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Indices of abundance are the bedrock for stock assessments or empirical management procedures used to manage fishery catches for fish popula-
tions worldwide, and are generally obtained by processing catch-rate data. Recent research suggests that geostatistical models can explain a sub-
stantial portion of variability in catch rates via the location of samples (i.e. whether located in high- or low-density habitats), and thus use available
catch-rate data more efficiently than conventional “design-based” or stratified estimators. However, the generality of this conclusion is currently
unknown because geostatistical models are computationally challenging to simulation-test and have not previously been evaluated using multiple
species. We develop a new maximum likelihood estimator for geostatistical index standardization, which uses recent improvements in estimation
for Gaussian random fields. We apply the model to data for 28 groundfish species off the U.S. West Coast and compare results to a previous “strati-
fied” index standardization model, which accounts for spatial variation using post-stratification of available data. This demonstrates that the strati-
fied model generates a relative index with 60% larger estimation intervals than the geostatistical model. We also apply both models to simulated
data and demonstrate (i) that the geostatistical model has well-calibrated confidence intervals (they include the true value at approximately the
nominal rate), (ii) that neither model on average under- or overestimates changes in abundance, and (iii) that the geostatistical model has on
average 20% lower estimation errors than a stratified model. We therefore conclude that the geostatistical model uses survey data more efficiently
than the stratified model, and therefore provides a more cost-efficient treatment for historical and ongoing fish sampling data.

Keywords: abundance index, delta-generalized linear mixed model, fishery-independent data, Gaussian random field, geostatistics, index
standardization, management procedure, spatial statistics, stock assessment, template model builder.

Introduction
Fisheries management throughout the United States, Europe, and
elsewhere is often informed by estimates of fish population abun-
dance derived from sampling operations with predetermined sam-
pling designs. Data derived from fishery-independent surveys are
generally processed to generate an index that is intended to be pro-
portional to population abundance (Maunder and Punt, 2004).
Abundance indices are generally considered to be the most

important source of information regarding fishing impacts on
marine populations (Francis, 2011), and are used in data-rich and
data-limited stock assessments to inform changes in management
decisions, e.g. allowable catches (Methot et al., 2014).

Fisheries management agencies worldwide use many different
methods to estimate abundance indices and there can be wide vari-
ation in methodology even within a single fisheries management
agency. Using NOAA Fisheries in the United States as an example,
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the Alaska and Northeast Fisheries Science Centers of the U.S.
National Marine Fisheries Service primarily use design-based
estimators, which generally calculate average catch rates within
each predetermined sampling stratum in the sampling design,
then generate an area-weighted sum of abundance in each
stratum (Smith, 1990). Other scientific groups, including the
Northwest Fisheries Science Center, use a delta-generalized
linear mixed model (“delta-GLMM”) to preprocess survey data
while controlling for confounding effects (i.e. differences in
fishing power among contracted sampling vessels; Helser et al.,
2004; Thorson and Ward, 2014). This delta-GLMM approach
separately analyses positive catches (“encounters”), and the
catch rates of positive catches (“positive catch rates”), then com-
bines these two components in a final estimate of population abun-
dance (Lo et al., 1992; Stefansson, 1996). Scientific groups may also
analyse survey data while controlling for auxiliary information, e.g.
the placement of longline hooks (Bigelow and Maunder, 2007)
or associations of co-occurring species (Stephens and MacCall,
2004).

Recent research suggests that geostatistical approaches to process-
ing survey data may yield more precise and accurate indices of ab-
undance than either design-based or conventional delta-GLMMs
(Shelton et al., 2014). Geostatistical models for survey data
proceed by specifying that population densities at nearby sites are
more similar than densities at geographically remote sites. This stat-
istical assumption allows a geostatistical model to estimate a
smoothed surface representing spatial variation in density. The
model can then incorporate measured variables (i.e. bottom sub-
strate type) to assess what proportion of spatial variation in
density can be explained by habitat features. In contrast, conven-
tional design-based models assume that average density is fixed
within a given stratum, and variation among samples in a stratum
contributes to increased estimation variance for average density
and therefore population abundance (Petitgas, 2001). Shelton
et al. (2014) showed that a large portion of variation in survey
catch rates can be explained by whether the randomized location
for a given sample happened to fall in good or poor habitat for
darkblotched rockfish (Sebastes crameri), i.e. by within-stratum
variation. By explaining a greater portion of variation in survey
catch rates, the geostatistical model for darkblotched then had
greater precision, and avoided spikes in abundance that were im-
plausible for this long-lived species (Gertseva and Thorson,
2013).

However, it remains unknown whether geostatistical models are
likely in general to have improved performance relative to other
model types when estimating abundance indices. For example, Yu
et al. (2013) compare performance of geostatistical and generalized
linear models when analysing simulated data, and find that the geos-
tatistical model may have decreased performance given the sam-
pling design available for Lake Erie. We therefore develop a fast
and generic tool for implementing the geostatistical approach to
index standardization. This approach is then applied to data for
28 groundfish off the U.S. West Coast, and results are compared
with an existing delta-GLMM model that uses multiple spatial
strata to account for spatial variation in population densities. We
also conduct a simulation exercise to explore the statistical prop-
erties of the geostatistical approach, including whether its confi-
dence intervals are well calibrated and whether the geostatistical
model under- or overestimates interannual variation in population
abundance.

Methods
Model development
The goal of applying a geostatistical model to data from fisheries
research surveys is to explain the catches of each species recorded
in the survey, and hence to infer population density throughout
the domain of the survey design. We use a delta-generalized linear
mixed modelling framework (Lo et al., 1992; Stefansson, 1996;
Martin et al., 2005), which separately models the probability of
having non-zero catches (“encounters”) and catch rates for each
encounter (“positive catch rates”). The probability that a sample
encounters the target species (i.e. that catch C . 0) is approximated
via a first model component:

Pr[C . 0] = p, (1)

where p is the probability of encounter (see Tables 1 and 2 for list of
notation used). Positive catches are then approximated via a second
model component:

Pr[C = c|C . 0] = Gamma(c,s−2,ls2), (2)

where Gamma(c, x, y) is the value of a probability density function
evaluated at value c given a gamma distribution with shape x and
scale y, l is the expected catch given that the species is encountered,
and s is the coefficient of variation of measurement errors for posi-
tive catch rates. We use the Gamma distribution here because of its
flexibility, although we note that many other distributions can be
explored for positive catch rates (Thorson and Ward, 2013).

