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Geostatistical Motion Interpolation

Tomohiko Mukai∗ Shigeru Kuriyama†

Toyohashi University of Technology

Figure 1: Animations synthesized by our motion interpolation in a 5D parametric space. One parameter changes the style of motion from
rough to delicate as shown by the bar indicator. The other four parameters are the heights and widths of two successive steps of stairs for gait
motions, and the 2D start and end locations of the box for lifting motions. None of the motions required post-cleaning of foot- or hand-sliding.

Abstract

A common motion interpolation technique for realistic human an-
imation is to blend similar motion samples with weighting func-
tions whose parameters are embedded in an abstract space. Exist-
ing methods, however, are insensitive to statistical properties, such
as correlations between motions. In addition, they lack the capa-
bility to quantitatively evaluate the reliability of synthesized mo-
tions. This paper proposes a method that treats motion interpola-
tions as statistical predictions of missing data in an arbitrarily defin-
able parametric space. A practical technique of geostatistics, called
universal kriging, is then introduced for statistically estimating the
correlations between the dissimilarity of motions and the distance
in the parametric space. Our method statistically optimizes inter-
polation kernels for given parameters at each frame, using a pose
distance metric to efficiently analyze the correlation. Motions are
accurately predicted for the spatial constraints represented in the
parametric space, and they therefore have few undesirable artifacts,
if any. This property alleviates the problem of spatial inconsisten-
cies, such as foot-sliding, that are associated with many existing
methods. Moreover, numerical estimates for the reliability of pre-
dictions enable motions to be adaptively sampled. Since the in-
terpolation kernels are computed with a linear system in real-time,
motions can be interactively edited using various spatial controls.
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1 Introduction

Motion editing via interactive posing is commonly used in creating
character animations, which often requires flexible controls of var-
ious geometric constraints. However, interactive applications such
as video games pre-determine motion control parameters (or types
of constraints) to simplify the user’s operations, and require very
quick and robust techniques for motion generation. Direct blending
of entire motions is essentially suited to these requirements, and
particularly, interpolation of sampled motions is a convenient tech-
nique when a large motion dataset is available.

Motion interpolation parameterizes all motion samples in the
abstract space defined for controlling motions with kinematical,
physical, or emotional attributes, and multiple motions are then
smoothly blended with kernel functions. Formally speaking, given
the vector of parameters c for controlling a motion in a multidi-
mensional real abstract space, motion interpolation generates a new
motion M(c) by the weighted average of the motion samples Mi that
have corresponding parameter ci with kernel functions, denoted by
b(c) = {b1(c), b2(c), . . . , bN(c)}, as follows:

M(c) =

N∑

i=1

bi(c) Mi

where N is the number of motion samples. The key issue is the
design of the kernel functions whose values decrease according to
the distance between c and ci, for example, using the inverse of the
distance, spline bases, or Gaussian distributions. In all cases, the
kernel functions should also be normalized to always sum to unity.
Our contribution is to introduce geostatistics for creating alternative
kernel functions that have some advantageous properties.

Most existing methods neglect the effects on the kernels caused
by changes in the type of motion, the properties of parameters, and
the passage of time. These defects easily cause inconsistent mo-
tions, for example, geometric errors in foot positions on floors or
hand positions on handled objects. Such errors are mostly corrected
by adjusting free skeletal parameters, for example, using inverse
kinematics [Kovar and Gleicher 2002]. However, the plausibility of
synthesized motions is not ensured. Other corrective techniques use
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heuristics for adjusting the parameters of the kernels so that the re-
sulting motion satisfies given constraints. Such strategies, however,
force users to select adequate kernels and fine-tuned parameters,
and their automatic optimization often requires vast computations
[Rose et al. 2001]. Moreover, proposed motion interpolations uti-
lize few statistical properties, and analyze only the variations of
motion samples in a parametric space while ignoring correlations
and temporal coherence.

Natural human motions essentially contain random variations,
usually vary continuously with respect to relevant parameters, and
their distributions have strong coherence. This property is well-
suited to spatial statistics [Cressie 1993], which is a theory of sta-
tistical analysis concerning data that have spatial or temporal struc-
tures. We therefore propose motion interpolation based on spatial
statistics by regarding all motion clips as spatial samples distributed
in a multidimensional abstract space. We call this parametric space
for controlling motion interpolation a control space. Parameters
embedded in this control space are called control parameters, by
which arbitrary spatial constraints are continuously represented.
With this strategy, existing problems with spatial inconsistency,
such as foot-sliding, can be directly eliminated by accurately pre-
dicting motions in this space. In addition, the control space can in-
volve style parameters, and integrating spatial constraints with such
parameters can enhance the expressive richness of synthesized mo-
tions. Figure 1 demonstrates our motion interpolation method with
an example of stylized walking on irregularly-shaped stairs and the
lifting of a box. Four dimensional spatial constraints and one style
parameter are together embedded in a 5D control space. This ex-
ample shows our ability to control motions using heterogeneous
parameters in a high-dimensional control space.

This paper introduces a statistical approach to motion prediction,
by which the correlations among sampled motions are considered.
More concretely, our method estimates a statistical model that ex-
plains the correlation between the control parameters and motion
samples in order to compute optimal interpolation kernels. The fea-
tures of proposed method are outlined as follows:

Accuracy and robustness Motion samples parameterized in the
control space are interpolated with kernels that are automat-
ically and robustly optimized in accordance with statistical
observations. Synthesized motions are therefore statistically
accurate even for irregularly-distributed samples.

