
Geostatistical techniques for approximate location of pipe

burst events in water distribution systems

Michele Romano, Zoran Kapelan and Dragan A. Savić

ABSTRACT

This paper focusses on the customisation and further enhancement of the recently developed

data-driven methodology for the automated near real-time detection of pipe bursts and other

(e.g. sensor faults) events at the district metered area (DMA) level. Assuming the availability of

pressure/flow data from an increased number of sensors deployed in a DMA, the aim is to:

(i) overcome the limitations of the probabilistic inference engine when dealing with the increased

data availability; and (ii) exploit the event information resulting from the analysis of the larger number

of DMA signals for determining the approximate location of the pipe burst events within the

DMA. This is achieved by making use of a multivariate Gaussian mixtures-based graphical model and

geostatistical techniques. The novel detection and location methodology is demonstrated and tested

on a series of simulated pipe burst events that were performed by opening hydrants in a real-life

DMA in the UK. The results obtained illustrate that the new methodology can successfully determine

the approximate location of pipe bursts within a DMA (in addition to detecting them in a fast and

reliable manner). The performance comparison of several geostatistical techniques shows that the

Ordinary Cokriging technique outperforms all other techniques tested.
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INTRODUCTION

The problem of pipe burst events in water distribution sys-

tems (WDSs) is a compelling issue for the water companies

worldwide. Pipe bursts not only cause economic losses to

the water companies (Colombo & Karney ) but also rep-

resent an environmental issue (i.e. waste of water and

energy) and a potential risk to public health (Sadiq et al.

). Furthermore, they have a negative impact on the

water companies’ operational performance, customer

service and reputation.

In the UK, despite the significant effort put into the on-

going rehabilitation and maintenance of the water supply

infrastructure, the number of incidents caused by pipe

burst events is still significant. This situation is mainly

because the majority of water supply pipes were installed

in the first part of the twentieth century and hence today

many are in relatively poor condition. Additionally, because

of the stochastic nature of these events, it is impossible to

predict and completely eliminate them. As a consequence,

in their day-to-day operations, the water companies are not

only tasked with operating their WDSs optimally to mini-

mise the costs and to meet the required standards of

service (e.g. in terms of water quality and providing ade-

quate pressure at the customers’ taps), but also with

managing contingency situations when pipe burst events

occur. This additional burden is especially heavy because

the water companies are mainly judged by the public and

the regulatory agencies alike based on how well (or other-

wise) they perform this task. At present, the resulting

potential unplanned interruptions to water supply and the

damaging consequences of pipe bursts are tolerated to a

lesser extent. Consequently, the timely and reliable detection

and location of pipe burst events provides opportunities for

improving the water companies’ operational efficiency and

customer service.
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Currently, many pipe burst event detection and location

techniques that are based on various principles exist (Puust

et al. ). However, none is ideal and the number of tech-

niques currently practised by the water companies is limited.

In many cases, pipe bursts are brought to the attention of a

water company only when someone calls in to report a vis-

ible event. Water companies that embrace modern leakage

management technologies devote considerable manpower

and resources to proactively detect and locate the pipe

bursts by utilising techniques that make use of highly

specialised hardware equipment (e.g. leak noise correlators,

pig-mounted acoustic sensors, ground penetrating radar

devices, etc.). Some of these techniques are the most accu-

rate ones in use today (Puust et al. ), but they are also

expensive, labour-intensive, slow to run and may require

the cessation of pipeline operations for long periods of

time. Furthermore, these techniques are generally used

after the pipe burst events have occurred and not in near

real time. Consequently, much research has been focussed

on finding equally effective, but faster and non-invasive,

techniques that cost less money to run.

Several techniques exist that promise low-cost solutions

by endeavouring to solve the pipe burst detection and

location problem by numerical analyses only (Puust et al.

). Among these techniques, those that make use of stat-

istical and artificial intelligence (AI) data analysis tools for

automatically processing the operational variables (e.g.

pressure and flow) in an online fashion are of particular

interest for providing a rapid response to pipe burst

events. Primary examples are the techniques presented by

Fenner & Ye (), Mounce et al. (a, ), and Palau

et al. (). These techniques are promising because they

automate the mundane tasks involved in the data analysis

process. They can efficiently deal with the vast amount of,

and often imperfect, sensor data collected by modern super-

visory control and data acquisition (SCADA) systems and

extract information useful in making reliable operational

decisions. Statistical/AI-based techniques also present sev-

eral advantages over other methods such as steady-state

analysis-based (e.g. Pudar & Liggett ; Wu et al. ),

transient analysis-based (e.g. Liggett & Chen ; Kapelan

et al. ), and negative pressure wave techniques (e.g.

Misiunas et al. ; Srirangarajan et al. ). Firstly, they

have a requirement for pressure and/or flow measurements

that are sampled much less frequently (e.g. every 15 min)

than those required for transient analysis. Furthermore, they

rely on the empirical observation of the behaviour of the pipe-

line network, thus precise knowledge of the pipeline and

instrumentation parameters is not required.

It has to be stressed that the above statistical/AI-based

techniques have recently started to appear mainly because

of the latest developments in hydraulic sensor technology

and online data acquisition systems. These developments

have enabled the water companies to deploy a larger

number of more accurate and cheaper pressure and flow

devices and allow data collected by these devices to be

received in near real time. Nowadays, the UK district

metered areas (DMAs) are usually observed by using

pressure and flow sensors located at the DMA entry/

import/export points and a pressure sensor located at the

DMA critical point (i.e. the one located either at the point

of highest elevation or alternatively at a location farthest

away from the inlet). The data streams (i.e. signals) from

these sensors provide a potentially useful source of infor-

mation for detecting and locating pipe burst events both

quickly and economically. As water companies recognise

this fact more and more, and that several other important

benefits are yielded by the monitoring of their WDSs in

near real time (e.g. improved network visibility and manage-

ment, higher compliance with regulatory targets, etc.), an

increase in the density of coverage of pressure/flow

monitoring locations is expected in the near future.

Despite their initial success, the aforementioned statisti-

cal/AI-based techniques can be further improved in terms

of both event detection reliability and detection time.

Furthermore, at present, the available statistical/AI-based

techniques allow the discovery of a pipe burst event in a par-

ticular area within a WDS (e.g. at the DMA level) without

giving any information about its more precise location.

Thus, they can be also improved in terms of pipe burst

event location accuracy (i.e. to indicate more precisely the

likely location of the pipe burst – to restrict the pipe burst

search area).