Each of these two components are estimated here using Gaussian
Markov random fields. A random field defines the probability of
a given function (e.g. densities as a function of latitude and
longitude), and is analogous to a conventional random variable,
which defines the probability of a given variable (Rasmussen and
Williams, 2006). Specifically, a random field defines the expected
value, variance and covariance of a multivariate realization from a
stochastic process. In this case, the stochastic process represents
the aggregate impact of environmental and biological factors that
are not directly observed but still contribute to the distribution
and density of the target species (Shelton et al., 2014; Thorson
et al., 2015). Because the delta-GLMM framework involves two
model components (probability of encounters and positive catch
rates), we estimate unique random fields for each. For a Gaussian
random field E, the value of the random field at a single fixed loca-
tion s ¼ kx, yl (where x and y are the easting and northing for that
location) follows a normal distribution, and the value of the
random field at several (but a finite number of) locations s ¼ kx, yl
(where the locations s are fixed and hence have no information
about the value of the field) is a multivariate normal distribution:

E[s] � MN(m,S), (3)

where MN is a multivariate normal distribution, mi is the expected
value at the ith location (in the following mi is fixed at 0), and
S is the covariance of the random field Ei at each location si. We
specify that this covariance follows a Matérn distribution (with
smoothness n ¼ 1). We also specify that the covariance between
locations s and s′ is stationary, but include the potentially impact
of geometric anisotropy, such that any linear transformation in
units measuring location (i.e. a rotation or rescaling of one spatial
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axis but not the other) will have no impact upon model results:

S(s, s′) = s2
E · Matérn( H(s − s′)

∥∥ ∥∥), (4)

where H is a linear transformation representing geometric anisot-
ropy, (s 2 s′) ¼ kx 2 x′, y 2 y′l is the difference in eastings and
northings between locations s and s′, and ||H(s − s′)|| is the distance
between locations after accounting for geometric anisotropy (see
Cressie and Wikle, 2011, Eq. 4.9 for details). The matrix H is
defined to preserve volume (i.e. has a determinant of one), and is
calculated from two estimated parameters (see Supplementary
Appendix A).

For computational reasons, we use a “predictive” framework
for spatio-temporal models, where the value of a random field
E defined over a domain V is approximated as being piecewise
constant. To accomplish this, the user pre-specifies the desired
number of “knots” nj that are used to approximate random field E

over domain V, such that the model tracks the value of E at each
knot. The value of E at any location s is equal to its value at the
nearest knot (hence the piecewise-constant approximation).
Therefore, the value of E at location si (the location for the ith
sample) is determined from the value EJ(i) at the knot J(i) that is
nearest to si. The location of all nj knots is determined by applying
a cluster algorithm (in this case, a k-means algorithm) to the loca-
tions of available sampling data. This clustering algorithm results
in a distribution of knots with density that is proportional to the
sampling intensity of the survey design. The area aj associated
with each knot j is then calculated using the Voronoi tool in the
PBSmapping package in R (Schnute et al., 2013). After being calcu-
lated, the number and location of all knots is held fixed during par-
ameter estimation. The prespecified number of knots controls the
accuracy of this piecewise-constant approximation, and can be
used to achieve a balance of accuracy and computational speed.
This approximation also simplifies calculating the integral across
the random field, as is necessary when calculating the index of abun-
dance (as discussed in detail later).

We approximate encounter probability p and positive catch rates
l using a link function and a combination of linear predictors
(including random fields). Linear predictors represent average
density dt in each year t, the relative fishing efficiency rv for the vth
survey vessel, the association bx of any measured environmental
variable x with encounter probabilities or positive catch rates, spa-
tially correlated variability vj in encounter probabilities or positive
catch rates at a knot j that is persistent among years, and spatially
correlated variability 1j,t at a given knot j in year t. We specifically
use the following model for encounter probability pi for sample i at
location si:

pi = logit−1 d
(p)
T(i) +

∑nx

k=1

b
(p)
k xJ(i),k + r

(p)
V(i) +v

(p)
J(i) + 1

(p)
J(i),T(i)

( )
, (5)

where T(i) is the year for sample i, V(i) is the vessel for sample i,
J(i) is the nearest knot to sample i (where we use capital letters

Table 2. List of indices used in model descriptions, and data used
during parameter estimation.

Name Symbol Type Model

Sample i Index G, S
Knot j Index G
Covariate k Index G, S
Stock l Index G, S
Year t Index G, S
Stratum s Index S
Area swept for sample i wi Data G, S
Catch (in kilograms) for sample i ci Data G, S
Survey vessel for sample i V(i) Data G, S
Nearest knot for sample i J(i) Data G
Year for sample i T(i) Data G, S
Stratum for sample i S(i) Data S
Area associated with knot j aj Data G
Area associated with stratum s as Data S
Covariate k at knot j xj,k Data G, S

Table 1. List of all parameters for either the geostatistical model (Model “G”), the Bayesian stratified model (Model “S”), or both.