Interactive manipulation Most parts of the motion prediction can
be preprocessed, and motions are interpolated using a sim-
ple linear system in real-time. This property enables interac-
tive motion manipulations even in a high-dimensional control
space.

Reliability estimate Reliability of interpolations can be estimated
through predictive error variance, and can be used to reduce
redundant samples and to assess the validity of regions in the
control space.

In the following section, we explain related work and propose our
method for motion interpolation in Section 3. Section 4 explains
kernel computation, which is the core of our method. Experimental
results are shown in Section 5, comparing the performance with
radial basis function interpolations, and we discuss our conclusions
in Section 6.

2 Related Work

Several approaches to motion interpolation have been proposed in-
volving parameterization of motion samples in the frequency do-
main, using Fourier coefficients [Unuma et al. 1995] and hierarchi-
cal filtering [Bruderlin and Williams 1995]. These methods provide

simple and intuitive control of motion blending. They are, however,
ill-suited to non-cyclic short motion clips since frequency analysis
is problematic on such data. A linear interpolation technique with
stochastic sampling [Wiley and Hahn 1997] can manage general
motions, but the computational cost increases exponentially with
the number of motion samples.

Our method is closely related to the verbs and adverbs system
[Rose et al. 1998] that introduced radial basis functions (RBFs) for
interpolating motions with multiple parameters. This method was
extended to solve inverse kinematics problems [Rose et al. 2001]
and to interactively generate locomotion [Park et al. 2004]. RBFs
can smoothly interpolate scattered motion samples, and the number,
types, and shapes of the basis functions are optimized with the sam-
ples. These methods, however, neglect the variations of the func-
tions with the passage of time, which often causes unexpected dis-
tortions in the synthesized motions. Such distortions can be reduced
by naturally proliferating similar motions; for example, by using a
heuristic algorithm to adaptively add pseudo-examples [Rose et al.
2001] or stochastic sampling to interpolate the K-nearest neighbor-
ing motions [Kovar and Gleicher 2004]. Another method of prolif-
eration parameterizes motions in a dynamic space [Abe et al. 2004]
to physically transform them. These methods have no inverse map-
ping from constrained conditions to a pose space except the loca-
tions of given samples. For this reason, they need to generate many
similar motions by adaptively sampling control parameters to cover
the continuous space of constraints. This random sampling ap-
proach, however, requires vast computation and storage to satisfy
constrained conditions with reasonable accuracy, especially for a
high-dimensional parametric space. In contrast, our statistical pre-
diction directly determines the optimal values for kernel functions
from the constraints given as control parameters.

Our method has some relation to multivariate analysis, which is
introduced to intelligently classify motions to efficiently construct
a state-transition graph. For example, K-means clustering [Tanco
and Hilton 2000] and expectation maximization [Lee et al. 2002]
are used to automatically group similar motions. Another method
annotates motion clips [Arikan et al. 2003] using a support vector
machine, and a similar strategy is later applied to the discrimination
of natural motions [Ikemoto and Forsyth 2004]. The other usage
of multivariate analysis is feature extraction. Principal component
analysis (PCA) extracts essential bases of motion curves, and is ap-
plied to data reduction [Alexa and Muller 2000] and to dynamic op-
timization in a low-dimensional space [Safonova et al. 2004]. PCA,
however, analyzes constituent poses independently of their tem-
poral structures, and such limitation is common with pose-based
map organization [Sakamoto and Kuriyama 2004]. On the other
hand, ST-Isomap, which has been used to nonlinearly compute a
lower-dimensional structure for cartoon data [de Juan and Boden-
heimer 2004], can retain spatial and temporal coherences. These di-
mensionality reduction methods implicitly and indirectly determine
control parameters along each axis of the reduction space, and thus
constrained conditions are difficult to impose explicitly.

Recently, the scaled Gaussian process latent variable model (SG-
PLVM) has been proposed [Grochow et al. 2004] for interpolat-
ing poses from given constraints in a low-dimensional space, using
a simple kernel estimator. This method can efficiently search for
plausible poses from constrained curves such as positional trajecto-
ries of end-effectors. Our method has a similarity to the SGPLVM
in giving constrained conditions with embedded parameters and in
eliminating defects in RBF interpolation, but differs in the way pa-
rameters are embedded. The SGPLVM gives parameters at each
pose, velocity, and acceleration, for considering spatial and local
temporal dependencies, and it provides an abstract control space
through learning. On the other hand, our method gives control pa-
rameters for each entire motion, allowing the correlation and time-
coherence of motion samples to be fully exploited, and a control
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space is explicitly provided by the user. SGPLVM optimizes in-
terpolation kernels through the estimation of the probability dis-
tribution function representing similarity between samples, while
our method optimizes them by estimating their dissimilarity. More-
over, our method automatically selects the optimal model for ker-
nels whereas SGPLVM uses only Gaussian kernels.