Romano et al. () described the development of a

methodology for the automated near real-time detection of

pipe bursts and other events (which induce similar abnor-

mal pressure/flow variations) at the DMA level. It works

by analysing simultaneously all the signals coming online
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from the small number of pressure and/or flow sensors

usually deployed in a UK DMA. This methodology offers

noticeable improvements over the existing techniques. The

main improvements involved: (i) using advanced techniques

for more efficient and effective processing of the hydraulic

data gathered (e.g. wavelets for removing noise from the

measured flow and especially pressure signals); (ii) taking

advantage of a number of different ensembles of statisti-

cal/AI techniques (i.e. statistical process control (SPC) and

artificial neural networks (ANNs)) for recognising the var-

ious types of event-occurrence evidence; and (iii) using a

probabilistic inference engine based on Bayesian networks

(BNs) for combining the above evidence and inferring the

probability of an event occurrence. Subsequently, Romano

et al. () further enhanced the above methodology by

using: (1) an evolutionary algorithm (EA) optimisation strat-

egy for automatically selecting the best ANN input

structures and parameters; and (2) an expectation maximisa-

tion (EM) strategy for semi-automatically (re)calibrating the

values in the conditional probability tables (CPTs) of the BN

(whose output is used for raising the detection alarms). It

was shown that the use of this methodology resulted in

more effective, reliable, and faster detection of pipe bursts

and other events in a DMA.

This paper focusses on the customisation and further

development of the event recognition system (ERS), which

implements the methodology recently developed by the

authors (Romano et al. , ). Given the trends in avail-

ability of pressure/flow data from an increased number of

sensors deployed in a DMA, the main aim of the work pre-

sented here is to enhance and extend the capabilities of the

ERS by enabling it to: (i) more efficiently deal with the

increased number of event-occurrence evidence when infer-

ring the probability that an event has occurred; and (ii)

exploit the event information resulting from the analysis of

the larger number of DMA signals to determine the approxi-

mate location of the pipe bursts within the DMA (in

addition to detect them in a fast and reliable manner). In

view of this objective, the ERS’s customisation involves

replacing the BN used in the ERS’s probabilistic inference

engine for inferring the event-occurrence probability at the

DMA level with a multivariate Gaussian mixtures-based

graphical model (Duda & Hart ). This customisation is

done to overcome the BN limitations when dealing with

increased data availability. The ERS’s further development

involves using geostatistical techniques for building a

model to predict the probability value of a burst associated

with each DMA pipe. The intention is to provide a means

by which to identify the group of DMA pipes that most

likely include the failed pipe.

The remainder of this paper is organised as follows. After

this introduction, an overview of the new (i.e. detectionþ

location)methodology is given. This overview is then followed

by two sections presenting the theoretical background and

implementation details of the techniques used for the ERS’s

customisation and further development, respectively. The

latter sections constitute the core of the new contribution pre-

sented in this paper. Next, the results of tests in a UK DMA

with simulated pipe burst events (i.e. engineered events

(EEs)) are presented in the case study section. Finally, the

main conclusions are drawn and acknowledgements given.

Note that several abbreviations are used in this paper. A list

of these abbreviations can be found in Table 1.

EVENT DETECTION AND LOCATION

METHODOLOGY

An automated ERS has been developed recently by Romano

et al. (, ). This section presents a brief overview of

this system necessary to describe the improvements associ-

ated with: (i) its Inference subsystem (i.e. ERS’s

probabilistic inference engine), which is enhanced in this

paper; and (ii) its Location subsystem, which is newly intro-

duced here as part of the ERS’s further development. A

more detailed description of the ERS is available in the

above references.

The data processing in the ERS starts by receiving the data

communicated by the DMA sensors. For each DMA signal

and at each communication interval u readings are obtained.

For example, assuming 15-min sampled data that are commu-

nicated every 30 min to improve the sensors’ battery life, the

value of u is as equal to 2. This said, it is evident that the

value of this parameter depends on the frequency at which

the data are communicated and the sampling frequency of

the measurements. Therefore, this value can be different for

different water companies/SCADA setups. In view of this

situation, it has to be stressed that the ERS’s data processing
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framework is capable of dealing with different communi-

cation/sampling frequency scenarios. The u readings

obtained then update a time series record, which is stored in

the Time Series database. Once all the DMA signals are

fully processed as described below, the resulting u probability

values that an event has occurred in the DMA and the

additional output information useful for enabling the approxi-

mate event location (i.e. event-occurrence probability values

estimated at the sensor locations) are stored in the Alarms

database. If any of the u probability values exceeds a fixed

threshold, an alarm is generated. Following the generation

of an alarm, the additional output information provided by

the ERS is processed further to determine the approximate

location of the event occurring.

Figure 1 shows a diagrammatic representation of the

ERS. As can be observed from this figure, processing of

the pressure/flow data is performed in the five ERS com-

ponents (i.e. dashed/dotted rectangles) as follows:

1. Capturing of the normal operating patterns (NOPs) of the

DMA pressure/flow signals.

2. Identification and estimation of the event-induced devi-

ations between observed (i.e. measured) and captured

DMA signal patterns.

3. Inference about the probability that an event has actually

occurred, based on above deviations.

4. (Re)calibration of the probabilistic inference engine

based on the past events information.

5. Determination of the approximate location of an event

within the DMA.

Note that the first three ERS components are used for

the actual event detection. The fourth ERS component is

used for the initial calibration and the follow-on periodic

recalibrations of the ERS’s probabilistic inference engine.

The fifth ERS component is used for the approximate

event location.

Figure 1 also shows that the aforementioned five ERS

components are further organised into seven subsystems

(i.e. solid snipped corner rectangles) each containing a

number of different modules (i.e. solid rectangles).

The seven ERS subsystems are as follows: (1) the Setup

subsystem; (2) the Discrepancy Based Analysis (DBA)

subsystem; (3) the Boundary Based Analysis (BBA)

subsystem; (4) the Trend Based Analysis (TBA) subsystem;

(5) the Inference subsystem; (6) the Bayesian Inference

System (BIS) parameters learning subsystem; and (7) the

Location subsystem.

The first ERS subsystem (equivalent to first ERS com-

ponent) is used to perform the pressure/flow signal pattern

capturing. The first two modules (i.e. data retrieval and

data pre-processing) are used for retrieving the historical

data from the Time Series database and assembling a set

of data that best represents the most recent NOP of the

DMA signal being analysed (i.e. NOP data set). The latter

is achieved by automatically discarding the pressure/flow

measurements that can be considered as outliers and/or

that are not consistent with the expected pressure/flow vari-

ations, assuming that no event occurred in the DMA. Next,

the third module (i.e. statistics estimation) is used to esti-

mate (from the NOP data set) several vectors of

descriptive statistics (i.e. averages and standard deviations).

These vectors provide basic statistical information about the

Table 1 | List of abbreviations

AI Artificial intelligence

ANN Artificial neural network

BBA Boundary based analysis

BN Bayesian network

BIS Bayesian inference system

CPT Conditional probability table

DBA Discrepancy based analysis

DMA District metered area

EA Evolutionary algorithm

EE Engineered event

EM Expectation maximisation

ERS Event recognition system

IDW Inverse distance weighted

LP Local polynomial

NOP Normal operating pattern

OC Ordinary cokriging

OK Ordinary kriging

RMSE Root mean square error

SCADA Supervisory control and data acquisition

SPC Statistical process control

TBA Trend based analysis

WDS Water distribution system
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DMA signal NOP. The remaining modules (i.e. data de-

noising, ANN parameters and input structure selection,

and ANN training and testing), on the other hand, are

used firstly to remove noise from the NOP data set and

then for: (i) training and testing an ANN model for the

short-term prediction of future DMA signal values; and

(ii) to estimate the ANN model prediction error’s variability.

