map of Figure 1 and the county-level aggregation of a continuous risk map generated using sequential 
Gaussian simulation. The units are age-adjusted mortality rates per 100,000 person-years. The color legend applies to all the 
maps; the class boundaries correspond to the deciles of the histogram of original rates.
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County maps of cervix cancer mortality rates simulated under two scenarios for the underlying continuous risk mapFigure 11
County maps of cervix cancer mortality rates simulated under two scenarios for the underlying continuous 
risk map. The number of cases for each county was simulated by random sampling of a Poisson distribution that is defined by 
the white female population map of Figure 1 and the county-level aggregation of a continuous risk map generated using sequen-
tial Gaussian simulation. The units are age-adjusted mortality rates per 100,000 person-years. The color legend applies to all 
the maps; the class boundaries correspond to the deciles of the histogram of original rates.
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port model (yellow curve). Because of the good agreement
between theoretically regularized and the risk semivario-
gram models inferred from the county-level rates, discrep-
ancies at the point-support level are essentially caused by
the use of the regularization formula (Equation 18). An
important factor that influences the deconvolution results
is the behavior at the origin of the regularized and point-
support semivariogram models; for example the fitting of
a nugget effect or the use of a spherical (linear behavior)
versus cubic (parabolic behavior) model. Unfortunately,
in absence of point data this part of the semivariogram
model can not be validated. In this paper, no nugget effect
was systematically fitted to the point-support model to
account for the characteristics of the model used in the
simulation.

The semivariogram models used by the point kriging
approaches are plotted in the right column of Figure 12.
In particular for cervix cancer, the noise caused by the
small number problem leads to semivariograms for raw
rates that have a high sill and a large relative nugget effect
(blue curves). Rate smoothing using global or local empir-
ical Bayes approaches substantially reduces the sample
variability, resulting in smaller sills and nuggets effects, as
well as parabolic behaviour for most of the semivario-
grams at the origin (green and black curves). The risk sem-
ivariogram estimator (Equation 5), which accounts for
population size in the estimation, yields models with
intermediate sills (red curves).

Figures 13 and 14 show, for the simulated rate maps #1 of
Figures 10 and 11, the risk values estimated at the nodes
of a 5 km grid using the four alternate methods. The anal-
ysis of simulated maps confirms the conclusions drawn
from the analysis of real cancer mortality rates in Figures
5 and 6. The location of county centroids is the most
apparent on the kriged map of raw rates which is also the
most variable because it is based on the interpolation of
unstable mortality rates, in particular for cervix cancer.
Kriging of global and local EBS estimates leads to very
smooth maps free of the influence of unreliable rates.
Poisson kriging, through its coherence constraint, gener-
ates maps of risk estimates that are locally more detailed
(i.e. less smoothing) and reveal features of the true risk
maps that were blurred by empirical Bayes smoothing,
such as the low risk area extending up to the eastern bor-
der of Region 2.

For all 100 realizations of each type of cancer, predicted

risks { (us), s = 1,..., S} and the corresponding predic-

tion variance {[ (us)]2, s = 1,..., S} were compared to

the underlying risk map {r(us), s = 1,..., S}. As in a previ-

ous study on the performances of alternative smoothing

techniques [15], various criteria were computed and aver-

aged over all realizations to attenuate the impact of statis-

tical fluctuations.

Bias and accuracy of prediction

The first two criteria are the mean error (ME) and mean
absolute error (MAE) of prediction computed as:

The prediction error at each grid node us is weighted
according to the population size at that location, ωs =
n(us), in order to penalize more the errors that affect a
larger population. Table 2 (top rows) indicates that, on
average over 100 realizations, all prediction methods are
relatively unbiased. However, in particular for cervix, the
smallest bias is the most frequently (i.e. 51% of realiza-
tions) observed for ATP kriging estimates. Methods differ
much more in terms of the mean absolute error of predic-
tion; see Table 2 (bottom rows). On average, ATP kriging
reduces the absolute error of simple prediction methods
by 20% for cervix and 5–10% for lung. The benefit of
Poisson kriging over kriging of raw or empirical Bayesian
smoothed rates is almost systematic since it leads to
smaller MAE values 99% of the time for cervix and 89%
for lung cancer. Although the deconvoluted semivario-
gram models depart somewhat from the true point-sup-
port models (recall Figure 12, left column), the use of the
true model γR(h) (black curve in Figure 12, left column) in
ATP kriging does not cause a substantial decline in predic-
tion errors; compare the last two rows of Table 2 for each
performance criterion.

