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ABSTRACT 

 

The Aerosol Optical Depth (AOD) retrieved from satellite remote sensing measurements such as from MISR and 

MODIS, both onboard the Terra platform, are widely used for studying regional and global patterns of aerosol loading. 

Aerosol products from these sensors are also used for analyzing feedbacks and relationship between aerosols and climatic 

variables including clouds, precipitation, and radiation fluxes. Several statistical techniques leading to the understanding of 

such relationships, including empirical orthogonal function and temporal trend extraction methods, require spatially 

complete AOD data records. Inherent to remote sensing of aerosols, cloud cover significantly affects aerosol retrievals and 

results in missing data across the AOD products. This paper demonstrates widely-used geostatistical techniques, such as 

Co-Kriging (CK) and Regression Kriging (RK), for spatially-filling missing data in the MISR AOD product for the period 

2001–2013. Among the unique characteristics of this data-filling algorithm is that it utilizes additional AOD information 

obtained from MODIS. The mean accuracy of the predicted MISR AOD using CK method is estimated to be 0.05, globally. 

The gap-filled MISR AOD data are also compared with 131 ground-based Aerosol Robotic Network (AERONET) stations, 

located around the world. It is found that Root Mean Squared Error of the gap-filled AOD dataset and the original MISR 

AOD product with respect to AERONET data are 0.143. The gap-filled AOD dataset can be used in applications where the 

presence of missing values is undesirable such as for global/regional aerosol variability and trend analysis. 
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INTRODUCTION 

 

Atmospheric aerosols are of great relevance to 

environmental and climate change studies (Ramanathan et 

al., 2001; Rosenfeld et al., 2001), as they play a vital role in 

recent global and regional changes in air quality and climatic 

patterns (de Meij et al., 2012; Hsu et al., 2012; Murphy, 

2013). A growing body of evidence suggests that aerosols 

significantly impact the Earth’s radiation budget through 

their direct radiative effects due to scattering and absorption 

of solar radiation (Ramanathan et al., 2001). In addition, 

aerosols also indirectly alter microphysical properties of 

clouds, and thus can induce changes in precipitation patterns  
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(Rosenfeld et al., 2001). Columnar Aerosol Optical Depth 

(AOD) is a measure of the amount of aerosol loading in 

the atmosphere. Two of the widely-used satellite datasets 

for AOD retrieval are available from NASA’s MODerate 

resolution Imaging Spectro-radiometer (MODIS) and Multi-

angle Imaging SpectroRadiometer (MISR) observations 

(Kahn et al., 2010; Levy et al., 2013). The AOD products 

from these spaceborne sensors are mainly available in two 

levels, i.e., swath (Level-2) and gridded (Level-3) formats. 

Several studies involving aerosol characterization, aerosol-

climate effects and aerosol trend analysis utilize the monthly-

mean gridded AOD products from MISR and MODIS 

(Level-3 data) (Shrestha and Barros, 2010; Zhang and Reid, 

2010; Li et al., 2013). The Level-3 MODIS AOD dataset 

includes aerosol retrievals over ocean as well as Dark-

Target retrievals over land (Levy et al., 2013). In addition, 

AOD retrievals over bright surfaces such as arid and desert 

regions, from the Deep Blue algorithm, are also available 

from both Terra and Aqua platforms (Hsu et al., 2013).  

Inherent to remote sensing of aerosols, cloud cover 

significantly hampers clear-sky retrievals, and results in 

missing data across various aerosol products. Here, by 

missing data we mean the pixel with invalid AOD retrieval. 

Furthermore, sampling biases resulting from the variable 
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revisit orbital frequency can also impact the statistics of the 

monthly-mean aerosol products. For example, the fact that 

MISR views the same region of the Earth once in 7–9 days, 

leads to only ~4 daily retrievals averaged into the monthly 

mean AOD product, representing about 13% sampling. On a 

regional basis, where cloud cover is persistent, e.g., Amazon 

basin, parts of Central and western Africa and South-East 

Asia, the missing data in MISR AOD varies from 28% to 

50% (Table 1). Whereas, the MODIS has a revisit frequency 

of close to once-a-day, yielding a superior sampling in terms 

of the monthly-mean AOD data. 

Studies involving spatio-temporal analysis of aerosols 

on monthly, annual and decadal time scales require the 

time series to be of reliable sample size at a pixel-level. If 

the time series consists of a number of missing values above 

a certain threshold, the resultant trend obtained from the 

time series may not be a reliable or accurate representation 

of the change over time. Empirical Orthogonal Functions 

(EOFs) are another technique used widely in the seasonal 

decomposition of aerosols (or other environmental/climatic 

variables) based on satellite datasets (Shrestha and Barros, 

2010; Li et al., 2013), where central to the EOF analysis is 

the variance-covariance matrix. The elements of this matrix 

are computed using the covariance between two time 

series. By elimination of missing data, an estimate of the 

variance-covariance matrix can be made. However, given 

the significant amount of missing data, this matrix may not 

be positive definite, which is an essential property of the 

variance-covariance matrix.  

