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Abstract

Background: Schistosomiasis is a water-based disease that is believed to affect over 200 million people with an estimated
97% of the infections concentrated in Africa. However, these statistics are largely based on population re-adjusted data
originally published by Utroska and colleagues more than 20 years ago. Hence, these estimates are outdated due to large-
scale preventive chemotherapy programs, improved sanitation, water resources development and management, among
other reasons. For planning, coordination, and evaluation of control activities, it is essential to possess reliable
schistosomiasis prevalence maps.

Methodology: We analyzed survey data compiled on a newly established open-access global neglected tropical diseases
database (i) to create smooth empirical prevalence maps for Schistosoma mansoni and S. haematobium for individuals aged
#20 years in West Africa, including Cameroon, and (ii) to derive country-specific prevalence estimates. We used Bayesian
geostatistical models based on environmental predictors to take into account potential clustering due to common spatially
structured exposures. Prediction at unobserved locations was facilitated by joint kriging.

Principal Findings: Our models revealed that 50.8 million individuals aged #20 years in West Africa are infected with either
S. mansoni, or S. haematobium, or both species concurrently. The country prevalence estimates ranged between 0.5% (The
Gambia) and 37.1% (Liberia) for S. mansoni, and between 17.6% (The Gambia) and 51.6% (Sierra Leone) for S. haematobium.
We observed that the combined prevalence for both schistosome species is two-fold lower in Gambia than previously
reported, while we found an almost two-fold higher estimate for Liberia (58.3%) than reported before (30.0%). Our
predictions are likely to overestimate overall country prevalence, since modeling was based on children and adolescents up
to the age of 20 years who are at highest risk of infection.

Conclusion/Significance: We present the first empirical estimates for S. mansoni and S. haematobium prevalence at high
spatial resolution throughout West Africa. Our prediction maps allow prioritizing of interventions in a spatially explicit
manner, and will be useful for monitoring and evaluation of schistosomiasis control programs.
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Introduction

Schistosomiasis is a water-based disease caused by trematodes of

the genus Schistosoma. The five schistosome species that are known

to infect humans are Schistosoma mansoni, S. haematobium, S.

intercalatum, S. mekongi, and S. japonicum. School-aged children are

at highest risk of infection and are the main target group for

interventions [1].

Despite successful efforts to control schistosomiasis in different

parts of the world, more than 200 million individuals are still

estimated to be infected and the annual global burden due to

schistosomiasis might exceed 4.5 million disability-adjusted life
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years (DALYs) lost [1–3]. A substantial amount of this burden is

concentrated in West Africa, including Cameroon. Indeed, 72

million infections are thought to occur in this part of the world [4].

However, the current statistics, as presented by Chitsulo et al.

(2000) [4], Steinmann et al. (2006) [2], and Utzinger et al. (2009)

[5], are largely based on population re-adjusted data originally

published by Utroska and colleagues in the late 1980s [6]. Hence,

the estimates are likely to be outdated due to, among other

reasons, large-scale preventive chemotherapy campaigns, im-

proved sanitation, water resources development and management,

and socio-economic development.

Recently, donors have provided new funds to control the so-

called neglected tropical diseases (NTDs), including schistosomi-

asis. For cost-effective planning and evaluation of control activities,

it is essential to have reliable baseline maps of the geographical

distribution of at-risk population and disease burden. Early

schistosomiasis mapping efforts have been based on climatic

suitability thresholds [7,8]. These maps are not reliable because

they are not based on disease data. Apart from a few studies [9–

12], empirical maps of disease distribution over large areas are not

available since there is a paucity of contemporary large-scale

survey data.

The first comprehensive compilation of historical schistosomi-

asis prevalence surveys at a global scale was carried out by

Doumenge et al. in the mid-1980s [13]. More recent collections are

available by Brooker et al. (2010) [14] for soil-transmitted

helminthiasis and schistosomiasis, but data access is limited. The

European Union (EU)-funded CONTRAST project initiated the

development of an open-access global NTD database, which is

updated in real time (GNTD database; http://www.gntd.org)

[15]. A key objective of CONTRAST is to employ this database

for large-scale schistosomiasis prevalence mapping and prediction

in sub-Saharan Africa for the spatial refinement of control

interventions and the cost-effective allocation of resources.

Geographical locations in close proximity share common

exposures which influence the disease outcome similarly. The

geographical information of the survey locations in the GNTD

database allows taking into account the potential spatial

correlation and therefore creation of more realistic models.

Standard statistical modeling approaches assume independence

between locations [16]. Ignoring potential spatial correlation in

neighboring areas due to common exposures could result in

incorrect model estimates [17]. Geostatistical models take into

account spatial clustering by introducing location-specific random

effect parameters in the covariance matrix by a function of

distance between locations [16]. Such models typically contain

large numbers of parameters and cannot be estimated by the

commonly used maximum likelihood approaches [18]. Bayesian

model formulations enable model fit via Markov chain Monte

Carlo (MCMC) simulations [16].

Bayesian geostatistical models have been applied in mapping

schistosomiasis at different spatial scales, for example by Raso et al.

(2005) [19] in the region of Man, western Côte d’Ivoire, and

Clements et al. (2008) [9] in Mali, Niger, and Burkina Faso.

Brooker et al. (2010) [14] developed a global predictive map

highlighting those areas where preventive chemotherapy against

schistosomiasis and soil-transmitted helminthiasis are warrant.

However, to our knowledge, there is neither a model-based S.

haematobium nor a S. mansoni large-scale prevalence map and

spatially explicit burden estimates for the whole West African

region.

Author Summary

Schistosomiasis is a parasitic disease caused by a blood
fluke that mainly occurs in Africa. Current prevalence
estimates of schistosomiasis are based on historical data,
and hence might be outdated due to control programs,
improved sanitation, and water resources development
and management (e.g., construction of large dams and
irrigation systems). To help planning, coordination, and
evaluation of control activities, reliable schistosomiasis
prevalence estimates are needed. We analyzed compiled
survey data from 1980 onwards for West Africa, including
Cameroon, focusing on individuals aged #20 years.
Bayesian geostatistical models were implemented based
on environmental and climatic predictors to take into
account potential spatial clustering within the data. We
created the first smooth data-driven prevalence maps for
Schistosoma mansoni and S. haematobium at high spatial
resolution throughout West Africa. We found that an
estimated 50.8 million West Africans aged #20 years are
infected with schistosome blood flukes. Country preva-
lence estimates ranged between 0.5% (in The Gambia) and
37.1% (in Liberia) for S. mansoni and between 17.6% (in
The Gambia) and 51.6% (in Sierra Leone) for S. haemato-

bium. Our results allow prioritization of areas where
interventions are needed, and to monitor and evaluate
the impact of control activities.

Table 1. Remote sensing data sources.

