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Abstract

Background: Cancer mortality maps are used by public health officials to identify areas of excess

and to guide surveillance and control activities. Quality of decision-making thus relies on an

accurate quantification of risks from observed rates which can be very unreliable when computed

from sparsely populated geographical units or recorded for minority populations. This paper

presents a geostatistical methodology that accounts for spatially varying population sizes and spatial

patterns in the processing of cancer mortality data. Simulation studies are conducted to compare

the performances of Poisson kriging to a few simple smoothers (i.e. population-weighted

estimators and empirical Bayes smoothers) under different scenarios for the disease frequency, the

population size, and the spatial pattern of risk. A public-domain executable with example datasets

is provided.

Results: The analysis of age-adjusted mortality rates for breast and cervix cancers illustrated some

key features of commonly used smoothing techniques. Because of the small weight assigned to the

rate observed over the entity being smoothed (kernel weight), the population-weighted average

leads to risk maps that show little variability. Other techniques assign larger and similar kernel

weights but they use a different piece of auxiliary information in the prediction: global or local

means for global or local empirical Bayes smoothers, and spatial combination of surrounding rates

for the geostatistical estimator. Simulation studies indicated that Poisson kriging outperforms other

approaches for most scenarios, with a clear benefit when the risk values are spatially correlated.

Global empirical Bayes smoothers provide more accurate predictions under the least frequent

scenario of spatially random risk.

Conclusion: The approach presented in this paper enables researchers to incorporate the pattern

of spatial dependence of mortality rates into the mapping of risk values and the quantification of

the associated uncertainty, while being easier to implement than a full Bayesian model. The

availability of a public-domain executable makes the geostatistical analysis of health data, and its

comparison to traditional smoothers, more accessible to common users. In future papers this

methodology will be generalized to the simulation of the spatial distribution of risk values and the

propagation of the uncertainty attached to predicted risks in local cluster analysis.
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Background
Because of the need to protect patient privacy publicly
available data are often aggregated to a sufficient extent to
prevent the disclosure or reconstruction of patient iden-
tity. The information available for human health studies
is thus often restricted to raw or adjusted rates within
areas, such as census units, metropolitan statistical areas,
counties, states, and so forth. Associations can then be
investigated between these areal data and environmental,
socio-economic, behavioral or demographic covariates.
Despite the loss of information induced by the aggrega-
tion process, the so-called ecological studies have some
appeal over individual-level observation studies in that
they use routinely collected data and typically are carried
out over larger geographical areas with greater exposure
contrasts [1]. Ideally, the aggregation should not be too
coarse to allow a detailed view of geographical patterns in
disease incidence. The trade-off cost is however a larger
uncertainty or noise in disease data, which is caused by
unreliable extreme relative risks estimated over small
areas, such as ZIP code areas or census tracts. This effect is
known as the "small number problem".

Statistical smoothing algorithms have been developed to
filter local small-scale variations from mortality maps,
enhancing larger-scale regional trends [2,3]. These meth-
ods greatly differ in their computer requirements, as well
as underlying assumptions regarding the spatial patterns
and distribution of risk values. The most straightforward
smoothers are deterministic and involve a simple
weighted average of neighboring rates. The kernel weights
can be based, for example, on the inversed squared dis-
tance to the area being smoothed and/or the population
size of those areas [4]. The median-based head banging
smoother takes into account both the spatial geometry
and the values of the surrounding observations; weighted
versions incorporate the variance of the rates to account
for the lack of reliability of rates computed from small
populations [5]. A limitation of such simple smoothers is
that they are not easily tailored to the pattern of variability
displayed by the data. For example, important features
such as anisotropy (i.e. direction-dependent variability)
and the range of spatial correlation are not accounted for
by the inverse squared distance method. Another impor-
tant weakness is that, in absence of any probabilistic mod-
eling, the uncertainty attached to the smoothed rates
cannot be quantified.

Model-based approaches treat the observed response, i.e.
number of deaths or cases, as the realization of a random
variable with a specific probability distribution (i.e. Pois-
son or binomial random variable). Over the years, statis-
ticians have developed models of increasing complexity,
combining fixed effects with both uncorrelated and spa-
tially structured random effects, leading to mixed effects

or hierarchical models [6-10]. Most of these methods
have been developed within a Bayesian framework
whereby the terms in the model are assigned prior distri-
butions that, in turn, have "hyperprior" parameters. Full
Bayesian modeling assigns prior distributions to these
hyperparameters, which allows all sources of uncertainty
in the model to be taken into account. The trade-off cost
for the flexibility of a full Bayesian approach is the com-
plexity of the estimation of model parameters. This step is
performed using iterative procedures, such as Markov
Chain Monte Carlo (MCMC) methods, that are computer
intensive and require fine-tuning, which makes their
application and interpretation challenging for non-statis-
ticians [11,12]. Empirical Bayes methods simplify greatly
the estimation procedure by assigning point estimates
(i.e. obtained by maximum likelihood [13] or method of
moment [14] from the data) to the hyperparameters.
Although the empirical methods neglect the variability
associated with the parameter estimation and allow only
computation of approximate standard errors for the risk,
they are easier to implement and are favored by practi-
tioners.

Probabilistic modeling of aggregated health data has also
been conducted in the geostatistical literature, outside the
mainstream of health statistics. Geostatistics provides a set
of statistical tools for the analysis of data distributed in
space and time. It allows the description of spatial pat-
terns in the data, the incorporation of multiple sources of
information in the mapping of attributes, the modeling of
the spatial uncertainty and its propagation through deci-
sion-making [15,16]. Since its development in the mining
industry, geostatistics has emerged as the primary tool for
spatial data analysis in various fields, ranging from earth
and atmospheric sciences, to agriculture, soil science,
environmental studies, and more recently exposure
assessment and environmental epidemiology [17]. The
traditional implementation of geostatistical methods
however does not accommodate the heteroscedasticity of
disease rates and counts, i.e. the fact that their variance in
each place varies as a function of the population size [18].
Alternatives to the Matheron's semivariogram estimator
and kriging algorithms thus need to be developed to
account for the specific nature of health data.

In the geostatistical literature one finds three main
approaches to account for the problem of non-stationarity
of the variance caused by spatially varying populations.
The first solution, which is the most straightforward to
implement, is to transform the rates before conducting a
classical geostatistical analysis. In his book (p.385–402),
Cressie [19] proposed a two-step transform of the data to
remove the mean-variance dependence of the data and
the heteroscedasticity. Traditional variography was then
applied to the transformed residuals. Berke [20] described
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an empirical approach whereby rates are smoothed using
global empirical Bayes estimation before being interpo-
lated using kriging. Despite its simplicity, Berke's
approach suffers from several drawbacks, such as the ina-
bility to account for the uncertainty attached with the
transformed rates, the aspatial nature of the transform,
and the oversmoothing caused by the combination of
Bayes smoothing and kriging.

Another approach is to incorporate the impact of popula-
tion size directly into the semivariogram inference and
spatial interpolation. To attenuate the influence of unreli-
able rates in the modeling of spatial variability, Goovaerts
[21,22] proposed a population-weighted semivariogram
estimator. The noise caused by small population sizes is
then filtered from the raw rates by a variant of factorial
kriging where the kriging weights are rescaled a posteriori
using the population size of each observation. Although
this approach is relatively straightforward and improves
over simple population-weighted estimators as illustrated
by extensive simulation studies, there are a few limita-
tions. First, the algorithm filters together the variability
arising from data reliability (spatially varying population
size) and the potential noise of the underlying risk. Sec-
ond, the a posteriori rescaling is empirical and might affect
the optimum properties of the kriging estimator.

The most rigorous, yet mathematically challenging, solu-
tion is to derive new semivariogram estimator and kriging
algorithms, taking into account the binomial or Poisson
nature of the count data. The first initiative must be cred-
ited to Oliver et al. [23] who studied the risk of childhood
cancer in the West Midlands of England. They developed
an approach that accounts for spatial heterogeneity in the
population of children to estimate the semivariogram of
the "risk of developing cancer" from the semivariogram of
observed mortality rates. Binomial cokriging was then
used to produce a map of cancer risk. Goovaerts [24] pro-
posed a variant of binomial cokriging that is more flexible
and robust with respect to misspecification of the under-
lying hypothesis. Simulation studies conducted under dif-
ferent spatial patterns of risk and population size
scenarios demonstrated that the combined use of popula-
tion-weighted semivariogram and rescaled cokriging sys-
tem leads to more accurate estimates of the underlying
risk than the traditional implementation of binomial
cokriging or a simple population-weighted local mean.
The approach also outperformed empirical Bayes smooth-
ers in the majority of cases. In another study on female
breast cancer in Long Island, New York, the rates
smoothed by the binomial cokriging variant were used in
a local cluster analysis, leading to the detection of larger
and more compact clusters of low or high rates as well as
the disappearance of some unreliable spatial outliers
recorded over sparsely populated ZIP codes [25].

More recently, Monestiez et al. [26,27] developed Poisson
kriging for mapping the relative abundance of species in
the presence of spatially heterogeneous observation
efforts and sparse animal sightings. In this case the
denominator was the observation time or effort. This fil-
tering approach is similar to the one developed by Oliver
et al., except that a Poisson distribution replaces the Bino-
mial distribution for counts and therefore is consistent
with the assumption underlying the development of
empirical Bayes smoothers. The estimation of the experi-
mental semivariogram of the risk is also more robust since
there is no need to adopt an iterative procedure to esti-
mate the variance of the risk. In their paper, Monestiez et
al. compared Poisson kriging with Diggle et al.'s "model-
based kriging" which is in fact a Generalized Linear Mixed
Model (GLMM) where the random effect is a spatial Gaus-
sian process [28]. Poisson kriging was 500 times faster
than GLMM since it does not require lengthy iterative pro-
cedure for parameter estimation. It is also more flexible
since it avoids the subjective modeling of the risk values
as a lognormal random field. Both methods yielded
equivalent results for 90% of the predictions and differed
only for higher values with a smoothing for the kriging.
They also found that the lognormal hypothesis induced
similarities between the maps of the GLMM prediction
variance and estimate (i.e. proportionality), while the
Poisson kriging variance mainly reflects the observation
effort (i.e. lower variance for longer observation times).