In order to address the challenges related to the assessment 

of spatio-temporal variability of aerosols and associated 

climatic effects, this paper demonstrates the application of 

geostatistical methods to produce a gap-filled satellite aerosol 

data record. Algorithms to fill data gaps in satellite-retrieved 

geophysical parameters have evolved over the years. One 

of the oldest methods to fill data gaps is optimal interpolation 

(Gandin and Hardin, 1965), which is a reduced version of 

Kalman filtering. Bayesian models (e.g., dynamic linear 

models) have also been used to fill missing data (Kaplan et 

al., 1997). Techniques such as optimal interpolation and 

Kalman filtering require apriori knowledge of the error 

covariance matrix. However, in the presence of missing 

data, the estimate of covariance matrix can be incorrect, as 

elements of the matrix do not reflect true variance or 

covariance in the presence of missing data in the AOD time 

series. Additionally, other widely-used geostatistical based 

methods have also been used to fill missing data in different 

datasets. Buytaert et al. (2006) used Universal Kriging 

(UK) to interpolate a rainfall dataset and compared the 

results with spatial interpolation using Thiessen polygons. 

They found that the UK (mean error of cross validation: 

0.03) performed better than the Thiessen polygons (mean 

error of cross validation: –0.127). Carrera-Hernndez and 

Gaskin (2007) used various Kriging methods to interpolate 

rainfall and temperature data such as ordinary Kriging, 

Kriging with external drift, block Kriging with external drift, 

and found that their results improved by taking elevation 

as a co-variable. Furthermore, Zhang et al. (2009) used Co-

Kriging to fill gaps in cloudy pixels of multispectral 

remotely sensed imagery, and Ruiz-Arias et al. (2013) used 

ordinary Kriging to fill data gaps in MODIS daily Level-3 

datasets. 

Merging of multiple satellite-based datasets is another 

approach towards producing spatially and spatio-temporally 

complete AOD dataset (Nguyen et al., 2012, 2014; Xu et 

al., 2015). Xu et al. (2015) used a maximum likelihood 

method, where the weights are derived using Root Mean 

Squared Error (RMSE) from the ground-based Aerosol 

Robotic Network (AERONET) to create an AOD dataset, 

based on combined satellite observations over mainland 

China. Nguyen et al. (2012) used a spatial-statistical method 

to merge Level-2 AOD datasets, retrieved from MISR and 

MODIS, and found that their resultant dataset improved 

over a dataset obtained using a Bayesian melding method 

(Fuentes and Raftery, 2005), and another obtained using 

fixed rank Kriging (Cressie and Johannesson, 2008). 

Additionally, Djuric et al. (2016), Chatterjee et al. (2010), 

and Kinne (2009) utilized AERONET data alongside satellite-

based datasets to produce merged AOD products. Chatterjee 

et al. (2010) interpolated the AERONET data using a 

space-time UK method with the AOD retrieved from MISR 

and MODIS as co-variables. However, the merging and gap-

filling methods/objectives have an inherent difference. In 

general, the goal of a merging algorithm is to produce a 

new product whose accuracy is better than the input datasets, 

whereas in spatial gap-filling, the objective is to make a 

dataset complete while retaining its basic properties. 

In this paper, we apply the Co-Kriging (CK) and 

Regression Kriging (RK) methods to produce a spatially-

complete and gap-filled monthly-mean MISR Level-3 

 

Table 1. Fraction of missing data in MISR and fraction of pixels with valid retrievals of MODIS and missing data from 

MISR for regions shown in Fig. 2. The second column represents the total number of pixels used for the period 2001–2013, 

third column shows the percent of missing pixels of MISR AOD data and the fourth column represents percent of missing 

pixels of MISR AOD where MODIS AOD has valid data. 

Regions Total pixels (× 105) MISR missing pixels (%) MISR missing pixels with presence of MODIS (%)

Global 179.7 9.94 96.77 

Region 1 5.5 43.31 93.01 

Region 2 1.4 28.26 87.27 

Region 3 2.1 34.40 96.08 

Region 4 3.6 36.80 91.87 

Region 5 1.6 49.69 98.86 

Region 6 2.3 43.12 98.90 
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AOD dataset, taking advantage of the presence of MODIS 

AOD data. Here, the latter has larger sample size in terms 

of the number of pixels used to create the Level-3 monthly-

mean data. The CK method uses the spatial structure of 

MISR as well as MODIS AOD data to fill gaps in the 

MISR AOD product. This method can predict AOD at any 

pixel irrespective of whether the MODIS data are present 

or not. The RK method uses only the spatial structure of 

MISR AOD and predicts at those pixels only where the 

MODIS data are present, by also taking into account the 

correlation of MISR and MODIS AOD data. The accuracy of 

the predicted MISR AOD data is estimated using correlation 

coefficients and RMSE with the ground-based aerosol 

dataset from the AERONET. In addition, the accuracy of 

the gap-filled MISR AOD product is also estimated by using 

a cross-validation approach. Here, the prediction algorithm 

is used to estimate the filled value at pixels with valid 

AOD retrievals. The predicted AODs are then compared 

with the operational MISR AOD dataset.  

 

SATELLITE AND AERONET AEROSOL 

DATASETS 

 

Our study area is bounded by the global region between 

40°N and 40°S latitudes. The MODIS Level-3 monthly-

mean AOD data from Terra (Collection 6) is used in this 

study, which are available at a spatial resolution of 1° × 1°. 

MODIS has a swath width of 2330 km; with such a large 

swath, it has a global coverage of almost once a day. It is 

typically easier to detect aerosols over dark ocean surfaces 

than is to detect aerosols over land. This is particularly true 

over bright surfaces such as arid/desert regions where the 

contribution of the aerosols to the top of atmosphere signal 

observed by a satellite instrument is relatively smaller as 

compared to the surface reflectance. The Deep Blue or DB 

(Hsu et al., 2013) algorithm is especially designed for 

retrieving AOD from MODIS over bright surfaces. Over 

dark surfaces, such as vegetated land cover, the Dark-Target 

or DT (Levy et al., 2013) algorithm retrieves AOD from 

MODIS data. The overall uncertainty of AOD retrievals of 

DT and DB products is reported to be 0.05 ± 0.15τ (Levy et 

al., 2013) and 0.03 ± 0.2τ (Sayer et al., 2014), respectively. 

