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Abstract This paper reviews the main applications of
geostatistics to the description and modeling of the spa-
tial variability of microbiological and physico-chemical
soil properties. First, basic geostatistical tools such as
the correlogram and semivariogram are introduced to
characterize the spatial variability of each attribute sep-
arately as well as their spatial interactions. Then, the
key issue of fitting permissible models to experimental
semivariograms is addressed for the univariate and
multivariate situations. Capitalizing on this model of
spatial dependence, the value of a soil property can be
predicted at unsampled locations using only observa-
tions of this particular property (kriging) or incorporat-
ing additional information provided by other correlated
properties (cokriging). Factorial kriging allows one to
discriminate the different sources of spatial variation in
soil on the basis of the scale at which they operate, and
it often enhances relations between soil attributes
which were blurred in a traditional correlation analysis
where the different sources of variations are mixed.
Geostatistics can also be used to assess the risk of ex-
ceeding critical values (regulatory thresholds, soil quali-
ty criterion) at unsampled locations, and to simulate
the spatial distribution of attribute values. All the dif-
ferent tools are illustrated using two transects of
100 pH and electrical conductivity values measured in
pasture and forest.

Key words Geostatistics 7 Spatial variability 7
Kriging 7 Scale-dependent correlation 7 Stochastic
simulation

Introduction

Soil scientists are aware that soil properties vary spa-
tially, and they have already recorded strong fluctua-
tions even over short distances (Trangmar et al. 1985;
Warrick et al. 1986). Behind a locally erratic aspect,
some spatial structure is often discerned and may be
related to the combined action of several physical,
chemical or biological processes that act at different
spatial scales. The characterization of the spatial varia-
bility of soil attributes is essential to achieve a better
understanding of complex relations between soil prop-
erties and environmental factors. Also, a model of spa-
tial dependence between soil data can later be used to
estimate attributes at unsampled locations, leading, for
example, to better recommendations for the applica-
tion of fertilizers or pesticides.

Geostatistics provides a set of statistical tools for in-
corporating the spatial coordinates of soil observations
in data processing, allowing for description and model-
ing of spatial patterns, prediction at unsampled loca-
tions, and assessment of the uncertainty attached to
these predictions. Since the publication of the first ap-
plications of geostatistics to soil data in the early 1980s
(Burgess and Webster 1980a, b; Webster and Burgess
1980; Burgess et al. 1981), geostatistical methods have
become popular in soil science, as illustrated by the in-
creasing number of studies reported in the literature
(Goovaerts 1998). The use of geostatistics is not con-
fined to physico-chemical soil properties, but studies
have also been conducted on the spatial patterns of soil
micro-organisms (Wollum and Cassel 1984; Webster
and Boag 1992), plants (Vieira et al. 1983; Sutherland
et al. 1991), and other organisms living at the surface of
the soil (Rossi et al. 1992).

The greater accessibility of geostatistical software
(e.g., Englund and Sparks 1991; Pannatier 1996;
Deutsch and Journel 1998) has increased the risk that
geostatistical tools are used without a good command
of the underlying theory, in particular in the field of
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Fig. 1 Transects of 100 pH values measured in the topsoil of a
pasture and a forest plot

Fig. 2 Histograms of soil pH values measured in a pasture and a
forest plot

semivariogram modeling. Moreover, in several situa-
tions, inappropriate or non-optimal approaches are ad-
opted because scientists are unaware of recent develop-
ments, such as factorial kriging, indicator geostatistics
or stochastic simulation.

This paper aims at providing soil scientists with an
applied introduction to basic descriptive and predictive
geostatistical tools such as the semivariogram and krig-
ing, while presenting recent developments in multivar-
iate geostatistics and the modeling of local and spatial
uncertainty. The different tools will be used for a step-
by-step analysis of a one-dimensional set of soil data,
which consists of two transects of 100 topsoil pH and
electrical conductivity values measured every meter in
pasture and forest.

Description of spatial patterns

Figure 1 shows two series of 100 topsoil pH values
measured every meter along transects, one in a pasture
and the other in a forest (Goovaerts et al. 1989). Too
often, analysis of such data amounts to plotting the his-
togram and computing summary statistics such as mean
and standard deviation (Fig. 2). By so doing, one ig-
nores critical information, that is the spatial location of
pH measurements. For example, the comparison of

standard deviations suggests that the variability of pH
is similar for both land uses. The shape of pH transects
indicates, however, that pH values vary over shorter
distances in the forest than in the pasture! This spatial
feature, which may be important for interpretation, is
not captured if one ignores the spatial information.
Geostatistics provides a set of statistical tools for de-
tecting and quantifying the major scales of spatial varia-
bility.

The correlogram

Let z(ua), ap1, 2, . . ., n denote the set of np100 pH
values measured in a pasture, where ua is the vector of
spatial coordinates of the ath observation. Figure 1
(top graph) shows that the distribution of pH values
along the transect is not fully random in that observa-
tions that are close to each other on the ground tend to
be more alike than those further apart. The similarity
between adjacent pH values can be depicted by plotting
each observation z(ua) versus the one measured 1 m
away, z(uach) with hhhp1 m. In this example, 99 pairs
of pH measurements (z(ua), z(uach)) can be formed
from the initial set of 100 values, and the resulting plot
is called an h-scattergram (Fig. 3; left top graph). Read-
ers are likely to be familiar with the scattergram, which
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Fig. 3 Scattergrams between
soil pH values separated by a
distance of 1 m, 2 m, . . ., 10 m.
Note how the correlation be-
tween observations decreases
as the separation distance in-
creases

is a plot of all pairs of values related to two different
attributes measured at the same locations. By analogy,
the h-scattergram is a plot of all pairs of measurements
of the same attribute z (i.e., pH) at locations separated
by a given distance hhh in a particular direction. By
convention, the value at the start of the vector h, z(ua),
is called the tail value, whereas the value at the end,
z(uach), is the head value.

The shape of the cloud of points on the h-scatter-
gram indicates that there is some correlation between
adjacent pH values, and this can be measured using the
linear correlation coefficient which is traditionally used
to assess correlation between different attributes. The
correlation is 0.64 and agrees with our visual impres-
sion that the pH value at any location is related to the
pH measured 1 m away. Intuitively, one would expect
that the relation between pH values weakens for a sep-
aration distance of 2 m, which is confirmed by the sec-

ond h-scattergram of Fig. 3 (right top graph): the corre-
lation drops from 0.64 to 0.51. The increasing inflation
of the cloud of points with increasing distance reflects
the decreasing similarity of measurements farther
apart: the correlation at 10 m is only 0.19!