Variance of the prediction errors and smoothing effect

In addition to a risk estimate, all interpolation methods

provide a measure of the uncertainty attached to this esti-

mate in the form of the kriging variance (Equations 12

and 23). For the point kriging approaches, the variance

[ (us)]2 depends on the proximity of county centroids

(i.e. center of mass of population within the county) to

the grid node us, as well as the form of the semivariogram

model (i.e. nugget effect, range of autocorrelation). The

ATP kriging variance directly accounts for the population

size at the county and grid levels. For each interpolation

method, the kriging variance was averaged over all S grid

nodes, resulting in the following statistic:
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Semivariogram models inferred from the simulated rate maps of Figures 10 and 11Figure 12
Semivariogram models inferred from the simulated rate maps of Figures 10 and 11. The left column shows the 
experimental semivariogram of the risk estimated from county-level rate data (red curve), and the results of its deconvolution 
(green curve) which is reasonably close to the "true" point-support model (black curve). The regularization of the point-sup-
port model yields a curve (blue line) that is very close to the experimental one. Yellow curves represent the semivariograms 
computed from the underlying county risk maps. Right column shows the semivariogram of raw rates, as well as the semivari-
ograms of global and local empirical Bayesian smoothed (EBS) rates.
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Simulated lung cancer risk map and the results of the different forms of area-to-point krigingFigure 13
Simulated lung cancer risk map and the results of the different forms of area-to-point kriging. The fill color rep-
resents mortality risk per 100,000 person-years simulated by sequential Gaussian simulation and the results of the estimation 
using the following approaches: point kriging of raw rates, point kriging of global and local empirical Bayesian smoothed (EBS) 
rates, and area-to-point (ATP) Poisson kriging. The color legend applies to all the maps; the class boundaries correspond to the 
deciles of the histogram of original rates.
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Simulated cervix cancer risk map and the results of the different forms of area-to-point krigingFigure 14
Simulated cervix cancer risk map and the results of the different forms of area-to-point kriging. The fill color 
represents mortality risk per 100,000 person-years simulated by sequential Gaussian simulation and the results of the estima-
tion using the following approaches: point kriging of raw rates, point kriging of global and local empirical Bayesian smoothed 
(EBS) rates, and area-to-point (ATP) Poisson kriging. The color legend applies to all the maps; the class boundaries correspond 
to the deciles of the histogram of original rates.
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For both cancers, the smallest kriging variance is obtained
for point kriging of smoothed (EBS) rates (see Table 3),
which is expected because of the lower sill of the corre-
sponding semivariogram models; recall examples of Fig-
ure 12 (right column). Conversely, the noise caused by
the small number problem leads to higher sills for the
semivariograms of raw rates, hence larger kriging vari-
ances, in particular for cervix cancer.

The semivariogram model not only influences the magni-
tude of the kriging variance at each grid node us, but it also
controls the smoothness of the maps of risk estimates. The

variance of the risk estimates was computed for each real-
ization and the average over 100 realizations is listed in
Table 3. The variance of the reference risk values, averaged
over the five scenarios for the risk map, is 18.137 and
1.828 for lung and cervix cancers, respectively. In agree-
ment with the results displayed for one realization in Fig-
ures 13 and 14, point kriging of empirical Bayes estimates
generates the largest smoothing effect: the variance repre-
sents 15–25% of the reference risk variance. The smooth-
ing effect of ATP kriging is much smaller and similar for
both cancers: the ratio of variances is 47–50%. Results for
point kriging of raw rates are strongly affected by the reli-
ability of the original data: the smoothing is much smaller
when interpolating the unreliable cervix mortality rates
(ratio = 94%) than for lung cancer (ratio = 31%).
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Table 3: Performance comparison of alternative kriging estimators: kriging variance and smoothing effect.