In the Collection MODIS aerosol products, the DT and DB 

datasets are separately provided as well as are a combined 

product (Levy et al., 2013; Sayer et al., 2014), using a 

monthly Normalized Difference Vegetation Index (NDVI) 

climatology. Over bright surfaces (NDVI < 0.2) the DB 

product is selected, over dark surfaces (NDVI > 0.3) the DT 

product is selected, while for surfaces with 0.2 ≤ NDVI ≤ 

0.3, the average of the respective AODs from the DT and 

DB products are taken in the combined dataset. Our study 

period is limited from January 2001 to December 2013, for 

a total of 156 months. 

The MISR Level-3 monthly AOD data used in this study 

has a spatial resolution of 0.5° × 0.5°. The MISR has a 

swath width of 380km and views the entire Earth once in 

7–9 days. With such a significant difference in swath size, 

the MISR AOD product has fewer samples to aggregate in 

the computation of the monthly-mean compared to MODIS. 

Therefore, in general, the fraction of missing data in MISR 

is greater compared to MODIS. Here, the fraction of missing 

data represents the ratio of the number of pixels with invalid 

AOD retrievals and the total pixels for the study period 

(2001–2013). In our study period (2001–2013), missing data 

in the MISR AOD product are almost twice as frequent 

compared to MODIS. MISR AOD retrievals are reported 

at four wavelengths; we selected AOD product in the mid-

visible wavelength (0.55 µm). The uncertainty of the MISR 

AOD product has been reported to be maximum of 0.05 

and 0.2τ (Kahn et al., 2010), where ߬ represents the AOD. 

As previously noted in section 1, MODIS AODs are 

used to fill gaps in the MISR AOD product using CK and 

RK methods. The RK method can be used to predict a 

missing MISR AOD value only at the spatial coordinates 

where a co-variable, in our case MODIS AOD, is present. 

Thus in the RK method, the spatial coordinates of MISR 

and MODIS pixels must be the same. In other words, if we 

assume the center of a pixel as a spatial coordinate, the 

spatial resolution must be the same for the RK method for 

filling data gaps in MISR using MODIS AOD. Hence, to 

use the RK method for data filling, we have downscaled 

the MODIS AOD to 0.5° degree grids by assuming that all 

the four 0.5° grid cells contain the same value as their 

parent grid. 

As a representative of ground truth, the AERONET data 

are used for the inter-comparison of our gap-filled-AOD data 

with ground-based sites located globally. More information 

about AERONET can be found in Holben et al. (1998). 

Since the overpass of the Terra satellite is at ~10:30AM 

local-time (which includes both MODIS and MISR data), 

sunphotometer measurements as part of AERONET, made 

between 10:00AM and 11:00AM local-time only are 

considered for our analysis. 

 

METHODOLOGY 

 

In this section, our methodology to fill missing data in 

the MISR AOD product is described. For our study region 

(bounded by 40°S–40°N) and time period (2001–2013), 

there are a total of 156 (months) × 160 (latitudes) × 720 

(longitudes) = 1.8 × 107 data points. Among these, 1.8 × 

106 instances of the MISR AOD data have missing data. In 

order to fill these data points with suitable interpolated values, 

Kriging methods (CK and RK) are used. Out of the 1.8 × 106 

instances of the missing data from MISR, the MODIS aerosol 

retrievals are present at 1.7 × 106 instances. This implies 

that for a MISR AOD missing pixel, the probability that 

the MODIS AOD will have valid data is 96.77%. Therefore, 

the MODIS AOD dataset is suitable for filling gaps in 

MISR AOD dataset. We have used CK and RK methods to 

predict MISR AOD data, both of which take advantage of 

the presence of MODIS data. The RK method can predict 

AOD for only those pixels, where MODIS has valid data. 

However, CK method can predict AOD at any pixel 

irrespective of whether the MODIS data are present or not. 

The algorithms used in our study for filling MISR Level-3 

monthly-mean AOD data are based on two steps: 

1. The MISR AOD is predicted at a pixel with missing 
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data using CK, which is an interpolation method 

involving co-variables. Co-variables are the variables 

present along with the target variable. Co-variables 

must be denser than the target variable, so that they can 

be useful in data filling of the target variable. In our 

case, the target variable is MISR AOD data, which has 

higher fraction of missing data compared to co-variable 

(MODIS AOD). Here, a spatial structure (semivariogram) 

is prepared using both the variable and co-variable. 

Semivariogram is a function which indicates spatial 

correlation in observations for a region. More details 

about semivariogram are discussed in section S1 of the 

supplementary material. This structure is used to prepare 

a Kriging system of equations which can then be used 

to predict missing data of the variable under study. 

Solving Kriging system of equations is computationally 

expensive as it requires inverting a square matrix of 

large size. The region of our study is thus divided into 

72-smaller non-overlapping regions of size 20° × 20° 

to make the invertible matrix smaller in size. To form 

smaller regions, latitudes between 40°N–40°S are divided 

into 4 equal regions at an interval of 20° i.e., 40°S–

20°S, 20°S–0°, 0°–20°N and 20°N–40°N. Similarly, 

longitudes between 180°W–180°W are divided into 18 

equal regions at an interval of 20°. These 4 latitude 

intervals and 18 longitude intervals are used for the 

formation of 72 small regions. Since each region is 

bounded, the estimation of AOD using Kriging suffers 

from the boundary problem including edge effects, 

where relationship across bordering pixels are ignored. 