The plot of the estimated correlation coefficients as
a function of the separation distance is called the ex-
perimental correlogram. Figure 4 (top graph) shows the
correlograms for pH measured in a pasture (solid line)
and in a forest (dashed line), respectively. For the pas-
ture, the correlation becomes negligible at a separation
distance of about 12 m, which is referred to as the range
and is interpreted at the distance beyond which two pH
values can be considered as statistically independent.
The decline in correlation is much sharper in the forest
in that any two pH values 3 m apart can already be con-
sidered as independent. The correlogram thus allows
one to quantify in terms of correlation the visual im-
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Fig. 4 Correlograms and semivariograms for the transects of 100
soil pH values measured in pasture (solid line) and forest (dashed
line)

pression that small-scale fluctuations prevail for the
transect of forest pH values displayed at the bottom of
Fig. 1.

The semivariogram

In the geostatistical literature, spatial patterns are
usually described in terms of dissimilarity (instead of
similarity) between observations as a function of the
separation distance. The average dissimilarity between
data separated by a vector h is measured by the experi-
mental semivariogram ĝ (h), which is computed as half
the average squared difference between the compo-
nents of every data pair:

ĝ(h)p
1

2N(h)

N(h)

A
ap1

[z(ua)Pz(uach)]2, (1)

where N(h) is the number of data pairs for a given dis-
tance, e.g., N (h)p99 for hhhp1 m for the transects of
Fig. 1.

Figure 4 (bottom graph) shows the semivariograms
of pH measured in pasture (solid line) and forest
(dashed line), respectively. In both cases, semivario-

gram values increase with the separation distance, re-
flecting our intuitive feeling that two pH values close to
each other on the ground are more alike, and thus their
squared difference is smaller, than those further apart.
The two semivariograms stop increasing at a given dis-
tance, called the range, which corresponds to the range
identified on the correlogram, and again it can be inter-
preted as the distance of dependence or zone of in-
fluence of pH measurements. Beyond the range, the
two semivariograms fluctuate around the same sill val-
ue, which is roughly equal to the sample variance com-
puted on Fig. 2. In other words, the overall variation of
pH measurements across the transect is similar for both
land uses, yet the larger values of the forest semivario-
gram at short distances indicate that most of this varia-
bility is present over a few meters in forest. The discon-
tinuity at the origin of the semivariogram (i.e., zero sep-
aration distance) is called the nugget effect and arises
from measurement errors or spatial sources of variation
at distances smaller than the shortest sampling interval
or both (Journel and Huijbregts 1978, p. 39). Depend-
ing on the sampling scale, a semivariogram can appear
as a pure nugget effect even if the variation is locally
spatially structured, and so it might be useful to con-
duct a preliminary survey to approximate the major
scales of spatial variation (Oliver and Webster 1986a).

In combination with a good knowledge about the
phenomenon and the study area, such a spatial descrip-
tion can improve our understanding of the physical un-
derlying mechanisms controlling spatial patterns. For
example, McBratney and Webster (1981) related the
periodicity displayed by the correlogram of wheat yield
measured in a 0.4 ha area to an earlier ploughing. Ro-
bertson et al. (1988) found nitrogen availability in a
0.5 ha old field to be highly patterned at scales 20–40 m,
which corresponds to the scales over which plant com-
munity composition varies during early succession, sug-
gesting that the community structure is strongly in-
fluenced by the spatial heterogeneity of available nu-
trients. Goovaerts (1994a) found a remarkable similari-
ty between the shapes of semivariograms for eight soil
chemical properties and six banana leaf contents meas-
ured across a 100 km2 area, and he was able to relate
this common spatial pattern to the geographical distri-
bution of soil types in the study area. Other examples
in earth sciences can be found in Oliver and Webster
(1986b). In the present study, the short-range variabili-
ty of forest pH values probably reflects the local heter-
ogeneity of ground vegetation compared with the uni-
formity of grass cover.

The information collected during soil surveys rarely
reduces to a single transect, but a two-dimensional do-
main is typically sampled. It is thus necessary to charac-
terize the spatial variability along different directions.
For example, Fig. 5 (left column) shows two grids of pH
values which were measured in the same plots as the
two transects of Fig. 1. Semivariograms have been com-
puted along the N-S (solid line) and E-W (dashed line)
directions. Data pairs have been grouped into classes of
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Fig. 5 Grids of soil pH values
measured on 1 ha pasture and
forest plots, and the corre-
sponding semivariograms com-
puted in the NS (solid line)
and EW (dashed line) direc-
tions. For pasture, the varia-
bility is said to be anisotropic
in that it depends on the di-
rection

distances (lags) and angles, [hBDh] and [uBDu], so
that each semivariogram value is computed from a suf-
ficient number of data pairs (i.e., N(h)130). In the ex-
ample of Fig. 5, the two classes of angles are 07B457

and 907B457, whereas the lag tolerance is 5 m. These
graphs show distinct spatial patterns of acidity on both
land uses: pH appears to vary more continuously in
pasture as illustrated by the smaller nugget effect and
larger range of the corresponding semivariogram. An-
other important feature is that the variability of pH val-
ues in pasture is anisotropic, that is it depends on the
direction. The continuous increase of the N-S semivar-
iogram reflects a trend in pH along that direction; the
large pH values in the southern part of the plot are in
fact due to the liming of the neighboring plot a few
hours before sampling.

The cross correlogram

In most situations, several properties are measured on
each soil sample, and geostatistics is increasingly used
to process such multivariate spatial soil information
(Wackernagel 1988; Goovaerts 1992). For example, in
addition to pH, electrical conductivity was measured at
each of the 100 locations along the transect in pasture
(Fig. 6). Typically, the relationship between two soil
properties is assessed by plotting the scattergram of the
two variables and computing the corresponding corre-

lation coefficient (Fig. 7; left top graph). Once again,
such an approach ignores the spatial coordinates of the
measurements.

Instead of looking at the relation between pH and
conductivity measured at the same location, one may
assess the correlation between adjacent observations of
both attributes by plotting each pH value z(ua) versus
the conductivity value measured 1 m away, y(uach)
with hhhp1 m. The so-called cross h-scattergram is dis-
played at the top of Fig. 7 (right graph). Surprisingly,
the correlation between the two attributes increases
with the separation distance, an effect referred to as the
lag effect (Journel and Huijbregts 1978, p. 48). Such an
effect can be observed in geochemistry, where different
rates of precipitation may cause enrichment in some
minerals to lag behind that of others along the direction
of hydrothermal flow. In this particular example, the
lag effect is not backed by any physical interpretation
and most likely reflects sample fluctuations.