Note that as the resulting ANNmodel assumes that no event

occurred in the DMA, it provides a model-based type of

information about the DMA signal NOP.

The second, third and fourth ERS subsystems are used

together (i.e. synergistically) to perform the deviations

identification and estimation data analysis in the second

ERS component as follows: (i) the DBA subsystem

checks that the discrepancies between the incoming

observed DMA signal values and their ANN predicted

counterparts do not exceed pre-defined limits based on

the estimated ANN model prediction error’s variability;

(ii) the BBA subsystem checks that the incoming observed

DMA signal values lie inside a ‘data envelope’ whose

boundaries are defined by using the vectors of descriptive

statistics estimated from the NOP data set; and (iii) the

TBA subsystem monitors, on a Control Chart (Shewhart

), how the mean of the historical DMA signal values

recorded during a particular time window during the day

(e.g. from midnight to 4, 4 to 8 a.m., etc.) varies over

time. The reason for using three analysis subsystems is

that, by using an ensemble of different statistical and AI

techniques, each of them focusses on recognising a specific

type of evidence that an event has occurred. Furthermore,

as they perform tasks in parallel they allow simultaneous

assessment of how an event affects the pressure/flow

measurements from different perspectives (e.g. short-term

and long-term effects).

The fifth ERS subsystem (equivalent to the third ERS

component) is used to perform the event probability infer-

ence analysis. Starting from the event-occurrence evidence

generated as described above, various (i.e. one for each

Figure 1 | Diagrammatic representation of the event recognition system components, subsystems and modules.

638 M. Romano et al. | Geostatistical techniques for approximate location of pipe burst events in WDSs Journal of Hydroinformatics | 15.3 | 2013

Downloaded from http://iwaponline.com/jh/article-pdf/15/3/634/387051/634.pdf
by guest
on 04 August 2022



DMA signal) discrete input BN-based Signal level BISs are

used to infer the event-occurrence probability values at the

sensor locations. These probability values are then further

processed in the multivariate Gaussian mixtures-based

DMA level BIS to infer the ‘global’ (i.e. for the DMA

being studied) event-occurrence probability value.

The sixth ERS subsystem (equivalent to the fourth ERS

component) is used to perform the inference engine (re)

calibration data analysis. An EM strategy is used here for

semi-automatically (re)calibrating (i.e. learning) the DMA

level BIS parameters based on information about the past

events that have occurred in the DMA being studied.

Finally, the seventh subsystem (equivalent to the fifth

ERS component) is used to perform the approximate event

location data analysis. In this subsystem, the output infor-

mation resulting from the various Signal level BISs is

processed further by means of geostatistical techniques.

Based on the locations of the deployed sensors, these tech-

niques enable performing spatial interpolation of the event-

occurrence probability variable. As a result, a probability

value of a burst is associated with each DMA pipe.

As shown in Figure 1, the ERS has three main modes of

operation: (1) the ‘Assemble’ mode; (2) the ‘Execute’ mode;

and (3) the ‘Learn’ mode. These modes of operation define

the time schedule according to which data analyses are per-

formed in each subsystem. The ‘Assemble’ mode is used to

‘tune’ the data-driven ERS when it is initialised (i.e. used

for the first time in a DMA). Later on, it is used: (i) regularly

(e.g. weekly) when the ERS is updated (to capture the latest

normal operating conditions of a DMA), thereby providing a

continuously adaptive ERS; and (ii) periodically (e.g. every 3

months) when the ERS is reinitialised (to account for the

seasonal variations in the DMA’s pressure/flow regime,

growing demand over time, etc., or following occasional

operational/other DMA changes, e.g. re-valving). The ‘Exe-

cute’ mode is the normal operating mode used at every

communication interval to detect and approximately

locate the events. Finally, the ‘Learn’ mode may be used

for the initial calibration and for the follow-on periodic reca-

libration of the ERS’s probabilistic inference engine. As the

data analyses performed in this mode of operation have a

requirement for the past events information, its actual utilis-

ation depends on whether or not this information is

available/considered.

MULTIVARIATE GAUSSIAN MIXTURES-BASED DMA

LEVEL BIS
The objective of the DMA level BIS is to infer, at each time

step during a data communication interval, the probability

that an event has occurred in the DMA being studied. This

calculation then enables (by means of a user-defined detec-

tion threshold) the raising of the detection alarms if and

when necessary.

In the ERS presented in Romano et al. (, ), the

DMA level BIS consists of a BN (Edwards ; Jensen

), which combines all the evidence of an event occurrence

resulting from the different ERS analysis subsystems (i.e.

DBA, BBA and TBA) and coming simultaneously from all

the DMA signals. Each node of that BN represents a variable

(e.g. event-occurrence evidence fromaparticular analysis sub-

system, coming from one of the DMA signals at a specific

time) and is discretised into states (e.g. high, moderate or

none). A CPT is associated with each node and contains the

parameters (i.e. probability values) that are used to perform

inference. It has to be stressed that, if an increase in the

number of DMA signals that are simultaneously analysed in

the ERS is assumed, the number of BN inputs and conse-

quently the overall number of BN nodes and parameters in

the CPTs will increase drastically. This situation may affect

the computational efficiency of the inference process. Fur-

thermore, manual specification of all the required CPT

parameters is tedious, and necessitates not only domain

knowledge, but also an understanding of the probabilistic cal-

culus and of the probabilistic graphical models. Even when

the learning of the CPT parameters from the past events is

considered (Romano et al. ), the increased number of

‘missing’ parameters (i.e. those in the hidden BN nodes)

together with the large multidimensional data structure pose

serious challenges to the efficiency of the algorithm for learn-

ing from incomplete data that has to be used.

To avoid the potential computational inefficiency during

the inference process and to circumvent the other difficul-

ties/limitations outlined above, in the customised ERS

presented here, the DMA level BIS consists of a two-class

(i.e. alarm on, alarm off), two-component multivariate Gaus-

sian mixtures-based graphical model (Duda & Hart ).

This DMA level BIS works in an n-dimensional feature

space by inferring, at any time step, the probability that an

event has occurred in the DMA – based on the continuous
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output (i.e. event-occurrence probability value) of the n

Signal level BISs. This situation implies that, unlike the BN-

based DMA level BIS used previously (Romano et al. ,

), the various types of event-occurrence evidence result-

ing from the different data analyses performed on each

DMA signal are not used as input directly. Here, they are

first processed in the Signal level BISs. The outputs of these

BISs are then fed into the multivariate Gaussian mixtures-

based graphical model. This said, note that by processing

the event-occurrence evidence in such a way the new multi-

variate Gaussian mixtures-based DMA level BIS still

enables synergistic combination of the event information

from all the analysedDMA signals, thereby aiming at increas-

ing the reliability of the detection alarms. It is also worth

stressing that the above results in an ERS with a ‘hierarchical

architecture’ (i.e. Signal level BISs–DMA level BIS). This

‘hierarchical architecture’ has the potential to enable (if

desired and/or beneficial) embedding the local detection

intelligence (i.e. data analyses performed on the single

DMA signal) into the sensor device itself (‘smart device’ in

AI jargon). The central detection intelligence (i.e. the data

analysis performed by the DMA level BIS), on the other

hand, can become part of the overall decision support type

system used in the water company’s control room.