To reduce edge effect, the smaller regions of size 20° × 

20° are padded by adding outer pixels adjacent to the 

boundary of the region. Thus, the Kriging method is 

used for filling gaps at each of the 72 regions of size 

22° × 22° (after padding). After filling missing pixels for 

each region, the final dataset is produced by combining 

the 72 regions and by discarding the padding pixels. 

2. To inter-compare the AOD predicted using CK, another 

method- RK is also implemented to estimate AOD. 

This method also takes advantage of the presence of 

co-variable, where a spatial structure is prepared using 

the target variable only. The RK method can predict 

missing data only at pixels with presence of co-variable. 

Further, the ordinary Kriging method is used for making 

estimate of AOD at a pixel where the co-variable 

(MODIS) is not present. We have used R- package gstat 

(Pebesma, 2004) for estimating AOD using CK and RK. 

 

Kriging 

Co-Kriging and Regression Kriging methods are widely-

used techniques for interpolation in spatial statistics, 

applicable to the fields of environment science, hydrology, 

climate science (Goovaerts, 1997; Aalto et al., 2013). One 

of the important assumptions is the stationarity of the 

spatial field. For CK and RK, a weaker form of stationarity 

is required. It is sufficient that the E[τ(s + h) – τ(s)]2 is 

constant, where τ(s) is the AOD at a pixel s and τ(s + h) is 

the AOD at a pixel with distance h from s. Fig. 1 shows the 

histogram of [τ(s + h) – τ(s)]2 for the pixels separated by 1, 

2 and 3 pixels for MISR (Fig. 1(a)) and MODIS (Fig. 1(b)). 

The figure shows that the distribution is biased towards a 

single value. Therefore, E[τ(s + h) – τ(s)]2 can be assumed 

to be constant and hence MISR and MODIS data can be 

assumed to be stationary.  

Here, we briefly give an overview of Kriging concepts. 

More details can be found in the literature for spatial statistics 

methods (e.g., Cressie, 1993; Chiles and Delfiner, 2009). 

The MISR AOD data are available at pixels with centers 

(xi, yi), where xi ∈ [–179.75, –179.25, ..., +179.75] and yi ∈ 

[–39.75, –39.25, ..., +39.75] (xi stands for longitudes and yi 

stands for latitudes). In the CK method, the interpolation at 

a pixel s0(x0, y0) is made using Eq. (1). 

 

 

Fig. 1. Histogram of [τ(s + h) – τ(s)]2 for pixels separated by 1, 2 and 3 pixel units for (a) MISR and (b) MODIS pixels 

from 2001–2013, globally. 
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Ŷ(s0) = ω1'Y + ω2'Z (1) 

 

where ω = (ω1, ω2) is the weight vector associated with 

available MISR data vector Y and MODIS data vector Z. 

Weight vector ω can be found by solving the system of 

equations given in Eq. (2) (Ver Hoef and Cressie, 1993). 

 

X

X A a

 


     
           

 (2) 

 

where X is a two column matrix whose first n rows are 

[1 0] and next m rows are [0 1], with n as the number of 

available MISR pixels and m as the number of available 

MODIS pixels. A is a 2 × 2 matrix of zeros, ϕ is a vector 

with two elements to be solved along with ω (where a is 

the vector [1 0]′). σ is a vector with element as covariance 

between Y(s0) and available MODIS and MISR pixels. Σ is 

the (cross-) covariance matrix between MODIS pixels and 

MISR pixels. Form of Σ is a block matrix as shown in Eq. (3). 
 

1 2

2 3

Σ Σ
Σ Σ
 

    
 (3) 

 
where Σ1, Σ2 and Σ3 are submatrices of size m × m, m × n 

and n × n, respectively. Elements of Σ1 and Σ3 are filled 

with the help of a semivariogram function in Eq. (S3) 

whereas elements of Σ2 are filled with the help of a cross 

semivariogram function defined in Eq. (S5). Using Eq. (1), 

an estimate of AOD at those pixels can be made where 

MISR data are not available. 

 

Regression Kriging 

Similar to CK, the RK method is also used for spatial 

interpolation of a spatial process. The covariates are used 

in RK in a similar way as in multivariable regression. Let n 

be the number of pixels with known MISR AOD data and 

m be the number of pixels, where the MISR AOD needs to 

be interpolated. The interpolated values will be given by 

Eq. (4). 

 

Ym = Bmβ + η (4) 

 

where β is a vector of coefficients corresponding to 2 co-

variables, unity and MODIS AOD. Bm is the matrix of size 

m × 2 where the first column of the matrix is filled with 1s 

and second column represents MODIS AOD data for n 

locations. The first column of the matrix Bm is associated with 

the constant term in the linear regression model of Eq. (4). 

The last term η in Eq. (4) represents the residual term, which 

represents the difference between true AOD and interpolated 

AOD. The least squares estimate of the expected value of 

predicted AOD gives rise to Regression Kriging system of 

equations. By solving this system of equations, Kriging 

weights (relative to the available MISR pixels and regression 

coefficients relative to available MODIS pixels) can be 

computed. Using these weights, the AOD can be predicted 

at a pixel with unknown AOD data (in our case MISR AOD 

is the predicted AOD). 