Data type Source Date Temporal resolution Spatial resolution

LST MODIS/Terra1 2000–2008 8-days 1 km

NDVI MODIS/Terra1 2000–2008 16-days 1 km

Land cover MODIS/Terra1 2001–2004 Yearly 1 km

Rainfall ADDS2 2000–2008 10-days 8 km

Altitude DEM3 - - 1 km

Freshwater bodies HealthMapper4 - - Not known

Population counts LandScan5 2008 - 1 km

1Moderate Resolution Imaging Spectroradiometer (MODIS). Available at: https://lpdaac.usgs.gov/lpdaac/products/modis_products_table (accessed: 5 January 2009).
2African Data Dissemination Service (ADDS). Available at: http://earlywarning.usgs.gov/adds/ (accessed: 5 January 2009).
3Digital elevation model (DEM). Available at: http://eros.usgs.gov/ (accessed: 4 January 2009].
4HealthMapper database. Available at: http://www.who.int/health_mapping/tools/healthmapper/en/index.html (accessed: 4 March 2009).
5LandScanTM Global Population Database. Available at: http://www.ornl.gov/landscan/ (accessed: 20 January 2011).
doi:10.1371/journal.pntd.0001194.t001
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In this paper, we developed Bayesian geostatistical models based

on environmental and climatic risk factors to obtain reliable

empirical schistosomiasis prevalence maps for individuals aged

#20 years by analyzing the GNTD data for West Africa, including

Cameroon. Prediction was based on joint kriging in order to

summarize the results as population-adjusted country prevalence

estimates. Emphasis was placed on the distribution of S.

haematobium and S. mansoni. We neglected S. intercalatum due to

low infection risks, especially outside Cameroon.

Methods

Disease data
The GNTD database was used to obtain prevalence data on

schistosomiasis. This database assembles general information

about the type of publication, authors, and publication year, as

well as study-specific information about survey population,

survey period, Schistosoma species, diagnostic test employed, and

the number of infected individuals among those examined,

stratified by age and sex (if available). Hospital studies, data on

specific susceptible groups (such as HIV positives), and post-

intervention studies were not included in the database [15]. For

this study, we analyzed all point-level data on settled

populations in West Africa on either S. haematobium or S.

mansoni: 4550 and 2611 survey locations, respectively. We

excluded (i) surveys with missing geographical coordinates; (ii)

missing numbers of individuals screened; (iii) surveys carried out

before 1980; (iv) individuals aged .20 years; and (v) entries

based on certain diagnostic techniques. With regard to the latter

exclusion criteria, we rejected all non-direct diagnostic exam-

ination techniques, such as immunofluorescence tests, antigen

detections or questionnaire data, and direct fecal smears that

have very low diagnostic sensitivities (overall, 4% of the data for

S. mansoni and 0.1% for S. haematobium were excluded). Hence,

the surveys included were mainly based on the Kato-Katz thick

smear method (S. mansoni) and urine filtration or sedimentation

Figure 1. Study profile. Schematic overview of the study profiling process. The numbers in brackets in the acute-angled boxes represent the
number of survey locations (which may not be unique) included in the current GNTD dataset, while the numbers outside the boxes represent the
amount of survey dropped due to the reason given in the boxes with rounded corners.
doi:10.1371/journal.pntd.0001194.g001

Figure 2. Observed S. haematobium prevalence in West Africa. Observed prevalence of S. haematobium among individuals aged #20 years
across West Africa, including Cameroon.
doi:10.1371/journal.pntd.0001194.g002
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(S. haematobium). Sensitivity and specificity of the diagnostic

techniques were not incorporated in the model due to usually

unknown sampling effort (e.g., number of stool samples, number

of slides examined under a microscope, etc.), which affect

diagnostic accuracy.

We assumed that the proportion of rejected diagnostic

techniques among the data with missing information on the

technique (S. mansoni: 33.5% missing, S. haematobium: 20.6%

missing) is similar. Therefore, we considered the bias that would

arise from ignoring the missing data as larger than the bias from

potentially rejected diagnostic techniques among the missing data.

A separate model validation on the reduced datasets confirmed

that by including data with incomplete records the predictive

ability increased compared to the model excluding this informa-

tion (results not presented).

Climatic, environmental, and population data
Climatic, environmental, and population data were obtained

from different freely accessible remote sensing data sources, as

summarized in Table 1. Data on day and night temperature were

extracted from land surface temperature (LST) data. The

normalized difference vegetation index (NDVI) was used as a

proxy for vegetation. Digitized maps on freshwater body sources

(e.g., rivers, lakes, and wetlands) in West Africa were acquired with

the characteristic of being either perennial or temporary.

Processing of the MODIS/Terra data was carried out using the

‘MODIS Reprojection Tool’ [20] and code implemented in

Fortran 90 [21] to summarize the temporal changes by an overall

yearly average based either on the mean (NDVI, day and night

LST) or the mode (land cover). Furthermore, the land cover

categories, as defined by the International Geosphere-Biosphere

Programme, were re-grouped into six categories as follows: (i)

sparsely vegetated; (ii) deciduous forest and savanna; (iii) evergreen

forest; (iv) cropland; (v) urban; and (vi) wet areas. Rainfall estimates

were processed via the software IDIRSI 32 [22]. Yearly averaged

rainfall was calculated as summary measure. Distance calculations

to the nearest freshwater body source were done in ArcMap

version 9.2 of the Environmental Systems Research Institute

(ESRI; Redlands, CA, USA) [23].

A classification scheme of West Africa into ecological zones was

obtained using a demo version of the Earth Resources Data

Analysis System Imagine 9.3 software [24]. The datasets were

subjected to an unsupervised classification, via the ‘Iterative Self-

Organizing Data Analysis Technique’ (ISODATA), to map areas

of environmental clustering which were further summarized into

five main classes based on between-class similarities. The resulting

Figure 3. Observed S. mansoni prevalence in West Africa. Observed prevalence of S. mansoni among individuals aged #20 years across West
Africa, including Cameroon.
doi:10.1371/journal.pntd.0001194.g003
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map matched existing classifications [25] and the classes can be

interpreted as (i) desert/semi-desert; (ii) sahelian zone; (iii)

savannah; (iv) forest; and (v) tropical rainforest.

Population count data obtained from LandScan for 2008 were

converted to 565 km spatial resolution and adjusted to 2010 using

country-specific average annual rates of change for 2005–2010

provided by the United Nations (UN) [26]. Estimates for the

percentage of individuals aged #20 years among the total

population per country were extracted from the U.S. Census

Bureau International Database [27] for the year 2010. Population

counts were linked to the percentage of children. The estimated

number of infected individuals #20 years was calculated by

combining a sample of the joint predictive posterior distribution of

the disease prevalence predicted at pixel level with the population

size of that age group within the pixel. The predictive posterior

distribution of the number of infected individuals per country was

estimated by summing up the pixel-samples and calculating

summary statistics. The combined schistosomiasis prevalence

(infection with S. mansoni or S. haematobium or both) was calculated

on the assumption that the two infections are independent from

Table 2. Overview on the survey data included in the analysis stratified by country.