Figure 2 shows the structure of the new. It can be

observed from this figure that this graphical model has

three nodes, two of which have discrete parameters for

each of the allowed states of the relevant variables. In the

third node (i.e. input node) the probability distribution is

described using the multivariate Gaussian mixture function

formula. The parameters of the multivariate Gaussian mix-

tures (i.e. means and covariances) together with the other

model’s parameters are determined using the EM algorithm

(Dempster et al. ). The EMalgorithm represents a general

method for estimating likelihood functions. It is useful in situ-

ations in which simpler optimisationmethods fail and it is the

most commonly employed algorithm for learning from

incomplete data (Jensen ). This algorithmwas developed

in the statistics community by Dempster et al. () and

adapted for the use with the graphical models by Lauritzen

(). For a given database of ‘cases’ the EM algorithm deter-

mines estimates of the model’s parameters that are optimal

within a neighbouring set of solutions. It starts with initial

values (e.g. chosen at random) for all the model’s parameters,

and then iteratively refines them. Each iteration ensures that

the likelihood function increases and eventually converges to

a local maximum. The iteration process consists of two steps,

namely the Expectation (E) and Maximisation (M) steps,

which are performed in alternating manner until conver-

gence. Note that a detailed description of the EM

algorithm, as can be applied to estimating the parameters of

a mixture of multivariate Gaussian densities, can be found

in Redner & Walker ().

APPROXIMATE PIPE BURST EVENT LOCATION

Geostatistical techniques

Geostatistics is a branch of statistics that focusses on spatial

datasets. Applications of geostatistical techniques can be

found in mining engineering, hydrology, geology and many

other fields (see Isaaks & Srivastava ; Cressie ). Geos-

tatistical techniques focus on the relationship between the

value of a variable at a given geographical location and the

values of the same and (possibly) other variables at locations

some distance from it (i.e. at a set of measured locations).

Their basic goal is to interpolate the value of a variable at

locations that have not beenmeasured, using data from the sur-

rounding measured locations. Ultimately, they allow the

creation of a model (i.e. interpolation surface) of how the vari-

able’s values are distributed across the entire domain of

interest.

In this study the following geostatistical techniques have

been considered: (i) the inverse distance weighted (IDW)

interpolation technique (Shepard ); (ii) the localFigure 2 | Structure of the district metered area level Bayesian inference system.
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polynomial (LP) interpolation technique (Gandin ; Cle-

veland & Devlin ); (iii) the ordinary kriging (OK)

technique (Krige ; Isaaks & Srivastava ); and

(iv) the ordinary cokriging (OC) technique (Myers ).

Note that in-depth discussions about these and other geosta-

tistical techniques for spatial interpolation can be found in

the above references and in Cressie (), Deutsch & Jour-

nel () and Banerjee et al. (). Here, an outline of the

main characteristics of the above techniques is given only.

Inverse distance weighted interpolation

IDW interpolation is a deterministic geostatistical technique

that estimates the variable’s value at a prediction (i.e.

unmeasured) location using a linear combination of the

measured variable’s values surrounding the prediction

location. Those values are weighted by an inverse function

of the distance from the prediction location to the measured

locations. IDW assumes that the measured variable’s values

closest to the prediction location have the greatest influence

on the predicted variable’s value. The variable’s value at a

prediction location s0, is computed as follows:

Ẑ(s0) ¼
X

n

i¼1

λiZ(si) (1)

where n is the number of measured variable’s values sur-

rounding the prediction location, λi are the weights

assigned to each measured variable’s value, and Z(si) is

the measured variable’s value at the location si. The weights

are determined as follows:

λi ¼
d�p
i0

Pn
i¼1 d

�p
i0

where
X

n

i¼1

λi ¼ 1 (2)

where di0 is the distance between the prediction location

and each of the measured locations. As di0 increases, a

weight approaches zero. The factor p is a power parameter

that influences how fast the weighs decrease as di0 increases.

The choice of the p value is arbitrary (Webster & Oliver

). The most popular choice of p is 2 (Li & Heap ).

IDW interpolation is one of the simplest geostatistical

techniques. However, it does not take advantage of the

spatial correlation structure of the data explicitly. Further-

more, IDW is an exact interpolation technique. That is, it

predicts a variable’s value identical to the measured vari-

able’s value at a measured location. This situation implies

that this technique may generate surfaces with sharp peaks

or valleys. Finally, the interpolated values at any location

within the domain of interest are bounded by the maximum

and minimum of the measured variable’s values. This factor

is considered to be an important shortcoming because, in

order to be useful, an interpolation surface should predict

accurately certain important features of the ‘true’ surface.

For example, the locations and magnitudes of maxima and

minima, even when they are not included in the set of

measured variable’s values (Lam ).

Local polynomial interpolation

LP interpolation is a deterministic geostatistical technique

that finds its roots in the trend surface analysis theory.

Trend surface analysis assumes that the variable’s values

in the domain of interest are a function of the geographic

coordinates. Each measured variable’s value Z(s), is con-

sidered to be the sum of a deterministic polynomial

function of the geographic coordinates f (x, y) (i.e. trend sur-

face), plus a random error term ε (Webster & Oliver ):

Z(s) ¼ f(x, y)þ ε (3)

The polynomial function can be expanded to any

desired degree. The coefficients of the polynomial function

are found by the method of least squares, which makes

sure that the sum of the squared deviations from the trend

surface is minimised. The variable’s values at the prediction

locations are then estimated by substituting the coordinates

of the prediction locations into the polynomial function (i.e.

the predicted variable’s values are approximated by the

fitted trend surface).

In the framework outlined above, LP interpolation uses

the variable’s values at the measured locations within loca-

lised (and overlapping) windows rather than using the

variable’s values at all the measured locations. This situation

implies that a set of ‘local’ trend surfaces are fitted to the

measured variable’s values and then patched together to
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construct the final interpolation surface. The window can be

moved around and the surface value at the centre of the

window is estimated at each point.

Similarly to the IDW interpolation, LP interpolation

does not take advantage of the spatial correlation structure

of the data explicitly. Indeed, it only uses the geographical

coordinates to predict the variable’s values. However, LP is

an inexact interpolation technique. When the input dataset

exhibits short-range variation, LP interpolation can be a

good method to capture the finer details (Akima ).

Ordinary kriging

OK is the most widely used version of Kriging. It is similar to

the IDW interpolation technique, in that it uses a weighted

linear combination of the measured variable’s values sur-

rounding the prediction location to estimate the variable’s

value at the prediction location. Because OK is a stochastic

technique, however, two statistical data analysis steps have

to be followed for generating an interpolation surface.