Parameter name Symbol Type Model

Encounter probability pi Derived G, S
Positive catch rates li Derived G, S
Anisotropy matrix H Derived G
Northings anisotropy h1 Fixed G
Anisotropic correlation h2 Fixed G
Average reference density (encounters/positive catch rates) d( p)

t /d(l)t Fixed G, S
Covariate effects (encounters/positive catch rates) b

( p)
t /b(l)

t Fixed G, S
Vessel effects (encounters) r( p)

t /r(l)t Random G, S
Spatial residuals (encounters/positive catch rate) v

( p)
i /v(l)

i Random G
Spatio-temporal residuals (encounters/positive catch rate) 1

( p)
t,t /1

(l)
i,t Random G

Variation among strata and years (encounters/positive catch rate) g
( p)
s,t /g

(l)
s,t Random S

Average variation among strata (encounters/positive catch rate) m( p)
s /m(l)

s Random S
Variance of vessel effects (encounters/positive catch rate) s2( p)

r /s2(l)
r Fixed G, S

Variation of spatial residuals (encounters/positive catch rate) t( p)
v /t(l)v Fixed G

Variation of spatio-temporal residuals (encounters/positive catch rate) t( p)
1 /t(l)1 Fixed G

Covariance of spatial residuals (encounters/positive catch rate) S( p)
v /S(l)

v Derived G
Covariance of spatiatemporal residuals (encounters/positive catch rate) S

( p)
1 /S

(l)
1 Derived G

Range of spatial and spatio-temporal residuals (encounters/positive catch rate) k(p)/k(l) Fixed G
Variation among strata and years (encounters) s( p)

g /s(l)
g Fixed S

Coefficient of variation of measurement errors (positive catch rates) S Fixed G, S

The type of each parameter is listed as estimated (“fixed”, “random”), or calculated from estimated parameters (“derived”).
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to represent indicator variables T, V, J, and S, and S is defined later;
see Table 2), and nx is the number of measured covariates that are
included in the model. Similarly, we approximate positive catch
rates li for sample i:

li = wi · exp d(l)
T(i) +

∑nx

k=1

b(l)
k xJ(i),k + r(l)V(i) +v(l)

J(i) + 1
(l)
J(i),T(i)

( )
, (6)

where wi is the area swept for sample i. For both model compo-
nents, vessel effects r, spatial residuals v and spatio-temporal resi-
duals 1 are all random. For the encounter probability component,

r(p)
v � N(0,s2(p)

r )

v(p) � MN(0,S(p)
v )

1
(p)
t � MN(0,S(p)

1 )

(7)

and random effects for positive catch rates are defined in the same
way.

Our model therefore includes multiple sources of stochastic
variation and can be conceptualized hierarchically (Searle et al.,
1992; Cressie et al., 2009; Thorson and Minto, 2014). Specifically,
this model is based on the interpretation that population density
across sampling domain V in a given year is a realizations of a
random function. This random functions arises from the combin-
ation of measured covariates x and random fields v and 1, and
assumptions about these random fields (i.e. that they stationary
but have geometric anisotropy) result in the properties of the
random function used to describe spatial variation in population
density. The stochastic process of sampling local densities using
bottom trawl gear then introduces another source of variability,
which follows a Bernoulli or gamma distribution (Eqs. (1) and
(2)), and vessels have random variation in catch efficiency, thus
representing a third source of variability. The treatment of space
via random functions allows for inference similar to that for “intrin-
sic” geostatistics, such that the geostatistical model (Eqs. (1)–(7))
can also be applied to non-randomized sampling designs
(Petitgas, 2001), subject to the assumption the process of selecting
sampling locations is independent of the process generating differ-
ence in population density (Diggle et al., 2010).

We estimate fixed effects via maximum marginal likelihood
while integrating across all random effects (see Table 1 for full list
of parameters). The marginal likelihood is approximated using
the Laplace approximation (Skaug and Fournier, 2006; Thorson
et al., 2015) as implemented using template model builder
(Kristensen et al., 2014). The conditional probability of random
effects was approximated using the stochastic partial differential
equation approach for stationary, geometric anisotropy outlined
in Supplementary Appendix A (Lindgren et al., 2011). The marginal
likelihood was then maximized using conventional non-linear opti-
mization in the R statistical platform (R Core Development Team,
2013). Further details regarding this computational approach for
spatio-temporal models can be found in Thorson et al., (2015).

In our West Coast application, we proceed by obtaining a grid
that encompasses the entire spatial domain for the available survey
data. Each grid cell is 2 km × 2 km, which results in �40 000 grid
cells. For each grid cell, we know the eastings and northings at the
centroid, and the average value of every covariate (xk in X). The
value of the random field in each cell is assumed to be equal to its
value at the nearest knot (i.e. following the piecewise-constant

approximation), so the area aj associated with the jth knot is calcu-
lated as the number of grid cells associated with it times their areas.
The total abundance across the entire population domain can then
be calculated as follows:

b̂t =
∑nj

j=1

ajlogit−1 d̂
( p)
t +

∑nx

k=1

b̂
( p)
k x j,k + v̂

( p)
j + 1̂

( p)
j,t

( )
exp

d̂(l)
t +

∑nx

k=1

b̂ (l)
k x j,k + v̂ (l)

j + 1̂
(l)
j,t

( )
, (8)

where b̂t is the estimate of total abundance in year t, d̂
( p)
t , b̂

( p)
k , d̂(l)

t ,
and b̂

(l)
k are fixed effects estimated via maximum likelihood, and

v̂
( p)
t , 1̂

( p)
j,t , v̂ (l)

t , and 1̂
(l)
j,t are random effects set to the value that max-

imizes the joint likelihood conditional on the estimated value of
fixed effects. Total abundance is calculated by summing across pre-
dicted density for all knots, where each is weighted by its area aj. This
“area-weighting” is standard when calculating design-based indices
(Cochran, 1977), and ensures that variation in sampling intensity
does not influence the weighting assigned to different segments of
the population (which could otherwise result in biased estimates
of population abundance). Exploratory analysis showed that con-
fidence intervals are more symmetric (and closer to quadratic;
Bolker et al. (2013)) in log-space, so we report standard errors
for log(bt). Standard error estimates ŜE[log(b̂t)] are computed
via a first-order Taylor series expansion (sometimes called the
generalized delta-method; see Fournier et al., 2012 for details) by
template model builder (Kristensen et al., 2014; available at
https://github.com/kaskr/adcomp), while b̂t is calculated via a
plug-in estimate. We note that future analysis could explore
alternative methods for summarizing uncertainty, e.g. likelihood
profile or bootstrap methods (Magnusson et al., 2013), but we
do not do so here. We authors are conducting ongoing research
regarding improved estimators for derived quantities such as b̂t

in maximum likelihood mixed-effects models (e.g. Tierney et al.
(1989)), in place of the plug-in estimator used in this paper, but
the topic is not explored further here. Code for adapting this geos-
tatistical delta-GLMM is provided on GitHub (https://github.com/
nwfsc-assess/geostatistical_delta-GLMM).