Locations Survey year

Diagnostic

technique*

Survey

type Preva-lence

Total Unique 1980s 1990s 2000+ UT RS School Mean

S. haematobium

Benin 5 5 0 5 0 5 0 5 18.2

Burkina Faso 123 119 92 8 23 35 88 117 46.4

Cameroon 349 342 335 4 10 18 0 342 22.2

Côte d’Ivoire 183 108 1 178 4 63 120 137 19.5

The Gambia 1 1 1 0 0 0 0 0 100.0

Ghana 47 47 22 8 17 47 0 36 38.5

Guinea 24 20 0 24 0 23 0 21 10.6

Guinea-Bissau 0 0 0 0 0 0 0 0 -

Liberia 3 2 3 0 0 3 0 0 51.3

Mali 139 130 83 23 33 137 0 33 45.4

Mauritania 27 25 8 11 8 27 0 19 34.8

Niger 544 442 104 304 136 473 0 455 32.7

Nigeria 86 71 36 21 29 80 1 48 38.3

Senegal 423 374 29 125 269 205 218 263 25.1

Sierra Leone 0 0 0 0 0 0 0 0 -

Togo 39 37 39 0 0 39 0 8 25.3

Total 1993 1723 753 711 529 1155 427 1484 31.0

S. mansoni KK other

Benin 0 0 0 0 0 0 0 0 -

Burkina Faso 28 24 0 5 23 23 5 28 11.7

Cameroon 416 412 403 1 12 13 0 415 9.7

Côte d’Ivoire 201 157 12 118 71 200 0 141 33.3

The Gambia 0 0 0 0 0 0 0 0 -

Ghana 8 8 7 0 1 1 7 7 8.8

Guinea 22 20 0 22 0 22 0 20 12.7

Guinea-Bissau 0 0 0 0 0 0 0 0 -

Liberia 2 1 2 0 0 1 1 0 72.8

Mali 132 124 80 22 30 131 0 32 19.9

Mauritania 19 17 0 11 8 19 0 19 9.4

Niger 170 159 36 0 134 130 40 155 2.2

Nigeria 7 7 5 1 1 4 3 3 5.5

Senegal 133 126 0 104 29 132 0 27 18.2

Sierra Leone 0 0 0 0 0 0 0 0 -

Togo 41 39 41 0 0 38 3 8 4.4

Total 1179 1094 586 284 309 714 59 855 17.7

Details given on the number of surveys per survey year, diagnostic technique, survey type, and observed mean prevalence given per country and Schistosoma species.
*UT =urine test, RS = reagent strip, KK = Kato Katz thick smear.
doi:10.1371/journal.pntd.0001194.t002
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Figure 4. Remotely sensed covariates. Spatial distribution of remotely sensed covariates for West Africa, including Cameroon. Climatic covariates
were summarized via yearly averages.
doi:10.1371/journal.pntd.0001194.g004
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Table 3. Logistic regression parameter estimates for S. haematobium.

Bivariate non-spatial Multivariate non-spatial Multivariate spatial

OR (95% CI) OR (95% CI) OR (95% BCI)

Decade

1980–1989 1.00 1.00 1.00

1990–1999 1.09 (1.07, 1.12)* 1.22 (1.18, 1.25)* 1.26 (1.22, 1.30)*

2000 onwards 1.16 (1.13, 1.19)* 1.26 (1.22, 1.29)* 1.14 (1.09, 1.20)*

Ecological zone

Tropical rainforest 1.00 1.00 1.00

Forest 1.61 (1.56, 1.67)* 1.45 (1.40, 1.51)* 1.70 (1.63, 1.77)*

Savannah 2.05 (1.99, 2.12)* 2.33 (2.21, 2.46)* 1.28 (1.21, 1.36)*

Sahelian 1.97 (1.91, 2.03)* 2.05 (1.92, 2.19)* 1.01 (0.90, 1.14)

Desert/semi-desert 1.09 (0.99, 1.19) 1.35 (1.20, 1.52)* 0.57 (0.51, 0.65)*

Altitude (m)

#55 1.00 1.00 1.00

56–224 1.83 (1.78, 1.88)* 1.59 (1.55, 1.65)* 1.51 (1.45, 1.57)*

225–408 1.28 (1.25, 1.32)* 1.11 (1.07, 1.14)* 0.91 (0.86, 0.96)*

.408 0.81 (0.78, 0.83)* 1.32 (1.27, 1.37)* 0.93 (0.86, 1.00)

Day LST (6C)

#28.3 1.00 1.00 1.00

28.4–34.8 1.43 (1.39, 1.47)* 0.78 (0.75, 0.82)* 0.72 (0.68, 0.77)*

34.9–36.4 1.49 (1.45, 1.54)* 0.76 (0.71, 0.81)* 0.57 (0.53, 0.61)*

.36.4 1.19 (1.15, 1.22)* 0.63 (0.59, 0.67)* 0.49 (0.45, 0.53)*

Night LST (6C)

#19.2 1.00 1.00 1.00

19.3–20.4 2.15 (2.08, 2.23)* 1.86 (1.79, 1.93)* 1.70 (1.62, 1.79)*

20.5–21.1 2.84 (2.75, 2.94)* 2.52 (2.43, 2.62)* 1.99 (1.92, 2.05)*

.21.1 3.30 (3.20, 3.42)* 3.11 (2.99, 3.23)* 2.18 (2.12, 2.25)*

Rainfall (mm)

0–249 1.00 1.00 1.00

250–299 1.45 (1.41, 1.49)* 1.13 (1.09, 1.18)* 1.16 (1.13, 1.21)*

300–399 1.12 (1.08, 1.15)* 0.95 (0.91, 1.00) 0.96 (0.92, 0.99)*

$400 0.81 (0.78, 0.83)* 0.94 (0.89, 0.99)* 0.56 (0.51, 0.61)*

NDVI

#0.22 1.00 1.00 1.00

0.23–0.32 0.97 (0.94, 1.00) 1.05 (1.02, 1.09)* 0.96 (0.93, 0.99)*

0.33–0.52 0.93 (0.91, 0.96)* 1.05 (1.00, 1.10) 1.16 (1.13, 1.21)*

.0.52 0.67 (0.65, 0.69)* 0.91 (0.85, 0.97)* 1.20 (1.15, 1.25)*

Land cover

Sparsely vegetated 1.00 1.00 1.00

Deciduous forest/savanna 0.72 (0.70, 0.74)* 0.72 (0.69, 0.75)* 0.78 (0.76, 0.80)*

Evergreen forest 0.75 (0.72, 0.77)* 1.13 (1.07, 1.20)* 1.36 (1.28, 1.42)*

Cropland 1.07 (1.04, 1.11)* 1.14 (1.10, 1.19)* 0.78 (0.75, 0.81)*

Urban 0.66 (0.64, 0.69)* 0.47 (0.45, 0.49)* 0.49 (0.46, 0.51)*

Wet areas 1.27 (1.18, 1.37)* 0.84 (0.77, 0.91)* 0.82 (0.75, 0.89)*

Distance to closest freshwater body (km) 0.95 (0.95, 0.95)* 0.98 (0.98, 0.99)* 0.98 (0.97, 0.98)*

Type of closest water body

Perennial 1.00 1.00 1.00

Non-perennial 0.85 (0.83, 0.87)* 0.72 (0.70, 0.73)* 0.81 (0.78, 0.84)*

Mean (95% BCI)
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each other, as Schistosoma spp. = S. mansoni+S. haematobium2(S.

mansoni * S. haematobium).

