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Motivation slide 2

Spatial extremes

Many environmental extremal problems are spatial in nature:
(1 precipitation

avalanches

storms

sea levels

Oo0oono

heatwaves

Increasingly seen as important in insurance, climate, engineering ...

Possible goals:
O pointwise maps of quantiles (return levels)
O long-run prediction of events, for insurance/planning, e.g. floods

[0 short-range forecasting, e.g. avalanches, forest fires

Particularly important in mountain environments
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Swiss summer temperatures 2001-2005

Maximum temperature: June, July, August, 2001-2005

Jungfraujoch (3580 m)

Santis (2490 m)

Gd-St-Bernard (2472 m)

Arosa (1840 m)

Davos-Dorf (1590 m)

Montana (1508 m)

Engelberg (1035 m)

Chateau d'Oex (985 m)

Bern-Liebefeld (565 m)

Zurich-MeteoSchweiz (556 m)

Bad Ragaz (496 m)

Temperature anomaly (degrees Celsius)

Neuchatel (485 m)

Oeschberg-Koppigen (483 m)

Montreux-Clarens (405 m)

Basel-Binningen (316 m)

Lugano (273 m)
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Problem formulation

[0 Seek to model extremes of process Y (x) over spatial domain X
0 Data available are simultaneous time series at

- sites g € Xp = {x1,...,zp} within X

- times 7 = {ty,...,t,}, ford e {1,...,D}

[0 Aim to compute distributions of quantities such as

R= /Xr(x)l {Y () > Ydanger } dx

where r(z) is population at risk if Y'(x) exceeds some level yganger, and the indicator I(-) shows
where and when this happens.

O Example: population of elderly at risk from high temperatures in western Switzerland in summer
2020.

We want to model the joint behaviour of maxima within X', not just to tie together the marginal

behaviour at different sites to produce contours of high quantiles.
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Why do we need new methods?

[0 Geostatistics is well-developed and widely used for modelling spatial data, but it is mostly based
on multivariate normal distributions, inappropriate for modelling tail behaviour

0 The generalised extreme-value distribution (GEV) is used to model scalar extremes because of its
max-stability, which gives a mathematical basis for extrapolation beyond the range of the data

[0 The natural models for spatial extremes are max-stable processes, which extend the GEV to
spatial data, but

— there are few models for max-stable processes, and even fewer applications
— standard inferential tools (e.g. likelihood) can't be used

OO Will discuss approaches to overcoming these difficulties—first steps only, applied to annual
maximum series at different sites.
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Geostatistics slide 8

Spatial extremes

Three main approaches:

0 Gaussian anamorphosis

[0 latent processes

[0 max-stable processes

First give cartoon view of geostatistics.
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Cartoon geostatistics

[] Statistics of spatially-defined variables

0 Mostly a multivariate normal theory: suppose that the variable of interest (annual maximum
temperature) has a joint normal distribution, and that its values at different sites have some
correlation function, depending on distance etc.

O Given data, we
— remove (space-time) trends in mean and variance of data
— transform residuals to standard normal margins
— fit ‘suitable’ spatial /space-time correlation functions
— make inferences using weighted least squares (kriging), likelihood, or Bayes (McMC()

— make predictions using the fitted correlation function, then add back the estimated trends to
obtain a map of predictions.

[0 See Diggle and Ribeiro (2007), Cressie (1993), lots of Bayesians
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Gaussian anamorphosis

O Remove spatial and temporal trend by fitting GEV with annual maxima
[0 use this fit to transform maxima to Gaussianity
[0 apply standard geostatistics

[0 backtransformation to original data scale

Properties:

+ easy using standard software

+ Gaussianity not essential (could be uniform, or t,)

— distribution of joint extremes may be badly modelled because of properties of Gaussian model
+/— equivalent to use of copulas—see poster by Simone Padoan, who applies this approach to

rainfall at 51 sites, using both standard and extremal copulas
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Latent processes

O Conditional on latent process S(z), observations Y (z), for x € X follow an extremal distribution
[0 Examples:
ind
Y(z) | S(x)= (), 7(z),&(x)) ~ GEV{y; S(z)},  S(x) ~ Na{p(z), Uz)}
ind
Y(z) [ S(@)=(o(x),&(x)) ~ GPD{y; S(x)}, S(x) ~ Na{u(x), (z)}
See Casson and Coles (1999, Extremes); Cooley et al. (2007, JASA); Fawcett and Walshaw
(2006, Applied Statistics); Sang and Gelfand (2009, J. Ecol. Env. Statist.), etc.