Comparison with stratified delta-GLMM
We compare the geostatistical delta-GLMM with results from a
Bayesian delta-GLMM that includes spatial stratification to
account for spatial variation in densities, and which is convention-
ally used for these data (Thorson and Ward, 2013, 2014). This strati-
fied delta-GLMM accounts for spatial variation in encounter
probabilities and positive catch rates by dividing the spatial
domain into 15 spatial strata, using three divisions by depth
(55–183, 184–549, and 550–1280 m) and five latitudinal divisions
(32–34.5 N, 34.5–40.5 N, 40.5–43 N, 43–47.5 N, and 47.5–50 N),
and eliminating all data for any stratum that has three or fewer
encounters across all 10 years of data. These spatial strata include
strata that are included in the survey design (with small variation
in sampling intensity among strata), as well as additional post-
stratification as is conventionally done for these data. Within each
stratum, encounter probabilities and positive catch rates are
assumed to be uniform when using the stratified delta-GLMM.
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The stratified delta-GLMM estimates encounter probability pi as

pi = logit−1 d
( p)
T(i) +

∑nx

k=1

b
( p)
k xi,k + m

( p)
S(i) + r

( p)
V(i) + g

( p)
S(i),T(i)

( )
, (9)

where mS
( p)
(i) is a fixed effect representing average encounter prob-

abilities for the stratum S(i) containing sample i (for identifiability
m
( p)
1 = 0), and g

( p)
S(i),T(i) is a random effect representing variation in

encounter probability for stratum S(i) and year T(i) (Thorson and
Ward, 2013):

g
( p)
s,t � N(0,s 2( p)

g ), (10)

where s( p)
g is the estimated standard deviation of variation among

strata and years. Similarly, we approximate positive catch rates li

for sample i:

li = wi · exp d(l)
T(i) + m(l)

S(i) +
∑nx

k=1

b(l)
k xS(i),k + r(l)V(i) + g(l)S(i),T(i)

( )
,

(11)

where m(l)
s(i) is a fixed effect and g(l)s(i),t(i) is random, g(l)s,t � N(0,s2(l)

g ),
and s(l)

g is an estimated parameter. We then calculate expected
biomass bt in year t as

bt =
∑ns

s=1

aslogit−1(d(p)
t +m(p)

s +g
(p)
s,t )exp(d(l)

t +m(l)
s +g(l)s,t ), (12)

where ns is the number of strata (15 in the following case-study
example). This equation again implies that strata are weighted
by their area as, analogous to the weighting of knots by area aj asso-
ciated with each knot j in the geostatistical model. Equation (12) is
used to calculate expected biomass for each sample from the posterior
distribution of the model, and we then summarize biomass using the
posterior median and standard deviation of log(bt) (see Thorson and
Ward, 2014 for more details).

In summary, the stratified model has coefficients for year and
vessel that are similar to those in the geostatistical model, and
differs primarily by replacing random fields for spatial variation
(v) and spatio-temporal variation (1) with coefficients for strata
(m) and strata-year (g) effects. Given that the stratified model
is Bayesian, it requires specifying priors for all parameters. We spe-
cifically use a weakly informative prior on the coefficient of variation
of measurement errors for positive catch rates (s), Pr(1/s2) ¼
Gamma(0.001,0.001), a uniform prior on the standard deviation
of vessel and strata-year effects, Pr(X) ¼ 1/100 if 0 , X , 100
and zero otherwise where X is sr and sg, and bounded uniform
priors on all other parameters Pr(X) ¼ 1/40 if 220 , X , 20
and zero otherwise where X represents dt, ms, and bk. The
Bayesian model is then fitted using Just Another Gibbs Sampler
(JAGS; Plummer (2003)) called from the R statistical platform.
Code can be found at the Northwest Fisheries Science Center
GitHub repository (nwfscDeltaGLM; https://github.com/nwfsc-
assess/nwfscDeltaGLM), and further details can be found in
Thorson and Ward (2014).

Case-study application
We apply the geostatistical and stratified delta-GLMMs to data
derived from a multispecies bottom trawl survey for fish off the

U.S. West Coast (Oregon, Washington, and California), operated
with consistent sampling protocol by the Northwest Fisheries
Science Center from 2003 to 2012 (Bradburn et al., 2011). This
design has variable but predetermined sampling intensity in differ-
ent strata, and this will not affect the assumed models for the data
given that the sampling intensity is independent of underlying vari-
ation in density (Diggle and Ribeiro, 2007, section 1.2.3). The design
involves contracting with commercial fishers for labour and fishing
vessels, and hence requires accounting for potential variation in
fishing power between vessels (Helser et al., 2004; Thorson and
Ward, 2014). We specifically apply the model to data for 28 ground-
fish species, selected to represent a variety of life history types and
including all previously assessed species (Thorson and Ward,
2013). Though covariates can be included in either the geostatistical
model or stratified delta-GLMM (Thorson and Ward, 2013; Shelton
et al., 2014), we have omitted covariates from both models here (i.e.
b(p) ¼ b(l) ¼ 0) to isolate the comparison of models with and
without spatial random fields. We use 1000 knots for all case-study
runs of the geostatistical model (i.e. nj ¼ 1000). In contrast, the
default stratification of the stratified model involves estimating
differences in density among 15 strata. Spatial strata for the strati-
fied model vary in area from 1.5 to 28.5 thousand km2, such that
the number of knots located within each spatial stratum varies
from 18 to 149. Having multiple knots per stratum allows the geos-
tatistical model to approximate spatial variation within each
stratum, thus reducing residual (unexplained) variation in
survey data (Shelton et al., 2014). Specifying 1000 knots in the
geostatistical model results in .24 000 estimated coefficients per
species, and geostatistical models for all 28 species can run over-
night on a single core of a laptop. Exploratory analysis illustrates
that varying the number of knots has little impact on reported
results.