Figure 7 shows cross h-scattergrams for a separation
distance up to 10 m. The plot of the estimated correla-
tion coefficient as a function of the separation distance
is called the experimental cross correlogram (Fig. 8, top
graph). Note that two cross correlograms can be com-
puted, depending on whether a pH value is compared
with the conductivity value east of it (easterly direc-
tion) or west of it (westerly direction). In both cases,
the correlation between pH and electrical conductivity
tends to decrease with the separation distance, and be-
comes negligible around 15 m.
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Fig. 6 Transect of 100 pH and electrical conductivity values
measured in the topsoil of a pasture

Fig. 7 Scattergrams between soil pH and electrical conductivity
values separated by a distance of 0 m, 1 m, 2 m, . . ., 10 m. Note
how the correlation between observations decreases as the sepa-
ration distance increases

The cross semivariogram

Instead of looking at the similarity between pH and
conductivity values separated by a vector h say z(ua)
and y(uach), one may consider how these two attri-
butes jointly vary over a vector h, that is the relation
between the increments [z(ua)–z(uach)] and
[y(ua)Py(uach)]. If both attributes are positively cor-
related, an increase (decrease) in pH values from ua to
uach tends to be associated with an increase (de-
crease) in conductivity values. Conversely, a negative
correlation between attributes would entail that an in-
crease (decrease) in pH values tends to be associated
with a decrease (increase) in conductivity values.

A measure of the joint variability of two continuous
attributes z and y is the experimental cross semivario-
gram which is computed as:

ĝZY(h)

p
1

2N(h)

N(h)

A
ap1

[z(ua)Pz(uach)]7[y(ua)Py(uach)] (2)

The rescaling of cross semivariogram values by the cor-
responding direct semivariogram values yields the co-
dispersion coefficient n̂ZY(h) which can be interpreted
as a linear correlation coefficient between the spatial
increments of both attributes (Goovaerts 1997a):

n̂ZY(h)p
ĝZY(h)

;ĝZZ(h)7ĝYY(h)
B [P1,c1] (3)

Figure 8 shows the experimental cross semivario-
gram (middle graph) and codispersion function (bot-
tom graph) between pH and electrical conductivity in
pasture. Note that unlike the cross correlogram, the
cross semivariogram is identical in the easterly and
westerly directions. An interesting feature is the change
in sign of cross semivariogram values, which indicates
that the two attributes vary in opposite ways at short
distances (small scale), whereas at larger distances their
increments are positively related. Such scale-dependent
relations may reflect the existence of different physico-
chemical processes controling the fluctuations in pH
and electrical conductivity values at different scales.
Changes in the correlation between soil attributes as a
function of the spatial scale have been reported in sev-
eral studies, e.g., see Wackernagel (1988), Goulard and
Voltz (1992), Goovaerts (1992, 1994a), Goovaerts and
Webster (1994), and Dobermann et al. (1995, 1997).
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Fig. 8 Experimental cross correlogram and semivariogram for
the transect of 100 soil pH and electrical conductivity values
measured in pasture

The indicator semivariogram

The different tools introduced so far allow the quantifi-
cation of the spatial variability over the full range of
attribute values. In most applications, such description
should be supplemented by the characterization of the
spatial distribution of specific classes of values. For ex-
ample, knowledge of whether large values are clustered
or scattered in space can improve our interpretation of
underlying physical processes. In many environmental
studies, a few random hot spots of large pollutant con-
centrations caused by local human activities coexist
with a natural background of small values (Leonte and

Schofield 1996; Mohammadi et al. 1997). Similarly,
many microbiological processes in soil, such as denitri-
fication, show hot spots of high activity which may be
related to the patchy distribution of organic material in
soil (Parkin 1987; Robertson et al. 1988).

The characterization of the spatial distribution of z-
values above or below a given threshold value zk re-
quires a prior coding of each observation z(ua) into an
indicator datum i(ua;zk), defined as:

i(ua;zk)p51 if z(ua)^zk

0 otherwise
(4)

Indicator semivariograms can then be computed by
substituting indicator data i(ua;zk) for z-data z(ua) in
Eq. (1):

ĝI(h;zk)p
1

2N(h)

N(h)

A
ap1

[i(ua;zk)Pi(uach;zk)]2 (5)

The indicator variogram value 2ĝI(h;zk) measures how
often two z-values separated by a vector h are on oppo-
site sides of the threshold value zk. In other words,
2ĝI(h;zk) measures the transition frequency between
two classes of z-values as a function of h. The greater
ĝI(h;zk), the less connected in space are the small or
large values.

Figure 9 shows the indicator semivariograms com-
puted for the lower and upper quartiles of the distribu-
tions of pH values in pasture and forest. For forest
soils, the two indicator semivariograms have a very
large nugget, which indicates that small and large pH
values are almost randomly distributed along the trans-
ect. Indicator semivariograms for pasture measure-
ments are clearly different: the shorter range of the up-
per quartile semivariogram reflects the existence of
short high-valued (pH larger than 6.92) segments along
the transect, whereas small pH values are better con-
nected in space as indicated by smaller values of the
lower quartile semivariogram.

Indicator cross semivariogram ĝI (h;zk,zkb) can be
computed by substituting indicator data defined for two
different threshold values zk and zkb for z and y-data in
the equation (2):

ĝI(h;zk,zkb)p
1

2N(h)

N(h)

A
ap1

[i(ua;zk)

Pi(uach;zk)]7[i(ua;zkb)Pi(uach;zkb)] (6)

Webster and Boag (1992) used a combination of indica-
tor direct and cross semivariograms to characterize the
spatial distribution of the number of cyst nematodes in
topsoil. They found that as the threshold value zk in-
creased, the range of indicator direct semivariograms
shortens progressively, whereas the nugget effect of the
cross semivariograms decreased, which indicates a
border effect with infestation increasing gradually from
the outside of patches towards their centres. Biological-
ly, the distribution can be explained by the nematode
being spread by cultivation from initial fortuitous foci
of infestation or control by nematophagous fungi or
both.
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Fig. 9 Experimental indicator semivariograms for soil pH values
measured in pasture and forest. The two threshold values corre-
spond to the lower (solid line) and upper (dashed line) quartiles
of the sample distributions of Figure 2

Indicator semivariograms can also be used to charac-
terize the spatial patterns of categorical variables, such
as texture or water table classes, which take only a lim-
ited number of states which might be ordered or not.
Let S be a categorical attribute with possible states sk,
kp1,2, . . .,K. The K states are exhaustive and mutually
exclusive in the sense that one and only one state sk

occurs at each data location ua. The pattern of variabil-
ity of a category sk can be characterized by semivario-
grams of type (5) defined on an indicator coding of the
presence of that category:

i(ua;sk)p51 if s(ua)psk

0 otherwise
(7)

The indicator variogram value 2ĝI(h; sk) measures how
often two locations a vector h apart belong to different
categories skb(sk. The smaller 2ĝI(h; sk), the greater
the spatial connectivity of category sk. For example, ca-
tegorical indicator semivariograms have been used to
characterize the spatial distribution of water table
classes (Bierkens and Burrough 1993a, b) and the spa-
tial arrangement of soil types (Goovaerts 1994b).