Before proceeding with the algorithm, we have performed 

an initial check of the relationship between the MISR and 

MODIS AODs. For the analysis of gap-filled MISR AOD 

dataset, we have selected six regions, shown in the Fig. 2 

with high fraction of invalid MISR pixels. Fig. 3 shows the 

comparison of the MISR and MODIS AODs for region 1 

(Amazon), region 4 (central Asia) and region 5 (Indonesia/ 

Borneo). We found that the percent of MODIS AOD falling 

within the expected Error Envelope (EE) of MISR for regions

 

 

Fig. 2. Fraction of missing AOD data of MISR (top) and MODIS (bottom) for the period 2001–2013. Areas bounded by 

rectangular boundaries show regions with high missing values, in terms of pixel fractions. The rectangular areas are 

labeled as Region 1 to Region 6 from leftmost to rightmost. Region 1 is northern part of South America (the Amazon 

River basin), region 2 is over western Africa, region 3 covers central Africa, region 4 is located over south-east Asia, 

region 5 is the area surrounding Indonesia/Borneo and region 6 is the area surrounding New Guinea. 
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Fig. 3. Inter-comparison between MISR and MODIS AODs 

for the period 2001–2013 over (a) the Amazon (81°W–

45°W; 13°N–11°S), (b) central Asia (91°E–112°E; 8°N–

34°N and (c) Indonesia/Borneo (102°E–120°E; 9°S–5°N). 

Dashed lines are the Envelope of Expected Error in terms 

of maximum of 0.05 or 20% × AERONET AOD (minimum 

of –0.05 or –20% × AERONET AOD). 

 

1, 4 and 5 are 42%, 39% and 37%, respectively. It has 

been also noted by Kahn et al. (2011) that the AODs from 

the MISR and MODIS fall outside the EE when compared 

to the AERONET data. The percent of MODIS AOD falling 

above the EE of MISR for regions 1, 4 and 5 are 46%, 

51% and 52%, respectively, implying that the MODIS 

AODs are higher than the MISR AODs. However, we note 

that the correlation coefficient (r) between the MISR and 

MODIS AODs in these regions are 0.64, 0.68 and 0.63, 

respectively. Therefore, there may be a linear relationship 

between MISR and MODIS AODs. 

The Regression Kriging uses linear relationship between 

MISR and MODIS AODs. Higher correlation between MISR 

and MODIS is an indicator that the MODIS data can be 

used as a co-variable in Regression Kriging. In addition, 

there is a spatial relationship in the MISR and MODIS AOD 

products. Fig. 4 shows the semivariogram of the MISR and 

MODIS AODs for the three regions. A semivariogram 

represents the spatial relationship in terms of the difference 

of AOD at two pixels. The three parameters which determine 

the fitted semivariogram are nugget, sill and range. Over 

Amazon, the nugget, sill and range for MODIS 

semivariogram are 0.0007, 0.04 and 12.0, respectively. For 

MISR, the nugget, sill and range are, 0.004, 0.02 and 12.0, 

respectively. As found from the Fig. 4(a), the sill associated 

with MODIS data is larger than that of MISR. The range 

for both the semivariogram is same. The expected value of 

the difference follows an increasing pattern which can be 

fitted using a spherical function (Eq. (S4)). The CK and 

RK algorithms use the variance and co-variance between 

the AODs at different pixels. The variance and co-variance 

are computed by using the semivariogram model. Since there 

is a good fit of semivariogram model to the experimental 

semivariogram, the CK and RK methods can be used for 

filling gaps in the MISR AOD dataset. 

 

RESULTS AND DISCUSSION 

 

Cross Validation 

The prediction accuracy of the CK and RK methods are 

evaluated by cross validating MISR AOD on a regional 

basis. For a given region and time, all the valid pixels are 

randomly divided into ten groups. The AOD values at all 

the pixels in a group are then computed using the Kriging 

method, taking the valid data of other nine groups as input. 

Similarly, pixels in the other groups are also interpolated. 

We have used 72 regions for a total of 156 months for the 

spatial interpolation. The results of cross validation are 

shown in the Table 2, where the RMSE in cross validation 

gives the measure of accuracy of the CK and RK predictors. 

The RMSE of CK is 0.05. To verify the strength of the CK 

prediction, six regions shown in Fig. 2 are selected, where 

the fraction of missing data is high. Table 1 shows the 

percentage of missing values in MISR and MODIS data. It 

is observed that all regions have significantly larger fraction 

of missing AOD data from MISR compared to MODIS. 

Therefore, fewer samples are available for the estimation 

of semivariogram and prediction of missing values at a 

pixel. For this reason, high predicted RMSE, in these regions 

are found. On the other hand, Region 6 (around New Guinea) 

has smaller RMSE compared to others regions. It is noted 

here that the fraction of missing MISR data in this region 

is high, however the presence of MODIS data is also high 

compared to other regions. The accuracy of prediction 

using Kriging methods depends on the accuracy of the fitted
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Fig. 4. (Left plot) Semivariogram model and experimental semivariogram plot of MISR and MODIS AOD product for 

March 2001, (a) for the Amazon region, (c) central Asia region and (e) for Indonesia/Borneo. The semivariogram plots 

also show cross semivariogram (red color) between MISR and MODIS AOD, where symbols denote the measure of 

experimental semivariogram at different lag shown in X-axis. The fitted lines to the symbols are estimated using spherical 

semivariogram model. (Right plot) Histogram of cross validated prediction error in MISR using Ordinary Co-Kriging with 

MODIS as co-variable, (b) at the Amazon, (d) central Asia and (f) Indonesia/Borneo. 

 

theoretical semivariogram. This accuracy can be computed by 

the mean squared difference between the selected theoretical 

semivariogram model and experimental semivariogram. 