Estimators Lung cancer Cervix cancer

Kriging variance Dispersion variance Kriging variance Dispersion variance

Point kriging of raw rates 9.691 5.536 2.724 1.726

Point kriging of global EBS 3.423 2.934 0.314 0.281

Point kriging of local EBS 3.307 2.902 0.237 0.448

ATP Poisson kriging 9.378 8.401 0.645 0.926

ATP Poisson kriging (true 
γR(h))

9.470 8.654 0.849 1.089

Results obtained on average over 100 realizations generated for Regions 1 and 2. The dispersion variance refers to the variance of risk estimates. 
Poisson kriging was conducted with the semivariogram model derived through deconvolution or inferred directly from the simulated grid risk 
values (true point-support model γR(h)).

Table 2: Performance comparison of alternative kriging estimators: mean errors and mean absolute errors of prediction.

Estimators Lung cancer Cervix cancer

MEAN ERROR Average % best result Average % best result

Point kriging of raw rates -0.013 41 0.060 11

Point kriging of global EBS 0.008 11 0.040 15

Point kriging of local EBS 0.042 8 0.044 23

ATP Poisson kriging -0.036 40 -0.001 51

ATP Poisson kriging (true 
γR(h))

-0.032 -0.001

MEAN ABSOLUTE ERROR

Point kriging of raw rates 2.647 8 0.406 0

Point kriging of global EBS 2.694 3 0.406 1

Point kriging of local EBS 2.776 0 0.418 0

ATP Poisson kriging 2.471 89 0.317 99

ATP Poisson kriging (true 
γR(h))

2.452 0.313

Results obtained on average over 100 realizations generated for Regions 1 and 2. Poisson kriging was conducted with the semivariogram model 
derived through deconvolution or inferred directly from the simulated grid risk values (true point-support model γR(h)). Bold numbers refer to best 
performances outside the ideal case where the true semivariogram of risk is known. The second column gives the percentage of realizations where 
the particular method (except ATP kriging with true γR(h)) yields the smallest prediction error.
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Quality of the uncertainty model

According to the results of Table 3, point kriging of EBS
rates yields the most accurate prediction since the corre-
sponding kriging variance is the smallest; a conclusion
that conflicts with results of Table 2. The ability of the pre-
diction variance to capture the actual magnitude of the
prediction error was quantified using the following mean
square standardized residual (MSSR):

If the actual estimation error is equal, on average, to the
error predicted by the model, the MSSR statistic should be
about one [[31], p. 91]. The MSSR statistic was averaged
across the L realizations according to the following for-
mula:

with δl = 1 if MSSR(l)>1, and zero otherwise. This averag-
ing allows one to penalize equally the over- and under-
estimation of the prediction errors by the kriging variance.
Table 4 (top rows) indicates that the EBS kriging variance
fails to inform on the actual magnitude of the prediction
errors. Because δl = 1 for all realizations, the MSSR statistic
means that, on average over all realizations, the actual
squared prediction error is 4 to 7 times larger than what is
predicted using the kriging variance. This over-optimistic
assessment of the performance of EBS kriging results from
the smoothing of rates in the empirical Bayes approach.
For lung cancer, point kriging of raw rates yields the best
results most of the times (i.e. 79% of realizations). How-
ever, this result simply indicates that one correctly predicts
that observed rates fare badly in estimating the underlying
risk (recall Table 2). This approach does not perform as
well for least frequent cancers, such as cervix cancer, where
the lack of reliability of rates is not captured by the analy-
sis. Because semivariogram estimation is very sensitive to
extreme unreliable rates, the sill of the semivariogram
model for raw rates greatly varies among the 100 realiza-
tions, leading to a wide range of MSSR values: 0.22–13.
This lack of robustness prevents the identification of over
or under-estimation of the prediction errors in actual
applications. Poisson kriging is much more robust with
respect to the type of cancer and leads to similar average
MSSR for lung and cervix. The range of MSSR for cervix is
also much narrower (0.75–4.36), which indicates a better
quantification of the magnitude of prediction errors by
the kriging variance. The fact that the best results overall
are obtained by far for ATP kriging with the true semivar-
iogram model (e.g., the range of cervix MSSR is 0.75–
1.57) suggests that future improvements of the method

should focus on the estimation of the point-support sem-
ivariogram model.