Semivariogram modeling

One of the main applications of geostatistics is the pre-
diction of attribute values at unsampled locations. Pre-
diction is made possible by the existence of spatial de-
pendence between observations as assessed by the cor-
relogram or semivariogram. A key step between de-
scription and prediction is the modeling of the spatial
distribution of attribute values. Most of geostatistics is
based on the concept of random function, whereby the
set of unknown values is regarded as a set of spatially
dependent random variables. Each measurement z(ua)
is thus interpreted as a particular realization of a ran-
dom variable Z(ua). Interested readers should refer to
textbooks such as Isaaks and Srivastava (1989, pp. 196–
236) or Goovaerts (1997a, pp. 59–74) for a detailed
presentation of the theory of random functions. An im-
portant characteristic of the random function is its sem-
ivariogram which must be modeled from the experi-
mental values.

The univariate case

Let [ĝ(hk),kp1, . . .,K] be the set of experimental semi-
variogram values computed for a finite number of lags,
say the 25 semivariogram values displayed at the bot-
tom of Fig. 4 for either pasture or forest pH measure-
ments. A continuous function must be fitted to these
values so as to deduce semivariogram values for any
possible lag h required by prediction algorithms and
also to smooth out sample fluctuations. The difficulty is
that only functions that are conditionally negative defi-
nite can be considered as semivariogram models, in or-
der to ensure the non-negativity of the variance of the
prediction error, see later expression (21). In practice,
only a few models are known to be permissible, and
Fig. 10 shows the ones that are included in most geosta-
tistical software. The three top models are bounded in
that they reach a sill either at a given range value
(spherical model) or asymptotically (exponential,
Gaussian model):
I Spherical model with range a

g(h)pSph1h
a2p 51.57

h
a

P0.571h
a2

3

if h~a

1 otherwise
(8)

I Exponential model with distance parameter b

g(h)p1Pexp1Ph
b 2 (9)

I Gaussian model with distance parameter b

g(h)p1Pexp1Ph2

b2 2 (10)

The practical range is defined as the distance at which
the model value is at 95% of the sill, that is 3b for the
exponential model and ;3b for the Gaussian model.
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Fig. 10 Bounded semivariogram models with the same practical
range (top graph), and power models for different values of the
parameter v (bottom graph)

The bottom graph shows power models for different
values of the parameter v:

g(h)phv with 0~v~2 (11)

These functions allow one to model different behav-
iours at infinity (bounded, unbounded) and at the ori-
gin (linear, quadratic) of the semivariogram. Several
authors (McBratney and Webster 1986; Wackernagel
1995; Goovaerts 1997a) have warned users of the risk
of numerical instability when using the Gaussian model
for spatial interpolation (kriging). A common recom-
mendation is to add a small nugget effect to the Gaus-
sian model to destroy its extreme extrapolative proper-
ties and avoid the generation of artifacts in interpolated
maps. A better solution is never to use the Gaussian
model. If the experimental semivariogram appears to
have both an asymptote and an inflexion, it can be
modeled using the following function:

g(h)p1Pexp1Phv

b 2 with 0~v~2 (12)

where the parameter v can be adjusted (Wackernagel
1995, p. 110; Webster 1997). Note that for vp2, one
retrieves the Gaussian model (10). A theoretically
sounder alternative is to use Whittle’s elementary cor-
relation (McBratney and Webster 1986).

Typically, two or more permissible models must be
combined to fit the shape of the experimental semivar-
iogram. For example, the semivariogram of pH on pas-
ture has been modeled using a combination of a nugget
effect and two spherical models of range 6 m and 26 m

Fig. 11 Experimental semivariograms for soil pH values meas-
ured along the pasture and forest transects with the model fitted

(Fig. 11; top graph). The semivariogram of forest pH
has been modeled using a nugget effect and an expon-
ential model of practical range 4 m. Combinations of
permissible models are permissible as long as the con-
tribution of each basic model is positive, that is the
nested model is written as:

g(h)p
L

A
lp0

bl gl (h) with bl60 (13)

where bl is the positive sill or slope of the correspond-
ing basic semivariogram model gl(h).

The way in which these permissible models are cho-
sen and their parameters (range, sill) are estimated is
still controversial (McBratney and Webster 1986;
Goovaerts 1997a, pp. 97–107). Several methods have
been proposed, ranging from full blackbox procedures
in which the choice of model and its fitting are auto-
matic to visual approaches where the model is selected
so that the fit is satisfactory from a graphical point of
view, as in the examples of Fig. 11. An intermediate ap-
proach consists of an automatic (least-squares) estima-
tion of parameters of models chosen by the user. In this
semi-automatic procedure, the objective is usually to
minimize a weighted sum of squares (WSS) of differ-
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ences between experimental ĝ (hk) and model g(hk)
semivariogram values:

WSSp
K

A
kp1

v(hk)7[ĝ(hk)Pg(hk)]2 (14)

The weight v(hk) given to each lag hk is often taken
proportional to the number N(hk) of data pairs that
contribute to the estimate ĝ(hk). The implicit assump-
tion is that the reliability of an experimental semivario-
gram value increases with statistical mass. An alterna-
tive that gives more weight to the first lags consists of
dividing the number of data pairs by the squared model
value: N(hk)/[g(hk)]2 (Cressie 1985).

The value of the WSS criterion is frequently used to
rank alternative models, say to compare the goodness-
of-fit of a spherical model versus an exponential one. In
many situations, the user tends to increase the number
of basic structures in the nested model (13) to lower the
WSS value as much as possible. However, one should
avoid overfitting experimental semivariograms: the
more complicated model generally does not lead to
more accurate estimates. McBratney and Webster
(1986) proposed using the Akaike Information Criteri-
on to achieve a satisfactory compromise between good-
ness-of-fit and parsimony of the model.

Semivariogram modeling is rarely a goal per se. The
ultimate objective is usually to estimate the value of a
soil property at an unsampled place. Cross validation
allows one to compare the impact of different semivar-
iogram models on interpolation results (McBratney and
Webster 1986; Isaaks and Srivastava 1989, pp. 351–
368). The idea consists of removing one datum at a
time from the data set and re-estimating this value from
remaining data using different semivariogram models.
Interpolated and actual values are compared, and the
model that yields the most accurate predictions is re-
tained. A measure of accuracy is the mean absolute er-
ror of prediction (MAE), which is computed as the av-
erage absolute difference between actual and estimated
values at the n sampled locations:

MAEp
1
n

n

A
ap1

hz (ua)Pz*(ua)h (15)

In the presence of anisotropic (direction-dependent)
variation, one must build a model that describes how
the semivariogram changes as the distance and direc-
tion change. Two types of anisotropy are usually distin-
guished: geometric and zonal. In the first case, the di-
rectional semivariograms have the same shape and sill
but different range values that plot as an ellipse as a
function of the azimuth of the direction. An anisotropy
that involves sill values varying with direction is said to
be zonal. These two models of spatial anisotropy are
presented in textbooks such as Isaaks and Srivastava
(1989, pp. 377–390) and Goovaerts (1997a, pp. 90–95).