These steps are: (1) quantifying the spatial correlation struc-

ture of the measured variable’s values (also known as

variography); and (2) estimating the variable’s values at

the prediction locations. During the first step, a spatial

dependence model is fit to the variable’s values at the

measured locations. During the second step, the fitted

model from variography, the spatial data configuration of

the prediction locations and the measured variable’s

values surrounding the prediction locations are used to per-

form prediction. By following this procedure, OK provides a

solution to the problem of estimation of the interpolation

surface that takes into account the spatial correlation

structure of the data.

In the OK technique, the predictions are based on the

following model:

Z(s) ¼ μþ ε(s) (4)

where Z(s) is the variable’s value at location s, μ is an

unknown constant mean, and ε(s) is the spatially correlated

part of variation. The predictions are made according to

Equation (1). Here, however, the weights are based not

only on the distance between measured and prediction

locations, but also on the overall spatial arrangement

among the measured locations and their values.

OK presents several advantages over the IDW and LP

interpolation techniques. Firstly, OK provides the best

linear unbiased estimate as it attempts to optimise the

weights assigned to the variable’s values at the neighbouring

measured locations. Secondly, the methodology also pro-

vides the Standard Error at the prediction locations and

gives an indication of the reliability of the estimate. Further-

more, it does not produce edge effects resulting from trying

to force a polynomial to fit the data.

Ordinary cokriging

OC is a stochastic technique that can be seen as an extension

of OK to the case of more than one variable (Journel &

Huijbregts ). Similarly to OK, the method computes the

interpolated values of the variable of interest by optimising

the weights assigned to the variable’s values at the neighbour-

ing measured locations based on the spatial correlation

between the measured variable’s values. However, OC also

relies on the relationship between the variable of interest

and other variables (secondary/auxiliary variables) and uses

the information from other variables in an attempt to create

a better prediction model.

In the case of two variables U and V that are spatially

correlated, the OC predictions are made according to the

following formula:

ẐU s0ð Þ ¼
X

nU

i¼1

λUiZU sið Þ þ
X

nV

j¼1

λVjZV sj
� �

(5)

where ẐU s0ð Þ is the estimate for U at the prediction

location s0, nU and nV are the number of measured

values (used for the prediction) of the primary variable

U, and of the secondary variable V, respectively, ZU(si) is

the measured value of the primary variable at the location

si, ZV(sj) is the measured value of the secondary variable at

the location sj, and λUi and λVj are the associated weights.

In OC, besides the experimental semivariograms for both

U and V, information on the joint spatial co-variation (i.e.

interaction) of both variables is taken into consideration

as well.
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OC presents the same advantages of OK over the IDW

and LP interpolation techniques. OC, however, may improve

the predictions and reduce the variance of the estimation

error by drawing on the additional information from the

other spatially correlated variables to help with interpolation.

Pipe burst event location procedure

Considering the event-occurrence probability value as the

variable of interest and, in the case of OC only, the

measured pressure as the secondary variable, the geostatisti-

cal techniques described in the previous sections are used in

the Location subsystem of the further developed ERS for

estimating the probability values of a burst event associated

with the DMA pipes. This outcome is achieved according to

the procedure outlined below.

Once an alarm is raised by using the customised ERS, the

available values of the variable of interest estimated at the

sensor locations (i.e. output of the various Signal level

BISs) together with, in the case of OC only, the values of

the secondary variable measured at the sensor locations are

used to build a geostatistical interpolation surface. This

interpolation surface, in turn, is used to estimate the prob-

ability values of a burst event at every network junction

(node, i.e. prediction locations). Note that, to be consistent,

each of these probability values has to be used only as a

first estimate of the probability of a burst event occurring in

the pipes connected at the particular network junction.

Once this estimate is done, a probability value of a burst

event occurring at a pipe is calculated for each DMA pipe

by taking the average of the burst probabilities estimated at

the two pipe end nodes. Note that, in the case of the two sto-

chastic geostatistical techniques (i.e. OK andOC), an average

standard error of interpolated junction values is also calcu-

lated for each pipe in order to assess the uncertainty of the

predictions. Finally, the DMA pipes are grouped based on

their burst probability values. Here, this grouping is carried

out using the Jenks natural breaks classification method

(Jenks ). This method allows determination of the best

arrangement of the burst probability values into a user-

defined number of classes by seeking to minimise each

class’s average deviation from the classmean, whilemaximis-

ing each class’s deviation from themeans of the other classes.

In other words, the method seeks to reduce the variance

within classes and maximise the variance between classes.

As a result of the application of this procedure, the group of

DMA pipes with the highest predicted burst probability

values indicates the DMA area where the pipe burst event

has most likely occurred.

The procedure outlined above is repeated at every time step

after an alarm is raised (e.g. every 15 min). However, due to the

dynamics of a pipe network, a burst event might affect the

pressure/flowmeasurements from different sensors at different

times. Thus, in order to obtain a more precise indication of the

likely burst event location as time progresses, the ERS uses the

Signal level BISs’ output and, in the case of OC only, the

measured secondary variable’s values at the time steps follow-

ing detection, in a cumulative fashion. Further details about

this calculation can be found in Romano et al. ().

Test of prediction performance

The evaluation of the performance of the different

geostatistical techniques being tested is based on the cross-

validation technique (Devijver & Kittler ). Cross-

validation removes each of the m sensor locations si, one at

a time, and estimates the associated burst probability value

Ẑ(si) using the remaining sensor locations. The estimated

and actual burst probability values Z(si) are then compared

and a summary statistics is computed. The summary statistics

used in this study is the root mean square error (RMSE):

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

m

X

m

i¼1

[Ẑ(si)� Z(si)]
2

v

u

u

t (6)

The RMSE is the square root of the sum of the squared

residuals. This statistics not only allows seeing how closely a

resulting interpolation surface estimates the actual burst

probability values, but may also be used to compare the per-

formance of different geostatistical techniques. The smaller

the RMSE value, the better is the performance.

CASE STUDY

The data analyses reported here aimed at testing and illus-

trating the capabilities of the new event detection and
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location methodology. Furthermore, they aimed to compare

the performances of the different geostatistical techniques

considered for the approximate location of an event within

a DMA.

The DMA being studied is predominantly rural. It has

17.8 km of pipes and a total of 925 customer connections.

Its configuration is a combination of loops and branches.

The data used in this study were recorded on 6 and 7

August 2008. They consisted of 15-min readings from 13

pressure sensors, which were deployed in the DMA being

studied for the purpose of carrying out a series of EEs.

The EEs considered here were carried out on 7 August

2008. Specifically, five hydrants, in different locations and

at different times, were opened to create additional network

flows to waste, thereby simulating the pipe burst events.

Although only pressure data were analysed in this study,

the new detection and location methodology can be used for

the analysis of flow data as well as or for the analysis of

pressure and flow data simultaneously. However, as the pre-

sented methodology is based on the assumption that data

from an increased number of sensors deployed in a DMA

are available, the rationale for analysing pressure data only

is as follows. It is envisaged that, in the near future, the

deployment of an increased number of pressure sensors

would be the water companies’ preferred choice. This pre-

diction is motivated by the fact that pressure sensors can

be installed at lower costs than flow sensors and their cali-

bration and maintenance requirements are also far less

onerous. Additionally, by analysing the pressure data only,

this study also aims to prove that, supported by a suitable

data analysis methodology, pressure sensors can play an

important role in the context of near real-time event detec-

tion and location – despite pressure data being considered

less reliable than flow data (Mounce et al. b).