Another way to use the prediction variance is to build at

each grid node us the conditional cumulative distribution

function (ccdf) of the unknown risk value. Under the

assumption of normality of the prediction errors, the ccdf

is fully characterized by its mean and variance which are

the risk estimate, (us), and the prediction variance,

[ (us)]2. The probability that the risk variable does not

exceed any specific threshold r at us is then:

where G(·) is the cumulative distribution function of the

standard normal distribution. The ccdf allows the compu-

tation of symmetric p-probability intervals (PI) centred on

the median; for example, the 0.5-PI is bounded by the

lower and upper quartiles [ (us;0.25|(Info)),

(us;0.75|(Info))]. A correct modeling of local uncer-

tainty would entail that there is a 0.5 probability that the

actual risk value at us falls into that interval or, equiva-

lently, that over the study area 50% of the 0.5-PI include

the true value. Since the true risk maps are known for our

simulation studies, the fraction of true values falling into

any given p-PI, denoted (l)(p), can be computed easily

and compared to the expected fraction p. Following Deut-

sch [32], the agreement between estimated and theoretical

fractions is quantified using the following "goodness" sta-

tistic:

where w(pk) = 1 if (l)(pk) >pk, and 2 otherwise. The

weights w penalize the situation where the fraction of true

values falling into the p-PI is smaller than expected. K' rep-

resents the discretization level of the computation; for

example, the ccdf percentiles are used as PI boundaries

when K' = 50. The goodness statistic confirms the ranking

of methods obtained for MSSR; see Table 4 (bottom

rows). Point kriging of EBS estimates yields the worst

results, while Poisson kriging with the true semivariogram

model outperforms other methods. Poisson kriging with

the deconvoluted semivariogram model is the 2nd best for
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the less frequent cervix cancer. Point kriging of raw rates

performs better for cancer with high incidence since the

corresponding mortality rates are less unstable.

Conclusion
Capitalizing on recent work in the area of change of sup-
port and semivariogram deconvolution, this paper gener-
alized the Poisson kriging approach in order to
incorporate not only the shape and size of geographical
units, but also the spatial repartition of population within
those units in the filtering of cancer mortality maps. The
new formulation can accommodate any measurement or
prediction support, enabling the estimation of mortality
risk both at the level of administrative units (area-to-area
kriging) or at the nodes of a fine grid discretizing the area
of interest (area-to-point kriging). Unlike the empirical
geostatistical methods recently proposed for the creation
of isopleth maps from areal cancer rates, the present
methodology: 1) conducts the filtering and mapping in a
single step, 2) ensures the coherence of the prediction,
that is the population-weighted average of kriged risks
within each geographical unit equals the risk for this unit,
and 3) provides a measure of uncertainty (i.e. kriging var-
iance) that accounts for the spatial pattern of mortality
risk, the geometry of administrative units and the spatial
repartition of the population at risk.

The analysis of age-adjusted lung and cervix cancer mor-
tality rates illustrated some key features of area-to-point
(ATP) Poisson kriging relatively to point kriging of raw

rates or empirical Bayesian smoothed rates. For both can-
cers, the coherence constraint implicit to ATP kriging
attenuates the smoothness of the kriged maps while the
incorporation of the high-resolution population map
enhances the impact of low or high rates recorded in the
vicinity of urban areas. Because point kriging of areal data
arbitrarily assigns the entire county population to the
location of its centroid, information about the size and
shape of the geographical unit is lost. Point kriging risk
maps can either display unrealistically large variability if
based on unreliable raw mortality rates or can be over-
smoothed if rates are first filtered using an empirical Bayes
approach. Differences between prediction methods are
even more pronounced with respect to the prediction var-
iance. The point kriging variance is mainly influenced by
the location of county centroids: low values simply indi-
cate the presence of clusters of small counties, while large
values are observed close to the edges of the study area. A
unique feature of the ATP kriging variance is its incorpo-
ration of population sizes, leading to lower prediction
variance around urban centres. Although the use of popu-
lation-weighted versus geographic centroids improved the
point kriging predictions (results not shown), ATP kriging
yields the most accurate predictions for both cancers. Sim-
ulation studies also showed that the ATP kriging variance
provides a better quantification of the magnitude of pre-
diction errors. The benefit of the proposed approach is the
largest for cervix cancer measured in Region 2 because of
the combined effect of the low reliability of mortality rates
and the wide range of county shapes and sizes.