The Poisson kriging approach was generalized by Goo-
vaerts to the analysis of disease data; in particular the
detection of disparities in prostate cancer mortality
between black and white males over the continental US
and five 5-yr periods [29]. Prediction performance of Pois-
son kriging was however not quantified and a comparison
to other common smoothers was also lacking. The objec-
tive of this paper is to introduce Poisson kriging for the
analysis of disease data and describe a public-domain exe-
cutable that allows automatic computation and model-
ling of risk semivariograms, followed by the estimation of
risk values at sampled locations. Simulation studies are
conducted to compare the performances of the new meth-
odology to other readily accessible smoothers (i.e. popu-
lation-weighted estimators and empirical Bayes
smoothers) under different scenarios for the disease fre-
quency, the population size, and the spatial pattern of
risk. Performance criteria include the accuracy of the pre-
diction of the underlying risk and the quantification of the
attached uncertainty.

Methods
Data

The use of Poisson kriging for the analysis of health data
will be illustrated using directly age-adjusted mortality
rates for a frequent (i.e. breast) and less frequent (i.e. cer-
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Geographic distribution of age-adjusted breast and cervix cancer mortality rates and the populations at riskFigure 1
Geographic distribution of age-adjusted breast and cervix cancer mortality rates and the populations at risk. 
For the two top maps, the fill color in each county represents the age-adjusted mortality rates per 100,000 person-years 
recorded over the period 1970–1994 for white females (class boundaries correspond to deciles of the histogram of rates). The 
middle maps represent the population at risk which was back-calculated from the rate and count data (lognormal scale). The 
bottom map represents the population at risk for black females (BF) which was back-calculated from the "all cancers" age-
adjusted rate and the count data.

Breast cancer mortality 
(rate/100,000 person-years) 

Cervix cancer mortality 
(rate/100,000 person-years) 
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vix) cancer. These data are part of the Atlas of Cancer Mor-
tality in the United States [30] and were downloaded from
http://www3.cancer.gov/atlasplus/download.html. The
rates were adjusted using the 1970 population pyramid.
The analysis focuses on white female rates recorded over
the 1970–1994 period for 295 counties of 12 New Eng-
land States. Figure 1 (top graphs) shows, for both cancers,
the spatial distribution of age-adjusted mortality rates per
100,000 person-years. Following the recommendations of
several studies on map color schemes [31,32], a double-
ended color scheme with 10 equally-weighted classes (i.e.
boundaries correspond to deciles of the histogram) was
used: a gradient of red is used for rates higher than the
median, while a gradient of blue is used for lower rates.
The two cancers display opposite spatial patterns: higher
breast cancer mortality rates along the East Coast (Balti-
more to Boston) and lower rates in the Southern part of
the study area, and the reverse for cervix cancer. For each
cancer, the population at risk was computed as: 100,000
× the total number of deaths over the 1970–1994 period
divided by the corresponding age-adjusted mortality rate;
both datasets are available on NCI website. The popula-
tion sizes are mapped in Figure 1 (middle row) using a
rainbow color scheme to avoid any confusion with the
rate maps. The population-weighted average of the age-
adjusted cancer mortality rates is 30.14 per 100,000 per-
son-years for breast and 3.23 per 100,000 person-years for
cervix.

Multiple realizations of the spatial distribution of cancer
rates will be simulated from the maps of mortality rates
and population sizes using the procedure described in the
results and discussion section. To investigate how the var-
ious algorithms perform under highly unstable rates, sim-
ulations will also be conducted using the population at
risk for black females. These populations were computed
as: 100,000 × the total number of "all cancers" deaths over
the 1970–1994 period divided by the age-adjusted mor-
tality rate. The "all cancers" category was used to avoid
zero population estimates caused by the small minority
population, and corresponding missing rate data, in many
of these counties. The minority population map is dis-
played at the bottom of Figure 1.

Poisson model for rare diseases

For a given number N of entities (e.g. counties, states,
electoral ward), denote the number of recorded mortality
cases by d(uα) and the size of the population at risk is
n(uα). Following most authors entities are referenced geo-
graphically by their centroids (or seats) with the vector of
spatial coordinates uα = (xα, yα), which means that the
actual spatial support (i.e. size and shape of the county or
ward) is ignored in the analysis. Future research outlined
in the conclusions seeks to relax this assumption which is
unsatisfactory when working with vastly different entities,

such as SEA units over the US. The empirical or observed
mortality rates are then denoted as z(uα) = d(uα)/n(uα).

At each location uα, the disease count d(uα) can be inter-
preted as a realization of a random variable D(uα) that fol-
lows a Poisson distribution with one parameter (expected
number of counts) that is the product of the population
size n(uα) by the local risk R(uα):

D(uα) | R(uα) = Poisson(n(uα)R(uα)) α = 1,...,N  (Equa-
tion 1)

Given the risk value R(uα), the count variables D(uα) are

assumed to be conditionally independent. In other words,

any spatial correlation among the counts is caused by spa-

tial trends in either the population sizes or in the local

individual risks. The risk variable R(u) itself can be mod-

eled as a stationary random field with mean m, variance

 and covariance function CR(h).

The conditional mean and variance of the rate variable
Z(uα) are defined as:

E[Z(uα) | R(uα)] = R(uα)  (Equation 2)

Var[Z(uα) | R(uα)] = R(uα)/n(uα)  (Equation 3)

Following Waller and Gotway [17], the unconditional
mean and variance are as follows:

E[Z(uα)] = E[R(uα)] = m  (Equation 4)

Var[Z(uα)] = Var[R(uα)] + E[R(uα)/n(uα)] =  + m/

n(uα)  (Equation 5)

Different methods are available to estimate the risk over a
given entity with centroid uα from the set of observed
rates, {z(uα), α = 1,...N}. The estimators introduced in
this paper can all be formulated as a linear combination
of neighboring rates or functions of those rates. Neighbors
can be selected in a number of ways, such as those areas
having centroids within a specified distance of the target
entity's centroid uα [3] or those that share a border with
the area to be smoothed [14]. These subjective neighbor-
hood definitions can impact the analysis, particularly
when areas vary greatly in size and shape [18]. In this
paper and the attached program, the search strategy
allows the user to select a maximum number of neighbors
that fall within a fixed distance from the centroid of the
area to be smoothed. This approach is flexible enough to
handle change in the size of geographical units, hence
change in the spatial density of centroids, across the study

σR
2

σR
2

http://www3.cancer.gov/atlasplus/download.html
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area. The search strategy is further discussed in the results
and discussion section

Traditional smoothers

Population-weighted average

A straightforward estimate of the risk at location uα is a
population-weighted average (PWA, see [17] p. 87) of K
neighboring observed rates:

where λi(uα) is the weight assigned to the rate observed at
ui when predicting the risk at location uα. Although the
PWA estimator is not derived under a stochastic model, an
approximate mean square error of prediction can be com-
puted using an approach similar to the computation of
the error variance in geostatistics [[15], p. 128]. Assuming
that the estimator is unbiased, the mean square error of
prediction is computed as:

where C(ui - uj) is the covariance between the rates meas-
ured at locations ui and uj, and C(ui - uα) is the covariance
between the rate measured at location ui and the
unknown risk at uα. A simplifying assumption is that
these two spatial covariance functions are the same. In this
paper, that function is derived as C(h) = C(0)-γ(h), where
C(0) is the sill of the semivariogram model γ(h) fitted to
the following population-weighted semivariogram [24]:

where N(h) is the number of data pairs separated by the
vector h. The fitting of the model to the experimental sem-
ivariogram values is performed using the weighted least-
square algorithm described in later section on the public-
domain executable.

Empirical Bayes smoothers

In Empirical Bayes estimation, the risk r(uα) is computed
as a weighted sum of the rate observed at that location
(kernel rate) and a prior mean that can be either global or
local. Following the method of moments proposed by
Marshall [14], the global Bayes smoother of the rate at uα
is as follows:

The Bayes shrinkage factor λ(uα) is computed as:

where m* and s2 are the population-weighted sample

mean and variance of rates, and  is the average popula-

tion size across the study area. Whenever the rate z(uα) is

based on small population sizes n(uα) relative to the aver-

age size , the factor λ(uα) is small and the Bayesian esti-

mate (Equation 9) is close to the global mean m*. In

other words, the relative weight assigned to the observed

rate is small since it is deemed less reliable. This weight is

further reduced if the variance of the rates, s2, decreases;

that is if the spatial homogeneity of the observed rates

increases. In the extreme situation where the variance s2 is

lower than the ratio m*/ , the smoothed risk map is uni-

form with  (uα) = m* ∀ uα.

Assuming that the shrinkage factor is known, an approxi-
mate mean square error of prediction can be computed as:

The mean square error of prediction by the global mean

rate at uα,  (uα), is computed by applying an expression

similar to Equation 7 to the entire set of N rates:

where ntot is the sum of the at-risk population over all N
entities.