Regardless of the fitting procedure adopted, one
must keep in mind that the objective is to build a per-
missible semivariogram model that captures the major

spatial features of the attribute under study. The use of
least-squares criteria amounts to reducing semivario-
gram modeling to an exercise in fitting a curve to ex-
perimental values, which I think is too restrictive. Al-
though experimental semivariogram values play an im-
portant role in this process, ancillary information such
as provided by physical knowledge of the area and phe-
nomenon may be of great interest. For example, strong
prior qualitative information may lead one to adopt an
anisotropic model even if data sparsity prevents seeing
anisotropy from the experimental semivariograms com-
puted in different directions.

Bivariate case

Modeling the coregionalization between two variables
Z and Y involves choosing and fitting functions to the
two direct semivariograms gZZ(h) and gZZ (h) plus the
cross semivariogram gZY(h). The difficulty lies in the
fact that the three models cannot be built indepen-
dently from one another. The easiest approach consists
of modeling the three semivariograms as linear combi-
nations of the same set of basic semivariogram models
gl(h):

gZZ(h)p
L

A
lp0

bl
ZZ gl (h)

gYY (h)p
L

A
lp0

bl
YY gl(h)

gZY(h)p
L

A
lp0

bl
ZY gl(h)

The so-called linear model of coregionalization (LMC)
is permissible if: (1) the (Lc1) basic models gl(h) are
permissible, and (2) the coefficients satisfy the follow-
ing necessary and sufficient conditions:

bl
ZZ60, bl

YY60 Gl (16)

hbl
ZYh^;bl

ZZ bl
YY Gl (17)

In practice, the modeling is performed in two steps:
1. Both direct semivariograms are first modeled as lin-

ear combinations of selected basic structures gl(h).
2. The same basic structures are then fitted to the cross

semivariogram under the constraint (17).
This approach was used to fit visually the following
model to the (cross) semivariograms of pH and electri-
cal conductivity displayed in Fig. 12:

gPH(h)p0.007g0(h)c0.01 Sph(h/6 m)
c0.0065 Sph(h/26 m)

gEC(h)p100g0(h)c155 Sph(h/26 m)
gpH-EC(h)pP0.4g0(h)c1.0 Sph(h/26 m) (18)

where g0(h) is a nugget effect model, and Sph(h/6 m) is
the spherical model (8) with range ap6 m. For each of
the three basic models, the coefficients of the direct
semivariograms are positive and the inequality (17) is
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Fig. 12 Experimental direct and cross semivariograms for soil pH
and electrical conductivity along the pasture transect, with the lin-
ear model of coregionalization fitted

satisfied: hP0.4h^;0.0077100, h0h^;0.0170, and
h1h^;0.00657155.

The requirement that all semivariograms must share
the same set of basic structures may sound like a severe
limitation on the linear model of coregionalization.
Variables that are well cross-correlated are, however,
likely to show similar patterns of spatial variability. In
addition, there is no need for the direct and cross semi-
variograms to include all the basic structures; for exam-
ple, the semivariogram of electrical conductivity and
the cross semivariogram do not include the short-range
(6 m) spherical structure.

Multivariate case

Soil studies typically involve more than two attributes,
and it is often necessary to model the coregionalization
for a large number of variables. Checking the permissi-
bility of the LMC becomes cumbersome because the
simple constraints (16) and (17) do not suffice for more
than two variables. Mathematically speaking, one must
check that, for each structure gl(h), the matrix of b-
coefficients is positive semi-definite. A symmetric ma-
trix is positive semi-definite if its determinant and all its
principal minor determinants are non-negative. Consid-
er, for example, the linear model of coregionalization
for three variables Z, Y and X:

3
gZZ(h)
gYZ(h)
gXZ(h)

gZY(h)
gYY(h)
gXY(h)

gZX(h)
gYX(h)
gXX(h)

4p
L

A
lp0 3

bl
ZZ

bl
YZ

bl
XZ

bl
ZY

bl
YY

bl
XY

bl
ZX

bl
YX

bl
XX
4gl (h)

For each structure gl(h), the matrix of coefficients must
satisfy the following seven inequalities:
I All diagonal elements are non-negative:

bl
ZZ60 bl

YY60 bl
XX60

I All principal minor determinants of order 2 are non-
negative:

)b
l
ZZ

bl
YZ

bl
ZY

bl
YY
)pbl

ZZ bl
YYP[bl

YZ]260

)b
l
YY

bl
XY

bl
YX

bl
XX

)pbl
YY bl

XXP[bl
XY]260

)b
l
ZZ
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XZ

bl
ZX
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XX

)pbl
ZZ bl

XXP[bl
XZ]260

I The determinant of order 3 is non-negative:
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YZ bl
XXPbl

XZ bl
YX)

cbl
ZX(bl

YZ bl
XYPbl

XZ bl
YY)60

An iterative procedure that fits the linear model of
coregionalization directly under such a constraint of
positive semi-definiteness has been developed by Gou-
lard (1989). This technique is increasingly used to mod-
el the coregionalization of soil properties (Goovaerts
1992; Goulard and Voltz 1992; Voltz and Goulard 1994;
Webster et al. 1994; Dobermann et al. 1995, 1997).

Spatial prediction

Most geostatistical studies in soil science aim at esti-
mating soil properties at unsampled places and map-
ping them. Kriging is a generic name adopted by the
geostatisticians for a family of generalized least-squares
regression algorithms (Webster 1996). There are many
different kriging algorithms, and most of them are re-
viewed in Goovaerts (1998) with references to soil ap-
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plications. In this paper, only the most common ordina-
ry kriging and cokriging are presented.

Ordinary kriging

Consider the problem of estimating the value of a con-
tinuous soil attribute z at an unsampled location u us-
ing only data on this attribute [z(ua), ap1, . . ., n]. Ordi-
nary kriging (OK) estimates this value as a linear com-
bination of neighboring observations:

z*
OK(u)p

n(u)

A
ap1

la(u)z(ua) (19)

Typically, the 10–20 observations closest to u being es-
timated are retained because they screen the influence
of those farther away, that is n(u)Pn. The key issue is
the determination of the weight la(u) assigned to each
observation.