3 Motion Interpolation

3.1 Theoretical background

Our method uses the practical application of spatial statistics, which
is called geostatistics [Wackernagel 2003], that predicts continuous
distributions of interpolating variables from the samples given with
corresponding parameters. Geostatistics was originally invented by
a French school of mines for estimating amounts of mineral re-
sources, and has been widely used for spatial prediction of various
phenomena in geographic information systems, environmental sci-
ence, fisheries oceanography, forestry, and so on. It assumes that
the correlation between samples is determined from the spatial dis-
tance (or Euclidean norm) of their control parameters alone, and
uniquely estimates a statistical model, called variogram function,
that explains the relation between the distance of parameters and
the dissimilarity of corresponding samples. The dissimilarity is
defined using the squared difference between two samples, and it
is assumed to monotonically increase with respect to the distance.
The details of the variogram function is later explained in Section
4.2.

Kriging, named for a pioneer D.G. Krige, is a generic term for
spatial prediction based on geostatistics, and ordinary kriging is a
best linear unbiased prediction of random function. It is also con-
sidered as a form of Gaussian process regression, similar to SG-
PLVM [Grochow et al. 2004], because it assumes that sampled data
contain a certain degree of noise that is independently and iden-
tically distributed. Ordinary kriging requires offline adjustments
through user observation, and mostly manages a 2D space, whereas
Gaussian processes in machine learning regularly manage much
higher dimensional spaces. Our contribution is the adaptation of
kriging to motion interpolations that require online computations in
the control space of arbitrary dimensions.

Let c = [c1, c2, . . . , cD] be the vector of control parameters in C,
where C represents a D-dimensional real abstract space, and let ci

be the value corresponding to the i-th sample. In the probabilistic
model, a variable s(c) is considered to be a realization of a random
function S (c) (i. e. an infinite family of random variables con-
structed at all points c ∈ C). Kriging estimates a distribution of
the random function from the noisy samples, and ordinary kriging
requires the following condition, called intrinsic stationarity, to be
satisfied in the random function [Cressie 1993].

Intrinsic stationarity : For arbitrary pairs of ci, c j ∈ C

E{S (ci) − S (c j)} = 0, Var{S (ci) − S (c j)} = γ(ci − c j)

hold, where E{·} denotes an expectation, Var{·} is a variance, and γ
represents a variogram function.

The intrinsic stationarity therefore assumes the stationarity of the
first and second moments of the difference of S (ci) and S (c j). These
conditions are seldom satisfied for motion data; for example, the av-
erage of leg-joint rotations varies according to the length of stride,
which breaks the first stationarity, and knee rotations are changed
by the positional changes of feet more in the vertical than the hori-
zontal direction, which breaks the second stationarity. To overcome
these disagreements, ordinary kriging is extended by assuming a
component of variations that are unrelated to random function, and
such analysis is called universal kriging [Huijbregts and Matheron
1971].
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Figure 2: Diagram of motion interpolation.

Universal kriging divides each sample si at ci into a trend com-
ponent m(ci) and its residual r(ci) as

si = m(ci) + r(ci)

where m(ci) is a deterministic component and r(ci) is a random
component that includes white noise. In other words, this assumes
that the trend m(ci) is deterministically computed from the control
parameter ci and that the residual r(ci) is a realization of a random
function satisfying intrinsic stationarity. Consequently, the com-
putation of universal kriging proceeds in two steps: the first step
estimates the trend, and the second step executes kriging on the
residuals.

The predictive residual r∗(c) is computed by blending the resid-
uals of the samples ri = si −m(ci) with kernel functions b(c) whose
values are a partition of unity:

r∗(c) =

N∑

i=1

bi(c) ri ,

N∑

i=1

bi(c) = 1

and the predictive value s∗(c) is thus given by s∗(c) = m(c) + r∗(c).
Figure 2 shows the diagram of our motion interpolation. The

process is divided into two phases: preprocessing and runtime pro-
cessing. In the preprocessing phase, all motion samples are pa-
rameterized in a control space and are time-aligned with time-warp
functions. Trend components and variogram functions are then esti-
mated for time-warped samples {qi} and incremental time-warping
{△Ai} with the corresponding control parameters {ci}, where pose
distance metrics {dp} are also computed for increasing efficiency, as
explained in Section 3.4. The runtime processing computes kernel
functions with the given control parameters c and predicts resid-
ual components. The predicted motion and time-warp functions are
obtained by adding their residuals to the trend, and the motion is fi-
nally re-transformed with the estimated inverse time-warp function.

3.2 Per-element interpolation

Each skeletal pose of a humanoid is formally represented by a
pose vector q(t) = {q1(t), q2(t), . . . , qdim(q)(t)} with a discrete time
(or frame) t, where dim(q) denotes the total degrees of freedom
of the humanoid skeleton. The elements of q(t) contain the rota-
tion of all joints and a global 3D position and orientation of the
root node that is located near the abdomen, and all rotational ele-
ments are represented by an exponential map. Each sampled mo-
tion Mi is then represented as a time series of the pose vector;
Mi = {qi(0),qi(1), . . . , qi(Ti)}, where Ti denotes the duration of the
i-th motion.

3



To appear in the ACM SIGGRAPH 2005 conference proceedings

Since kriging basically predicts a scalar value, each element of
the pose vector must be separately predicted by assuming indepen-
dence of the control space. In addition, we consider that the kernel
values should change according to the passage of time. For these
reasons, our basic approach computes the kernel for each element
of the pose vector at each frame.