We then compare the coefficient of variation for the geostatistical
model, CV

(geo)
l,t for stock l in year t:

CV
(geo)
l,t =

���������������������������
exp(SE(log(b̂(geo)

l,t ))2) − 1
√

, (13)

where log(b̂l,t) is the estimated log-biomass for stock l in year t,
SE(log(b̂l,t)) is the estimated standard error for log-biomass
for that stock and year, and the coefficient of variation for the
stratified model CV(strat)

l,t is defined in the same way. Finally, we cal-
culate the average ratio for the two models, (1/28)(1/10)

∑28
l=1∑2012

t=2003 CV (strat)
l,t /CV

(geo)
l,t , and use this to evaluate whether the geos-

tatistical or stratified model provides a more precise estimate of
abundance.

Evaluation using simulated data
In addition to the case-study application, we also conduct a simula-
tion experiment. In each replicate for this experiment, we simulate
data similar to that available off the U.S. West Coast, and then fit
both the stratified and geostatistical delta-GLMMs to the simulated
data. We then extract the estimate of total abundance and its asso-
ciated standard error from each model, and compare these with
the true, simulated abundance for that replicate. We use 100 repli-
cates for this experiment, and ensure that this sample size is suffi-
ciently large that results are qualitatively similar when replicating
the experiment.

Each simulation replicate proceeds by randomly selecting 600 of
the �40 000 cells that cover the entire sampling domain in each year
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t, then simulating encounters and positive catch rates:

Pi � Bernoulli( pi),

Ci �
Gamma(s−2,lis

2) if Pi = 1

0 if Pi = 0

{
,

(14)

where pi and li are generated using Eqs. (5)–(6) above. In the
simulation, we use a covariate matrix X 5 kx (1), x (2), x (3)l where
x (1) is depth, x (2) is depth squared, and x (3) is the square-root of
distance from nearest rocky habitat (Shelton et al., 2014) and
b ( p) ¼ b(l) ¼ k1, 21, 1l (i.e. depth has a quadratic effect on
both encounter probabilities and positive catch rates, and both
decline as a function of distance from nearest rocky habitat).
The random fields used to simulate these data (v( p), 1( p)

, v(l),
and 1(l)) are specified to have a marginal standard deviation of
one, and have a stationary, isotropic correlation matrix (H ¼ I)
where the range (distance at which correlations decline to 0.1) is
1000 km. for encounter probabilities and 500 km for positive
catch rates. Simulated random fields had a Gaussian distance func-
tion, and were generated using the RandomFields package
(Schlather, 2009) in R.

We use these simulated data to compare the performance of
stratified and geostatistical delta-GLMMs in three ways:

(i) First, we address whether either model is losing information
regarding interannual variation in abundance. Specifically,
we run the following linear model for each of the two
models:

log(b̂r,t) = ar + d log(br,t) + 1r,t,

1r,t � N(0,s2
1),

(15)

where br,t is true abundance for replicate r in year t, b̂r,t is
estimated abundance for that replicate and year,ar is a nuis-
sance parameter for each replicate (reflecting random dif-
ferences in scale between true and estimated indices), 1r,t

is “estimation error” in the estimated index, and d reflects
whether the estimated index reflects changes in true abun-
dance accurately (d ¼ 1), underestimates changes in abun-
dance (d , 1), or overestimates changes in abundance (d .

1; see Wilberg et al. (2010)). In this context, then, d can be
interpreted as a measure of model bias, where a model
where d , 1 will have result in an estimate of bt that is
biased towards the estimate of bt21.

(ii) We also compare the magnitude of errors for the geo-
statistical and stratified models when estimating relative
abundance:

Errorr,t = Îr,t − Ir,t, (16)

where Ît = b̂t/ exp((1/nt)
∑nt

t=i log(b̂t)) and b̂t is estimated
abundance, It = bt/ exp((1/nt)

∑nt

t=i log(bt)) and bt is true
abundance. We then calculate root-mean-squared error sep-
arately for results from the geostatistical and stratified

models:

RMSE =

������������������������
1

100

1

10

∑100

r=1

∑10

t=1

Error2
r,t

√√√√ , (17)

which is a measure of estimation error for each model.
Specifically, calculating an index of abundance (Eq. (8))
involves predicting biomass across the survey domain V

(or, in practice, predicting biomass at each knot j). A
model with too many parameters will result in imprecise pre-
dictions of biomass, i.e. decreased precision for estimated
indices of abundance, and will therefore have a greater
RMSE than a model that is more parsimonious (Burnham
and Anderson, 2002).

(iii) Finally, we explore whether the geostatistical model is generat-
ing estimated confidence intervals that accurately represent es-
timation uncertainty. To do so, we calculate the quantile
distribution for each year and replicate:

Qr,t =
∫Ir,t

−1

N(log(Îr,t), ŜE(log(Îr,t))) dÎr,t (18)

where Ir,t = br,t/ exp (1/nt)
∑nt

t=i log(br,t)
( )

is the true
relative abundance, Îr,t = b̂r,t/ exp((1/nt)

∑nt

t=i log(b̂r,t)) is
the estimated relative abundance, and ŜE(log(Îr,t)) is the
estimated standard error for log(Ît). A well-calibrated con-
fidence interval will have quantiles that approximately
follow a uniform distribution from 0.0 to 1.0, while a
poorly calibrated confidence interval may be either overdis-
persed (too many values close to 0.5) or underdispersed (too
many values close to 0.0 or 1.0) relative to a standard uniform
distribution.

Results
We first show estimates of population density (log-kg km22) for
an example species, arrowtooth flounder (Atheresthes stomias;
Figure 1). Log-densities range widely from 25 to 10 across the
spatial domain of the survey data, and are highest near Washington.
However, densities appear to increase south of the Sacramento
Delta after 2009. Changes in the proportion of the population in dif-
ferent spatial areas are estimated via the annual random field (i.e.
1(p) and 1(l)), and both processes are responsible for this variation
for arrowtooth flounder (s1

(p) ¼ 0.82; s1
(l) ¼ 0.59; Table 3). In

general, however, spatial variation that is constant over time (i.e.
v(p) and v(l)) has a greater magnitude than spatial variation that
changes annually for these 28 species (median across species:
s( p)
v = 4.23;s(l)

v = 1.52;s( p)
1 = 0.45;s(l)

1 = 0.74; Table 3), and
spatial variation is much larger than differences in sampling effi-
ciency among contracted fishing vessels (s( p)

r = 0.08;s(l)
r = 0.11).