The global empirical estimator (Equation 9) is spatially
invariant: any rearrangement of the geographical entities
leaves the estimates unchanged. An alternative, which
accounts for the fact that areas that are close to each other
tend to have similar rates, is to consider a prior mean for
each area such that the estimated risks are shrunk towards
local means instead of a general mean. Local Bayes
smoothers are computed similarly except that all the sta-
tistics (i.e. the population-weighted sample mean and var-
iance, population size) are computed within local search
windows [14]; for example using the K neighboring
observed rates. The estimator thus becomes:

where m* (uα) =  (uα). The Bayes shrinkage factor

λ(uα) is now computed as:

ˆ ( ) ( ) ( ) ( )
( )

( )

(r z
n

n

PWA i i
i

K

i
i

i
i

K
u u u u

u

u

α α αλ λ= =
=

=

∑
∑1

1

with Equatiion 6)

σ

λ λ

α α α

α α

PWA PWA

i j i j
j

K

i

R R

C

2

1

( ) ( ) ˘ ( )

( ) ( ) ( )

u u u

u u u u

= −{ }
= −

==
∑

Var

11 1

2 0 7
K

i i
i

K

C C∑ ∑− − +
=

λ α α( ) ( ) ( ) ( )u u u Equation

ˆ( )

( ) ( )

( ) ( ) ( ) ( )
( )

γ

α α
α

α α α α
α

h

u u h

u u h u u h
h

=
+∑

+ − +[ ]

=

=

1

2
1

2

n n

n n z z
N

11
8

N( )
( )

h

∑ Equation

ˆ ( ) ( ) ( ) [ ( )] * ( )r z mGBS u u u uα α α αλ λ= + −1 9Equation

λ α

α

( )

* /

*/ */ ( )
* /

u

u

=

−

− +
≥

s m n

s m n m n
s m n

2

2
2

0

       if      

                                otherwise

Equation















( )10

n

n

n

r̂GBS

σ λ λα α α α αGBS mm n s2 2 2 21 11( ) ( ) * ( ) [ ( )] ( ) ( )u u u u u= + − Equation

sm
2

s
n

n

n

n
C

n

n
Cm

i

tot

j

tot
i j

j

N

i

N
i

tot

2

11

2( )
( ) ( )

( )
( )

(u
u u

u u
u

uα = − −
==
∑∑ ii

i

N

C− +
=
∑ uα) ( ) ( )

1

0 12Equation

ˆ ( ) ( ) ( ) [ ( )] *( ) ( )r z mLBS u u u u uα α α α αλ λ= + −1 13Equation

r̂PWA



International Journal of Health Geographics 2005, 4:31 http://www.ij-healthgeographics.com/content/4/1/31

Page 7 of 33

(page number not for citation purposes)

Impact of population size and local variance on the shrinkage factor in empirical Bayes smoothingFigure 2
Impact of population size and local variance on the shrinkage factor in empirical Bayes smoothing. The local var-
iance is the population-weighted variance among the 32 closest breast cancer mortality rates for each county. The shrinkage 
factor represents the relative weight assigned to the local rate versus the local mean in the local empirical Bayes smoother. 
This factor increases with the population size of the county (i.e. more reliable rate) and in regions where the local variance is 
high. Selected counties are depicted by orange dots in the scattergram and orange boundaries on the map of shrinkage factor.

Shrinkage factor 

(local Bayes) 

Breast cancer 

Local variance 
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As for global Bayes smoothers, the relative weight λ(uα)
assigned to the observed rate z(uα) is smaller for less
densely populated counties. For counties with similar
population sizes, the factor λ(uα) is also smaller in areas
of greater homogeneity, as measured by a lower local var-
iance s2(uα). In other words, where there is less local vari-
ability, the estimate tends to be closer to the local mean.
For example, Figure 2 shows the maps of the local vari-
ance s2(uα) and the shrinkage factor λ(uα). The left bot-
tom scattergram illustrates the positive relationship
between the shrinkage factor and the population size. The
counties highlighted in orange correspond to higher local
variance (see right scattergram), and these counties are
associated with higher λ(uα) values for similar population
sizes.

By analogy with the global Bayes smoother, the mean
square error of prediction can be computed as:

Poisson kriging

In Poisson kriging, the risk over a given entity with cen-
troid uα is estimated as the following linear combination
of K neighboring observed rates:

Unlike the population-weighted average (Equation 6), the
weights λi(uα) are here computed so as to minimize the
mean square error of prediction under the constraint that
the estimator is unbiased. These weights are the solution
of the following system of linear equations, known as the
"Poisson Kriging" (PK) system [26,27]:

where δij = 1 if ui = uj and 0 otherwise, and m* is the pop-
ulation-weighted mean of the rates. The term µ(uα) is a
Lagrange parameter that results from the minimization of
the estimation variance subject to the unbiasedness con-
straint on the estimator. The addition of an "error vari-
ance" term, m*/n(ui), for a zero distance accounts for
variability arising from population size, leading to smaller
weights for less reliable data (i.e. measured over smaller
populations). This term actually corresponds to the differ-
ence between the variances of the risk and rate variables,

recall the expression for the unconditional variance
(Equation 5). Note that kriging is used here to filter the
noise from the observed rates aggregated to the county
level, not to estimate the risk within the unit itself (disag-
gregation procedure). There is no change of support and
the underlying hypothesis is that all counties have the
same spatial support.

The prediction variance associated with the estimate (15)
is computed using the traditional formula for the ordinary
kriging variance:

This statistic differs, however, from the traditional kriging
variance in that: 1) it depends not only on the data config-
uration but also on the reliability of each of these data
which is a function of the population size, and 2) the krig-
ing variance is non-zero even when estimating at a sam-
pled location since the quantity to be estimated (risk) is
different from the one measured (empirical rate). The
computation of kriging weights and kriging variance
(Equations (16) and (17)) requires knowledge of the cov-
ariance of the unknown risk, CR(h), or equivalently its
semivariogram γR(h) = CR(0)-CR(h). Following Monestiez
et al. [26,27] the semivariogram of the risk is estimated as:

where the different pairs [z(uα)-z(uα + h)] are weighted by
the corresponding population sizes to homogenize their
variance.

Public-domain executable

To disseminate the use of this new methodology an exe-
cutable was developed and is provided with the paper
(additional file 1: poisson-kriging.exe), along with a sam-
ple dataset (additional file 2: breast-mortality.dat) and
parameter file (additional file 3: poisson-kriging.par). The
source code was built around the Gslib kriging program
KT3D [33] and the semivariogram modelling program
VARFIT [34]. Like these two public-domain programs, the
Poisson kriging source code is written in ANSI standard
Fortran 77 and was compiled on a PC. The reader inter-
ested in having a version compiled on another operating
system should contact the author. When running the exe-
cutable, called poisson_kriging.exe, the user needs to
specify the name of a parameter file that includes all the
variables and names of input/output files required by the
program. A typical parameter file, which was used to ana-
lyze breast cancer data, is illustrated in Figure 3. The text
file, called poisson-kriging.par, includes the following
information:
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• Name of the text file including the mortality dataset.
This dataset must be in Geo-EAS format [35]. An example
for the file breast-mortality.dat is given in Figure 4. The
first line is the name of the data file. The second line
should be a numerical value specifying the number of var-
iables (i.e. nvar columns) in the data file. The next nvar
lines contain the name of each variable. The following
lines, until the end of the file, are considered as observa-
tions and must have nvar numerical values per line (the
program has been compiled to read a maximum of 50,000
observations). For example, the 1st observation corre-
sponds to Fairfield county (CT, FIPS code 9001). The spa-
tial coordinates of its geographic centroid are X =
1861.838 km and Y = 644.733 km. The US Albers Equal
Area projection was used in this study. The age-adjusted
breast cancer mortality rate is 29.0739 per 100,000 per-
son-years and the population at risk for the 25-yr period
is 12540,457.

• The column number for the mortality rate.

• The column numbers for the observation identification
code (i.e. FIP county), and the variables with the spatial
coordinates.

• The denominator for the rate (i.e. 100,000 persons for
the data from the cancer mortality Atlas).

• Name of the text file including the population dataset.

• The column number for the population at risk.

• Trimming limit. All mortality rates and population sizes
lesser or equal to that value are ignored in the analysis. A
risk value is however estimated at each location (i.e. local
and global means for the local and global empirical Bayes
smoothers).

• Number and width of classes of distances used for the
computation of the semivariogram; 15 classes of 20 km
are used in this study.

• Number of directions for the computation of the semi-
variogram. Options are ndir = 1 (omnidirectional) and

Example of parameter file required by poisson_kriging.exeFigure 3
Example of parameter file required by poisson_kriging.exe. This parameter file is used to conduct a geostatistical anal-
ysis of breast cancer mortality rates displayed in Figure 1. Semivariograms are computed using 15 classes of 20 km, in four 
directions with the first direction azimuth starting at 22.5° measured clockwise from the NS axis.

                  Parameters for POISSON-KRIGING 
                  ****************************** 

START OF PARAMETERS: 
breast-mortality.dat      -File with mortality data 
4                         -Column number for rate to be smoothed 
1 2 3                     -Column numbers for unit ID + X & Y coordinates 
100000                    -Denominator for rates 
breast-mortality.dat      -File with population data 
5                         -Column number for population size 
-99                       -Trimming limit for mortality & population data 
15 20                     -Number of lags + lag spacing for variogram computation 
4 22.5                    -Number of directions (ndir=1 or 4) + 1st azimuth for ndir=4 
2                         -Weights for semivariogram modeling
32 1500                   -Maximum number of observations & search radius 
breastvariog.txt          -Output file for risk semivariogram values + models 
breastrisk.out            -Output file for estimated risk (GEO-EAS format) 
breastrisk.txt            -Output file for estimated risk (csv format) 

Weights option for semivariogram modeling: 
1 => constant weight 
2 => weight = (Number of data pairs)^0.5/gamma 
3 => weight = 1/gamma^2 
4 => weight = Number of data pairs 
5 => weight = Number of data pairs/log(lag distance) 
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ndir = 4. In the later case, the semivariogram is computed
in four directions (angular tolerance = ± 22.5°), starting
with the azimuth direction specified by the user. Using the
Gslib convention [33], angles are measured in degrees
clockwise from the NS direction.

• Weighting scheme used in the least-square fitting of a
semivariogram model to experimental values. The pro-
gram will try all possible combinations of 1 or 2 basic
models from the following three permissible semivario-
gram models: spherical, exponential and cubic. The
selected model is the one that minimizes the weighted
sum of squares of differences between the experimental
and model curves:

where L is the number of classes of distance. The user can

choose among the five following types of weighting

schemes: w(hl) = 1, w(hl) = /γ(hl), w(hl) = 1/

γ(hl)2, w(hl) = N(hl), w(hl) = N(hl)/log|hl|. Except for the

first option, each alternative set of weights aims to assign

more importance to: semivariogram values computed

from many data pairs (hence more reliable), and/or

smaller semivariogram values that are typically observed

for short distances, since the behavior of the semivario-

gram at the origin has the largest impact on kriging results.

• Maximum number of neighboring observed rates, K, to
be used in the estimation, and maximum size of the
search window. In this example, a large radius of 1,500
km is chosen so as to guarantee that across the study area
32 observations are always found within the search win-
dow.

• Name of output text file reporting the experimental sem-
ivariogram values and the parameters (i.e. type of basic
model, nugget effect, sill, range, anisotropy angle) of the
model fitted. Three estimators are used: traditional semi-
variogram (Equation 8 with n(uα) = 1 ∀ α), population-
weighted semivariogram (Equation 8), and risk semivari-
ogram (Equation 18).

• Name of output text file (Geo-EAS format) that includes
the estimated risk values and associated mean square
errors of prediction for the following predictors: popula-
tion-weighted average, global and local Bayes smoothers,
Poisson kriging. The number K of neighbors used in the
estimation is also reported. An example for the breast can-
cer data, file breastrisk.out, is given in Figure 5.