Let qk
i
(t) be the k-th element of the i-th motion sample qi(t), and

let ci be the corresponding control parameters. In universal kriging,
the k-th element of the synthesized pose qk(t, c) is represented as:

qk(t, c) = mk(t, c) +

N∑

i=1

bi(c) rk
i (t) (1)

where mk(t, c) represents the trend component and rk
i
(t) = qk

i
(t) −

mk(t, ci) is the k-th residual. Kernel functions b(c) are composed
with the set of residuals Rk(t) = {rk

1
(t), rk

2
(t), . . . , rk

N
(t)} and the set

of the control parameters C = {c1, c2, . . . , cN} for N motion sam-
ples. This means that the continuous distribution of samples in C is
estimated through the statistical observations of Rk(t) and C.

3.3 Trend surface

The trend component often can be represented by polynomials.
High-dimensional polynomials are suited to fitting complicated
trends, but are redundant for the samples whose variations are
small. Motion data usually vary continuously according to the
change of control parameters, and we therefore estimate the trend
with a D-dimensional hyperplane

mk(t, c) = l0 + l1c1 + · · · + lDcD .

The variables li of the trend hyperplane are uniquely determined by
solving minimization problems of the form:

{l0, l1, . . . , lD} = arg min
l0 ,l1 ,...,lD





N∑

i=1

(

mk(t, ci) − qk
i (t)

)2



 (2)

using a least squares approximation with a pseudo-inverse matrix.

3.4 Per-pose interpolation

The above per-element approach may predict motion more accu-
rately than using an identical kernel for all variables, because it
can analyze detailed individual distributions of each element. How-
ever, this neglects the correlations between elements, and the cost of
computation and storage linearly increases according to dim(q). We
therefore introduce kriging prediction based on the pose distance
metric dp(qi, q j) [Kovar et al. 2002] that represents the dissimilar-
ity between the two poses qi and q j, by which their visual variation
is quantified. This strategy relies on the correlation between the
distance of the control parameter and the visual appearance of the
pose. This estimates an identical kernel that interpolates all joint
rotations through the prediction of a distribution of dp among mo-
tion samples, instead of kriging every element separately. All joints
are therefore assumed to have a common variogram function.

The variogram function is estimated using the residuals of the
pose distance metric between sampled poses qi(t) and the initial
pose q1(0) of the reference motion M1. The residuals, however,
should be separately computed for each element by estimating
their trend components with the assumption of independence of
their randomness. Therefore, the k-th element qk(t, c) of the re-
sulting pose is given by computing the kernel functions b(c) in
Equation 1 with the set of the residuals of pose distances Rd(t) =
{rd

1
(t), rd

2
(t), . . . , rd

N
(t)} , rd

i
(t) = dp(qi(t),q1(0)) − md(t, ci) and the

set of the control parameters C = {c1, c2, . . . , cN}. Notice that the
trend md(t, c) is computed by replacing qk

i
(t) with dp(qi(t),q1(0)) in

Equation 2, and the trend mk(t, c) and residuals rk
i
(t) are computed

in the same way as the abovementioned per-element interpolation.
The pose distance metric, however, does not include the state

of the root node consisting of a global 3D position and orienta-
tion along the vertical axis. These four variables are therefore pre-
dicted independently by computing b(c) in the same way as the per-
element interpolation. This strategy can reduce the computational
and storage costs in optimizing kernels by a ratio of 5/ dim(q) com-
pared to the simple per-element interpolation.

3.5 Time warping

Sampled motions require normalizing in the time domain in order
to ensure temporal correspondence among them. We assume that
the control parameters c also alter the temporal variables such as
speed, key-timing, and duration whose consistency must be ensured
for reliable interpolations. All motion samples are therefore time-
aligned to establish their temporal correspondence using a time-
warp function Ai→ j(ti) = t j that is determined by manually selecting
corresponding poses qi(ti), q j(t j) of two motion samples Mi, M j.
The motion Mi is then time-aligned to be consistent with M j.

We use a coordinate-invariant time-warping function [Kovar and
Gleicher 2003] that searches for an optimal function Ai→ j via dy-
namic time-warping so as to minimize the sum of the pose distance
metric during a motion sequence. Notice that the inverse of the
time-warp function A−1

i→ j = A j→i is also computed in a similar way

(see [Kovar and Gleicher 2003; Kovar and Gleicher 2004] for de-
tails). Our method first manually selects a reference motion M1

and next computes time-warp functions Ai→1 for time-aligning each
motion Mi,1 to make all key-timing consistent.

After all poses are interpolated for each frame of M1, the com-
posed motion is re-transformed in the time domain by using the in-
verse time-warp function to obtain appropriate time sequence. The
inverse time-warp is also represented as a function with respect to
c, and thus the parameterized inverse time-warp function A1→c is
estimated similarly by kriging. This estimate, however, is made
for the increments of the inverse time-warp functions, where the i-
th value is denoted by △Ai(t) = A1→i(t) − A1→i(t − 1), to ensure a
monotonically increasing sequence [Park et al. 2004]. Let ma(t, c)
be the trend of △Ai(t), then an incremental inverse time-warp func-
tion △Ac(t, c) for synthesized motion is given by

△Ac(t, c) = ma(t, c) +

N∑

i=2

bi(c) ra
i (t)

where the kernel functions b(c) are computed with the set of the
residuals Ra(t) = {ra

2
(t), ra

3
(t), . . . , ra

N
(t)}, ra

i
(t) = △Ai(t) − ma(t, ci)

and the set of the control parameters C. Note that the trend ma(t, c)
is similarly computed by replacing qk

i
(t) with △Ai(t) in Equation 2,

and the kernels b(c) are optimized in a similar way to per-element
interpolation.