We also display the estimated anisotropy for each species for
the encounter probability and positive catch-rate model com-
ponents (Figure 2). For arrowtooth flounder, this shows that
spatial residuals in positive catch rates (ellipse with solid line) are
correlated over a longer distance than are residual encounter
probabilities (the ellipse for positive catch rates is larger than the
ellipse for encounter probabilities), and the correlation is oriented
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North—South (the ellipse for arrowtooth is stretched along the
North–South axis), i.e. along the shoreline along the Oregon and
Washingtoncoasts.Manyother specieshaveacorrelation inspatial resi-
duals that declines slower North–South than East–West, and the dis-
tance at which correlations drop to �0.1 varies greatly among species
from ,10 km (yelloweye) to .600 km (cowcod and yellowtail).

We next compare the estimated indices of relative abundance for
the geostatistical and the stratified model (Figure 3). In general, the
geostatistical and stratified indices show similar trends, e.g.
decreases for Pacific hake and English sole, and increases for half-
banded and petrale sole. However, in many cases the 95% interval
for the stratified index is noticeably wider than that for the geostatis-
tical index, e.g. canary, arrowtooth, greenstriped, rosethorn, and
yellowtail. In contrast, there are relatively few instances where the
interval for the geostatistical model is wider than the stratified
model (although see 2007 of rougheye, 2011 of Pacific Ocean perch,
etc.). This observation is borne out when comparing the coefficient
of variation for the geostatistical and stratified models (Figure 4).
On average, the stratified model has a coefficient of variation (CV)
that is 60% larger than the CV for the geostatistical model.

Finally, we summarize results for the 100 replicates of the simu-
lation experiment (Figures 5 and 6). This demonstrates that neither
the stratified nor the geostatistical model substantially over- or
underestimate changes in true abundance on average (Eq. (15);
d(strat) ¼ 1.00; d(geo) ¼ 1.01). However, the stratified model has

nearly 20% greater error (RMSE ¼ 0.127) than the geostatistical
model (RMSE ¼ 0.109). The quantile distribution for the geostisti-
cal model is slightly overdispersed, showing that the estimated
standard errors might be slightly too small for these simulated
data (Figure 6). In contrast, the quantile disribution for the stratified
model is slightly underdispersed, implying that the stratified model
might have credible intervals that are slightly too wide.

Discussion
We have developed a geostatistical model that estimates spatial
variation in encounter probabilities and positive catch rates,
and which can be used to estimate an index of population
abundance. We envision that, if the geostatistical index were
included in a stock assessment model, the geostatistical index
of abundance log(bt) would be treated as proportional to the
logarithm of available biomass Bt, with residual variance equal to
the square of the estimated standard error plus a variance-inflation
term sb

2:

log(Bt) = log(q) + log(b̂t) + et, (19)

et � N(0, ŜE(log(b̂t))
2 + s2

b),

where the variance-inflation accounts for the magnitude of random
variation in the catchability coefficient q among years (Wilberg et al.,
2010). This treatment conforms to the usage of existing abundance
index estimates for the U.S. West Coast (Methot and Wetzel, 2013;
Thorson and Ward, 2013). In this case, the standard error of the
log-index, ŜE(log(b̂t)), represents an upper-bound on the weighting
that is given to the geostatistical index relative to other data that
are included in the assessment model (see Francis, 2011 for a full
discussion).

In this geostatistical model, spatial variation is decomposed into
a component that is constant across time, and another component
that varies among years, such that the model can account for changes
in spatial distribution over time (e.g. for arrowtooth flounder).
Spatial distributions for assessed species will change whenever
species exhibit density-dependent habitat selection (MacCall,
1990), and density-dependent habitat selection has previously
been shown to cause bias in relative indices of abundance using con-
ventional stratified estimators for survey data (Thorson et al., 2013).
Improving upon past developments in Shelton et al. (2014), we also
account for geometric anisotropy (where densities are more
correlated the direction parallel with shore than perpendicular to
shore) and by including random variation caused by contracting
multiple fishing vessels within and among years (Thorson and
Ward, 2014).

Using this new statistical approach, we have shown that the
stratified model has 60% larger credible intervals than the geostatis-
tical delta-GLMM for 28 groundfish species. A simulation ex-
periment demonstrates that the stratified model has overdispersed
credible intervals (they cover the true value more than the
nominal amount), while the geostatistical model has slightly under-
dispersed confidence intervals (they cover the true value less than
the nominal amount). However, neither effect appears to have a
large magnitude for the simulated data, so it seems unlikely to
account for the 60% difference in interval width seen for West
Coast groundfish. Additionally, the simulation experiment demon-
strates that the stratified model has a 20% greater simulation error.

Figure 1. Density for arrowtooth flounder 2003–2012, estimated by
the geostatistical delta-generalized linear mixed model (note that the
white space in southern California represents the cowcod conservation
area, which prohibits trawl gears including the survey design and hence
is excluded when estimating spatial densities and abundance indices).
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Table 3. Estimates of variance parameters for all 28 West Coast groundfish analysed in the case-study application (for computation of marginal standard deviation for random fields, see
Supplementary Appendix A).