Extraction of the remotely sensed data at the survey locations

and at the prediction locations for the two databases was

performed via a self written Fortran 90 code. The prediction

surface for West Africa was built in ArcMap [23] with a spatial

resolution of 0.05u60.05u (approximately 565 km) resulting in

approximately 220,000 pixels covering the study region. The data

were displayed in ArcMap.

Statistical analysis
For each Schistosoma species, bivariate logistic regressions were

performed in STATA/IC 10.1 [28] in order to assess potential

covariates in relation to the outcome (the number of infected

individuals over the number of individuals screened per location).

Continuous covariates were categorized into four groups based on

quartiles to account for potential non-linearity in the outcome-

predictor relationship on the logit. The Bayesian information

criterion (BIC) was employed to detect whether linear or

categorized covariates on the logits have smaller BIC and

therefore predict the outcome more accurately. We used the

following covariates in both linear and categorical scales: altitude,

day LST, night LST, rainfall, NDVI, and distance to the nearest

freshwater body. The type of freshwater body, ecological zone,

and land cover were measured in categorical dimensions.

The study year was also included as linear and categorical

covariate in order to account for possible temporal trends. The

categories were defined on decades as follows: 1980–1989, 1990–

1999, and from 2000 onwards. For S. mansoni, half of the data were

from the 1980s (49.7%), 24.1% from the 1990s, whereas 26.2%

were obtained in the new millennium. For S. haematobium, 37.8% of

the data stem from the 1980s, 35.7% from the 1990s, and 26.5%

from 2000 onwards.

Relevance of continuous or categorized covariates to predict the

outcome was assessed based on p-values resulting from likelihood

ratio tests (LRTs) at significance levels of 0.15. All significant

covariates were included in the Bayesian analysis.

Bayesian geostatistical logistic regression models were fitted with

location-specific random effects. Spatial correlation was modeled

assuming that the random effects follow a multivariate normal

distribution with variance-covariance matrix related to an

exponential correlation function between any pair of locations.

Model fit requires the inversion of this matrix. Due to the large

number of survey locations in our datasets, parameter estimation

becomes unfeasible. An approximation of the spatial process by a

subset of m survey locations (mvn) proposed by Banerjee et al.

(2008) [29] and further developed by Gosoniu et al. (forthcoming)

[30] and Rumisha et al. (forthcoming) [31] was implemented

instead. We employed MCMC simulation to estimate the model

parameters. Prevalence of infection at 220,000 locations was

predicted for the most recent decade (from the year 2000 onwards)

via Bayesian kriging using joint predictive posterior distributions

[16]. Due to computational issues, we modeled the multivariate

Gaussian spatial process separately for each country. The

performance of the models was assessed using model validation

via different approaches: mean predictive errors (ME), mean

absolute predictive errors (MAE), discriminatory performance on a

50% prevalence cut-off, and Bayesian credible interval (BCI)

comparisons [17]. Further details pertaining to the Bayesian

geostatistical model, sub-sampling, and model validation ap-

proaches are given in the Appendix S1.

Results

Final datasets and preliminary statistics
A schematic overview of the study profile on obtaining

prevalence data on schistosomiasis from the GNTD is given in

Figure 1. The final datasets consisted of 1993 and 1179 survey

locations for S. haematobium and S. mansoni, respectively, out of

which 1722 and 1094 locations were unique. Observed prevalence

of the survey locations ranged from 0% to 100% for each

Schistosoma species with mean prevalence of 31.0% (median 15.0%,

standard deviation (SD) 29.0%) for S. haematobium, and 17.7%

(median 0.0%, SD 24.4%) for S. mansoni. The distribution and the

prevalence level of the survey locations are shown in Figures 2 and

3 for S. haematobium and S. mansoni, respectively. An overview of the

number of surveys with details given regarding sampling period,

diagnostic technique, survey type, and mean prevalence, stratified

by country, is given in Table 2.

Spatial distributions of potential covariates influencing the

distribution of schistosomiasis are presented in Figure 4. Bivariate

logistic regressions of the continuous factors in relation to the

disease outcomes showed that categorical variables predicted

better based on BIC values than linear variables for both

Schistosoma species (results not presented). Each potential covariate

considered for the analyses had a p-value of ,0.001 based on

LRTs and was therefore included in the multivariate analyses.

Backwards logistic regressions demonstrated the importance of the

whole set of covariates for each species. The resulting odds ratios

(ORs) of bivariate and multivariate non-spatial logistic regressions

are summarized in Table 3 for S. haematobium, and Table 4 for S.

mansoni. The only non-significant outcome-predictor relations in a

multivariate framework for the former species were yearly

averaged precipitation between 300 mm and 399 mm, and NDVI

levels between 0.33 and 0.52. For the latter species, only altitude

levels of at least 500 m above sea level and night LSTs between

20.0uC and 20.7uC were non-significant.

Spatial modeling outcomes
Model parameter estimates for S. haematobium and S. mansoni are

presented in Table 3 and Table 4, respectively. Introduction of

spatial correlation led to changes in the significance of covariates

Bivariate non-spatial Multivariate non-spatial Multivariate spatial

OR (95% CI) OR (95% CI) OR (95% BCI)

Sigma2 - - 4.02 (3.37, 4.76)

Range (km) - - 398 (384, 412)

Logistic regression parameter estimates for S. haematobium summarized by odds ratios (OR), 95% confidence intervals (CI), and 95% Bayesian credible intervals (BCI).
*: Significant correlation based on 95% CI/BCI.
doi:10.1371/journal.pntd.0001194.t003
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Table 4. Logistic regression parameter estimates for S. mansoni.