• Name of output text file (csv format) that includes the
same information as the file breastrisk.out but in a for-
mat (comma delimited) that can be easily imported into
Excel.

In addition to text files with the estimated risk values,
poisson_kriging.exe generates graphs that display the
experimental semivariogram values and the model fitted.
These figures are in PostScript format and can be viewed
using the public-domain program GSview http://
www.cs.wisc.edu/~ghost/gsview/get47.htm. These graphs
should help detecting any poor choice of the number and
width of classes of distances, as well as poor fits of semi-
variogram models. In the later case, the user should select
other options for the weighting scheme. For the option
ndir = 1, all omnidirectional semivariograms are plotted
on the same graph, called all-variog.ps; see example for
breast cancer in Figure 6. When directional semivario-
grams are computed (ndir = 4), three postscript files will
be created for the traditional (trad-variog.ps), popula-
tion-weighted (weighted-variog.ps), and risk semivario-
gram estimators (risk-variog.ps). Figure 7 (left column)
shows an example for breast cancer rates.

Results and discussion
Analysis of breast and cervix cancer data

Mortality risks for breast and cervix cancers were esti-
mated from the age-adjusted mortality rates displayed at
the top of Figure 1 using the four alternative methods:
population-weighted average (PWA), local (LBS) and glo-
bal (GBS) empirical Bayes smoothers, and Poisson kriging
(PK). All local statistics were computed using K = 32 clos-
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Example of dataset for poisson_kriging.exeFigure 4
Example of dataset for poisson_kriging.exe. Data for 
the Poisson kriging program must be in Geo-EAS format. The 
first line is the name of the data file. The second line should 
be a numerical value specifying the number of variables (i.e. 
nvar columns) in the data file. The next nvar lines contain the 
name of each variable. The following lines, until the end of 
the file, are considered as observations and must have nvar 
numerical values per line.

Breast-mortality.dat
5
FIPS
X coord (km)
Y coord (km)
Breast cancer rates (1970-1994)
Population at risk
9001           1861.838       644.733        29.0739        12540457 
9003           1900.101       716.105        29.2288        12826390 
9005           1859.648       704.498        28.1380        2704527 
9007           1925.468       682.736        26.6400        2053303 
9009           1895.472       668.665        30.0497        12396130 
9011           1959.665       694.247        30.0054        3376059 
9013           1930.567       729.482        28.3604        1346948 
9015           1959.044       734.023        25.6020        1456917 
10001          1737.483       365.399        28.0542        1112132 
10003          1719.203       417.794        30.9134        5146635 
10005          1762.5         322.009        27.5708        1516096 
23001          2031.092       1023.432       25.1332        1667117 

http://www.cs.wisc.edu/~ghost/gsview/get47.htm
http://www.cs.wisc.edu/~ghost/gsview/get47.htm
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est observations which were selected according to the Euc-
lidian distance between the county geographical
centroids. The impact of the parameter K on the results
was investigated by repeating the analysis with 16 and 64
observations. Fewer observations led to larger prediction
errors while using more observations increased the
smoothing of the original rates. The following discussion
is thus limited to the choice K = 32.

Figure 7 shows the semivariograms computed for both
types of cancer in the four main directions (azimuth are
measured in degrees clockwise from the NS axis). The
three estimators (traditional, population-weighted, and
risk) implemented in poisson_kriging.exe are displayed.
On each graph, the solid curve denotes the model fitted
using weighted least-square regression. For example, the
traditional estimator for breast cancer was modeled using
a combination of a cubic model (min. range = 36 km,
max. range = 215 km) and spherical model (min. range =
359 km, max. range = 530 km). The two other semivario-
grams for breast cancer were modeled using an exponen-
tial model: population-weighted estimator (min. range =
411 km, max. range = 1198 km), and risk semivariogram
(min. range = 381 km, max. range = 947 km).

Accounting for population sizes (estimators of Equations
8 and 18) attenuates the impact of data pairs that involve
at least one rate computed from small populations,
revealing structures that might be blurred by the random
variability of extreme values. This effect is more pro-
nounced for cervix cancer: the population-weighted and
risk semivariograms are better structured and display
much longer ranges of autocorrelation than the tradi-
tional estimator that indicates a very weak spatial correla-
tion (i.e. almost pure nugget effect). Since cervix cancer is
less frequent than breast cancer, its mortality rates are
more likely to be impacted by the small number problem
and display higher levels of noise. The weighting also
tends to lower the sill of the semivariogram which repre-
sents the spatial variance of mortality rates. This decrease
is particularly clear on the plot of all omnidirectional sem-
ivariograms in Figure 6. The anisotropy is more pro-
nounced for cervix cancer, with a better spatial continuity
(i.e. lower variance) along the NE-SW direction (green
semivariogram curve). Slightly better continuity for breast
cancer is observed along the NS direction.

Figures 8 and 9 show the maps of risk estimates for breast
and cervix cancers. Table 1 indicates that, on average over
the 295 counties, the mortality risks estimated by the four
methods are very close to the observed rates. Poisson krig-

Output file created by poisson_kriging.exe following the analysis of breast cancer mortality ratesFigure 5
Output file created by poisson_kriging.exe following the analysis of breast cancer mortality rates. The output file 
(Geo-EAS format) includes the estimated risk values and associated mean square errors of prediction for the following predic-
tors: population-weighted average, global and local Bayes smoothers, Poisson kriging. This output file was obtained when run-
ning the code poisson_kriging.exe with the parameter file of Figure 3.

breastrisk.out

14

FIPS

X coord (km)

Y coord (km)

Population

Breast cancer rates (1970-1994)

Number_of_neighbors

Pop_weighted_average

Global_EBS

Local_EBS

Poisson_risk

PWA_mse

Global_EBS_mse

Local_EBS_mse

Poisson_variance

 9001 1861.838 644.733 12540457 0.2907E+02 32 0.3196E+02 0.2911E+02 0.2929E+02 0.2931E+02 0.5865E+01 0.2336E+00 ...

 9003 1900.101 716.105 12826390 0.2923E+02 32 0.3076E+02 0.2926E+02 0.2933E+02 0.2923E+02 0.5509E+01 0.2297E+00 ...

 9005 1859.648 704.498  2704527 0.2814E+02 32 0.3162E+02 0.2842E+02 0.2901E+02 0.2869E+02 0.7241E+01 0.9936E+00 ...

 9007 1925.468 682.736  2053303 0.2664E+02 32 0.3160E+02 0.2726E+02 0.2818E+02 0.2791E+02 0.7886E+01 0.1296E+01 ...

 9009 1895.472 668.665 12396130 0.3005E+02 32 0.3168E+02 0.3005E+02 0.3016E+02 0.3008E+02 0.7085E+01 0.2372E+00 ...

 9011 1959.665 694.247  3376059 0.3001E+02 32 0.3121E+02 0.3002E+02 0.3021E+02 0.2977E+02 0.6705E+01 0.8372E+00 ...

 9013 1930.567 729.482  1346948 0.2836E+02 32 0.3073E+02 0.2880E+02 0.2938E+02 0.2849E+02 0.5904E+01 0.1864E+01 ...

 9015 1959.044 734.023  1456917 0.2560E+02 32 0.3051E+02 0.2665E+02 0.2782E+02 0.2746E+02 0.5760E+01 0.1775E+01 ...

10001 1737.483 365.399  1112132 0.2805E+02 32 0.2992E+02 0.2865E+02 0.2890E+02 0.2814E+02 0.7009E+01 0.2205E+01 ...

10003 1719.203 417.794  5146635 0.3091E+02 32 0.2970E+02 0.3085E+02 0.3071E+02 0.3041E+02 0.5370E+01 0.5569E+00 ...
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ing has the closest agreement between average risk and
rate. The variance of the estimated risk values is, however,
at least half the variance of observed rates. Population-
weighted average and the global Bayes smoother generate
the largest smoothing effect. Although these two sets of
risk estimates have similar variances, their distribution in
space is very different; see middle row in Figures 8 and 9.
The map of PWA risk values looks much more continuous
in space, which is caused by the smaller weight assigned
to the kernel rate in the estimation window. In other
words, among the 32 mortality rates used to compute the
risk value for any given county, the average weight allo-
cated to the rate from that county (kernel weight) is one
order of magnitude smaller for PWA (0.03 ≈ 1/32) than
for other estimators; see Table 1.

Because the global empirical Bayes smoother "shrinks"
values towards the global mean, the corresponding risk
maps are patchier than the ones produced by other esti-
mators that account for the locally varying mean of mor-
tality rates. The scattergrams at the top of Figure 10 show
that the discrepancy between LBS and GBS estimates
increases as the population size decreases. In less densely
populated counties, rates are strongly shrunk towards
either the local or the global mean of the rates. Discrepan-
cies also increase as the local mean diverges from the glo-
bal mean; for the example of breast cancer, the LBS
estimates are much smaller than GBS values in the South-

ern part of the study area characterized by lower age-
adjusted mortality rates. In addition to the population
size, increasing differences between the local and global
variances, s2(uα) and s2, tend to inflate differences
between the kernel weights (i.e. shrinkage factor) com-
puted by the two types of empirical Bayes smothers. This
effect is particularly clear for breast cancer; see Figure 10
(middle row).

The risk maps generated by the local empirical Bayes
smoother and Poisson kriging share the most similarities
for cervix cancer, and in the Southern part of the region for
breast cancer. Like for the two types of empirical Bayes
smoothers, the difference between Poisson kriging and
LBS estimates increases as the population size of the
county decreases, see Figure 10 (bottom graphs). As the
mortality rate becomes less reliable, more weight is
assigned to other pieces of information (i.e. global mean
for GBS, local means for LBS, or surrounding observations
for PK), leading to larger deviations between estimators.
Another difference lies in the weight assigned to the mor-
tality rates (i.e. kernel weight) in the computation of the
PK and LBS estimates. Figure 11 (top graphs) shows that
the relationship between population size and kernel
weight is stronger (more monotonic) for Poisson kriging
than for local empirical Bayes smoother since the later
accounts for the local variance too; recall Figure 2. There-
fore, the difference between LBS and PK kernel weights
increases as the local variance increases; see Figure 11 (left
bottom graph). Differences in kernel weights, however,
cannot account for the differences in risk estimates (Figure
11, right bottom scattergram), suggesting that other fac-
tors, such as the spatial patterns incorporated in the com-
putation of Poisson kriging weights but ignored in LBS,
are responsible for these discrepancies.

