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ABSTRACT 

A linearized system of equations for the atmosphere's first inter

nal mode in the vertical is derived. The system governs small amplitude, 

forced, axisymmetric perturbations on a basic state tangential flow which 

is independent of height. When the basic flow is at rest, solutions for 

the transient and final adjusted state are found by the method of Hankel 

transforms. Two examples are considered, one with an initial top-hat 

potential vorticity and one with an initial Gaussian-type potential 

vorticity. These two examples, which extend the work of Fischer (1963) 

and Obukhov (1949), indicate that the energetical efficiency of cloud 

cluster scale heating in producing balanced vortex flow is very low, on 

the order of a few percent. The vast majority of the energy is simply 

partitioned to gravity-inertia waves. In contrast the efficiency of 

cloud cluster scale vorticity transport is very high. 

When the basic state possesses positive relative vorticity in an . 

inner region, the energy partition can be substantially modified, and 

cloud cluster scale heating can become considerably more efficient. 

The energy partition result~ have important implications for the 

lateral boundary condition used in tropical cyclone models. Faced with 

the fact that a perfect non-reflecting condition is possible but imprac

tical to implement, one is forced to use an approximate condition which 

causes some reflection of gravity-inertia waves and hence some distor

tion of the geostrophic adjustment process. The distortion can be kept 

small by the use of a suitable radiation condition. 

iii 



1. INTRODUCTION 

The problem of geostrophic adjustment is to determine the final 

adjusted state and the transient states which occur when atmospheric or 

oceanic flows mutually adjust the pressure field and the momentum field 

to a state of geostrophic balance. This problem was first studied by 

Rossby (1938), Cahn (1945), and Obukhov (1949). Rossby studied only the 

relationship between the initial unbalanced state and the final geo

strophica11y balanced state. The linear transient adjustment was studied 

for the one-dimensional case by Cahn and for the two-dimensional case 

by Obukhov. Since these classical studies (primarily barotropic) there 

have been many contributions to this problem, e.g. the effect of strati

fication (Bolin, 1953; Kibel, 1955, 1957, 1963; Fjelsted, 1958; Monin, 

1958, Fischer, 1963), the effect of horizontal shear of the basic flow 

(31umen and Washington, 1969), the effect of nonlinear terms (Blumen, 

1967), the effect of a variable coriolis parameter (Dobrischman, 1964; 

Geisler and Dickinson, 1972), the effect of a transient (rather than 

implusive) forcing of the momentum field (Veronis, 1956) and of the mass 

field (Paegle, 1978). Geisler (1970) has also shown that the linear 

response of the ocean to a moving hurricane is similar in many respects 

to the problem of geostrophic adjustment. Analytic solutions to the 

adjustment problem also serveas useful guides in the design of finite 

differencing schemes for more complicated models (Arakawa and Lamb, 1977; 

Schoenstadt, 1977, 1979, 1980). A review of the early Soviet literature 

on geostrophic adjustment (and numerical weather prediction) can be found 

in Phillips et a1. (1960). An excellent recent and comprehensive review 

of the adjustment problem can be found in the paper by Blumen (1972). 
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The purpose of this paper is to present some simple solutions for 

the geostrophic adjustment of an axisymmetric vortex and to discuss the 

implication of the results for the modeling of tropical cyclones. 

Tropical cyclone models can be divided into two classes: balanced 

models and primitive equation models. In balanced models (e.g. Ogura, 

1964; Kuo, 1965; Ooyama, 1969a, b; Sundquist, 1970a, b) the flow is 

assumed to be axisymmetric and in gradient balance. Since gravity-inertia 

waves are then filtered, the transient aspects of the adjustment problem 

are not simulated. Primitive equation models may be either axisymmetric 

(e.g. Yamasaki, 1968a, b; Rosenthal, 1970, 1971, 1978; Kurihara, 1975) 

or asymmetric (e.g. Anthes et al., 1971a, b; Anthes, 1972; Kurihara and 

Tuleya, 1974; Mathur, 1974; Madala and Piacsek, 1975), and in either 

case geostrophic adjustment becomes one of the important physical 

processes which must be properly simulated. 