Bivariate non-spatial Multivariate non-spatial Multivariate spatial

OR (95% CI) OR (95% CI) OR (95% BCI)

Decade

1980–1989 1.00 1.00 1.00

1990–1999 3.17 (3.03, 3.31)* 2.70 (2.55, 2.86)* 1.60 (1.46, 1.73)*

2000 onwards 1.82 (1.73, 1.91)* 1.36 (1.28, 1.44)* 1.14 (1.02, 1.28)*

Ecological zone

Tropical rainforest 1.00 1.00 1.00

Forest 0.45 (0.42, 0.49)* 0.69 (0.61, 0.77)* 1.16 (1.01, 1.34)*

Savannah 0.40 (0.39, 0.42)* 0.78 (0.68, 0.89)* 0.20 (0.18, 0.23)*

Sahelian 0.82 (0.78, 0.85)* 3.22 (2.73, 3.80)* 0.07 (0.06, 0.08)*

Desert/semi-desert 0.01 (0.01, 0.02)* 0.05 (0.01, 0.20)* 0.01 (0.01, 0.01)*

Altitude (m)

#185 1.00 1.00 1.00

186–326 2.70 (2.57, 2.83)* 4.25 (3.98, 4.53)* 2.51 (2.32, 2.69)*

327–499 1.59 (1.52, 1.68)* 2.45 (2.29, 2.63)* 1.95 (1.70, 2.25)*

.499 0.98 (0.92, 1.04) 1.06 (0.97, 1.16) 1.80 (1.58, 2.05)*

Day LST (6C)

#25.0 1.00 1.00 1.00

25.1–31.2 0.83 (0.79, 0.87)* 1.45 (1.34, 1.56)* 1.34 (1.23, 1.45)*

31.3–35.6 0.78 (0.75, 0.82)* 1.90 (1.68, 2.15)* 2.05 (1.92, 2.18)*

.35.6 0.21 (0.19, 0.22)* 0.66 (0.57, 0.76)* 2.10 (1.88, 2.32)*

Night LST (6C)

#18.9 1.00 1.00 1.00

19.0–19.9 4.56 (4.30, 4.84)* 2.08 (1.94, 2.23)* 2.36 (2.18, 2.59)*

20.0–20.7 1.87 (1.76, 2.00)* 1.03 (0.95, 1.12) 0.97 (0.91, 1.03)

.20.7 0.92 (0.86, 0.99)* 0.47 (0.43, 0.51)* 0.46 (0.43, 0.50)*

Rainfall (mm)

0–269 1.00 1.00 1.00

270–339 0.75 (0.71, 0.79)* 1.12 (1.03, 1.21)* 3.32 (2.89, 3.82)*

340–469 1.77 (1.69, 1.85)* 1.96 (1.77, 2.17)* 4.44 (3.97, 4.95)*

$470 1.11 (1.05, 1.17)* 1.52 (1.36, 1.70)* 3.53 (3.16, 3.90)*

NDVI

#0.26 1.00 1.00 1.00

0.27–0.43 1.40 (1.33, 1.47)* 1.52 (1.39, 1.66)* 1.82 (1.62, 2.03)*

0.44–0.59 1.11 (1.05, 1.17)* 0.83 (0.73, 0.94)* 1.84 (1.52, 2.25)*

.0.59 2.97 (2.83, 3.12)* 1.45 (1.25, 1.67)* 0.94 (0.77, 1.15)

Land cover

Sparsely vegetated 1.00 1.00 1.00

Deciduous forest/savanna 1.20 (1.14, 1.26)* 1.39 (1.28, 1.51)* 1.25 (1.17, 1.34)*

Evergreen forest 2.36 (2.26, 2.47)* 1.56 (1.40, 1.73)* 1.55 (1.45, 1.67)*

Cropland 1.46 (1.38, 1.55)* 1.51 (1.38, 1.66)* 0.82 (0.71, 0.94)*

Urban 1.41 (1.32, 1.50)* 1.27 (1.15, 1.41)* 1.72 (1.58, 1.88)*

Wet areas 0.47 (0.39, 0.57)* 0.62 (0.51, 0.76)* 0.60 (0.47, 0.77)*

Distance to closest water body (km) 0.92 (0.91, 0.92)* 0.91 (0.91, 0.92)* 0.94 (0.93, 0.94)*

Type of closest water body

Perennial 1.00 1.00 1.00

Non-perennial 0.33 (0.32, 0.35)* 0.32 (0.31, 0.34)* 0.70 (0.64, 0.76)*

Mean (95% BCI)
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and the direction of outcome-predictor relations compared to the

corresponding non-spatial multivariate logistic regression models.

For example, the influence of rainfall for S. mansoni became more

important while the effect of the survey period and non-perennial

freshwater bodies was reduced. The spatial range was estimated to

be 398 km (95% BCI: 384–412 km) and 387 km (95% BCI: 375–

402 km) for S. haematobium and S. mansoni, respectively. These

estimates suggest strong spatial correlation for both species. The

spatial variation was similar for the two species (4.02 for S.

haematobium vs. 4.05 for S. mansoni).

Schistosomiasis prevalence maps
Figure 5A presents the prevalence map for S. haematobium based

on the median of the predictions. Low-prevalence areas (predicted

infection prevalence ,10%) were primarily observed in the

Sahara, Cameroon, north-west Côte d’Ivoire, and Senegal.

Prevalence .50% are mainly spread along the Niger River, in

Sierra Leone, east/central Senegal, and south Nigeria. The map of

the SD of model predictions for this species (Figure 5B)

demonstrates that small prediction errors were primarily found

around the survey locations used for sub-sampling.

The median spatial S. mansoni prevalence map is shown in

Figure 6A with the corresponding error presented in Figure 6B.

High-prevalence areas (predicted prevalence .50%) were mainly

found in north-east Liberia, east Côte d’Ivoire, west Ghana,

north/central Benin, west Nigeria, north Cameroon, and central

Mali in close proximity to Niger River. Very low prevalence areas

(predicted prevalence ,10%) were predominant in Senegal, The

Gambia, Guinea-Bissau, Mauritania, and Niger. Furthermore, low

prevalence areas were predicted for north Mali, south Togo, and

parts of Cameroon. Areas of high prediction accuracy were found

around the sub-sampled survey locations and in desert/semi-desert

ecological zones.

At-risk population estimates
Table 5 shows population-adjusted country prevalence

estimates. For S. haematobium, prevalence estimates range

between 17.6% (The Gambia) and 51.6% (Sierra Leone),

whereas for S. mansoni they range between 0.5% (The Gambia)

and 37.1% (Liberia). S. haematobium was found to be the

predominant species throughout West Africa with a difference

compared to S. mansoni of up to 30% in Burkina Faso and a

minimum difference of about 4% in Liberia. Combined

Schistosoma prevalence estimates, assuming independence of the

occurrence of the two species, varied from 18.1% (The Gambia)

to 58.3% (Liberia) with high numbers of infected individuals

aged #20 years (more than 5 million) in Ghana and Nigeria.

Lower numbers (,1 million) of infected individuals aged #20

years were found in The Gambia, Guinea-Bissau, Liberia, and

Mauritania. The overall number of infected individuals aged

#20 years in West Africa is 50.8 million.