The mean square error of prediction (i.e. prediction vari-
ance) associated with the risk maps of Figures 7 and 8 are
mapped in Figures 12 and 13. Relative results are very sim-
ilar for both types of cancers since the spatial distribution
of population sizes and the coordinates of the county cen-
troids control, to a large extent, the spatial pattern of the
maps. The PWA map shows larger variances along the
edge of the study area, that is where fewer counties are
close geographically, or where the distance between cen-
troids is larger such as in Maine. In these situations the
information carried out by the neighboring counties, as
measured by the spatial covariance function, is smaller,
leading to a larger prediction variance. The impact of the
spatial distribution of population sizes on the variance
map is much more pronounced for the three other estima-
tors: prediction variances are smaller around the major
cities of the East Coast and larger in the South. The relative
magnitude of the Poisson kriging variance is however
much lower than the prediction variance of the empirical

Three omnidirectional semivariograms of breast cancer mor-tality rates with the model fittedFigure 6
Three omnidirectional semivariograms of breast 
cancer mortality rates with the model fitted. This 
graph was created by poisson_kriging.exe using the 
parameter file of Figure 3 with the option ndir = 1. The esti-
mators are the followings: traditional semivariogram (Equa-
tion 8 with n(uα) = 1 ∀ α), population-weighted 
semivariogram (Equation 8), and risk semivariogram (Equa-
tion 18). The solid curve denotes the model fitted using 
weighted least-square regression.
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Directional semivariograms for breast and cervix cancer mortality rates with the anisotropic model fittedFigure 7
Directional semivariograms for breast and cervix cancer mortality rates with the anisotropic model fitted. The 
graphs for breast cancer (left column) were created by poisson_kriging.exe using the parameter file of Figure 3 with the 
option ndir = 4. The estimators are the followings: traditional semivariogram (Equation 8 with n(uα) = 1 ∀ α), population-
weighted semivariogram (Equation 8), and risk semivariogram (Equation 18). The semivariograms are computed in four direc-
tions; azimuth angles are measured in degrees clockwise from the NS axis The solid curve denotes the anisotropic (i.e. direc-
tion-dependent) model fitted using weighted least-square regression.

Traditional estimator

Population-weighted estimator

Poisson kriging estimator (risk) 
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Maps of age-adjusted breast cancer mortality rates and the risk computed using alternative estimatorsFigure 8
Maps of age-adjusted breast cancer mortality rates and the risk computed using alternative estimators. The fill 
color in each county represents the age-adjusted mortality rate per 100,000 person-years recorded over the period 1970–
1994 (top graph) or the risk estimated using the following approaches: population-weighted average, global and local empirical 
Bayes smoothers, and Poisson kriging. The color legend applies to all the maps; the class boundaries correspond to the deciles 
of the histogram of original rates.
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Maps of age-adjusted cervix cancer mortality rates and the risk computed using alternative estimatorsFigure 9
Maps of age-adjusted cervix cancer mortality rates and the risk computed using alternative estimators. The fill 
color in each county represents the age-adjusted mortality rate per 100,000 person-years recorded over the period 1970–
1994 (top graph) or the risk estimated using the following approaches: population-weighted average, global and local empirical 
Bayes smoothers, and Poisson kriging. The color legend applies to all the maps; the class boundaries correspond to the deciles 
of the histogram of original rates.

Cervix cancer mortality 
(rate/100,000 person-years) 

Population-

weighted average 

Global Empirical 

Bayes

Local Empirical 

Bayes

Poisson kriging 



International Journal of Health Geographics 2005, 4:31 http://www.ij-healthgeographics.com/content/4/1/31

Page 16 of 33

(page number not for citation purposes)

Bayes smoothers. Population-weighted average has the
largest prediction variance.

Simulation studies

Figures 7 through 13 illustrated the major differences
between alternative approaches for correction of the small
number problem. An objective assessment of the predic-
tion performances of the various techniques requires,
however, the availability of the underlying risk maps
which are unknown in practice. Simulation provides a
way to generate multiple realizations of the spatial distri-
bution of cancer mortality rates under specific scenarios
for the underlying risk and population sizes. Predicted
risks can then be compared to the risk maps used in the
simulation. Marshall [14] used a similar approach to
investigate the performances of local and global empirical
Bayes estimators under different scenarios for the disease
frequency, the size of the population at risk, and the spa-
tial patterns of risk. More recently, Richardson et al. [36]
used simulation to investigate the performance of various
disease-mapping models for recovering the "true" risk sur-
faces, in particular the ability to detect risk-raised areas.

In this paper, a series of simulated maps of age-adjusted
breast and cervix cancer mortality rates {z(l)(uα), α =
1,...,N} were generated in order to investigate the predic-
tion performance of the four methods implemented in
poisson_kriging.exe. For each cancer, three different sce-
narios in terms of the underlying risk map {r(uα), α =
1,...,N} were considered:

1) map of risk estimated from mortality rates by Poisson
kriging,

2) smooth map of regional risk estimated from mortality
rates by a factorial kriging variant of Poisson kriging
(right-hand side covariance terms in the first K equations
of system (16) are set to zero; see analogous approach in
[22]),

3) non-structured map of risk created by random shuf-
fling of the risk values estimated by Poisson kriging.

The three risk maps for breast cancer, with the correspond-
ing semivariograms, are displayed in Figure 14. At this
stage, Poisson kriging was merely used to create risk maps
with various degree of smoothness; simple population-
weighted averages would have generated similar results.
Poisson kriging is however not used to generate simulated
values (see below), hence the results of the performance
comparison are not biased by the way the risk maps were
created.

For each cancer and each risk map, 100 realizations of the
number of cases recorded over each county with centroid
uα was generated by random drawing of a Poisson distri-
bution whose mean parameter is r(uα) × n(uα). Both
white and black female population maps of Figure 1 were
used in the simulation, leading to six different scenarios
(3 risk maps × 2 population maps) for each cancer. Figure
15 shows the first two realizations of breast cancer mortal-
ity rates generated using the risk maps of Figure 14 and the
white female population map displayed in Figure 1.

Comparison of prediction performances

Each map of simulated rates {z(l)(uα), α = 1,...,N} under-
went a (geo)statistical analysis similar to the one imple-
mented in poisson_kriging.exe. The six following
predictors of risk values were used:

1. Observed rate

2. Population-weighted average

3. Global empirical Bayes smoother

4. Local empirical Bayes smoother

5. Poisson kriging using the 'true' risk semivariogram (i.e.
traditional semivariogram computed from the underlying
risk values)

6. Poisson kriging using the risk semivariogram estimated
from observed rates using expression (18).

Table 1: Summary statistics for breast and cervix cancer risk estimates. Mean and variance of observed age-adjusted mortality rates 

per 100,000 person-years and risk values estimated using four alternative methods. The average weight assigned to the original rate in 

the estimation of the risk at the same location is reported as "kernel weight".

Estimator Breast cancer Cervix cancer

Mean Variance Kernel weight Mean Variance Kernel weight

Observed rates 27.31 14.99 1.00 4.02 2.02 1.00

Population-weighted average 28.61 5.89 0.03 3.61 0.50 0.03

Global Empirical Bayes 28.65 4.44 0.68 3.63 0.61 0.66

Local Empirical Bayes 28.02 7.54 0.55 3.83 0.91 0.61

Poisson kriging 27.62 8.00 0.51 3.96 0.95 0.60
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Impact of population size and local variance on differences between estimates of cancer mortality riskFigure 10
Impact of population size and local variance on differences between estimates of cancer mortality risk. Top and 
bottom scattergrams illustrate the largest differences among mortality risks estimated for less densely populated counties. Mid-
dle row shows that the local and global empirical Bayes smothers yield similar shrinkage factor (kernel weight) for areas where 
the local variance s2(uα) is close to the global variance s2.

s
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Impact of population size and local variance on LBS and PK resultsFigure 11
Impact of population size and local variance on LBS and PK results. The top scattergrams illustrate the increasing 
weight assigned to the original mortality rate (i.e. shrinkage factor or kernel weight) as the population in that county increases. 
The local empirical Bayes (LBS) and Poisson kriging (PK) weights are more distinct in zones of greater variability in mortality 
rates, as measured by the local variance. Differences between kernel weights are not correlated with the differences between 
the corresponding risk estimates.
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Maps of mean square error of prediction for the breast cancer risk maps of Figure 8Figure 12
Maps of mean square error of prediction for the breast cancer risk maps of Figure 8. The fill color in each county 
represents the mean square error of prediction of the risk of breast cancer produced by the following predictors: population-
weighted average, local and global empirical Bayes smoothers, and Poisson kriging. The units are age-adjusted mortality rate 
per 100,000 person-years, and the class boundaries correspond to the deciles of the histogram of mean square error of predic-
tion.

Breast cancer 

WF population

Population-

weighted average 

Global Empirical 

Bayes

Local Empirical 

Bayes

Poisson kriging 



International Journal of Health Geographics 2005, 4:31 http://www.ij-healthgeographics.com/content/4/1/31

Page 20 of 33

(page number not for citation purposes)

Maps of mean square error of prediction for the cervix cancer risk maps of Figure 9Figure 13
Maps of mean square error of prediction for the cervix cancer risk maps of Figure 9. The fill color in each county 
represents the mean square error of prediction of the risk of cervix cancer produced by the following predictors: population-
weighted average, local and global empirical Bayes smoothers, and Poisson kriging. The units are age-adjusted mortality rate 
per 100,000 person-years, and the class boundaries correspond to the deciles of the histogram of mean square error of predic-
tion.
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Breast cancer risk maps (3 scenarios) used in the simulation procedure, and the corresponding directional semivariogramsFigure 14
Breast cancer risk maps (3 scenarios) used in the simulation procedure, and the corresponding directional 
semivariograms. The fill color in each county represents the mortality risk over the period 1970–1994 (age-adjusted mortal-
ity rate per 100,000 person-years). Three scenarios are considered for the risk values: risk estimated from the age-adjusted 
mortality rates of Figure 1 by Poisson kriging, smooth map of regional risks, and non-structured map of risk created by random 
shuffling of the scenario 1 map.
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Maps of breast cancer mortality rates simulated under three scenarios for the underlying risk mapFigure 15
Maps of breast cancer mortality rates simulated under three scenarios for the underlying risk map. The number 
of cases for each county was simulated by random sampling of a Poisson distribution that is defined by the risk and population 
value derived from the three risk maps of Figure 14 and the white female population map of Figure 1. The units are age-
adjusted mortality rates per 100,000 person-years. The color legend applies to all the maps; the class boundaries correspond 
to the deciles of the histogram of original rates.
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Estimators 2 through 6 were based on the closest 32
recorded rates.