[1 Properties:

4+ computationally feasible for large-scale problems using standard simulation techniques
(Metropolis—Hastings algorithm, Gibbs sampling, ...);

+ possibility of estimating quantiles spatially

— all extremal dependencies are incorporated through S(z)
— marginal distributions are not extremal

— episodic modelling/simulation difficult

Talk by Huiyan Sang in this session
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Max-stable Processes slide 13

Max-stable processes

OO Consider joint distributions of maxima at sites D = {z1,...,2p} C X

O Individually these maxima follow GEV distributions, and we use the marginal distributions to
transform each to be unit Fréchet,

Pr ([1 +é <¥)]f£ < z) = Pr(Z <z) =exp(—1/2), 2>0,

which is a special case of the GEV.

0 Then we can write
Pr(Zl < 21y - - ‘aZD < ZD) = exp{—V(zl,. e 7ZD)}5

where the function V' measures dependence among the different sites:

— independence implies V(z1,...,zp) =1/z1+---+1/2zp

— total dependence implies V(z1,...,2p) = max(1/z1,---,1/zp)
O Max-stability implies that for k € N,

Pr(Z < 21,0, Zp < 2p) = exp{—kV (21, 2D)} = exp {—V(a1/k, .., 2p/K)}
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Exponent measure function

[0 The exponent measure function V
— is homogeneous of order —1
— satisfies V (400, ...,+00, 24, +00,...,4+00) = 1/z4

O The extremal coefficient p = V(1,...,1) € [1, D] summarises the degree of dependence
among the maxima within D

— 0 =1 implies that they are totally dependent
— 0 = D implies that they are independent
[0 Two problems:
— need exponent measures V' that are useful for spatial settings;
— once we have them, we need to be able to fit them to data;

O Likelihood inference infeasible: to compute the joint density at {x1,...,Xp} we must
differentiate e~V with respect to 21, ..., 2p, leading to combinatorial explosion:

—VieTV, (ViVa—Vig)e ™V, (=ViVaVs + ViaV3[3] — Vigg)e Y,
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Models: Spectral representation

[0 Two important classes of spectral representations of these processes, due to de Haan (1984),
Schlather (2002)

O General form: Let W (x) be a non-negative stationary process on R? with E{W (z)} =1 at each
x, and let IT be a Poisson process on R, with intensity ds/s2. If the W(z) are independent
copies of W (x), for each s € Ry, then

Z(x) = max sWy(x), x€RP,
sell

is a stationary max-stable random process with unit Frechét margins.

O If z(z) is a well-behaved function on X, then a point process argument yields that

Pr{Z(z) < z(z),z € X} = exp (—E [sup {W(x) H) .

TeEX Z(:U)
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Models: Smith and Schlather

O de Haan (1984), Smith (1990): take W (x) = g(x — T'), where T is chosen randomly on X and g
is a density function

O Interpretation: g is the shape of a storm, and T is its (random) centre, we observe the maximum
of a number of random storms

[0 Schlather (2002): take W (z) to be positive random process, such as /2w max{e(x),0}, where
() is stationary Gaussian process with unit variance and correlation function p(x).

O Interpretation: we observe the pointwise maximum of random processes Wy(x)
O Schlather (2002): as above, but restrict W (z) to a random set B.
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Methods: Computation of V/

[0 Use expression
w
Pr{Z(z) < z(z),z € X} = exp (—E [sup { (z) }]) .
TeEX Z(x)
to compute V for case #X =D =2
OO0 Schlather model: e4(+) stationary isotropic Gaussian processes with correlation p(h) = p(x1 — x2),
then ”
1 1 {p(h) + 1}z122
Vi, z)=23(—+—) 1+ [1—2—
(21,22) = 3 <21 Zz) ( (21 + 22)?
O Corresponding extremal coefficient can only represent positive dependence—but most likely in
practice
[0 Modified version can give independent extremes:
z21,20) = | — + — -—— (1 - |1-2— ,
b2 z1 22 2 (21 + 22)?
where a(h) = E|BN (h + B)|/E|B]| lies in the unit interval.
0 The extremal coefficient for this model can take any value in the interval [1,2].
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Methods: Fitting and diagnostics

OO0 For fitting
— use bivariate marginal densities to compute pairwise log likelihood
D
> log f(zi, 2 0),
i>j
constructed from all distinct disjoint pairs of observations.