Model validation results
Model validation based on 80% of the survey locations resulted

in MEs of 21.7 for S. haematobium and 0.0 for S. mansoni, and

respective MAEs of 19.5 and 7.3. The percentage of test locations

correctly predicted by 95% BCIs was 72.9% for S. haematobium,

and 72.5% for S. mansoni. ME and MAE comparisons between

spatial and exchangeable random effect models showed that

spatial models result in better predictive ability (S. haematobium:

ME=3.8, MAE=27.7; S. mansoni: ME=20.8, MAE=14.9).

Discriminatory performance based on a 50% prevalence cut-off

showed that the models correctly predicted 93.2% and 76.9% of

the validation locations for S. mansoni and S. haematobium,

respectively. False-high predictions were obtained for 5.5% (S.

mansoni) and 18.8% (S. haematobium) of the test locations.

Discussion

To our knowledge, we provide the first model-based prevalence

maps for both S. haematobium and S. mansoni for individuals aged

#20 years in West Africa, including Cameroon. We used a readily

available open-access database consisting of a large number of

historical and contemporary geolocated and standardized survey

data [15], coupled with Bayesian-based geostatistical tools.

Standard geostatistical methods are not able to handle large

numbers of survey locations due to computational problems.

Therefore, for the first time, an approximation of the spatial

process was implemented in Schistosoma prevalence modeling.

In comparison to existing prevalence estimates, major short-

comings of previous studies have been addressed, and hence our

prevalence maps show a higher spatial resolution and we believe

that they are more accurate than heretofore. This claim is justified

as follows. First, our estimates are based on the GNTD database

that has gone live in July 2010, developed as part of the EU-

funded CONTRAST project. As of February 2010, the GNTD

contained more than 4500 and 2600 unique entries in West Africa

for S. haematobium and S. mansoni, respectively. Second, data-

tailored statistical methods based on Bayesian geostatistical

modeling were used in order to incorporate spatial correlation

between survey locations and to obtain more accurate estimates of

the uncertainty of the predictions. Third, climatic and environ-

mental covariates were employed in the models to evaluate the

effect on the disease outcomes. The climatic and environmental

factors were obtained at high spatial resolution to be able to

predict small hotspots of risk, which could arise due to the focal

distribution of schistosomiasis, which is an important epidemio-

logical feature of the disease [32]. An existing S. haematobium

prevalence map for three West African countries (i.e., Burkina

Faso, Mali, and Niger) using Bayesian geostatistical modeling was

previously presented by Clements et al. (2008) [33] based on data

from 2004–2006. However, this map does not show the actual

Bivariate non-spatial Multivariate non-spatial Multivariate spatial

OR (95% CI) OR (95% CI) OR (95% BCI)

Sigma2 - - 4.05 (3.37, 4.84)

Range (km) - - 387 (375, 402)

Logistic regression parameter estimates for S. mansoni summarized by odds ratios (OR), 95% confidence intervals (CI), and 95% Bayesian credible intervals (BCI).
*: Significant correlation based on 95% CI/BCI.
doi:10.1371/journal.pntd.0001194.t004
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level of schistosomiasis prevalence but rather probabilities that the

predicted prevalence is above a pre-defined cut-off, arbitrarily set

at 50%. This cut-off has been proposed by the World Health

Organization (WHO) [1] to distinguish between low and high risk

areas, and hence such maps are useful to detect areas where

preventive chemotherapy might be warranted on an annual basis.

However, the maps do not provide detailed information for lower

risk areas or the number of infected individuals and they cannot be

used for monitoring and evaluation purposes following interven-

tions. A more recent publication by Clements et al. (2009) [9]

presented a S. haematobium prevalence map for the same three West

African countries. This map shows similar patterns to our map

with the exception of north Burkina Faso. In this area, Clements

and colleagues predicted prevalence levels of 10–20% for high and

low egg-intensities, while our estimates suggest much higher

prevalence (.50%). These discrepancies are most likely due to

differences in the underlying survey data. The Clements et al. data

were only partially included in the GNTD database as we could

not access them fully.

The estimated spatial correlation for both Schistosoma species was

very strong with spatial ranges of approximately 400 km.

Previously reported spatial ranges in parts of West Africa vary

between 7.5 km [19] and approximately 180 km [33]. However,

these estimates were based on recent surveys, and hence

influenced by recently established control programs. Interventions

are likely to reduce the predictive power of environmental and

climatic factors on the distribution of schistosomiasis and, thus,

reduce spatial correlation. Similar effects were found for malaria,

where historic data showed stronger spatial correlation [34] than

recent surveys [35,36].

We overlaid population data adjusted to 2010 on the predicted

prevalence surfaces for the two Schistosoma species in order to

obtain country-specific estimates of the number of infected

individuals aged #20 years. Previous country estimates, for

instance those presented by Chitsulo et al. (2000) [4], Steinmann

et al. (2006) [2], or Utzinger et al. (2009) [5], are interpolations of

limited observations for a whole country, and hence lack empirical

modeling. Chitsulo and colleagues reported a higher number of

infected people for West Africa (71.8 million) compared to our

estimate (50.8 million). Of note, the Chitsulo et al. estimates are

based on the whole population, while our new estimates concern

the age group #20 years. Moreover, the Chitsulo et al. estimates

pertain to mid-1990s population estimates, compared to our

adjusted estimates for the year 2010. In countries like Cameroon,

The Gambia, Ghana, and Liberia, characterized by high rural-to-

urban migration in the last decade, the Chitsulo et al. prevalence

estimates should be treated with care due to rapid urbanization.

Our study revealed that the combined prevalence of S. haematobium

and S. mansoni in The Gambia, for example, is two-fold lower than

previously reported by Chitsulo et al. (18.1% vs. 37.5%). However,

in Benin, Guinea, Liberia, Nigeria, and Togo, we found

prevalence estimates that are more than 10 percentage points

higher than the previous estimates. On the one hand, differences

might be related to sparse data, for example, in Benin, The

Gambia, Guinea, Guinea-Bissau, Liberia, Mauritania, Nigeria,

and Sierra Leone. Previous estimates failed to take into account

model-based predictions on the basis of climate, environment and

disease data. Since we modeled disease prevalence on individuals

aged #20 years (highest risk groups), the prevalence estimates

correspond to the former risk group. Therefore they are likely to

overestimate the prevalence in the whole population.

We estimated the country-specific overall schistosomiasis

prevalence by assuming independence between the occurrence

of S. haematobium and S. mansoni in each area. However, it is

conceivable that simultaneous infections with both species is more

frequent than expected by chance in areas where the species co-

exist as infection pathways are similar and highly behavioral

related. Hence, the combined prevalence estimates potentially

underestimate the true schistosomiasis situation in West Africa. A

modeling approach via joint spatial random effects [37] could

assess the effect of potential dependence between the species, but

would increase the number of spatial parameters and is therefore

computationally challenging.