As for other linear regression procedures, ordinary
kriging weights are chosen so as to minimize the esti-
mation or error variance s2

E(u)pVar [Z*(u)PZ(u)]
under the constraint of unbiasedness of the estimator.
These weights are obtained by solving a system of lin-
ear equations which is known as “ordinary kriging sys-
tem”:

5
n(u)

A
bp1

lb(u) g(uaPub)Pm(u)pg(uaPu)

ap1, . . ., n(u) (20)
n(u)

A
bp1

lb(u)p1

Unbiasedness of the estimator is ensured by constrain-
ing the weights to sum to one, which requires the defi-
nition of the Lagrange parameter m(u). The only infor-
mation required by the kriging system are semivario-
gram values for different lags, and these are readily de-
rived from the semivariogram model fitted to experi-
mental values (recall previous section).

In addition to an estimate for the unknown z-value,
ordinary kriging provides an error variance which is
computed as:

s2
OK(u)p

n(u)

A
ap1

la(u)g(uaPu)Pm(u) (21)

Under stringent hypotheses of normality and homosce-
dasticity, the kriging variance can be combined with the
estimated value to derive a confidence interval; for ex-
ample, the 95% confidence interval is taken as:

Prob{Z(u)B[z*
OK(u)P2sOK(u),z*

OK(u)
c2sOK(u)]}p0.95 (22)

Figure 13 (left column) shows the ordinary kriging esti-
mates and error variances for pH along the transect in
pasture. Only 20 pH values out of the 100 original data
were considered here so that estimated values can be
later compared with actual measurements to assess the

prediction performances of kriging. The estimation was
performed every meter using the ten closest pH values
and the semivariogram model displayed at the top of
Fig. 11. The ordinary kriging estimator is exact in that it
honors observations at data locations, and the kriging
variance is zero there. The error variance increases
away from the data and reaches a maximum value
beyond the extreme right datum (extrapolation situa-
tion).

Besides providing an error variance, kriging has sev-
eral advantages over other interpolation techniques
such as the inverse distances algorithm: (1) it accounts
for the pattern of spatial variability (range, anisotropy)
through the semivariogram model, and (2) it allows es-
timation of the target attribute on a support that is dif-
ferent from the data support, e.g., pH values measured
on soil cores can be used to predict average pH values
on larger surfaces, such as 1 ha plots, which are better
suited for land management (Burgess and Webster
1980b).

Ordinary cokriging

When measurements are sparse or poorly correlated in
space, the estimation of the primary attribute of inter-
est is generally improved by taking into account sec-
ondary information originating from other correlated
continuous attributes. The ordinary kriging estimate
(19) is readily extended to incorporate that additional
information. In the simplest case of a single secondary
attribute Y, the so-called ordinary cokriging (OCK) es-
timate is written as a linear combination of both neigh-
boring primary and secondary data:

z*
OCK(u)p

n(u)

A
ap1

la(u)z(ua)c
nb(u)

A
abp1

nab(u)y(uab) (23)

where secondary data have been measured at possibly
different locations uab. Like ordinary kriging, the objec-
tive is to minimize the error variance under unbiased-
ness constraint, which yields a very complex system of
(n(u)cnb(u)c2) linear equations:

5
n(u)

A
bp1

lb(u)gZZ(uaPub)c
nb(n)

A
bbp1

nbb(u)gZY(uaPubb)

PmZ(u)pgZZ(uaPu) ap1, . . .,n(u)
n(u)

A
bp1

lb(u)gYZ(uabPub)c
nb(u)

A
bbp1

nbb(u)gYY(uabPubb)

PmY(u)pgYZ(uabPu) abp1, . . .,nb(u) (24)
n(u)

A
bp1

lb(u)p1

nb(u)

A
bbp1

nbb(u)p0

There are now two Lagrange parameters to account for
the constraints on primary and secondary data weights,
and the input information comprises the values of di-
rect and cross semivariograms for different lags. The
cokriging variance is computed as:
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Fig. 13 Ordinary kriging and cokriging estimates of soil pH along
the pasture transect, with the corresponding error variances. The
information available consists of 20 pH values (black dots) and
100 electrical conductivity values

s2
OCK(u)p

n(u)

A
ap1

la(u) gZZ (uaPu)

c
nb(u)

A
abp1

nab(u) gYZ(uabPu)PmZ(u) (25)

Figure 13 (right column) shows the ordinary cokrig-
ing estimates and the corresponding error variances for
pH along the transect in pasture. The information
available consists of 20 pH values plus the 100 electrical
conductivity data shown at the bottom of Fig. 6. The
estimation was performed every meter using the ten
closest pH values and the ten closest electrical conduc-
tivity values. The linear model of coregionalization of
Fig. 12 was used to create the cokriging system. Ac-
counting for this additional information yields a more
detailed estimated transect and smaller error variances
than kriging does. The absolute estimation error was
also computed at the 80 locations where the pH value
was ignored, and results show that cokriging yields a
10% reduction of the error: 0.0978 instead of 0.1031 for
kriging. The small magnitude of the reduction is ex-
plained mainly by the weak correlation (rp0.33) be-
tween pH and electrical conductivity. The benefit of co-
kriging over kriging increases as the correlation be-
tween the two attributes increases and as the secondary

information becomes more abundant than the primary
information. Cokriging is thus particularly useful when
a cheap-to-measure attribute is strongly correlated with
the attribute of interest.

Many examples of cokriging can be found in the soil
literature. For example, Yates and Warrick (1987) esti-
mated gravimetric moisture content in a 1 ha plot using
the bare soil surface temperature and the percent sand
content as secondary variables. On a much larger scale,
Gallichand and Marcotte (1993) mapped the clay per-
centage for a study area of 33500 ha using 485 clay con-
tent values and 3488 values of saturated hydraulic con-
ductivity. Several authors (Leenaers et al. 1990; Odeh
et al. 1997) have shown how the readily available digital
elevation model can be used to improve the prediction
of soil attributes through cokriging. Finally, Gotway
and Hartford (1996) demonstrated that accounting for
corn yield measurements through cokriging improved
the prediction of residual nitrate in the field, leading to
better recommendations for variable-rate N fertilizer
application. Beware that several applications of cokrig-
ing in the soil literature do not use a linear model of
coregionalization, and even worse, the permissibility of
the model fitted is rarely checked!