4 Kernel Computation

Kernel functions are optimized by estimating a variogram function
from the set of residuals R(t) that are computed by extracting a
trend component from samples, with the assumption that their dis-
tribution satisfies intrinsic stationarity. The algorithm explained in
this section is used in the per-element, per-pose, and inverse time-
warp interpolations.

4.1 Experimental variogram

The variogram function of motion data is difficult to determine be-
cause the distribution of the residuals is highly random, as shown in
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hstep

γ∗(h; p, θ)

: γ̄(hu)

‖ci − cj‖

:(ri − rj)
2/2

Figure 3: Experimental variogram and predictive variogram func-
tion. Small dots indicate the variations of residuals ri and large
dots indicate their averages γ̄(hu) at each interval Iu. The curve
γ∗(h; p, θ) represents the predictive variogram function fitted to the
averages. This shows actual data of the pose distance metric for the
reaching motion used in Section 5.1.

θ0

θ1

h

p = 2.0

p = 1.5

p = 1.0

p = 0

γ(h; p, θ)

θ2

Figure 4: Theoretical variogram model: p determines the type of
a variogram function, θ0 ≥ 0 denotes the intensity of white noise,
θ1 ≥ 0 is the dissimilarity excluding noise at an infinite distance
h = ∞, and θ2 > 0 is the distance at which the correlation vanishes.

Figure 3. We therefore compute experimental variogram γ̄ by aver-
aging the residuals within the uniformly divided regions, by which
the effect of the white noise can be cancelled out. Universal kriging
assumes the isotropic (i. e. rotation invariant) behavior of the under-
lying variogram, and estimates the variogram using the distance (or
norm) h = ∥ci − c j∥ between control parameters. The range of dis-
tance h is divided by each hstep into NI intervals Iu (u = 1, 2, . . . ,NI)
whose center is denoted by hu = hstep(u − 1/2), and the average
of variations γ̄(hu) is calculated in each Iu. The simple arithmetic
average, however, lacks accuracy due to the effects of noisy error,
and we therefore use a robust estimate proposed by Cressie [1980],
which can minimize the effect of noise,

γ̄(hu) =
1

2

(
1

n(Iu)

∑

n(Iu) |ri − r j|
1/2

)4

0.457 + 0.494/n(Iu) + 0.045/n(Iu)2

where ri is a residual at ci and n(Iu) is the number of the pairs of
samples included in Iu.

The distribution of this experimental variogram is expected to
have saturation curves similar to those in Figure 4. The actual sam-
ples, however, often generate unstable shapes in the large distance
regions, and this property decreases estimate accuracy. We there-
fore use only the lower half range [0, hmax/2] for estimation [Wack-
ernagel 2003], where hmax is the maximum distance among all sam-
ples.

4.2 Estimate of variogram function

The dissimilarity between samples is estimated from the distance h
between corresponding control parameters, through representative

theoretical variogram functions formulated as (see Figure 4):

γ(h; p, θ) =






θ0 +
θ1
2

{

3h
θ2
−

(
h
θ2

)3
}

, 0 < h ≤ θ2

θ0 + θ1, h > θ2
for p = 0 ,

γ(h; p, θ) = θ0 + θ1

{

1 − exp

(

−

(

h

θ2

)p)}

, h > 0 for 0 < p ≤ 2

where γ(0; p, θ) = 0 always holds by definition.
Here we estimate a predictive variogram function, denoted by

γ∗(h; p, θ), by optimizing the variables of the theoretical variogram
functions to best approximate the experimental variogram γ̄(hu), as
shown in Figure 3. The optimal value of p is often manually se-
lected through the observation of the shape of γ̄(hu); we, however,
compute it automatically by using cross validation [Wackernagel
2003]. Since the computational cost increases with the number of
sampling frames, we assume that the type of a variogram function is
time-invariant and compute the cross validation only at a represen-
tative frame. The value of p is therefore determined by manually
selecting the frame at which the pose is relatively distinctive. The
values of θ, however, are optimized for each frame because they are
assumed to vary according to the passage of time. See Appendix A
for details of this estimate.

The estimate of the predictive variogram function requires an
appropriate value of hstep. A smaller hstep decreases the stability in
optimization due to the fitting to many samples, and a larger hstep

often misses important spatial variations. Journel and Huijbregts
[1978] suggested that hstep should be set so that the number of pairs
satisfies n(Iu) ≥ 30 for each interval. However, it is not an easy task
to capture the motion samples of so many variations. Our current
implementation therefore divides the usable range of distance into
NI = 10 intervals, which can attain reasonable estimate accuracy.

4.3 Kernel optimization

Kriging optimizes kernel functions b(c) = [b1(c), b2(c), . . . , bN(c)]
to minimize the expectation of predictive error variance denoted by
σ2

E(c) under the condition that
∑N

i=1 bi(c) = 1.0. This constrained
optimization is efficiently solved using Lagrange multipliers λ. The
objective function is then augmented as,

f (b, λ) = σ2
E(c) − 2λ





N∑

i=1

bi(c) − 1



 .