We might also underestimate schistosomiasis prevalence in

Cameroon, Mali, and Nigeria because of the presence of S.

intercalatum [4]. We did not include this species in the analysis since

the GNTD database currently only contains 17 survey locations

outside Cameroon. However, it is assumed that S. intercalatum has a

low prevalence [4] and there are signs that this species is further

declining in importance [38].

Model validation has shown that the S. haematobium predictions

seem to overestimate the actual prevalence, while the S. mansoni

model revealed no tendency to over- or underestimate the overall

prevalence. The MAE for the S. haematobium model is nearly three

times larger than the one for S. mansoni. This is expected because

the mean prevalence for S. haematobium was about double than that

for S. mansoni. Our models correctly predict about 72% of the

survey locations when considering 95% BCIs. We are encouraged

by these results, since perfect predictions are rather unlikely in

reality due to the complexity of disease transmission.

However, our models are based on assumptions, which could

influence model performance. We assumed that the diagnostic

techniques employed have similar ability to detect an infection,

but different diagnostic techniques show differences in sensitivity

and specificity, which also depends on the overall prevalence and

infection intensity [39]. This might have led to an underestima-

tion of prevalence due to the imperfect sensitivity of direct

diagnostic techniques [39]. Additional model parameters ac-

counting for the performance of the different diagnostic

techniques could be incorporated in the models. However in

the absence of detailed information regarding sampling effort,

assumptions would be required which may be debatable and

introduce additional biases. We are currently examining the effect

of different approaches on addressing this issue on the model-

based predictions.

We did not adjust the outcome according to age and sex even

though the age groups differ and especially school surveys are

likely to include more boys than girls due to prevailing cultural

issues in many parts of West Africa. Therefore, our results are

likely to be biased and potentially overestimate schistosome

prevalence. However, many publications do not present stratified

results by these subgroups. Age-adjustment models are feasible but

difficult to implement because age-prevalence curves have to be

fitted for different transmission settings [40]. Furthermore, disease

data are often reported at wide age ranges (i.e., school-aged

children) and individuals might not be well distributed within the

range introducing bias even though an age-prevalence model is

taken into account.

Figure 5. Predicted S. haematobium prevalence and standard deviation for West Africa. (A) Predicted median of prevalence for S.

haematobium among individuals aged #20 years during the period of 2000–2009 based on Bayesian kriging, and (B) standard deviation (SD) of the
prediction error with sub-sampled survey locations.
doi:10.1371/journal.pntd.0001194.g005
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Surveys are typically conducted in endemic areas leading to

high observed prevalence levels. This could result in an

overestimation of prevalence in the present analysis. However,

in the data we analyzed, 45% of the locations for S. haematobium

and 73% for S. mansoni had an observed prevalence levels below

10%. We therefore assume that a location selection bias is unlikely.

Another concern is the large amount of zero outcomes (i.e., none

of the study participants found to be infected) especially for S.

mansoni (S. mansoni: 54.1%; S. haematobium: 20.1%). To overcome

this issue, zero-inflated models need to be incorporated, which

modify the likelihood function and add an additional model

parameter capturing the over-dispersion arising by the zeros [41].

Figure 6. Predicted S. mansoni prevalence and standard deviation for West Africa. (A) Predicted median of prevalence for S. mansoni

among individuals aged#20 years during the period of 2000–2009 based on Bayesian kriging, and (B) standard deviation (SD) of the prediction error
with sub-sampled survey locations.
doi:10.1371/journal.pntd.0001194.g006

Table 5. Prevalence and estimated number of infected children (0–20 years) per country.

Population S. haematobium S. mansoni S. haematobium & S. mansoni

Country

Children

(6106) Prevalence (%)

Infected

(6106)

Prevalence

(%)

Infected

(6106)

Prevalence

(%)

Infected

(6106)
Prevalence

(%)a
Infected

(6106)a

95% BCI 95% BCI 95% BCI 95% BCI 95% BCI 95% BCI

Benin 4.620 38.8 1.792 20.3 0.940 46.0 2.124 35.5 1.950

(18.0, 63.1) (0.830, 2.914) (5.9, 36.5) (0.271, 1.687) (22.1, 71.1) (1.020, 3.282)

Burkina Faso 9.434 45.4 4.282 15.3 1.446 50.2 4.738 60.0 6.240

(32.3, 59.4) (3.043, 5.606) (4.5, 38.2) (0.427, 3.604) (34.7, 67.8) (3.274, 6.400)

Cameroon 10.300 20.4 2.099 9.2 0.952 25.9 2.668 26.5 3.020

(13.5, 29.0) (1.389, 2.986) (6.9, 12.5) (0.715, 1.289) (18.8, 34.7) (1.934, 3.573)

Côte d’Ivoire 11.000 31.5 3.229 22.1 2.262 41.8 4.286 40.0 5.600

(16.4, 50.9) (1.677, 5.213) (12.6, 35.5) (1.293, 3.642) (25.4, 60.8) (2.605, 6.235)

The Gambia 4.872 17.6 0.168 0.5 0.005 18.1 0.173 37.5 0.330

(9.3, 36.9) (0.088, 0.352) (0.0, 5.5) (0.000, 0.053) (9.3, 38.7) (0.089, 0.369)

Ghana 0.822 46.1 5.077 24.2 2.659 53.7 5.912 72.5 12.400

(26.5, 67.2) (2.918, 7.396) (9.8, 49.5) (1.081, 5.452) (31.0, 76.0) (3.408, 8.365)

Guinea 10.300 37.4 1.824 20.5 0.999 46.4 2.259 25.8 1.700

(18.8, 57.0) (0.914, 2.776) (9.3, 35.9) (0.455, 1.749) (25.8, 66.0) (1.255, 3.214)

Guinea-Bissau 0.953 24.7 0.203 2.9 0.024 26.5 0.218 30.0 0.330

(6.7, 59.6) (0.055, 0.490) (0.2, 21.3) (0.002, 0.175) (7.0, 63.0) (0.057, 0.518)

Liberia 1.585 41.5 0.658 37.1 0.588 58.3 0.924 30.0 0.648

(14.7, 69.5) (0.233, 1.102) (14.1, 66.3) (0.223, 1.051) (24.6, 84.4) (0.390, 1.338)

Mali 4.430 45.1 1.997 19.1 0.845 51.7 2.291 60.0 5.880

(27.9, 63.2) (1.237, 2.801) (13.0, 27.2) (0.573, 1.204) (35.5, 67.7) (1.572, 3.000)

Mauritania 0.944 31.7 0.299 5.8 0.055 35.2 0.333 27.4 0.630

(19.0, 46.6) (0.180, 0.44) (2.7, 10.8) (0.026, 0.101) (22.0, 51.1) (0.208, 0.483)