Table 3 shows the accuracy of the fitted semivariogram 

models (spherical semivariogram in this study). 

Columnstwo and three in Table 3 represent the accuracy of 

the fitted spherical semivariogram model for MODIS and 

MISR AOD data. In the fourth column, the accuracy of the 

fitted cross semivariogram is also provided in terms of 

mean squared difference between MODIS and MISR AOD 

data. Smaller values in the mean squared difference represent 

higher accuracy and higher values represent lower accuracy 

of the fitted semivariogram model. We note that region 6 

(around New Guinea) has highest accuracy of the MODIS,
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Table 2. Cross validation parameters of CK and RK predictors for regions shown in Fig. 2. The bias is given by the 

expected value of the difference of predicted AOD data and measured AOD data. The RMSE is root mean square error of 

the predicted AOD with respect to measured AOD data. r is the correlation coefficient between predicted AOD and 

measured AOD. Globally, cross validation is performed for the year 2001 only. 

 
Total Pixels 

CK 
Total Pixels 

RK 

Bias RMSE r Bias RMSE r 

Global 4.1 × 105 5.0 × 10–6 0.05 0.91 4.1 × 105 6.5 × 10–6 0.05 0.91 

Region 1 4.1 × 105 7.4 × 10–5 0.10 0.72 3.1 × 105 7.3 × 10–4 0.08 0.83 

Region 2 1.0 × 105 4.7 × 10–4 0.12 0.82 1.0 × 105 1.3 × 10–5 0.09 0.91 

Region 3 1.5 × 105 –2.5 × 10–4 0.14 0.76 1.4 × 105 1.4 × 10–4 0.12 0.83 

Region 4 2.3 × 105 5.9 × 10–5 0.12 0.76 2.2 × 105 1.0 × 10–4 0.09 0.87 

Region 5 8.8 × 104 –1.7 × 10–4 0.13 0.71 8.1 × 104 7.9 × 10–4 0.11 0.81 

Region 6 1.4 × 105 –2.9 × 10–5 0.07 0.59 1.3 × 105 2.0 × 10–4 0.06 0.72 

 

Table 3. Semivariogram fitting and AOD prediction error for regions showed in Fig. 2. Second and third columns show 

expected error in the fitting of spherical semivariogram model to experimental semivariograms of MODIS and MISR 

AOD data for the time period of January 2001 to December 2013. The fourth column shows the semivariogram fitting 

error of cross experimental semivariogram between MODIS and MISR. The fifth column shows the expected value of 

prediction error using CK of MISR AOD at a pixel. 

Regions 
MODIS AOD 

semivariogram error 

MISR AOD 

semivariogram error 

Cross variogram 

error 
Prediction error 

Global NA NA NA 0.05 

Region 1 5.7 × 10–3 1.8 × 10–3 2.8 × 10–3 0.10 

Region 2 2.9 × 10–3 3.7 × 10–3 1.8 × 10–3 0.12 

Region 3 3.0 × 10–3 2.7 × 10–3 1.7 × 10–3 0.14 

Region 4 4.0 × 10–3 3.8 × 10–3 2.6 × 10–3 0.12 

Region 5 1.4 × 10–2 3.9 × 10–3 4.6 × 10–3 0.13 

Region 6 4.4 × 10–4 1.3 × 10–3 2.2 × 10–4 0.07 

 

MISR and cross semivariogram models, which is reflected 

in the lower prediction error of MISR AOD. On the other 

hand, the prediction error in region 3 (central Africa) is the 

largest among six regions under this study, associated with 

the large error of the fitted semivariogram models of 

MODIS AOD, MISR AOD and the cross semivariogram 

between MODIS and MISR. For region 2 (western Africa), 

the percent of missing MISR AOD data, for which MODIS 

has valid AOD data (87.27%), is less compared to region 

5- Indonesia/Borneo (98.86%). Therefore, the prediction 

error (0.12) in region 2 is high, albeit the error in fitted 

semivariogram models in region 2 being smaller than region 

5. In region 2 and region 4 (southeast Asia), the errors in 

prediction and fitted semivariogram are similar. Therefore, 

we can conclude that the prediction error depends on two 

factors, i.e., accuracy of the fitted semivariogram model 

and percent of missing pixels of MISR and MODIS AOD. 

The regional and global behavior of the prediction error are 

also discussed temporally, based on results from 156 months 

of data (2001–2013). The prediction error varies for different 

periods for a given region, which depends on the fitting of 

semivariogram model. The prediction procedure for March 

2001 in region 1 (Amazon basin) is discussed here in more 

detail as the Amazon region has highest percentage of 

missing MISR AOD data, among all selected regions. In 

addition, the regional analysis of the gap-filled MISR AOD 

product is also performed over region 4 (central Asia) and 

region 5 (Indonesia/Borneo). In March 2001, 46% of the total 

area in region 1 has missing data while region 4 and region 

5 have 20% and 64% missing data, respectively. Fig. 4 shows 

the experimental and fitted spherical semivariograms of 

MODIS and MISR, together with the cross semivariogram 

between MODIS and MISR over region 1 (Fig. 4(a)), region 

4 (Fig. 4(c)) and region 5 (Fig. 4(e)). The error in the fitted 

cross semivariogram between MODIS and MISR AOD is 7.7 

× 10–4, whereas the errors in the fitted semivariograms of 

MODIS and MISR are 2.6 × 10–3 and 1.1 × 10–3, respectively, 

over the Amazon. Thus, the errors in MODIS and MISR 

AOD semivariogram fitting for March 2001 are 2 times 

smaller than that for the entire study period (2001–2013). 