Predicted risks {  (uα), α = 1,...,N} and the correspond-

ing prediction variance {[  (uα)]2, α = 1,...,N} were

compared to the underlying risk map {r(uα), α = 1,...,N}.

Various performance criteria were computed and averaged

over all 100 realizations to attenuate the impact of statis-

tical fluctuations.

Bias and accuracy of prediction

The first two criteria are the mean error (ME) and mean
square error (MSE) of prediction computed as:

Table 2 indicates that, on average over 100 realizations,

the prediction using the observed rates is the least biased,

which is expected since these rates were generated by ran-

dom drawing of distributions centred on the risk values.

For both cancers, Poisson kriging has less bias than the

empirical Bayes smoothers and the population-weighted

average. The worst results are obtained for global empiri-

cal Bayes smoothers, in particular when the risk values are

spatially structured (scenarios 1–2). For several realiza-

tions generated using the smooth risk map and black

female populations (13 realizations for breast and 6 for

cervix), the global variance of simulated rates is smaller

than the ratio m*/ , leading to zero shrinkage factor and

uniform maps of risk estimates; recall Equation (10). The

same effect is observed for two breast cancer maps gener-

ated under scenario 1 (BF population). The occurrence of

zero shrinkage factor, however, cannot explain the larger

bias observed when global empirical Bayes smoothers are

applied to simulations using the white female population

maps.

The benefit of using predicted risks over recorded mortal-
ity rates is striking when looking at the mean square error
of prediction, in particular when population sizes are
smaller. Whenever the risk is spatially structured, Table 3
shows that Poisson kriging using the true semivariogram
model outperforms all other methods. The use of the esti-
mated risk semivariogram slightly increases PK prediction
errors, making it a close second to the population-
weighted average for the analysis of cervix cancer in
smaller populations (BF). Global empirical Bayes
smoother leads to the smallest MSE values when the
underlying risk is spatially unstructured. This result is in
agreement with simulation experiments by Marshall [14]
that demonstrated better prediction performances of glo-
bal versus local Bayes estimators when the underlying spa-
tial pattern of the disease is random.
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Table 2: Performance comparison of alternative estimators: mean error of prediction. Results obtained on average over 100 

realizations generated under two different population size scenarios and 3 types of risk map (1 = observed, 2 = smooth, 3 = random). 

Poisson kriging was conducted with the semivariogram estimated from the underlying risk values (true γR(h)) or the simulated 

mortality rates. Bold numbers refer to best performances outside the ideal case where the true semivariogram of risk is known.

Estimators WF population BF population

BREAST CANCER Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3

Observed rates -0.006 0.004 -0.020 -0.221 0.141 -0.198

Population-weighted average 0.996 0.491 0.303 1.654 0.720 0.562

Global Empirical Bayes 1.245 1.127 0.162 3.094 1.921 0.581

Local Empirical Bayes 0.586 0.395 0.130 1.623 0.737 0.572

Poisson kriging (true γR(h)) 0.237 0.175 0.005 1.264 0.600 0.372

Poisson kriging 0.228 0.193 0.016 1.441 0.622 0.412

CERVIX CANCER

Observed rates 0.000 0.001 -0.003 0.248 0.059 -0.010

Population-weighted average -0.362 -0.196 -0.139 -0.406 -0.261 -0.270

Global Empirical Bayes -0.386 -0.398 -0.092 -0.717 -0.697 -0.337

Local Empirical Bayes -0.184 -0.142 -0.066 -0.331 -0.215 -0.203

Poisson kriging (true γR(h)) -0.051 -0.024 -0.034 -0.299 -0.198 -0.197

Poisson kriging -0.049 -0.019 -0.028 -0.221 -0.118 -0.167
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Detection of zones of low and high risks

Cancer mortality maps are frequently used by public
health officials to identify areas of excess and to guide sur-
veillance and control activities. It is thus important that
the prediction method lead to a correct ranking of geo-
graphical units in terms of mortality risk. The Spearman
rank correlation coefficient measures the strength of the
monotonic relation between two variables. For each l-th
realization, the correlation between the rank of the actual
and estimated risk values was computed as:

where  (uα) and y(uα) are the rank of the estimated

and actual risk values,  (uα) and r(uα), in their respec-

tive distributions. The corresponding mean and standard

deviation are denoted  and s. The rank correlation was

averaged over all realizations, and their values for the dif-

ferent scenarios are listed in Table 4. As for the mean

square error of prediction in Table 3, Poisson kriging gen-

erally yields the largest rank correlation for spatially struc-

tured risk maps, while global empirical Bayes smoother

performs the best when the underlying risk is spatially

random. An interesting result is the lack of correlation

between true risk values and population-weighted aver-

ages under scenario 3. The smoothing effect caused by the

very small PWA kernel weight (recall Table 1) leads to esti-

mated risk maps that display spatial correlation even

when the underlying risk map is purely random. In other

words, the application of a moving average to a purely

random field creates a field of spatially structured values.

To attenuate PWA smoothing the number of closest

neighbors was reduced from K = 32 to K = 16. The smaller

averaging window generated less smoothing and slightly

larger rank correlations; e.g., ρrank = 0.218 instead of 0.047

for WF population, Scenario 3. Yet, the use of fewer obser-

vations led to larger prediction errors when population

sizes are smaller; e.g. for breast cancer, MSE = 17.89

instead of 11.40 for BF population (Scenario 3) or MSE =

12.44 instead of 8.093 for Scenario 1. A similar increase in

prediction errors occurred for local empirical Bayes

smoother and Poisson kriging. The parameter K = 32 was

thus kept throughout the analysis.

Quality of the uncertainty model

The ability of the prediction variance to capture the actual
magnitude of the prediction error was quantified using
the following mean square standardized residual (MSSR):

If the actual estimation error is equal, on average, to the
error predicted by the model, the MSSR statistic should be
about one [[37], p. 91]. Using m*/n(uα) as an estimate of
the prediction variance for the observed rates z(uα) leads
to the best MSSR statistic for half the scenarios; see Table

ρ
α α

α
rank Equat
( )

( ) ( )

( )

( ) ( )

(
l

P
l

P
l

N

P
lN

y y y y

s s
=

−





−[ ]
=

∑
1 1

u u

iion 22)

yP
l( )

rP
l( )

y

MSSR
N

r rl P
l

P
l

N
( )

( )

( )

( ) ( )

( )
(=

−









=

∑1
2

1

2
u u

u

α α

αα σ
Equation 33)

Table 3: Performance comparison of alternative estimators: mean square error of prediction. Results obtained on average over 100 

realizations generated under two different population size scenarios and 3 types of risk map (1 = observed, 2 = smooth, 3 = random). 

Poisson kriging was conducted with the semivariogram estimated from the underlying risk values (true γR(h)) or the simulated 

mortality rates. Bold numbers refer to best performances outside the ideal case where the true semivariogram of risk is known.

Estimators WF population BF population

BREAST CANCER Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3

Observed rates 4.426 4.462 4.777 1178 1461 1321

Population-weighted average 3.249 1.085 8.159 8.093 3.753 11.40

Global Empirical Bayes 5.090 4.591 2.286 17.09 9.536 6.853

Local Empirical Bayes 1.514 0.811 2.424 8.631 5.543 11.02

Poisson kriging (true γR(h)) 0.828 0.593 2.376 6.154 3.534 9.648

Poisson kriging 0.857 0.625 2.452 7.107 3.741 10.03

CERVIX CANCER

Observed rates 0.803 0.802 0.738 367 257 232

Population-weighted average 0.590 0.149 1.006 1.088 0.617 1.468

Global Empirical Bayes 0.556 0.496 0.318 1.387 1.079 0.906

Local Empirical Bayes 0.264 0.116 0.341 3.143 1.685 3.440

Poisson kriging (true γR(h)) 0.177 0.041 0.313 0.881 0.566 1.233

Poisson kriging 0.179 0.045 0.335 1.117 0.764 1.383
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5. However, this result simply indicates that one correctly
predicts that observed rates fare badly in estimating the
underlying risk (recall Table 3). Ignoring the results for
observed rates, Poisson kriging slightly outperforms the
local empirical Bayes smoother. For small populations,
the prediction variance for population-weighted averages
and empirical Bayes smoothers systematically overesti-
mates the actual magnitude of prediction errors.

Another way to use the prediction variance is to build at
any location uα the conditional cumulative distribution
function (ccdf) of the unknown risk value. Under the
assumption of normality of the prediction errors, the ccdf
is defined as:

where G(·) is the cumulative distribution function of the

standard normal distribution. The ccdf allows one to com-

pute the probability that the risk variable does not exceed

any specific threshold r over the entity with centroid uα.

This distribution is here fully characterized by its mean

and variance which are the risk estimate, (uα) and the

prediction variance, [  (uα)]2. From the ccdf one can

compute a series of symmetric p-probability intervals (PI)

bounded by the (1-p)/2 and (1+p)/2 quantiles of that

function. For example, the 0.5-PI is bounded by the lower

and upper quartiles [  (uα;0.25|(Info)), 

(uα;0.75|(Info))]. A correct modeling of local uncertainty

would entail that there is a 0.5 probability that the actual

risk value at uα falls into that interval or, equivalently, that

over the study area 50% of the 0.5-PI include the true

value. In our simulation studies the true risk values are

known, hence from the independently derived ccdfs at the

N locations uα one can compute the fraction of true values

falling into the symmetric p-PI as:

where ζ(l) (uα; p) equals 1 if r(uα) lies between the (1-p)/2

and (1+p)/2 quantiles of the ccdf for the l-th realization,

and zero otherwise. The scattergram of the estimated, 

(p), versus expected, p, fractions is called the "accuracy

plot". Deutsch [38] proposed to assess the closeness of the

estimated and theoretical fractions using the following

"goodness" statistic:

where w(pk) = 1 if  (pk) > pk, and 2 otherwise. Twice

more importance is given to deviations when  (pk) <pk
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Table 4: Performance comparison of alternative estimators: rank correlation coefficient between estimates and true risk values. 