Species name Random fields (marginal SD) Vessel effects (SD)
Residual. error

Common Scientific s( p)
1 s(l)

1 s( p)
v s(l)

v s( p)
r s(l)

r s

Median – 0.451 0.742 4.233 1.523 0.080 0.111 1.062
Arrowtooth Atheresthes stomias 0.815 (0.140) 0.594 (0.069) 8.658 (1.475) 2.263 (0.272) 0.193 (0.089) 0.161 (0.038) 0.966 (0.016)
Aurora Sebastes aurora 0.452 (0.140) 0.259 (0.123) 4.211 (0.416) 1.343 (0.192) 0.105 (0.141) 0.069 (0.104) 1.050 (0.028)
Bocaccio S. paucispinis 0.712 (0.158) 0.879 (0.154) 3.741 (0.473) 0.697 (0.197) 0.007 (0.177) 0.007 (0.099) 1.127 (0.054)
Canary S. pinniger 0.001 (0.170) 1.125 (0.132) 3.486 (0.587) 1.203 (0.178) 0.082 (0.170) 0.135 (0.226) 0.988 (0.052)
Chilipepper S. goodie 0.601 (0.143) 1.538 (0.130) 4.397 (0.468) 2.036 (0.238) 0.007 (0.055) 0.314 (0.127) 1.396 (0.041)
Cowcod S. veils 0.001 (0.206) 0.003 (0.343) 3.729 (0.825) 2.197 (0.401) 0.225 (0.171) 0.007 (0.196) 1.150 (0.066)
Darkblotched S. crameri 0.000 (0.172) 0.939 (0.081) 4.062 (0.572) 1.686 (0.168) 0.079 (0.130) 0.340 (0.074) 1.149 (0.031)
Dover sole Microstomus pacificus 0.677 (0.120) 0.436 (0.047) 4.103 (0.438) 2.831 (0.226) 0.128 (0.088) 0.007 (0.061) 1.021 (0.010)
English sole Parophrys vetulus 0.608 (0.114) 0.908 (0.062) 10.053 (1.521) 1.352 (0.137) 0.222 (0.071) 0.111 (0.039) 0.971 (0.017)
Greenspotted S. chlorostictus 0.001 (0.175) 0.729 (0.285) 3.740 (0.456) 1.587 (0.225) 0.007 (0.088) 0.007 (0.578) 1.176 (0.061)
Greenstriped S. elongates 0.518 (0.115) 0.839 (0.078) 4.939 (0.622) 1.824 (0.142) 0.165 (0.071) 0.111 (0.075) 1.193 (0.025)
Halfbanded S. semicintus 0.001 (0.112) 1.556 (0.214) 6.819 (1.086) 2.339 (0.282) 0.007 (0.119) 0.179 (0.267) 1.475 (0.054)
Hake Merluccius productus 0.001 (0.087) 0.002 (0.044) 16.511 (3.116) 2.605 (0.571) 0.007 (0.143) 0.032 (0.055) 0.829 (0.012)
Longspine thornyhead Sebastolobus altivelis 0.879 (0.084) 1.048 (0.056) 4.338 (0.647) 0.991 (0.080) 0.331 (0.058) 0.128 (0.045) 1.232 (0.018)
Petrale Eopsetta jordani 0.000 (0.162) 0.754 (0.152) 4.255 (0.747) 1.720 (0.226) 0.018 (0.914) 0.010 (0.659) 1.139 (0.057)
Pacific Ocean perch S. alutus 0.553 (0.142) 0.632 (0.088) 12.701 (2.016) 2.425 (0.254) 0.166 (0.107) 0.166 (0.040) 1.069 (0.019)
Redbanded S. babcocki 0.004 (0.129) 0.482 (0.056) 9.391 (1.483) 1.238 (0.136) 0.007 (0.081) 0.111 (0.032) 0.937 (0.014)
Rosethorn S. helvomaculatus 0.000 (0.127) 0.729 (0.135) 3.376 (0.469) 0.943 (0.208) 0.181 (0.107) 0.007 (0.088) 1.033 (0.039)
Rougheye S. aleutianus 0.000 (0.176) 0.003 (0.234) 2.742 (0.297) 1.460 (0.134) 0.022 (0.646) 0.249 (0.118) 1.173 (0.041)
Sablefish Anoplopoma fimbria 0.002 (0.113) 0.001 (0.191) 3.230 (0.547) 2.255 (0.648) 0.007 (0.106) 0.007 (0.089) 1.019 (0.047)
Sanddab Citharichthys sordidus 0.908 (0.102) 0.564 (0.043) 3.518 (0.360) 1.279 (0.094) 0.330 (0.059) 0.115 (0.026) 0.928 (0.012)
Sharpchin S. zacentrus 0.300 (0.250) 1.877 (0.386) 2.953 (0.377) 2.398 (0.446) 0.084 (0.247) 0.007 (0.185) 1.349 (0.063)
Shortbelly S. jordani 0.487 (0.146) 1.818 (0.203) 4.387 (0.563) 1.770 (0.242) 0.007 (0.087) 0.443 (0.184) 1.435 (0.056)
Dogfish Squalus acanthias 0.398 (0.134) 0.127 (0.068) 7.650 (0.921) 1.084 (0.122) 0.007 (0.183) 0.075 (0.028) 0.896 (0.012)
Shortspine thornyhead Sebastolobus alascanus 0.899 (0.101) 1.405 (0.083) 5.548 (0.665) 1.126 (0.124) 0.206 (0.059) 0.255 (0.051) 1.056 (0.020)
Widow S. entomelas 0.450 (0.234) 1.294 (0.136) 2.245 (0.381) 0.008 (0.356) 0.007 (0.138) 0.007 (0.123) 0.858 (0.071)
Yelloweye S. ruberrimus 29.173 (7.910) 0.628 (0.377) 6.898 (3.124) 0.609 (0.348) 1.618 (0.487) 0.309 (0.255) 0.943 (0.087)
Yellowtail S. flavidus 0.533 (0.177) 1.360 (0.163) 3.342 (0.503) 1.373 (0.220) 0.007 (0.223) 0.257 (0.204) 1.158 (0.057)
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Figure 2. Ellipses representing estimates of geometric anisotropy for each species (dashed line: spatial variation in encounter probability; solid
line: spatial variation in positive catch rate), where the line signifies the distance (from a point located at k0,0l) where the correlation will have
dropped to 10%, e.g. an ellipse that is stretched North –South signifies that densities are correlated over a longer distance moving North–South
than East–West.
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Figure 3. Estimated indices of relative abundance Ît = b̂t/((1/nt)
∑nt

t=i b̂t), where b̂t is estimated abundance (lines) with 95% intervals for the
geostatistical delta-GLMM (blue) and the Bayesian stratified delta-GLMM (red; where purple is their overlap), and where the average abundance
(1/nt)

∑nt
t=i b̂t across the time series is shown at the top of each panel for each model.
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The difference between the 20% increase in the simulation study
and the 60% increase in the 28 West Coast groundfish could be
caused by many factors, including that most groundfish had a
lower encounter probability (and hence less information for
estimating abundance indices) than the data that we simulated.
Regardless of the exact magnitude, we therefore conclude that
the geostatistical model uses limited available information more

efficiently than the stratified model. This interpretation is consist-
ent with previous spatial analyses (Shelton et al., 2014; Thorson
et al., 2015). In general, these analyses conclude that, by explaining
spatial variation in densities, geostatistical models can minimize
residual (unexplained) variability, and therefore capture a more
precise snapshot of biological processes than a spatially stratified
model.