Table 4: Performance comparison of alternative kriging estimators: mean square standardized residual and goodness of uncertainty 

models.

Estimators Lung cancer Cervix cancer

MSSR Average % best result Average % best result

Point kriging of raw rates 1.707 79 2.176 41

Point kriging of global EBS 5.941 0 4.566 0

Point kriging of local EBS 6.310 0 6.599 0

ATP Poisson kriging 1.827 21 1.776 59

ATP Poisson kriging (true 
γR(h))

1.081 1.086

GOODNESS STATISTIC

Point kriging of raw rates 0.918 78 0.868 27

Point kriging of global EBS 0.602 0 0.731 3

Point kriging of local EBS 0.580 0 0.616 0

ATP Poisson kriging 0.862 22 0.916 70

ATP Poisson kriging (true 
γR(h))

0.981 0.959

Results obtained on average over 100 realizations generated for Regions 1 and 2. Poisson kriging was conducted with the semivariogram model 
derived through deconvolution or inferred directly from the simulated grid risk values (true point-support model γR(h)). Bold numbers refer to best 
performances (i.e. criteria closer to 1) outside the ideal case where the true semivariogram of risk is known. The second column gives the 
percentage of realizations where the particular method (except ATP kriging with true γR(h)) yields the best results.
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In earlier papers on the use of Poisson kriging for filtering
noise in cancer mortality maps [15], a point kriging
approach was implemented whereby only county geo-
graphic centroids were considered for semivariogram esti-
mation and kriging. Besides prohibiting the
disaggregation of areal data, point Poisson kriging overes-
timates the prediction variance associated with the areal
estimates. The trade-off costs for the implementation of
the new form of Poisson kriging are: 1) the inference of
the point-support semivariogram from the semivariogram
of areal data, 2) the CPU time associated with the compu-
tation of area-to-area or area-to-point covariance terms
through the fine discretization of geographical units. This
paper introduced an innovative deconvolution procedure
that allows such an inference in presence of irregular area
and heterogeneous population density. Simulation stud-
ies demonstrated the convergence of the iterative
approach that yields theoretically regularized semivario-
gram models that are very close to the model inferred
from areal data. Although the deconvoluted semivario-
gram models depart somewhat from the true point-sup-
port models, the estimation of risk values appeared to be
fairly robust with respect of misspecifications of the sem-
ivariogram model. Better prediction of the semivariogram
sill would however benefit the quality of the models of
uncertainty provided by Poisson kriging. Computational
time can be substantially reduced by the use of coarser dis-
cretizing grids (e.g. 10 km spacing instead of 5 km). Sen-
sitivity analysis [10] indicates that the minor changes in
the deconvoluted model caused by the use of those
coarser grids bear little consequences on the kriging pre-
dictions.

In their common implementation, full Bayes models fail
to account for the size and shape of administrative units,
as well as the distribution of the population at risk within
those units [17,18]. Simplistic spatial models, such as the
popular conditional auto-regressive model, prohibit any
change of support and the isopleth mapping of risk val-
ues. Therefore, ATP Poisson kriging could only be com-
pared to point kriging of raw rates or empirical Bayesian
smoothed rates. Although the latter was introduced as a
method for "exploratory" disease mapping [3], it is based
on kriging and semivariogram modelling and represents a
valid yardstick for the comparison study. When conduct-
ing spatial interpolation, one should never forget that
every measurement relates to a non-zero finite sample
volume. Whereas it is customary in earth science applica-
tions to assimilate that measurement support to a point,
such a practice becomes a crude simplification for lattice
data. Furthermore, treating areal data as point data, then
using them to conduct kriging within their own areal sup-
port (i.e. disaggregation), is meaningless.

This paper presents a coherent spatial methodology that
allows both the filtering of the noise caused by the small
number problem and the creation of isopleth maps of
mortality risk, thereby avoiding the visual bias associated
with the interpretation of choropleth cancer mortality
maps. By enabling the estimation of mortality risk over
any given support, the approach should facilitate the anal-
ysis of relationships between health data and putative
covariates (i.e. environmental, socio-economic, behavio-
ral or demographic factors) that are typically measured
over different spatial supports. These covariates could also
be used directly as secondary information in area-to-point
kriging, leading to more detailed risk maps at finer scale
[12].
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