The value of σ2
E(c) is given by the variogram function γ∗(h; p, θ)

under intrinsic stationarity as [Wackernagel 2003],

σ2
E(c) = 2

N∑

i=1

bi(c)γ∗p,θ(∥ci − c∥) −

N∑

i=1

N∑

j=1

bi(c)b j(c)γ∗p,θ(∥ci − c j∥)

where γ∗p,θ(h) is an abridged notation of γ∗(h; p, θ) The objective

function f (b, λ) is a positive quadratic with respect to bi and λ, and
its minimum value can be computed by imposing ∂ f (b, λ)/∂bi =

∂ f (b, λ)/∂λ = 0.
From these equations, optimal kernels are calculated as follows:

[

b(c)T

λ

]

=

[

Γ 1T

1 0

]−1 [

γ∗(c)T

1

]

, Γ = {γ∗p,θ(∥ci − c j∥)}i j , (3)

γ∗(c) = [γ∗p,θ(∥c1 − c∥), γ∗p,θ(∥c2 − c∥), . . . , γ∗p,θ(∥cN − c∥)]

where [ ]−1 denotes an inverse matrix, [ ]T denotes transpose, and

1 = [

N
︷  ︸︸  ︷

1, . . . , 1]. Notice that the vector γ∗(c) coincides with the j-th
column of the matrix Γ by assigning c = c j. Since Γ is a non-
singular matrix, this leads to the condition of interpolation b j(c j) =
1, bi, j(c j) = 0.
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(a) RBF (b) Per-pose

Figure 5: Target positions of synthesized reaching motions. Black
spheres represent the targets of the sampled motions and vertices on
gray meshes denote those of the synthesized motions. The mesh in
(a) generated by RBF interpolation shows large distortions near the
samples (black spheres) and behind the body. In contrast, as shown
in (b), per-pose interpolation based on kriging generates a continu-
ous and smooth distribution even in the regions of extrapolation.

Table 1: Comparison of prediction accuracy and time spent in run-
time and preprocessing (msec/frame) measured on a dual 3.0 GHz
Xeon CPU. The time spent in time-warping is omitted from the pre-
processing because it is required for all methods.

Reliability RBF Per-element Per-pose
threshold MAX RMSE MAX RMSE MAX RMSE

ρ ≥ 0.9 13.96 4.12 6.65 2.11 6.53 1.96

ρ ≥ 0.8 36.64 10.56 14.52 3.29 14.99 3.31

ρ ≥ 0.7 50.13 14.15 25.44 5.43 24.80 5.63

Runtime 0.28 8.39 0.78

Preprocess 0 146.56 13.40

The computation of the inverse matrix in Equation 3 can be per-
formed as a preprocess because all elements are computed without
using the free control parameters c. Consequently, at runtime this
linear system only requires the calculation of γ∗(c) and its multipli-
cation with the precomputed inverse matrix, which can usually be
done in real-time.

5 Results and Discussion

This section explains the application of our geostatistical motion in-
terpolation, and compares the accuracy and efficiency of prediction
with the existing RBF interpolation techniques [Rose et al. 2001].
We employed no pseudo-examples, and used motion data sampled
at 120 Hz with DOFs dim(q) = 75.

5.1 Performance comparison with RBF interpolation

We took 16 samples of various reaching motions for comparing the
accuracy and efficiency of three methods: (1) RBF interpolation
[Rose et al. 2001], (2) per-element interpolation proposed in Sec-
tion 3.2, and (3) per-pose interpolation proposed in Section 3.4.
Each sample was captured by asking a performer to initially take
a standing pose and to finish each reaching movement when their
right hand touched any constrained location indicated by the black
spheres in Figure 5.

All motion samples were parameterized in the 2D control space
c = {c1, c2} ∈ C with the turning angle c1[deg] from the forward

t

P
o
s
e
 d

is
ta

n
c
e

Per-pose

RBF

Figure 6: Change of the pose distance metric between motion sam-
ple and synthesized motion via cross validation. Each color repre-
sents the comparison at each target circled with the same color in
Figure 5. Dotted curves show the errors of RBF interpolations, and
solid curves show those of our per-pose interpolations.

Figure 7: Comparison of sampled and synthesized motions via
cross validation. Skeletal figures colored red show motion samples,
while blue and green figures represent the synthesized motions with
RBF and per-pose interpolations, respectively.

direction and the height c2[cm] of a corresponding target position.
The prediction accuracy of each method is evaluated by computing
the maximum error, MAX := maxi [∥ci − ĉi∥], and the root mean

square error, RMS E :=
(∑S

i=1 ∥ci − ĉi∥
2/S

)1/2
within the parame-

ters of 0 ≤ c1 ≤ 220, 0 ≤ c2 ≤ 200, where S represents the number
of sampled locations, and ĉi denotes the control parameters corre-
sponding to the final pose generated from ci, that is, ĉi represents
the final angle and height of the right hand in the synthesized mo-
tion with ci. About five-hundred of control parameters, S = 500,
are uniformly sampled for estimating prediction errors.