Results obtained on average over 100 realizations generated under two different population size scenarios and 3 types of risk map (1 = 

observed, 2 = smooth, 3 = random). Poisson kriging was conducted with the semivariogram estimated from the underlying risk values 

(true γR(h)) or the simulated mortality rates. Bold numbers refer to best performances outside the ideal case where the true 

semivariogram of risk is known.

Estimators WF population BF population

BREAST CANCER Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3

Observed rates 0.813 0.761 0.805 0.355 0.328 0.199

Population-weighted average 0.792 0.899 0.047 0.623 0.737 -0.001

Global Empirical Bayes 0.751 0.720 0.834 0.129 0.146 0.363

Local Empirical Bayes 0.896 0.922 0.825 0.612 0.708 0.217

Poisson kriging (true γR(h)) 0.930 0.927 0.822 0.699 0.744 0.257

Poisson kriging 0.929 0.925 0.818 0.654 0.732 0.225

CERVIX CANCER

Observed rates 0.765 0.682 0.770 -0.191 -0.282 0.101

Population-weighted average 0.706 0.886 0.006 0.445 0.650 -0.017

Global Empirical Bayes 0.748 0.664 0.811 0.314 0.225 0.354

Local Empirical Bayes 0.867 0.906 0.789 0.479 0.598 0.189

Poisson kriging (true γR(h)) 0.905 0.967 0.807 0.593 0.676 0.228

Poisson kriging 0.903 0.961 0.790 0.558 0.611 0.200



International Journal of Health Geographics 2005, 4:31 http://www.ij-healthgeographics.com/content/4/1/31

Page 26 of 33

(page number not for citation purposes)

(inaccurate case), i.e. the case where the fraction of true

values falling into the p-PI is smaller than expected. K' rep-

resents the discretization level of the computation; for

example, the ccdf percentiles are used as PI boundaries

when K' = 50. Table 6 indicates that no technique system-

atically outperforms the others. Empirical Bayes smooth-

ers are best for breast cancer, while Poisson kriging

performs better for the less common cervix cancer.

Not only should the true value fall into the PI according
to the expected probability p, but this interval should be
as narrow as possible to reduce the uncertainty about that
value. In other words, among two probabilistic models
with similar goodness statistics one would prefer the one
with the smallest spread (less uncertain). In this paper the
ccdf spread is quantified by its variance and averaged over
all 295 counties, leading to the following statistic:

Table 7 shows that, regardless the type of cancer, the PK
ccdf variance is the smallest for all scenarios. Conse-
quently, the probability intervals are narrower and more
informative if they include the expected fraction of true
values.

Smoothing effect

All prediction methods are based on linear combinations

of surrounding rates; hence they are all expected to create

risk maps that are smoother than the original map of

observed rates. One should however avoid any over

smoothing that could potentially lead one to overlook the

presence of high risk or low risk areas. The variance of the

risk estimates, denoted , was computed for each

realization and the averages over 100 realizations are

listed in Table 8. Global empirical Bayes smoother, and

population-weighted average for random risk maps, gen-

erate the largest smoothing effect. For the white female

population, PK risk estimates display the largest variance

and the one that is the closest to the variance of the under-

lying risk, . For simulations based on smaller popula-

tion sizes the largest variance are obtained using local

empirical Bayes smoothers but the true risk variance is

severely overestimated, in particular for the less common

cervix cancer. Population-weighted averages and Poisson

kriging perform equally well in this situation.

Spread of realizations into the multivariate space of performance 

criteria

A limitation of the analysis detailed in Tables 2 through 8
is that each performance criterion is considered separately
and its value is averaged over all 100 realizations. Infor-
mation about the spread of results among realizations, as
well as the correlation (redundancy) between criteria, is
lost as long as one does not look at the scatter of realiza-
tions in the seven-dimensional space spanned by the
seven performance criteria. Principal component analysis
(PCA) was used to display the 500 realizations (5 predic-
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Table 5: Performance comparison of alternative estimators: mean square standardized residual. Results obtained on average over 100 

realizations generated under two different population size scenarios and 3 types of risk map (1 = observed, 2 = smooth, 3 = random). 

Poisson kriging was conducted with the semivariogram estimated from the underlying risk values (true γR(h)) or the simulated 

mortality rates. Bold numbers refer to best performances outside the ideal case where the true semivariogram of risk is known.

Estimators WF population BF population

BREAST CANCER Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3

Observed rates 0.913 0.948 0.983 0.891 0.948 0.980

Population-weighted average 0.817 0.735 1.076 0.473 0.260 0.624

Global Empirical Bayes 1.524 1.974 0.973 0.494 0.284 0.315

Local Empirical Bayes 0.823 0.799 1.011 0.519 0.318 0.667

Poisson kriging (true γR(h)) 0.929 0.986 1.151 2.324 1.705 1.447

Poisson kriging 0.901 1.436 1.197 2.365 0.947 2.066

CERVIX CANCER

Observed rates 1.224 1.188 1.050 1.299 1.247 1.096

Population-weighted average 1.229 0.542 1.156 0.441 0.257 0.540

Global Empirical Bayes 1.506 1.476 1.028 0.354 0.248 0.289

Local Empirical Bayes 1.154 0.679 1.101 0.638 0.407 0.663

Poisson kriging (true γR(h)) 1.135 1.053 1.032 1.184 0.754 1.039

Poisson kriging 1.071 0.760 1.252 0.880 0.600 1.179
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tors × 100 realizations) in a subspace that can be visual-
ized easily. The basic idea of PCA is to create new
orthogonal variables, the principal components, as linear
combinations of the original variables, i.e. the 7 perform-
ance criteria [37]. The first few components account for
most of the variance and so are the most informative. In
this paper the first two components, which account for 64
to 97% of the global variance depending on the scenario
and cancer type, were computed. These components were
rotated (Varimax rotation) to achieve a "simple structure",
that is each performance criterion correlates mainly with
one of the two principal components, which facilitates the
interpretation of the components [39,40].

Figures 16 and 17 show the scatter of realizations under

each of the six scenarios for breast and cervix cancers,

respectively. The performance criteria  and MSSR

were replaced by δs2 = |  - | and δMSSR =

|MSSR-1|, so that each criterion needs either to be mini-

mized (ME, MSE, δMSSR, δs2, ) or maximized (G,

ρrank). Note that the upperscript "(l)" for realization is

dropped to simplify the notation. The position of the cri-

terion labels on each plot in Figures 16 and 17 indicates

the correlation between the performance criteria and the

principal components. Typically, one component cap-

tures the negative correlation between the rank correla-

tion coefficient ρrank and the magnitude of the prediction

error (i.e. ME, MSE). The other component depicts the

negative correlation between the goodness statistic G and

the standardized residual statistic δMSSR. In all cases, the

best predictors are located in the lower left quadrant of the

graph, corresponding to negative values for both rotated

principal components (i.e. larger goodness statistic and

rank correlation).

For breast cancer the horizontal axis can be interpreted as
the magnitude of prediction errors, leading to a clear sep-
aration of GBS realizations (light blue) from other predic-
tors for structured risk patterns (scenarios 1 and 2) where
the global empirical Bayes smoother performs badly. For
the random risk maps, PWA results (black) are the worst
for white female populations while GBS performs the best
for smaller population sizes. The vertical axis allows one
to better discriminate the approaches that have similar
prediction errors. Clearly, Poisson kriging yields the best
predictions for white female populations when the risk is
spatially structured and for black female populations
when the risk varies smoothly in space. There is more
overlap between predictors for the other scenarios. In par-
ticular, the PWA and LBS clouds coincide for all three sce-
narios under smaller population sizes. These graphs also
highlight the larger scatter of PK realizations (red), which
is very pronounced when the risk map is random. This
variability is mainly caused by the estimation and model-
ling of the risk semivariogram, since Poisson kriging using
the true semivariogram model (yellow) leads to more
compact clouds.
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Table 6: Performance comparison of alternative estimators: goodness of the model of uncertainty. Results obtained on average over 

100 realizations generated under two different population size scenarios and 3 types of risk map (1 = observed, 2 = smooth, 3 = 

random). Poisson kriging was conducted with the semivariogram estimated from the underlying risk values (true γR(h)) or the 

simulated mortality rates. Bold numbers refer to best performances outside the use of observed rates and the ideal case where the 

true semivariogram of risk is known.

Estimators WF population BF population

BREAST CANCER Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3

Observed rates 0.973 0.974 0.975 0.956 0.964 0.965

Population-weighted average 0.967 0.943 0.968 0.887 0.761 0.910

Global Empirical Bayes 0.847 0.843 0.974 0.908 0.787 0.804

Local Empirical Bayes 0.964 0.952 0.971 0.899 0.782 0.921

Poisson kriging (true γR(h)) 0.971 0.972 0.947 0.716 0.842 0.887

Poisson kriging 0.965 0.913 0.940 0.761 0.927 0.803

CERVIX CANCER

Observed rates 0.937 0.939 0.970 0.935 0.935 0.922

Population-weighted average 0.933 0.901 0.933 0.852 0.743 0.888

Global Empirical Bayes 0.875 0.870 0.973 0.833 0.785 0.787

Local Empirical Bayes 0.960 0.920 0.962 0.875 0.771 0.901

Poisson kriging (true γR(h)) 0.963 0.947 0.973 0.931 0.935 0.966

Poisson kriging 0.968 0.924 0.934 0.940 0.893 0.935
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Most of the conclusions drawn from the analysis of breast
cancer results are confirmed by the principal component
analysis of cervix cancer scores. Figure 17 shows that Pois-
son kriging performs better than other approaches for
most scenarios, with a clear benefit when the risk values
are spatially correlated. Once again, the PWA and LBS
clouds overlap for all three scenarios under smaller popu-
lation sizes.