Factorial kriging

Any soil property measured at a certain location in
space is the outcome of several physical, chemical or



328

biological processes. Some of them operate only at mi-
croscopic scales (e.g., biological activities), whereas
others such as weathering of parent material, erosion or
solute transport may act over larger distances. The
combined effect of different sources of spatial variation
that operate at distinct scales yields nested semivario-
grams, such as the semivariogram of pH on pasture
(Fig. 11, top graph) which was modeled as the sum of a
nugget effect and two spherical models of range 6 m
and 26 m:

gpH(h)p0.007g0(h)c0.01 Sph(h/6 m)
c0.0065 Sph(h/26 m) (26)

Factorial kriging or kriging analysis (Matheron 1982;
Wackernagel 1988, 1995; Goovaerts 1992) is a variant
of kriging which aims at estimating and mapping the
different sources of spatial variability identified on the
experimental semivariogram. For example, on the basis
of the semivariogram model (26), the transect of pH
values measured in pasture can be viewed as the sum of
different microscopic (nugget effect), short-range
(6 m), and long-range (26 m) spatial components:

z(ua)pz0(ua)cz1(ua)cz2(ua) Ga

Assuming that these components are independent, the
transect of original pH values is decomposed into local
(microscopic c short-range) and regional (long-range)
components using the approach described in Goovaerts
(1992) (Fig. 14, left column). A similar decomposition
is performed for the transect of electrical conductivity
values on the basis of the semivariogram model of Fig.
12 (middle graph).

Although spatial components are mathematical con-
structions with no a priori physical meaning, they can
help to identify the main sources of spatial variation
and improve our understanding of underlying physical
processes in soil. Goovaerts (1994a) used factorial krig-
ing to separate local variation in soil and vegetation
properties due to field-to-field differences from region-
al variation related to the presence of different soil
types. Webster et al. (1994) used a similar approach to
map local variation in heavy metal concentrations
which are partly due to anthropic activities and regional
changes caused by the geology. Dobermann et al.
(1995) investigated field-scale variation of soil fertility
in the humid tropics, and factorial kriging allowed the
discrimination of short-range variation in P, Ca, Mg
and K topsoil concentrations, which is due to patchy in-
puts of nutrients from buffalo excrement, from long-
range variation related to vertical and lateral soil water
flow along the topographic slope.

Scale-dependent relations

An interesting application of factorial kriging is the de-
tection of scale-dependent correlations between soil at-
tributes, i.e. correlations that change as a function of
the spatial scale. For example, the scattergram of pH

versus electrical conductivity values indicates that these
two soil attributes are weakly correlated along the
transect in pasture (Fig. 15, top graph). Original meas-
urements, however, result from a combination of differ-
ent factors operating at different spatial scales; some of
them such as measurement errors or microscale varia-
tion in biological activities likely reduce artificially the
overall correlation between attributes. This effect is
made clear by looking at the relation between the local
or regional components of pH and electrical conductiv-
ity shown in Fig. 14. Whereas the two attributes are
slightly negatively correlated at a local scale, they dis-
play a strong positive correlation at the regional scale
(Fig. 15, bottom graph), which agrees with the change
of sign of the cross semivariogram noticed on Fig-
ure 8.

Such scale-dependent relations are frequent in soil
science where many properties are controlled by the
same physical processes that operate at different spatial
scales and influence these properties in different ways.
Goovaerts and Webster (1994) found a strong positive
correlation between topsoil cobalt and copper concen-
trations once large micro-scale variations due to meas-
urement and procedural errors were filtered from the
original data. They also showed that the classification
by soil association accounts for a large proportion of
the variance at the regional scale, suggesting that the
parent material contributes substantially more to the
trace element content of the soil than had been thought
earlier on the basis of a classical analysis where all dif-
ferent sources of variation were mixed. Accounting for
the spatial scale in the study of correlation can thus im-
prove our understanding of complex relations between
soil attributes and their environment.

Instead of computing the correlation coefficient be-
tween previously estimated spatial components, the
correlation between two attributes z and y at a particu-
lar scale l can be assessed directly from the parameters
of the linear model of coregionalization as:

l
ZYpCorr[Zl(u),Yl(u)]p

bl
ZY

;bl
ZZ7bl

YY

(27)

Application of expression (27) to the linear model of
coregionalization (18) yields the following structural
correlation coefficients l

ZY for the pair pH-electrical
conductivity: P0.31 and 0.99 at the local (up to 6 m)
and regional (26 m) scales, respectively. These values
are somewhat larger than those of Fig. 15, which are
based on estimated values.

Multivariate factorial kriging is a variant of cokrig-
ing which aims at estimating and mapping the different
sources of spatial variability which are common to the
set of attributes. The maps of the so-called regionalized
factors have been used to summarize major features of
multivariate soil data sets at different spatial scales
identified on the experimental semivariogram (Goov-
aerts 1992; Dobermann et al. 1995). More recently,
Monestiez et al. (1997) used factorial kriging to map
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Fig. 14 Decomposition of the pasture transect of pH and electri-
cal conductivity values into local and regional components on the
basis of the nested semivariogram models of Fig. 12

the short-range (120 km) and long-range (300 km) spa-
tial genetic structures of wild populations of perennial
ryegrass in France.

Advanced geostatistical methods

Although geostatistics is still mainly used for descrip-
tion of spatial patterns and prediction of unsampled
soil attributes, the last 5 years have seen the develop-

ment of new techniques which allow soil scientists to
tackle advanced issues such as the assessment of the
uncertainty about soil quality parameters or soil pollu-
tant concentrations, or the stochastic simulation of the
spatial distribution of attribute values. These topics are
briefly addressed in this section, and the reader should
refer to Goovaerts (1997a, pp. 259–436) or Goovaerts
(1998) for a more detailed presentation.

Assessing the local uncertainty

Mapping metal concentrations or other soil properties
is often a preliminary step towards decision making
such as the delineation of polluted areas or the identi-
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Fig. 15 Scattergrams of pH vs electrical conductivity values: ori-
ginal concentrations and spatial components displayed on Fig.
14 Fig. 16 Kriged estimates of the probability for the soil pH along

the pasture transect to be smaller than 6.68. The information
available consists of 20 pH values (black dots) plus the indicator
semivariogram model

fication of zones that are suitable for crop growth. In
many applications, the focus is on the exceedence of
particular values such as regulatory thresholds for hea-
vy metal contamination or critical values of limiting fac-
tors (e.g., depth to parent material, soil acidity) for soil
quality. There is necessarily some error attached to the
kriging estimate, and this must be accounted for in the
decision rule. Ignoring this uncertainty may, for exam-
ple, lead one to declare safe a contaminated location on
the basis of a wrong estimate of pollutant concentration
which is slightly below the regulatory threshold.