In the case study presented here, in order to circumvent

the lack of historical data from the 13 sensors considered

(as they were temporarily installed for the purpose of carrying

out the EEs only), several changes to the way the ERS pre-

sented in the methodology section normally works (see also

Romano et al. , ) had to be implemented. For example,

the BBA and TBA subsystems had to be omitted as the data

analyses in these subsystems have a requirement for several

weeks of historical data. This omission was easily achieved

due to the fact that ERS is fully modular and did not affect

the validity of the results obtained. The use of the historical

data from sensors permanently installed in the DMA could

have only further improved the ERS performance.

In the light of the aforementioned limited data avail-

ability, the changes that had to be made to the way the

ERS normally works resulted in the data analysis procedure

described below. For each signal, the raw pressure data

recorded during 6 August 2008 (day of data during which

no EEs were carried out) were first checked for erroneous

time stamps/missing values, repaired accordingly and then

taken as representative of the signal’s daily variations,

assuming that no burst occurred in the DMA (i.e. NOP

data set). Subsequently, noise from the NOP data set was

removed, and the de-noised NOP data set was used for train-

ing and testing an ANN model for the one-step ahead

prediction of future signal values.

The ANN model used here is based on a feed-forward

multilayer perceptron ANN (Bishop ) with a hyperbolic

tangent transfer function used for the neurons in the single

hidden layer and a linear transfer function used for the

neuron in the output layer. The ANN is trained using the

back-propagation method (Rumelhart et al. ). With

regard to the training and testing of this ANN model, note

that the ANN parameters & input structure selection

module (see Romano et al. ) was not used. Here, the

ANN parameters and input structure employed for all the

ANN models (i.e. relative to the 13 pressure signals) were

the same and chosen in such a way that the resulting ANN

prediction models were able to closely approximate the train-

ing sets whilst allowing good generalisation performance.

Once the ANN prediction model for the signal being

analysed was available, the DBA subsystem was used for:

(i) comparing the DMA signal values recorded during 7

August 2008 to their ANN predicted counterparts; (ii) iden-

tifying/estimating, at each time step (i.e. 15 min), significant

(i.e. indicative of an event occurrence) discrepancies

between those values; and (iii) further processing the ident-

ified discrepancies by using Control Rules (Shewhart ) to

provide reliable evidence of an event occurrence. The result-

ing evidence was analysed next in the relevant Signal level

BIS. At each 15-min time step, this Signal level BIS inferred

the probability of an event occurring. Finally, once all

the pressure signals were fully processed according to the

procedure outlined here, the event probabilities from the
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13 Signal level BISs were: (i) simultaneously analysed by the

customised DMA level BIS (i.e. multivariate Gaussian mix-

tures-based) in order to raise the detection alarms; and

(ii) simultaneously analysed in the Location subsystem in

order determine the approximate location of the simulated

burst event within the DMA. Note that the parameters of

the DMA level BIS were learned using the EM algorithm

and information (i.e. start time and duration) about the

first two EEs carried out on 7 August 2008.

Table 2 reports the obtained ERS detection times for all

the simulated pipe burst events and the corresponding

hydrant opening and closing times. The actual hydrant

flow rates and their corresponding values expressed as per-

centage of the average DMA inflow are also given. As can

be seen from this table, all the simulated pipe burst events

were identified at the best possible detection times (bearing

in mind the 15-min sampling interval used). Furthermore, no

false alarms were raised. Note, however, that because of the

way in which the DMA level BIS parameters were learned,

it was not unexpected that the first two EEs were correctly

and timely detected.

In addition to detecting the simulated pipe burst events

in a fast and reliable manner, the further developed ERS

also allowed determination of the approximate location of

the opened hydrants (i.e. location of the simulated pipe

burst events).

Figure 3 shows the location results obtained using the

four tested geostatistical techniques when the first pipe

burst event simulated on 7 August 2008 was considered.

The cumulative procedure mentioned in the approximate

pipe burst event location section was applied. In this

regard, note that the location results shown in Figure 3

refer to the third time step after the event was detected (i.e.

9:15 a.m.) and that, as an example, Figure 4 shows how the

interpolation surface obtained using the OC technique

changes with time following the event detection. Figure 3 is

divided into four quadrants that refer to the results obtained

using: (1) the OC (Figure 3(a)); (2) the OK (Figure 3(b)); (3)

the LP (Figure 3(c)); and (4) the IDW (Figure 3(d)) geostatis-

tical techniques. Each of the four quadrants shows the DMA

pipes grouped using the Jenks natural breaks classification

method and coloured according to their burst event prob-

ability value. The higher the value of the burst event

probability for a pipe the more likely it is that this pipe is

the ‘failed’ pipe. In each of the quadrants, the locations of

the deployed pressure sensors are indicated using square

symbols and the real location of the opened hydrant is indi-

cated by a star symbol.

As it can be seen in Figure 3, when the OC or the OK

techniques were used, the group of DMA pipes in the proxi-

mity of the ‘failed’ pipe was successfully identified. This

situation was not the case when the two deterministic

Table 2 | Event recognition system alarm start/end times, hydrant opening/closing times,

actual hydrant flow rates, and hydrant flow rates as percentage of the average

district metered area inflow

Alarm

start

time

Alarm

end

time

Hydrant

opening/

closing

time

Actual

hydrant

flow rate

(l/s)

Hydrant

flow rate as

% of the

average

DMA inflow

First event 08:30 09:15 08:25 0.00 –

08:26 5.00 51

08:34 6.67 68

09:29 0.00 –

Second event 09:45 10:30 09:33 0.00 –

09:34 5.17 53

09:35 5.75 58

09:36 6.25 63

10:24 18.83 191

10:37 0.00 –

Third event 11:00 11:45 10:56 0.00 –

10:57 5.00 51

10:58 6.67 68

11:56 18.33 186

11:58 0.00 –

Fourth event 12:15 13:00 12:06 0.00 –

12:07 6.17 63

12:08 7.33 74

13:05 13.00 132

13:09 0.00 –

Fifth event 13:30 14:15 13:17 0.00 –

13:18 5.00 51

13:19 7.00 71

13:30 7.50 76

13:32 5.00 51

14:18 5.00 51

14:20 0.00 –
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geostatistical techniques (i.e. LP and IDW) were used. Fur-

thermore, by comparing the results shown in the two top

quadrants, it is possible to observe that the OC technique

allowed a more precise indication of the likely location of

the ‘failed’ pipe to be obtained. Indeed, the number of

DMA pipes in the group of DMA pipes with the highest

burst event probability values is reduced. Therefore the

burst event search area is reduced as well. Note that similar

Figure 3 | The first engineered event location results using the ordinary cokriging (a), the ordinary kriging (b), the local polynomial (c), and the inverse distance weighted (d) geostatistical

techniques.
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results were obtained for the other four simulated burst

events. However these results are not shown here due to

space restrictions.