Table 1 shows the MAX and RMSE measured in the sampling re-
gion whose reliability, explained in the next section, exceeds given
thresholds, and shows the average computation time per frame for
runtime and preprocessing. This shows that our geostatistical in-
terpolations have lower MAX and RMSE than RBF interpolations.
The per-element method shows no significant improvement over the
per-pose method, so the large cost in runtime and preprocessing for
per-element is not justified. Figure 5 illustrates the estimated target
hand positions in reaching motions, which shows the advantage of
our geostatistical prediction in terms of smoothness. From these
observations, we can conclude that per-pose interpolation, based
on the kriging with pose distance metrics, is the best method for
ensuring both accuracy and efficiency.

The above evaluation only considers the difference of control pa-
rameters; it only ensures the accuracy in the target position, not the
accuracy of entire motions. For this reason, we experimented with
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(a) side view (b) top view

Figure 8: Reliability map with statistical estimates of prediction
error. The surface represents the reachable space of final positions
of right hand, and blue and red areas indicate regions of high and
low reliability, respectively. Target positions of reaching motion
samples approximately coincide with the centers of blue areas.

using cross validation for evaluating the prediction accuracy of en-
tire motions. After excluding a sample Mx from a learning dataset,
we interpolate (or predict) a motion at cx, and compare the result-
ing motion with the original Mx. Figure 6 shows the change of er-
rors using the pose distance metric, and Figure 7 shows some snap-
shots comparing the sampled and synthesized motions. The results
demonstrate the superiority of our geostatistical interpolations over
RBF interpolations in predicting entire motions, especially during
the last phase. The decrease of accuracy is noticeable at the periph-
eral target circled with green because of the lack of surrounding
motion samples.

5.2 Reliability of prediction

Our statistical technique can compute the reliability 0 ≤ ρ(c) ≤ 1 of
the predicted value (see Appendix B for the derivation). For exam-
ple, Figure 8 shows a map with reliability of reachable space, indi-
cated with colors. We experimentally confirmed that the amount of
error ∥c− ĉ∥ has a strong correlation with the reliability level. Pear-
son’s product moment correlation coefficient becomes −0.70064 for
the example in Figure 8, which proves that they have a strong neg-
ative correlation. This property enables the identification of highly
reliable regions of the control space to ensure the plausibility of
motions. Note that this reliability estimate is based on the same the-
oretical background as Gaussian processes [Grochow et al. 2004].

The reliability ρ(c) can also be used as a quantitative indicator
for reducing redundant samples. We employed a simple greedy
algorithm for data reduction. It computes the reliability at each
control parameter ci by excluding the corresponding motion sam-
ple Mi, and then removes the sample with the highest reliability,
maxi

[

ρ(ci)
]

. This procedure is iterated until the highest reliability
falls below a given threshold τ. The number of gait motion samples
used in Figure 9, for instance, could be reduced from 69 to 29 for
τ = 0.85 without introducing noticeable distortion.

5.3 Applications for interactive motion manipulation

Figure 9 shows the gait motions generated with the control param-
eters in a 2D space. Various curving gaits are automatically gen-
erated by giving only the relative 2D displacement of the root po-
sition after two strides. This shows that our method can generate
plausible motions without using any corrective techniques such as
inverse kinematics. This advantageous property is derived from the
features of the kernel functions that are statistically optimized for
each frame. Figure 10 shows a time-series of variogram variables
for pose distance metrics in this example, which indicates the time-
dependency of the correlation between motions.

(a) Gait motions

foot sliding

(b) RBF

(c) Per-pose

Figure 9: Interpolations of gait motions. Control parameters are
given by the 2D displacement of a root node projected on the
ground. The blue and red colored figures denote initial and final
poses, respectively. The motions in (a) and (c) are generated with
our per-pose interpolations, and the motion in (b) is generated with
RBF interpolation. Foot-sliding is clearly detected in RBF interpo-
lation but is negligible in our method.

θ0

θ1

θ2

t

Figure 10: Time-dependency of predictive variogram variables for
pose distance metrics in Figure 9.

Figure 11 demonstrates synthesized carrying motions with 4D
control parameters given by the combination of start and end po-
sitions of the moved object. Our system successfully interpo-
lates or extrapolates motions interactively even with such a high-
dimensional control space. However, this example exhibits slight
inconsistencies in foot positions due to an insufficient number of
samples (only 13). In fact, this example requires the correction of
the foot positions to avoid sliding; nevertheless the magnitude of
errors is so small compared with existing motion interpolations.

Figure 12 shows controlling gait motions using the footprints
of both feet as 4D control parameters. This example also demon-
strates the accuracy of the foot positions, and separate control of
these positions enhances the flexibility in fine control of gait styles.
Figure 13 shows stair climing motions on irregularly-shaped stairs.
The shape of each step is separately changed by giving height and
width, and the parameters for successive pairs of steps form a 4D
control space. These examples also generate skate-free gaits with-
out the need for corrective calculations.

The above examples can be extended to synthesize motions from
many footprints or steps by increasing the dimension of the control
space. However, the increase of the dimension rapidly degrades the
resulting motions due to insufficient samples. The practical solu-
tion is to blend the motions synthesized from all successive pairs.
Strictly speaking, this blend sacrifices the reliability, but we ex-
perimentally confirmed that such ill effects are negligible. Figure
1 demonstrates the gaits on many steps generated by blending the
second half period of the synthesized motion with the first half pe-
riod of the following motion using ease-in/out functions.