However, the percent of invalid MISR pixels with valid 

MODIS pixels is (85.7%) less than that for the entire study 

period (93.01). The expected value of the prediction error 

over the Amazon region is therefore large, estimated to be 

0.12.  

Over the region 4, the error in the fitted cross 

semivariogram between MODIS and MISR AOD is 1.3 × 

10–3, whereas the errors in the fitted semivariograms of 

MODIS and MISR are 2.5 × 10–3. Thus, the errors in cross 

semivariogram and MISR AOD semivariogram fitting for 

March 2001 are 3 and 1.5 times, respectively, smaller than 

that for the entire study period (2001–2013). The expected 

value of the prediction error over region 4 is therefore 

smaller, estimated to be 0.09. Over region 5, the percent of 

MISR pixels is higher (64%) compared to the entire period 

(50%). The expected value of the prediction error over 
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region 4 is therefore higher, estimated to be 0.14. 

We also calculated the bias E(Y – Ŷ) present in the 

prediction using the residuals of the cross validation data, 

where the residual is defined as the difference between 

measured AOD and interpolated AOD. The expected value 

of the residual is called the bias present in the predictor. 

Fig. 4(b) shows the distribution of residuals, which indicates 

a normally distributed variable with mean close to zero and 

standard deviation (SD) 0.076 over the Amazon. Therefore, 

the bias present in the interpolated data using CK will be 

~0 ± 0.076. Over regions 4 and 5, the residuals follow normal 

distribution with mean close to zero and SD 0.093 and 

0.085, respectively. The correlation coefficient (r) between 

predicted AOD and measured MISR AOD is also computed, 

which is found to be greater than 0.59, as shown in Table 2. 

The filled-MISR data along with the original MISR and 

MODIS AOD data are also compared with AERONET 

AOD data, globally and for the 8 regions (different from 

Fig. 2), as shown in Table 4. Table 4 shows the RMSE of 

the four aerosol products with AERONET data observations 

between 10:00AM and 11:00AM, i.e., MODIS, MISR, CK-

filled MISR and RK-filled MISR datasets. Globally, the 

RMSE of MISR and filled-MISR data are higher than that 

of MODIS. As indicated in Table 4, over northern India, 

MISR RMSE is significantly greater than that of MODIS. 

The northern parts of India are largely covered by clouds 

for close to four months, during the monsoon season. The 

persistent cloud cover together with smaller swath width 

results in significantly fewer samples of MISR retrievals 

towards the generation of Level-3 monthly-mean AOD 

product, resulting in larger fraction of missing data in 

MISR Level-3 product than MODIS data. Globally, the 

accuracy of the gap-filled MISR data is increased by a 

very small margin of 0.0004 (0.25%). Over eastern Asia 

and northern India, the accuracy of the gap-filled MISR 

was found to increase by 2.87% and 5.19%, respectively. 

 

Comparison with Regression Kriging 

We have also used the RK method to fill missing data in 

MISR AOD where MODIS AOD data are present. Table 2 

shows the results related to the cross validation of RK and 

CK methods. The RMSE of the prediction using RK is 

0.05, similar to the RMSE of the CK method. The residuals 

of RK also follow normal distribution with mean close to 

zero and standard deviation close to 0.05. Since the expected 

value of the residuals show bias of the predictor, globally, 

both RK and CK predictors have positive bias close to zero 

(for the year 2001). However, at regional scale, where 

MISR has higher density of missing data, we find that the 

RK predictor has larger bias as compared to the CK 

predictor bias. Additionally, r between the predicted and 

original MISR AOD data is low for CK, as compared to 

RK method. The computations related to the RK method 

are limited to pixels with valid MODIS AOD. 

Fig. 5 shows the spatial distribution of MISR AOD data 

together with gap-filled MISR AOD for March 2001. The 

missing pixels are mainly concentrated over the Amazon, 

southern Africa, and the regions surrounding Indonesia/ 

Borneo and New Guinea. The gap-filled AOD map does 

not have any gaps and apparent discontinuity in comparison 

to the original MISR AOD. In addition, those pixels with 

valid data in the original spatial distribution of AOD are 

preserved in the new gap-filled dataset with missing values 

filled using CK. The CK prediction method has a small 

positive bias and a prediction error of 0.051 for March 

2001, which is similar to the global prediction error (for 

the year 2001). 

The interannual variability time series of MODIS, MISR 

and filled-MISR AOD (using CK) datasets for the Amazon 

region, central Asia and Indonesia/Borneo are also shown 

(Figs. 6(a), 6(c) and 6(e)) for the period 2001–2013. The 

interannual variability of filled-MISR data follows very 

similar pattern compared to that of MISR AOD data. The r 

of the two time series in the region 1, region 4 and region 5 

are 0.91, 0.97 and 0.98, respectively, which are slightly less 

than the global r of 0.99. Over these regions, the fraction of 

missing data is larger than the global fraction of missing 

MISR AOD data; and the filling of larger number of missing 

data leads to greater departure from the regional mean of 

AOD data. Therefore, r between MISR AOD and filled-

MISR AOD in the Amazon is less than global r. We find 

that for some periods, the absolute difference between these 

two products is on the higher side, i.e., above 0.02, where 

the missing pixels count in MISR AOD product is larger

 

Table 4. The RMSE of different satellite AOD datasets with respect to AERONET. Monthly time series of a satellite AOD 

product at the pixel containing the AERONET station is used to compute RMSE with the monthly time series of the 

AERONET station AOD. AOD measurements between 10.00AM to 11.000AM local-time at an AERONET station are 

only considered to calculate the monthly time series. n represents total number of samples used for computation. Total 

number of samples for CK and RK method are equal. 