Geostatistics is increasingly used to estimate and
map the risk of exceeding specific threshold values in
soil science (Webster and Oliver 1989; Smith et al.
1993; Goovaerts and Journel 1995; Goovaerts et al.
1997; Mohammadi et al. 1997). The most straightfor-
ward approach is based on a coding of each observation
z(ua) into an indicator of non-exceedence of the target
threshold value zk; recall expression (4)

i(ua;zk)p51 if z(ua)^zk

0 otherwise

The probability that the attribute value z does not ex-
ceed zk at the unsampled location u is then estimated
from the indicator transforms using a kriging estimator
similar to the one developed for continuous attributes.
For example, ordinary indicator kriging builds the
probability estimate as a linear combination of neigh-
boring indicator data:

[Prob{Z(u)^zkh(n)}]*p
n(u)

A
ap1

la(u;zk) i(ua;zk) (28)

where the weights la(u;zk) are obtained by solving a
system of linear equations identical to system (20) ex-
cept that semivariogram values are now derived from
the model gI(h;zk) fitted to the experimental indicator
semivariogram (5).

Figure 16 shows the probability that the soil pH is no
greater than 6.68 along the transect in pasture. These
probabilities were estimated every meter using ordina-
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Fig. 17 Transects of 100 pH values measured in the topsoil of a
pasture (top graph), and the transects of estimated or simulated
values constructed from only 20 observations depicted by black
dots. Three different realizations were generated using stochastic
simulation

ry indicator kriging and the indicator semivariogram
model displayed in Fig. 16. Note that the modeling of
indicator semivariograms follows the same rules as that
of semivariograms of continuous attributes.

Prediction of probabilities is generally improved by
incorporating additional information, e.g., by cokriging
of indicator transforms of both primary and secondary
information. Goovaerts and Journel (1995) showed
how probabilities of deficiency in copper and cobalt
can be derived from the calibration of a soil map and
combined with precise measurements of metal concen-
tration to map the risk of deficiency of these metals in
the soil. They have also introduced the concept of loss
function which, in combination with probability maps,
allowed one to map the economical impact of declaring
wrongly that a location is deficient or sufficient in these
metals. Similar applications to the delineation of con-
taminated soils are presented in Colin et al. (1996) and
Goovaerts et al. (1997).

Stochastic simulation

The comparison of the transects of measured and esti-
mated pH values displayed in Fig. 17 indicates that
kriging smooths out local details of the spatial variation
of pH values in pasture. Such smoothing results from
the least-squares criterion of the kriging algorithm and
leads to an unfortunate overestimation of small values
and underestimation of large values. In stochastic simu-
lation, the aim is not the minimization of the error var-
iance but to generate a set of values that reproduces
statistics such as the sample histogram or the semivario-
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gram model while honoring data at their locations.
Mathematically speaking, each set of values is viewed
as a realization of the random function.

For example, Fig. 17 shows three realizations of the
spatial distribution of pH values generated using the
same information as in kriging, that is, 20 pH values
depicted by black dots and the semivariogram model of
Fig. 11 (top graph). The transects of simulated values
look more “realistic” than the transect of kriging esti-
mates because they reproduce the spatial variability
modeled from the sample information. Stochastic simu-
lation is thus increasingly preferred to kriging for all
applications where the spatial variability of the meas-
ured field must be preserved, such as the delineation of
contaminated areas (Desbarats 1996; Goovaerts 1997b)
or the modeling of solute transport in the vadoze zone
(Vanderborght et al. 1997). Like estimation, simulation
can be accomplished using a growing variety of tech-
niques, and most of them are described in Goovaerts
(1997a, pp. 376–424).

Each of the three realizations shown in Fig. 17 is a
plausible representation of the unique and unknown
distribution of pH values along the transect in that each
simulated transect honors the 20 data and reproduces
approximately the sample histogram and semivario-
gram model. Differences between the three realizations
thus provide a measure of spatial uncertainty: features
such as segments of high pH are deemed certain if seen
on most of the realizations, and their probability of oc-
currence (i.e., probability that a given threshold is joint-
ly exceeded at a series of locations) can be computed as
long as the realizations are equiprobable. Unlike sto-
chastic simulation, indicator kriging provides only a
measure of local uncertainty in that it estimates the
probability that the threshold is exceeded at a single lo-
cation; recall expression (28).

The impact of a given scenario, such as application
of a particular amount of fertilizer, can be investigated
from a simulated map that reproduces aspects of the
pattern of spatial dependence or other statistics
deemed consequential for the problem at hand (e.g.,
connectivity of large values, spatial correlation with
secondary attributes). Moreover, the availability of
many equiprobable realizations allows one to assess the
uncertainty about the consequences of this particular
scenario, such as leaching of fertilizer and contamina-
tion of groundwater, which results from our imperfect
knowledge of the spatial distribution of soil attribute
values.

Conclusions

Any quantitative processing of soil information is in-
complete as long as it takes no account of the spatial
coordinates of observations. Geostatistical characteri-
zation of the spatial variability through semivariograms
or correlograms generally brings new insight into the
way soil attributes are influenced by the environment,

such as geographical distribution of soil types or topo-
graphy. Indicator semivariograms provide additional
information about the spatial distribution of specific
classes of values of continuous attributes as well as ca-
tegorical soil attributes. Cross semivariograms and
cross correlograms complete the description by assess-
ing spatial relations between pairs of attributes.

A key step in any geostatistical analysis is the fitting
of permissible models to the experimental semivario-
gram values. In this paper, basic rules for univariate
and multivariate semivariogram modeling have been
recalled, with the hope that it will reduce the use of un-
stable (i.e., Gaussian) or non-permissible models in soil
studies. Permissible models are, however, one ingre-
dient of the modeling process, and whenever physical
knowledge of the area and phenomenon under study is
available it should be accounted for in the building of a
model of spatial variability.

The existence of a model of spatial variability (de-
pendence) allows one to tackle the problem of estimat-
ing soil attribute values at unsampled locations. Geo-
statistics offers a palette of linear least-squares (krig-
ing) algorithms to incorporate different types of infor-
mation in the estimation process. Kriging algorithms
can also be modified to decompose original observa-
tions into specific spatial components, enabling the spa-
tial fluctuations and interactions between soil attributes
to be studied at different scales.

Recent developments in indicator geostatistics allow
a straightforward assessment of the probability to ex-
ceed critical values, such as regulatory thresholds in soil
pollution or criteria for soil quality. Another way to
model uncertainty is to generate many images (realiza-
tions) that all honor the data and reproduce aspects of
the patterns of spatial dependence or other statistics
deemed consequential for the problem at hand. In the
future, more attention should be devoted to the use of
these various measures of local or spatial uncertainty in
decision making, such as determination of the amount
of fertilizer to be applied or the delineation of polluted
areas targeted for remediation.

Processes such as weathering of parent material, soil
erosion or solute transport are dynamic, leading to var-
iation of soil attribute values in both space and time.
Temporal fluctuations are particularly important for
microbiological processes and cannot be ignored in sta-
tistical modeling of soil variability. Although not intro-
duced in the present paper, spatial geostatistical tools
such as semivariogram or kriging can be extended to
the space-time domain.
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