To support the above findings, Table 3 reports the values

of the RMSE (i.e. performance indicator) calculated for each

of the four tested geostatistical interpolation techniques and

for all the simulated pipe burst events. This table clearly

shows that the interpolation surfaces obtained using the

OC technique outperform the interpolation surfaces

obtained using the other geostatistical techniques. Thus, it

confirms that better prediction models can be obtained by

simultaneously considering the information from the corre-

lated pipe burst probability and pressure variables.

It is important to note that the approximate pipe burst

event location methodology effectiveness/accuracy depends

on the number of pressure (and/or flow) devices deployed in

the DMA – the more the better. Furthermore, it depends on

the spatial layout of these devices within the DMA. To sup-

port these statements, the four scenarios analysed are shown

Figure 4 | Ordinary cokriging interpolation surface over four consecutive time steps starting from the time the first engineered event was detected.

Table 3 | Root Mean Square Errors

OC OK LP IDW

First event 0.175 0.177 0.178 0.204

Second event 0.135 0.135 0.136 0.140

Third event 0.126 0.129 0.129 0.132

Fourth event 0.102 0.147 0.152 0.154

Fifth event 0.094 0.100 0.104 0.154

OC, Ordinary cokriging; OK, Ordinary kriging; LP, Local polynomial; IDW, Inverse distance

weighted.
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in Figure 5. In each of these scenarios a different number of

sensors, which are arranged according to a specific spatial

configuration, is considered. In all these scenarios, the OC

geostatistical technique was used to determine the approxi-

mate location of the first pipe burst event simulated on 7

August 2008.

Figure 5 | The first engineered event location results using the ordinary cokriging geostatistical technique for analysing the pressure data from three sensors (a), six sensors located as in

scenario 2 (b), nine sensors (c), and six sensors located as in scenario 4 (d).
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By observing Figure 5, it can be seen that in scenario 1

the ERS was not able to identify the group of DMA pipes

in the proximity of the ‘failed’ pipe. In the remaining three

scenarios, on the other hand, the group of DMA pipes in

the proximity of the ‘failed’ pipe was identified successfully.

However, in scenario 3 (i.e. nine sensors arranged as shown

in the bottom-left quadrant of Figure 5) the ERS provided a

more precise indication of the likely location of the ‘failed’

pipe than the one provided in either scenario 2 (i.e. six sen-

sors arranged as shown in the top-right quadrant of Figure 5)

or scenario 4 (i.e. six sensors arranged as shown in the

bottom-right quadrant of Figure 5).

Furthermore, by comparing scenarios 2 and 4, it is poss-

ible to observe that, although the same number of sensors

was used, the spatial arrangement of the deployed sensors

considered in scenario 4 enabled the ERS to indicate the

likely location of the ‘failed’ pipe more precisely. In view of

this observation, it is worth highlighting that the use of the

approximate pipe burst event location methodology pre-

sented in this paper could/should be supported by the

development and use of a methodology for optimising the

number and spatial arrangement of the sensors to be

employed in order to achieve a required degree of location

accuracy, no matter where in the DMA the pipe burst event

occurs. The development of such a methodology is an active

area of research (e.g. Farley et al. , ). Having said

this, note that this topic is beyond the scope of the work

presented here and hence will not be discussed in greater

detail.

Finally, as mentioned in the approximate pipe burst

event location section, a further advantage yielded by the

use of the stochastic geostatistical techniques over the deter-

ministic ones is the possibility of assessing the ‘quality’ of

the predictions. Figure 6 shows, as an example, a map of

the OC Standard Error for the first EE. Similarly for each

of the quadrants in Figure 3, in this figure the locations of

the deployed pressure sensors are indicated by using

square symbols, the real location of the opened hydrant is

indicated by a star symbol, and the Jenks natural breaks

classification method is used for grouping the DMA pipes.

Here, however, the DMA pipes are grouped and coloured

according to their Standard Error value. The lower the

value of the Standard Error for a pipe, the higher the confi-

dence that the predicted pipe burst probability value for that

pipe is close to its ‘real’ value (i.e. good estimate). From this

figure, it is possible to observe that the predicted pipe burst

probability values are more accurate the closer they are to

the sensor locations. Note that a similar qualitative behav-

iour was observed for the other EEs and when the OK

technique was used.

CONCLUSIONS

The wider availability of more accurate and cheaper

pressure/flow sensors allows us to envisage that an increased

number of these devices (particularly pressure sensors) will

be deployed in the UK DMAs in the near future. In this

paper, a new event detection and location methodology,

which effectively exploits the data from a larger (than cur-

rently used in the UK practice) number of deployed

sensors, has been presented. In particular, the customisation

and further development of the ERS recently developed by

the authors have been described. The ERS’s customisation

involved using a multivariate Gaussian mixtures-based

DMA level BIS to deal more efficiently with the increased

Figure 6 | Ordinary cokriging standard error map for the first engineered event.
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data availability. The ERS’s further development involved

using geostatistical techniques for processing in near real

time the output information from the Signal level BISs and

building a model to predict the probability value of a burst

associated with each DMA pipe. As an ensemble, they

enable the new ERS to not only detect pipe burst events

but also determine their approximate location within a

DMA.

The detection and location capabilities of the presented

methodology have been tested here by applying the custo-

mised and further developed ERS to the analysis of

pressure data recorded during a series of EEs in a UK

DMA. The use of different geostatistical interpolation tech-

niques has also been investigated. The main findings from

these tests are briefly summarised below.

Using the pressure measurements only, the new method-

ology: (i) detected all the EEs in a reliable (i.e. without false

alarms) and timely manner (all the EEs were detected at the

best possible time); and (ii) successfully approximately

located the simulated pipe burst events at different location

within the studied DMA. These results not only demonstrate

the capabilities of the newmethodology but also provide evi-

dence that the pressure data can play an important role in

the context of near real-time event detection and location

in WDS.

The OC technique outperformed the other tested geosta-

tistical interpolation techniques. Even though the use of the

OK technique already allowed successful identification of

the approximate locations of all the EEs, the use of the

OC technique allowed more accurate identification (i.e.

reducing the burst event search area).

It can be concluded that the customisation and further

development of the ERS extends the capabilities of the

proactive and fully automated methodology recently devel-

oped by the authors. The effective, reliable and timely

detection of pipe burst events together with the successful

identification of their approximate location, which could

be achieved using the proposed methodology, can facilitate

prompt interventions and repairs. This situation, in turn,

may reduce the potential damage to the infrastructures

and to third parties and improve the water company’s oper-

ational performance and customer service, thereby yielding

substantial improvements to the state-of-the-art in near real-

time WDS incident management.