However, we cannot eliminate the possibility that this improved
precision occurs at the cost of increased bias relative to a design-
based estimator, given that violation of model assumptions can
result in bias for any model-based estimator (Smith, 1990). In par-
ticular, the Gaussian random fields used to approximate spatial vari-
ation imply a particular “prior” on the distribution of spatial
variation, and may be biased (in a design-based sense; Smith,
1990) or less statistically efficient for types of spatial variation (e.g.
oscillatory behavior) that differ from this prior (see Thorson et al.,
2014 for a discussion of priors on functions). The statistical per-
formance and in particular, evidence for estimation bias must there-
fore be explored via simulation for other fishery contexts. We
therefore envision an iterative process, where improved spatial
models (e.g. Kristensen et al., 2014) can be used to inform the
“states of nature” that are then simulated when evaluating model-
based estimators such as the geostatistical model (Punt, 2008).

We also note the importance of ongoing research for generic
bias-correction in maximum likelihood mixed-effects models.
This issue arises whenever an analyst seeks an unbiased estimator
for a derived quantity (e.g. abundance b̂t) that arises as a non-linear
function of estimated random effects, in which case a plug-in esti-
mator (as commonly reported by AD Model Builder, Fournier
et al., 2012) does not account for uncertainty regarding random
effects when reporting the derived quantity. Model-specific
bias-correction estimators have been proposed for other contexts
(e.g. recruitment deviations in population dynamics models,
Methot and Taylor, 2011), although it is not clear how to generalize

Figure 4. Ratio of coefficient of variation from the geostatistical
delta-GLMM (x-axis) and Bayesian stratified delta-GLMM (y-axis) for
each of 28 species and 10 years. The average ratio of CVs is also shown in
the bottom-right of the panel (see Eq. (13) and main text for details).

Figure 5. Histogram showing the distribution of error when estimating relative abundance, log(̂It) − log(It) (see main text for details), for 100
replicates of the numerical experiment, where data are generated from a spatially explicit model and are fitted by the stratified delta-GLMM (left
panel) or the geostatistical delta-GLMM (right panel).
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these methods to other model types. K. Kristensen, H. Skaug, and
J. Thorson are conducting ongoing research comparing Taylor
series expansion and Monte-Carlo simulation with the bias-
correction method proposed by Tierney et al. (1989), which has
been implemented in a development version of template model
builder. These comparisons will require further testing, and their
implications extend well beyond the geostatistical model developed
here. However, the simulation results reported here provide little
support for thinking that the plug-in estimator results in biased
estimates of abundance trends.

The present study contributes to a growing literature suggesting
that geostatistical models are more statistically efficient (i.e. have
lower estimation imprecision for a given amount of data) than ana-
lysing data using spatially stratified models. This implies that geos-
tatistical estimators may also be appropriate when summarizing
other types of data for use in stock assessment. For example, age-
and length-composition sampling is usually conducted simultan-
eously with catch-rate sampling, and compositional data can be
“standardized” to estimate the effective sample size for a given
data set (Thorson, 2014). Additionally, catches for fish complexes
are usually subsampled when estimating species-specific catches
(Shelton et al., 2012), and must then be modelled to estimate
species composition for unsampled seasons or areas. We hypothe-
size that the statistical efficiency of these models may be improved
by using a geostatistical estimator, i.e. pooling information for
nearby port- or creel-samples.

We also note that the current geostatistical estimator calculates
total abundance by integrating densities across the spatial domain
of the population or survey. It therefore automatically estimates
densities in un-sampled areas (using habitat information and
nearby samples), and represents a new tool for the “imputation” ap-
proach to index standardization (Carruthers et al., 2011; Walters,
2003). Imputation is more commonly discussed for fishery-
dependent catch-rate data, where fisher targeting may cause

available data to be un-representative of overall population abun-
dance. In the geostatistical literature, this is referred to as “prefer-
ential sampling”, and it will cause a geostatistical estimator to be
biased whenever the sampling intensity is correlated with under-
lying population densities (Diggle and Ribeiro, 2007). However,
future research could explore models that jointly approximate the
sampling intensity (i.e. the location of available data) and sampling
response (i.e. catch rates at sampled locations), thus presenting a
path for modifying the geostatistical approach for fishery-dependent
data (see discussion in Diggle and Ribeiro, 2007).

Finally, the geostatistical model developed here can also be used
when identifying which habitat variables contribute to observed
variation in densities, as well as the cumulative impact of measured
(e.g. depth) and unmeasured (e.g. biogenic) variables on realized
encounter probabilities and positive catch rates (National Marine
Fisheries Service (NMFS), 2013; Shelton et al., 2014). Understanding
habitat impacts is important when designating areas that warrant
spatial management efforts, and maps of species densities is import-
ant when interpreting potential impacts of climate shifts on marine
species (Pinsky et al., 2013). We therefore believe that geostatistical
methods such as this will grow in importance during the coming
decades, both for basic research and tactical fisheries management.
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Figure 6. Histogram showing the distribution of quantiles for 100 replicates of the numerical experiment, where data are generated from a spatially
explicit model and are fitted by the stratified delta-GLMM (left panel) or the geostatistical delta-GLMM (right panel), where a well-calibrated
estimate of intervals will have a uniform distribution (shown as dotted line: see main text for details).
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