Conclusion
Cancer mortality maps are used by public health officials
to identify areas of excess and to guide surveillance and
control activities. Quality of decision-making thus relies
on an accurate quantification of risks from observed rates
that can be very unreliable when computed from sparsely
populated geographical units or recorded for minority
populations. Smoothers, such as the median-based head
banging or the global empirical Bayes estimator, are rou-
tinely applied to stabilize rates. Yet, these methods are
unable to account for the fact that rates measured in enti-
ties that are close in the geographic space tend to be more
similar than the ones recorded further apart. Determinis-
tic approaches, such as the head-banging algorithm, also
fail to provide any measure of the uncertainty attached to
the predicted risks. These shortcomings are overcome by
the rich class of full Bayes models, which yields the full
posterior distribution of the risk while accounting for the
uncertainty in the parameters of the model. However,
implementation of these sophisticated methods is still
cumbersome and relies on time-consuming iterative pro-
cedures, which led to the following statement by Leyland
and Davies [11]: "Given that the nonspatial empirical Bayes

estimator appears to perform adequately in the presence of spa-
tial autocorrelation, and given the range of standard statistical
packages that can fit such models, we should question whether
the additional information available from a full Bayes model
(the full posterior distribution) is always of sufficient impor-
tance to justify the added complexity of (and computational
time required by) Gibbs sampling."

The geostatistical predictor introduced in this paper,
although not as straightforward as an empirical Bayes esti-
mator, is easier to implement than a full Bayes model and
does not require the distributional assumptions underly-
ing Diggle et al.'s model-based kriging [27]. It allows one
to model the spatial correlation of health data and incor-
porate the spatial dependence into the estimation of the
underlying risk and the associated uncertainty. Unlike tra-
ditional semivariogram analysis and kriging, Poisson krig-
ing do recognize that health data are comprised of a
numerator and a denominator and that the semivario-
gram of unknown risk values cannot be simply equaled to
the semivariogram of observed rates. The trade-off cost for
the simplicity of Poisson kriging is that, unlike the full
Bayesian approach, the uncertainty attached to the param-
eters of the correlation function is ignored in the analysis,
which should lead to smaller prediction variances in gen-
eral [16]. Apart from one case study in ecology [26], the
prediction performances of Poisson kriging and complex
Bayesian models have not been compared yet, and
detailed simulation studies under various conditions
should be conducted in the future. Based on Monestiez et
al.'s experience that a full Bayesian approach is more than
500 times slower than Poisson kriging [16], the simula-

Table 7: Performance comparison of alternative estimators: spread of the model of uncertainty. Results obtained on average over 100 

realizations generated under two different population size scenarios and 3 types of risk map (1 = observed, 2 = smooth, 3 = random). 

Poisson kriging was conducted with the semivariogram estimated from the underlying risk values (true γR(h)) or the simulated 

mortality rates. Bold numbers refer to best performances outside the ideal case where the true semivariogram of risk is known.

Estimators WF population BF population

BREAST CANCER Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3

Observed rates 5.147 5.002 4.784 22482 21577 20641

Population-weighted average 4.057 1.603 7.712 17.60 16.28 20.97

Global Empirical Bayes 2.438 1.681 2.372 31.74 30.42 27.65

Local Empirical Bayes 2.050 1.143 2.422 16.98 16.53 18.88

Poisson kriging (true γR(h)) 0.940 0.603 2.076 2.456 1.890 6.621

Poisson kriging 1.042 0.470 2.074 8.775 6.663 5.987

CERVIX CANCER

Observed rates 0.586 0.608 0.684 2359 2372 2625

Population-weighted average 0.494 0.242 0.883 2.870 2.631 3.233

Global Empirical Bayes 0.293 0.259 0.317 4.242 4.327 4.148

Local Empirical Bayes 0.229 0.170 0.307 2.843 2.722 3.130

Poisson kriging (true γR(h)) 0.155 0.043 0.307 0.763 0.711 1.201

Poisson kriging 0.169 0.069 0.269 1.552 1.825 1.529
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tion study presented in this paper would however require
about one year of Cpu time.

The analysis of age-adjusted breast and cervix cancer mor-
tality rates illustrated some key features of population-
weighted, empirical Bayes and Poisson kriging estimators.
Because of the small weight assigned to the rate recorded
over the entity being smoothed (kernel weight), popula-
tion-weighted average leads to an over smoothing of mor-
tality maps. This smoothing could be reduced by
decreasing the number of closest neighbors (K = 32 in the
analysis) but at the expense of larger prediction errors for
smaller population sizes. The other techniques assign
larger and similar kernel weights but they use a different
piece of auxiliary information in the prediction: global or
local means for global or local empirical Bayes smoothers,
and spatial combination of surrounding rates for Poisson
kriging. Results are thus influenced by changes in local
statistics (mean and variance) of mortality rates across the
study area, as well as their spatial pattern which includes
the distance of autocorrelation, the importance of short-
range fluctuation (nugget effect), and the presence of
direction-dependent variability (anisotropy). As the pop-
ulation size decreases, the kernel weight decreases,
enhancing the importance of this auxiliary information
and so differences among methods.

Simulation studies allowed a quantitative assessment of
the performance of various smoothers under different sce-
narios for the disease frequency, the population size, and
the spatial pattern of risk. Unlike many studies in the lit-

erature, the current analysis considered non only how
well the underlying risk is predicted, but also how the
magnitude of the actual prediction error is correctly
assessed by the uncertainty measure attached to the pre-
diction. By analogy with the computation of the kriging
variance, simple formulas were proposed to approximate
the mean square error of prediction by population-
weighted averages and empirical Bayes smoothers. The
analysis of mean square standardized residuals showed
that these prediction variances provide reasonable meas-
ures of the magnitude of prediction errors for white pop-
ulations, while being too conservative for smaller
population sizes.

Principal component analysis was used to visualize results
in the multidimensional space of the performance criteria.
Poisson kriging performs better than other approaches for
most scenarios, with a clear benefit when the risk values
are spatially correlated. Global empirical Bayes smoothers
provide more accurate predictions when the risk is spa-
tially random, which might not be a common situation.
Because of its algorithmic complexity, the NCI head-bang-
ing approach was not coded for the simulation studies
and it would have been too cumbersome to run the pub-
lic-domain code for each of the 1,200 realizations individ-
ually. Analysis of a few realizations, however, showed that
the method is outperformed by other methods, in partic-
ular Poisson kriging and local empirical Bayes smoother.

The implementation of the developed methodology was
facilitated by the initial assumption that all geographical

Table 8: Performance comparison of alternative estimators: variance of risk estimates. Results obtained on average over 100 

realizations generated under two different population size scenarios and 3 types of risk map (1 = observed, 2 = smooth, 3 = random). 

Poisson kriging was conducted with the semivariogram estimated from the underlying risk values (true γR(h)) or the simulated 

mortality rates. Bold numbers refer to best performances (i.e. the variance of risk estimates is the closest to the true risk variance 

reported in the first row) outside the ideal case where the true semivariogram of risk is known.

Estimators WF population BF population

BREAST CANCER Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3

True risk values 7.891 5.982 7.891 7.891 5.982 7.891

Population-weighted average 5.635 4.560 0.346 8.538 6.881 3.035

Global Empirical Bayes 3.628 1.722 5.178 0.290 0.145 1.026

Local Empirical Bayes 6.571 4.941 5.257 9.364 8.576 5.339

Poisson kriging (true γR(h)) 6.792 5.176 5.561 8.156 6.781 4.161

Poisson kriging 6.922 5.093 5.498 8.332 7.044 4.143

CERVIX CANCER

True risk values 0.946 0.596 0.946 0.946 0.596 0.946

Population-weighted average 0.485 0.498 0.055 0.909 0.918 0.422

Global Empirical Bayes 0.474 0.213 0.593 0.132 0.050 0.162

Local Empirical Bayes 0.727 0.538 0.625 3.197 2.059 2.746

Poisson kriging (true γR(h)) 0.793 0.599 0.671 0.941 0.910 0.550

Poisson kriging 0.804 0.596 0.607 1.269 1.137 0.690
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Scatter of realizations in the multivariate space of performance criteria (breast cancer)Figure 16
Scatter of realizations in the multivariate space of performance criteria (breast cancer). For each risk and popula-
tion scenario, a principal component analysis is conducted on the correlation matrix of the seven performance criteria, and 
individual realizations are projected in the space of the first two rotated components. The estimators are: population-weighted 
mean (black), global (light blue) and local (dark blue) empirical Bayes smoothers, and Poisson kriging using the true semivario-
gram of risk (yellow) or the one modelled from observed mortality rates (red). The position of criteria labels on the graph indi-
cates their correlation with the two principal components (criteria with small correlations are not displayed).
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Scatter of realizations in the multivariate space of performance criteria (cervix cancer)Figure 17
Scatter of realizations in the multivariate space of performance criteria (cervix cancer). For each risk and popula-
tion scenario, a principal component analysis is conducted on the correlation matrix of the seven performance criteria, and 
individual realizations are projected in the space of the first two rotated components. The estimators are: population-weighted 
mean (black), global (light blue) and local (dark blue) empirical Bayes smoothers, and Poisson kriging using the true semivario-
gram of risk (yellow) or the one modelled from observed mortality rates (red). The position of criteria labels on the graph indi-
cates their correlation with the two principal components (criteria with small correlations are not displayed).
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units are the same size, which allowed the use of geo-
graphical centroids in semivariogram estimation and krig-
ing. This assumption is unsatisfactory when working with
vastly different entities, such as SEA units over the US. A
proper account of the spatial support would also allow the
mapping of the risk within each unit. This issue is the
topic of current research and will capitalize on recent work
in the area of change of support and disaggregation proce-
dures [41-43].

Arguably, one of the biggest problem facing spatial epide-
miology and exposure assessment is that of combining, in
a coherent way, data measured on very different supports
and with different levels of reliability. Uncertainty arising
from estimation of disease rates over small population
sizes, as well as the uncertainty attached to the interpola-
tion of exposure data measured at a limited number of
monitoring stations, need to be properly accounted for in
the analysis. The methodology presented in this paper
allows the incorporation of population size and pattern of
spatial dependence in the geostatistical processing of
health data, thereby enabling researchers to estimate the
risk and the associated uncertainty at different scales and
to incorporate this assessment in local cluster analysis and
exploration of relationships with socio-demographic and
environmental factors. Issues, such as uncertainty propa-
gation or analysis of scale-dependent correlation between
cancer rates and covariates, will be further developed in
future papers to appear in this series on the geostatistical
analysis of disease data.
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