ACKNOWLEDGEMENTS

This work is part of the first author’s PhD sponsored by the

University of Exeter. The DMA data used in the paper have

been collected as part of the Neptune project funded by the

UK Engineering and Physical Sciences Research Council

(EP/E003192/1) and provided by Mr Ridwan Patel from

Yorkshire Water, which is gratefully acknowledged. The

role of the University of Sheffield in field trials is also

acknowledged. The work presented in this paper has been

patented (Publication No. WO/2010/131001).

REFERENCES

Akima, H.  A new method of interpolation and smooth curve

fitting based on local procedures. Journal of Association for

Computing Machinery 17, 589–602.

Banerjee, S., Carlin, C. P. & Gelfand, A. E.  Hierarchical

Modeling and Analysis for Spatial Data. Monographs on

Statistics and Applied Probability. Chapman and Hall/CRC,

Boca Raton, USA.

Bishop, C. M.  Neural Networks for Pattern Recognition.

Oxford University Press, New York.

Cleveland, W. S. & Devlin, S. J.  Locally weighted regression:

an approach to regression analysis by local fitting. Journal of

the American Statistical Association 83, 596–610.

Colombo, A. F. & Karney, B. W.  Energy and costs of leaky

pipes: toward comprehensive picture. Journal of Water

Resource Planning and Management 128, 441–450.

Cressie, N.  Statistics for Spatial Data. John Wiley & Sons,

New York.

Dempster, A. P., Laird, N. M. & Rubin, D. B.  Maximum

likelihood from incomplete data via the EM algorithm.

Journal of the Royal Statistical Society. Series B

(Methodological) 39, 1–38. (Available from http://links.jstor.

org/sici?sici=0035-9246%281977%2939%3A1%3C1%

3AMLFIDV%3E2.0.CO%3B2-Z)

Deutsch, C. V. & Journel, A. G. GSLIB: Geostatistical Software

andUser’sGuide, 2nd edn.OxfordUniversity Press,NewYork.

Devijver, P. A. & Kittler, J.  Pattern Recognition: A Statistical

Approach. Prentice-Hall, Englewood Cliffs, NJ.

Duda, R. & Hart, P.  Pattern Classification and Scene

Analysis. John Wiley & Sons, New York.

Edwards, D.  Introduction to Graphical Modelling, 2nd edn.

Springer-Verlag, New York.

Farley, B., Mounce, S. R. & Boxall, J. B.  Field testing of an

optimal sensor placement methodology in an urban water

distribution network for event detection. Urban Water

Journal 7, 345–356.

650 M. Romano et al. | Geostatistical techniques for approximate location of pipe burst events in WDSs Journal of Hydroinformatics | 15.3 | 2013

Downloaded from http://iwaponline.com/jh/article-pdf/15/3/634/387051/634.pdf
by guest
on 04 August 2022

http://dx.doi.org/10.1145/321607.321609
http://dx.doi.org/10.1145/321607.321609
http://dx.doi.org/10.1080/01621459.1988.10478639
http://dx.doi.org/10.1080/01621459.1988.10478639
http://dx.doi.org/10.1061/(ASCE)0733-9496(2002)128:6(441)
http://dx.doi.org/10.1061/(ASCE)0733-9496(2002)128:6(441)
http://links.jstor.org/sici?sici=0035-9246%281977%2939%3A1%3C1%3AMLFIDV%3E2.0.CO%3B2-Z
http://links.jstor.org/sici?sici=0035-9246%281977%2939%3A1%3C1%3AMLFIDV%3E2.0.CO%3B2-Z
http://links.jstor.org/sici?sici=0035-9246%281977%2939%3A1%3C1%3AMLFIDV%3E2.0.CO%3B2-Z
http://dx.doi.org/10.1080/1573062X.2010.526230
http://dx.doi.org/10.1080/1573062X.2010.526230
http://dx.doi.org/10.1080/1573062X.2010.526230


Farley, B., Mounce, S. R. & Boxall, J. B. Development and field

validation of a burst localisationmethodology. Journal ofWater

Resources Planning and Management.

Fenner, R. A. & Ye, G.  Kalman filtering of hydraulic

measurements for burst detection in water distribution systems.

Journal of Pipeline Systems Engineering and Practice 2, 14–22.

Gandin, L. S.  Objective Analysis of Meteorological Fields.

GIMIZ, Leningrad, Russia. English translation from the

Russian, Israel Program for Scientific Translation, 1965,

Jerusalem, Israel.

Isaaks, E. H. & Srivastava, R. M.  Introduction to Applied

Geostatistics. Oxford University Press, New York.

Jenks, G. F.  The data model concept in statistical mapping.

International Yearbook of Cartography 7, 186–190.

Jensen, F. V.  Bayesian Networks and Decision Graphs.

Springer-Verlag, New York.

Jensen, F. V.  Bayesian networks. Wiley Interdisciplinary

Reviews: Computational Statistics 1, 307–315.

Journel, A. G. & Huijbregts, C. J.  Mining Geostatistics.

Academic Press Inc., London.

Kapelan, Z., Savić, D. A. &Walters, G. A.  A hybrid inverse

transientmodel for leakagedetectionand roughness calibration

in pipe networks. Journal of Hydraulic Research 41, 481–492.

Krige, D. G.  A statistical approach to some mine valuations

problems at the Witwatersrand. Journal of the Chemical,

Metallurgical andMining Society of SouthAfrica 52, 119–139.

Lam, N. S.  Spatial interpolation method: a review. The

American Cartographer 10, 129–135.

Lauritzen, S. L.  The EM algorithm for graphical association

models with missing data. Computational Statistics and Data

Analysis 19, 191–201.

Li, J. & Heap, A. D.  A Review of Spatial Interpolation

Methods for Environmental Scientists. Record 2008/23,

Geoscience Australia, Canberra, Australia.

Liggett, J. A. & Chen, L.-C.  Inverse transient analysis in

pipe networks. Journal of Hydraulic Engineering 120, 934–955.

Misiunas, D., Lambert, M. F., Simpson, A. R. & Olsson, G. 

Burst detection and location in water distribution networks.

Water Science and Technology: Water Supply 5 (3–4), 71–80.

Mounce, S. R., Boxall, J. B. & Machell, J. a Development and

verification of an online artificial intelligence system for burst

detection in water distribution systems. Journal of Water

Resources Planning and Management 136, 309–318.

Mounce, S. R., Farley, B., Mounce, R. B. & Boxall, J. B. b Field

testing of optimal sensor placement and data analysis

methodologies for burst detection and location in an urban

water network. Proceedings of the Ninth International

Conference on Hydroinformatics, Tianjin, China.

Mounce, S. R., Mounce, R. B. & Boxall, J. B.  Novelty

detection for time series data analysis in water distribution

systems using support vector machines. Journal of

Hydroinformatics 13, 672–686.

Myers, D. E.  Matrix formulation of co-kriging. Mathematical

Geology 14, 249–257.

Palau, C. V., Arregui, F. J. &Carlos,M. Burst detection inwater

networks using principal component analysis. Journal of

Water Resources Planning and Management 138, 47–54.

Pudar, R. S. & Liggett, J. A.  Leaks in pipe networks. Journal

of Hydraulic Engineering 118, 1031–1046.
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