Table 2 shows the number of samples, and the computational
costs for runtime and preprocessing. This demonstrates that our
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Figure 11: Carrying motions with two positional constraints. Each
position consists of the turning angle around the vertical axis and
the height from the ground.

Figure 12: Gait controls with two footprints. Constrained 2D dis-
placements are imposed on both right and left feet.

Figure 13: Gait controls with two step shapes. The heights and
widths of two successive steps are given as control parameters.

interpolation can generate motions in real-time, and that the pre-
processing time is tolerable for interactive motion editing. Notice
that the computational cost of the runtime is roughly proportional
to the number of samples.

6 Conclusions

We have proposed a novel method of motion interpolation based on
geostatistics. The contributions of our method may be summarized
as follows:

• Our interpolation predicts motions at given control parameters
more accurately than RBF interpolation. This property can
reduce the cost of post-cleaning for positional inconsistencies
in end-effectors.

• The computational algorithm of our method employs no man-
ual tuning parameters by relying on the theory of spatial statis-
tics, which allows easy implementation.

• Our motion control based on spatial constraints is well-suited
to not only interactive motion editing but also on-line motion
manipulations, such as in video games, through the handling
of various geometric targets.

Table 2: Number of samples and time spent in runtime and prepro-
cessing (msec/frame) measured on a dual 3.0 GHz Xeon CPU.

Motion Samples Runtime Preprocess

Figure 9 69 3.53 325.5

Figure 11 13 0.56 9.1

Figure 12 69 3.56 338.1

Figure 13 29 1.31 40.9

• The plausibility of the resulting motion can be quantitatively
evaluated using estimates of prediction reliability, which al-
lows adaptive reduction or population of motion samples.

The accuracy of prediction relies on a sufficient number of sam-
pled motions. However, the number of necessary samples usually
increases exponentially in the dimension of a control space. In
particular, estimating an appropriate variogram function requires
several samples distributed around the center of the control space.
Nevertheless, the number of required samples is far less in our
method than that required in simple linear interpolations. In ad-
dition, our method supplies a tool for adequately generating new
samples through observation of a reliability map. Prediction accu-
racy also deeply depends on the choice of control parameters, and
all parameters must be normalized so that the control space ensures
intrinsic stationarity. Although this paper introduced a trend es-
timate for solving this problem, anisotropy analysis [Wackernagel
2003] is regarded as another possible solution.

Geostatistical interpolation could be utilized for retargeting mo-
tions by selecting bodily variables such as height and weight as con-
trol parameters. Conversion of image features to control parameters
may enable motion prediction from 2D image sequences of human
motions. Moreover, our numerical method may supply a useful tool
for analyzing higher-level human motions that have corresponding
spatial parameters; for example, the relational analysis between the
position of obstacles and avoiding movements. Our future work
includes the investigation of the validity of these applications.
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A. Cross validation for estimating variogram function

Cross validation is the simplest method for estimating a variogram
function. This method is employed for finding the variable p that
best explains the spatial variation of N samples ri. After exclud-
ing a sample rx from a dataset, we compute r∗(cx) predicted from
the remainder ri,x of the dataset. This process is repeated for each
sample in order to compute the mean square error of prediction
MS E := 1

N

∑N
x=1 |rx − r∗(cx)|

2. The predictive variogram function is
then automatically determined so as to minimize MSE. In searching
for the optimal p, the variables θ are computed so as to satisfy the
following minimizing criterion [Cressie 1985]:

θ = arg min
θ





NI∑

u=1

n(Iu)

γ∗(hu; p, θ)2
(γ̄(hu) − γ∗(hu; p, θ))

2




. (4)

Our current implementation solves this nonlinear weighted least
squares problem by using a public numerical computing library
GSL that is available at http://www.gnu.org/software/gsl. Notice
that the effect of θ on the fitting is emphasized in the interval Iu

of small hu because the weights n(Iu)/γ∗(hu; p, θ)2 monotonically
decrease with respect to hu for n(Iu) ≈ const.

Since the variation of p produces very little effect on estimate
accuracy compared with the effects of θ, Equation 4 is computed
with constant step length p = 0.0, 0.2, 0.4, . . . , 2.0, once at a se-
lected frame. The most effective value of p is then selected among
the discrete samples, and next the variables θ are optimized with
Equation 4 for all frames by fixing p at the selected value.

B. Reliability of prediction

The variance of the prediction error σ2(c) is estimated with the pre-
dictive variogram function of pose distance metrics as,

σ2(c) =

N∑

i=1

biγ
∗(∥c − ci∥; p, θ) .

This value vanishes at the sample location ci because of the rela-
tions bi(ci) = 1, bi(c j,i) = 0 and σ2(ci) = γ

∗(0; p, θ) = 0. The
estimate increases according to the distance from ci, and takes the
maximum value of γ∗(∞; p, θ) = θ0 + θ1 at the locations that have
no spatial correlations with the sampled locations. We then define
the reliability of prediction ρ(c) as a normalization of σ2(c):

ρ(c) = 1.0 − σ2(c)/(θ0 + θ1)

where ρ(ci) = 1.0 and lim∥c∥→∞ ρ(c) = 0.0 hold.
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