— If 6 is identifiable from the pairwise marginal densities, then under mild regularity conditions
the maximum pairwise likelihood estimator 6 is consistent and asymptotically normal, and
inferences can be performed (a bit painfully).

[0 For diagnostics
— groupwise maxima
Z A = max Z; ~ Frechet(6 4)
icA
and can compare observed values with values simulated from a model
— construct simulation envelopes to assess variability
http://extremes.epfl.ch EVA, Fort Collins, June 2009 — slide 19




Application slide 20

Swiss summer temperature data
O Annual maximum temperature data at D = 14 Swiss sites, 1961-2006 (exclude Jungfraujoch,
Lugano, and Locarno-Monti)

O Marginal model: simultaneously fit GEV to maxima Y (x4, t;) with location
Nae; ~ alt(z) + alt(z)? 4 {lon(z) 4+ lat(z)}? + time, 7, & d=1,...,14,j=1,...,46,

where alt(z), lat(z), lon(z) are altitude, latitude and longitude at site x, and time is time

00 Exploratory analysis: estimate ‘correlations’ p;; and probabilities &;; separately for each pair of
sites

[0 Spatial model: use pairwise likelihood to fit stationary isotropic covariance function

p(h) =y exp{—(h/72)?}, 0<y <1,92,93>0, h>0,

for sites h apart, giving 41 = 0.71 (0.2), 42 = 200 (100)km, 3 = 1.5;
O Fit using pairwise likelihood, but allow for timing (Stephenson & Tawn, 2005, Bka)

O Risk analysis: simulate max-stable random fields Z*(z) from fitted model, then transform back
to ‘real’ scale

[0 Generalisations: no improvement with random set model or anisotropic covariances
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Estimates of p and «
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Maximum likelihood estimates of parameters p (left) and « (right) for 46 years of maximum
temperatures observed at all distinct pairs of 17 sites in Switzerland, transformed to the unit Fréchet
scale. + denotes pairs with a site in the Tessin, x with a site in the Jungfraujoch.
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Dependence of # on distance

T T T T T T
0 50 100 150 200 250

S—
Fitted extremal coefficients for the pairs of sites, excluding Jungfraujoch, Locarno-Monti and Lugano,
with Schlather—Tawn pairwise estimates and their standard errors, as a function of distance. Shown
are curves for the exponential covariance with shape k = 1.5; the Whittle-Matérn covariance with
shape k = 1.5 and the Cauchy covariance functions.
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Groupwise diagnostics

Comparison of groupwise annual maxima with data simulated from the fitted model. In each panel the
outer band is a 95% overall confidence band and the inner one a 95% pointwise confidence band. The
groups of sites are: (a) Jungfraujoch; (b) Engelberg, Grand-St-Bernard, Montana; (c) Locaro-Monti,
Lugano; (d) Bern-Liebefeld, Chateau d'Oex, Montreux-Clarens, Neuchatel; (e) Basel-Binningen,
Oeschberg-Koppingen, Zurich-MeteoSchweiz; (f) Arosa, Bad-Ragaz, Davos-Dorf, Santis.
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Simulated random fields, Fréchet scale
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Simulated summers for 2020
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Closing slide 27

Discussion

[0 Approach based on max-stable processes
+ properly accounts for mathematical properties of multivariate extremes
4+ can incorporate geostatistics in a flexible way
+ can be used for (correct!) episodic prediction through simulation from the fitted model
— can be awkward to build in spatial variation in marginal parameters
— is less standard to fit and to use
[0 Next on the agenda:
— R library SpatialExtremes for fitting such models—Mathieu Ribatet workshop yesterday
— more difficult applications (snow—Juliette Blanchet talk)
— non-stationary max-stable processes
— spatio-temporal models

— peaks over threshold modelling
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“... Red sky in the morning, potential extreme
weather event”

Thank you!
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Risk, Rare Events, and Extremes

[0 Six-month programme of research on modelling of extremes for complex problems, with focus on
spatial and spatio-temporal aspects

[0 Aim to bring together climate and environmental scientists, and statisticians interested in
modelling extremes (visitors, ...)

O Bernoulli Interdisciplinary Centre, EPF Lausanne, July—December 2009
0  Workshops
July 13-17: Spatial extremes and applications

September 14-18: High-dimensional extremes
— November 9-11: Spatio-temporal extremes and applications
— November 12-13: Final conference

O http://extremes.epfl.ch
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