Region MODIS (n) MISR (n) MISR filled (n) (CK) MISR filled (n) (RK) 

Global 0.128 (41375) 0.143 (38372) 0.143 (41496) 0.161 

Northern India 0.210 (2614) 0.317 (2065) 0.300 (2652) 0.336 

North America 0.072 (15719) 0.065 (15056) 0.065 (15756) 0.085 

South America 0.073 (1248) 0.065 (1204) 0.065 (1248) 0.167 

South Africa 0.082 (624) 0.052 (591) 0.052 (624) 0.104 

Western Africa 0.140 (2025) 0.159 (1978) 0.158 (2028) 0.155 

Arabian Peninsula 0.127 (3120) 0.101 (3112) 0.100 (3120) 0.118 

Eastern Asia 0.218 (7009) 0.223 (5914) 0.217 (7020) 0.230 

Australia 0.029 (1091) 0.039 (1081) 0.039 (1092) 0.100 



 
 

 

Singh et al., Aerosol and Air Quality Research, 17: 1963–1974, 2017 1972

 

Fig. 5. Aerosol Optical Depth of original MISR (top) and filled-MISR dataset (using Ordinary Co-kriging) (bottom) for 

March 2001. White shading in the top image shows locations where MISR AOD data not present. 

 

 

Fig. 6. (Left) Time series of MODIS AOD, MISR AOD and filled-MISR AOD with CK. (Right) Time series of standard 

deviation of MODIS AOD, MISR AOD and filled-MISR AOD dataset, with CK for the period 2001–2013 (a, b) over the 

Amazon region, (c, d) central Asia and (e, f) Indonesia/Borneo. 

 

than 30%. For instance, in January 2001, the difference in 

the regional mean of filled-AOD and MISR AOD is 0.031, 

with 50% pixels having missing MISR AOD data over 

Amazon. Since it is difficult to estimate in advance whether a 

missing pixel has high or low AOD, the difference of the 

regional mean of filled AOD product and original MISR 

AOD product is equally difficult to assess. The difference 

in regional mean of filled-AOD and MISR AOD can be 

explained by the bias obtained from CK method for each 

month. For example, the regional-mean filled AOD (0.22) 

for January 2001 is higher than the original MISR AOD 

(0.19) data, where the expected CK prediction bias at a 

pixel for this period is –0.06. This indicates that the expected 

predicted value is larger by AOD = 0.06 compared to the 

observed AOD. Therefore, for the time series shown in 

Fig. 6(a), the higher regional-mean filled AOD (for January 
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2001) may be due to a negative bias of CK predictor. 

Similarly for May 2002, the lower value in regional mean 

filled AOD product is likely due to a positive bias of 0.12. 

We also computed regional standard deviation (SD) of 

the AOD for the Amazon basin, central Asia and 

Indonesia/Borneo regions. It is observed that the expected 

value for the SD of MISR AOD dataset over regions 1, 4 

and 5 are 0.14, 0.17 and 0.15, respectively, i.e., higher than 

the expected SD of the gap-filled MISR data, which are 

0.13, 0.16 and 0.13, respectively. Figs. 6(b), 6(d) and 6(f) 

show the time series of SD for the three regions where it is 

evident that the SD of filled-MISR AOD datasets is lower 

than the original MISR AOD data. With the reduction in 

spatial variability of MISR-AOD dataset, we believe that 

the analysis related to the time series of AOD dataset 

(including trend analysis over the Amazon) will be better 

representative of the region. 

 

CONCLUSIONS 

 

In this paper, an application of geostatistical methods is 

demonstrated to produce a gap-filled aerosol dataset for 

Level-3 monthly-mean MISR AOD at 0.5° × 0.5° spatial 

resolution. The spatially complete AOD dataset can be 

especially used in studies where the presence of missing 

data are undesirable, such as for global and regional aerosol 

spatio-temporal variability and trend analysis. Two Kriging 

techniques (Co-Kriging and Regression Kriging) are used 

to fill MISR AOD data, with valid AOD from MODIS 

data. To assess the quality of the spatially-filled data set, 

cross validation is performed. The cross validation results 

show that the prediction error follows a normal distribution 

with mean close to zero. The RMSE of the predicted data 

at pixels with valid AOD retrievals (in cross validation, we 

predict AOD at pixels with valid retrievals) using both CK 

and RK is approximately 0.05. Across the six selected regions 

around the globe, where large fraction of missing AOD 

data from MISR is widespread, biases from both CK and 

RK have small values. However, at regional scale, predicted 

AOD using the RK method has larger biases as compared 

to the predicted AOD using CK. In general, at regional scale, 

the r between the observed and predicted MISR AOD 

using RK is higher than that using CK. However, the RK 

method can be used only at pixels with valid MODIS AOD. 

Furthermore, the prediction using Kriging method on regional 

scale shows that as the fraction of missing MISR AOD data 

grows (combined with the reduced presence of MODIS 

data), the accuracy of the Kriging predictors decreases. 

Additionally, the comparison of gap-filled MISR and MISR 

AOD with AERONET data shows that the deviation of 

filled-MISR data from AERONET data is smaller than the 

original MISR data. These results suggest that the CK 

method is an effective interpolation algorithm for filling 

data gaps in MISR AOD data, using co-existing MODIS 

data as a co-variable.  
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