Niger 5.160 25.6 1.321 3.5 0.179 27.1 1.397 26.7 2.400

(19.4, 33.2) (1.001, 1.712) (0.6, 12.1) (0.031, 0.625) (19.9, 35.7) (1.028, 1.841)

Nigeria 39.900 39.4 15.741 23.2 9.257 47.0 18.754 25.2 25.830

(24.7, 55.7) (9.866, 2.253) (11.8, 38.0) (4.717, 5.175) (30.0, 63.9) (11.976, 25.505)

Senegal 6.358 21.0 1.338 2.9 0.183 23.0 1.464 15.3 1.300

(16.7, 24.9) (1.062, 1.581) (1.5, 5.9) (0.094, 0.372) (18.1, 27.6) (1.151, 1.755)

Sierra Leone 3.476 51.6 1.792 24.5 0.853 57.5 1.999 67.6 2.500

(15.4, 84.7) (0.535, 2.944) (4.4, 59.8) (0.153, 2.080) (17.6, 89.6) (0.612, 3.113)

Togo 2.985 36.9 1.102 14.0 0.419 41.9 1.251 25.1 1.030

(18.1, 58.5) (0.540, 1.745) (3.6, 31.4) (0.107, 0.938) (21.0, 62.6) (0.628, 1.869)

Median prevalence and estimated number of infected individuals (aged #20 years) per country (predicted for the period 2000–2009) based on 2010 population
estimates with 95% Bayesian credible interval (BCI).
aEstimated country prevalence and number of infected individuals with schistosomiasis over all age groups in 1995 as presented by Chitsulo et al. (2000) [4].
doi:10.1371/journal.pntd.0001194.t005
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The models presented in this manuscript did only include

spatial random errors, and hence we ignored potential measure-

ment errors. Inclusion of location-specific non-spatial error terms

might have improved model predictions. However, location-

specific non-spatial error terms would have doubled the number of

error terms leading to highly parameterized models.

We further assumed isotropic stationary models. Non-stationary

models imply that the spatial random effect is varying from one

region to another and is not stable throughout the study area [35].

This assumption has been confirmed by semi-variogram compar-

isons showing that the estimated spatial range parameters for S.

mansoni differ between eco-zones. However, semi-variogram

analyses did not indicate non-stationarity in the spatial distribution

of S. haematobium. Isotropic models assume that the spatial

correlation is the same within the same distance irrespective of

direction [42]. This assumption might not be valid since

intermediate host snails spread along rivers and lakeshores and,

therefore, introduce correlation attributed to directions.

The choice and size of sub-sampled locations required to

adequately approximate the spatial Gaussian process is a research

area on its own in spatial statistics. Many different approaches are

available to optimize selection. We implemented a method based

on semi-variogram comparisons. This selection is aiming to

preserve the spatial surface of the original dataset. However, it

might fail to identify a sub-sample, which minimizes the prediction

error. The spatially averaged predictive variance (SAPV) method

proposed by Finley is trying to optimize the variance in the

predictions, but implementation is computationally highly de-

manding [43].

Time-dependent covariates, such as the climatic factors, might

have changed between the 1980s and the 2000s. However, our

geographical covariates were solely based on recent remote sensing

data (from 2000 onwards), because historical remote sensing data

are, to our knowledge, not freely available at high spatial and

temporal resolution. The long run averages of the recent data

enable us to maintain high spatial resolution although they cannot

capture variation in the observed outcome due to unusual climatic

conditions or climate change that might have occurred since the

1980s and 1990s.

Preliminary residual analyses suggest that there is only weak

temporal correlation in the data. We therefore only modeled a

spatial rather than a spatio-temporal process. This led to a more

parsimonious model and facilitated model fit. Nevertheless, we

incorporated temporal trends in the prevalence estimation by

including the survey year as covariate. Both Schistosoma species

showed that the predicted prevalence was highest during the

1990s. This increase might be explained by water resources

development and management activities (e.g., the construction of

dams and irrigation systems), political unrests and civil restructur-

ing. Water resources development and management projects

might have improved the suitability of the environment for snail

intermediate hosts that might have spread into previously snail-

free zones together with the parasites. Since the beginning of the

new millennium, a number of large-scale preventive chemother-

apy programs are underway in parts of West Africa and it will be

important to monitor how the prevalence of schistosomiasis

changes in space and over time. The effectiveness of control

interventions may vary across areas but, to our knowledge, a

comprehensive database compiling this information with high

spatio-temporal resolution has yet to be established.

Concluding, our country-specific Schistosoma prevalence esti-

mates and numbers of individuals aged #20 years infected with

either S. mansoni, or S. haematobium, or both species concurrently

presented here are useful tools for disease control managers and

other stakeholders to support decision-making on interventions.

Our maps can also serve as a benchmark to monitor the impact of

control interventions and for long-term evaluation on transmission

dynamics. Model-based estimates in areas with scarce data and

high uncertainty could be improved by additional surveys to

enhance our knowledge on the distribution of schistosomiasis and

disease burden. We plan to further expand this work to other

regions and address the issues of non-stationarity, diagnostic

sensitivity, and age-heterogeneity across surveys. Finally, we will

test the assumption of independence between the Schistosoma

species to improve accuracy of the joint prevalence estimates.
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(2009) A comparative study of the spatial distribution of schistosomiasis in Mali
in 1984–1989 and 2004–2006. PLoS Negl Trop Dis 3: e431.

13. Doumenge JP, Mott KE, Cheung C, Villenave D, Chapuis O, et al. (1987) Atlas
of the global distribution of schistosomiasis. Bordeaux: WHO-CEGET-CNRS,
Presses Universitaires de Bordeaux.

14. Brooker S, Hotez PJ, Bundy DAP (2010) The global atlas of helminth infection:
mapping the way forward in neglected tropical disease control. PLoS Negl Trop
Dis 4: e779.

15. Hürlimann E, Schur N, Boutsika K, Stensgaard AS, Laizer N, et al. (2011)
Toward an open-access, real-time global database for mapping, control, and
surveillance of neglected tropical diseases. PLoS Negl Trop Dis (under review).

16. Diggle PJ, Tawn JA, Moyeed RA (1998) Model-based geostatistics. Appl Stat 47:
299–350.

17. Gosoniu L, Vounatsou P, Sogoba N, Smith T (2006) Bayesian modelling of
geostatistical malaria risk data. Geospat Health 1: 127–139.

18. Kleinschmidt I, Bagayoko M, Clarke G, Craig M, Le Sueur D (2000) A spatial
statistical approach to malaria mapping. Int J Epidemiol 29: 355–361.

19. Raso G, Matthys B, N’Goran EK, Tanner M, Vounatsou P, et al. (2005) Spatial
risk prediction and mapping of Schistosoma mansoni infections among schoolchil-
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