Some discussion of the geostrophic adjustment of axisymmetric flows 

appears in the works of Obukhov (1949), Fischer (1963), Janjic and Wiin

Nielsen (1977) and Paegle (1978). Obukhov (1949) studies the adjustment 

of an initial Gaussian-type vorticity while Fischer (1963) studies the 

adjustment of an initial top-hat vorticity (a Rankine vortex). In sec

tion 5 and 6 we extend these results by considering both the unbalanced 

initial vortex problem and the unbalanced initial pressure gradient 

problem, and by considering the horizontal scale dependence of the 

energy partition between the final balanced flow and the gravity-inertia 

waves. 

By numerical evaluation of the general integral solutions Paegle 

(1978) studies the adjustment of the divergent part of the wind to 

axisymmetric switch-on heating and diurnally oscillating heating. In 
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addition he compares the non-linear gradient adjustment process with 

the linear geostrophic adjustment process. Our results are complementary 

to his but place more emphasis on simple analytical solutions. 

An analysis of geostrophic adjustment in a rotating cylindrical 

container appears in the work of Janjic and Wiin-Nielsen (1977), who 

argue that motion in the atmosphere occurs in a limited space, and this 

fact prevents an initial disturbance from traveling away to infinity. 

Thus, Janjic and Wiin-Nielsen study the adjustment of axisymmetric flows 

in a cylindrical region which has zero divergence on the outer boundary. 

Not surprisingly, gravity-inertia waves are reflected at the boundary 

and true geostrophic adjustment does not occur. Our view of the adjust

ment problem is considerably different. There are of course real 

physical situations in which gravity-inertia waves are reflected. For 

example, when an initial spectrum of waves propagates through a region 

of variable coriolis parameter, each wave will not penetrate far beyond 

the latitude wbere its frequency matches the local coriolis parameter 

(Geisler and Dickinson, 1972). Horizontal shear of the basic state can 

also alter the propagation of the gravity-inertia waves. However, 

these effects are considerably different than the boundary condition 

imposed by Janjic and Wiin-Nielsen. Our view is that, for tropical 

cyclone modeling, solutions for the unbounded domain are more relevant 

than solutions for the bounded domain. Since a circular domain of radius 

1200-1300 km occupies only about 1% of the total surface area of the 

globe, the region surrounding a tropical cyclone can, for practical 

purposes, be consi~ered infinite in extent. Then, the differences 

between solutions for an unbounded domain and solutions for a bounded 

domain should be viewed as a measure of the inadequacy of the boundary 

conditions which we have been forced to use in the bounded case. 
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The basic outline of the present paper is as follows. After 

deriving in section 2 the governing equations for small amplitude 

perturbations (about a non-resting basic state) of the first baroclinic 

mode, we discuss in section 3 two ITI2thods for the solution of these 

equations. The first method is based on a local conservation equation 

and yields the final balanced state from knowledge of the initial state, 

regardless of whether the basic state is at rest. The second method 

is based on Hankel transforms and yields the transient solution when the 

basic state is at rest. After discussing some general properties of the 

solutions (section 4), we present in sections 5-7 some simple examples 

of analytical solutions. Section 8 contrasts solutions of the forced 

balanced model with both the slowly forced and rapidly forced primitive 

equation model. In section 9 we illustrate how a non-resting basic 

state can influence the energy partition between the final balanced flow 

and the gravity-inertia waves. The lop-sided energy partition typical 

of tropical motions has important implications for the lateral boundary 

conditions used in tropical models. This problem is discussed in 

section 10. 



2. GOVERNING EQUATIONS 

Using cylindrical coordinates in the horizontal and using pressure 

as the vertical coordinate, the axisymmetric form of the primitive 

equations can be written 

~+u~+w~- (f+'!...)v+~ 
at ar ap r ar 

Clru + aw = 0 
rClr ap 

o (2. 1 ) 

(2.2) 

(2.3) 

where u is the radial component of velocity, v the tangential component, 

w the vertical p velocity dp/dt, ¢ the geopotential, f the constant 

coriolis parameter, and a the static stability defined by a= - ~ ~~ 

Here we have included a specified source term for the rotational part 

of the wind field and a specified rate of external heat addition, both 

of which we have assumed can be factored into space dependent and time 

dependent parts, with the time dependent part given by a2te-at Small 

a corresponds to slow forcing and large a to rapid forcing, but the 

total forcing is independent of a since fooo a
2
te-

at
dt = 1. A source 

term for the divergent part of the wind has been omitted since it is 

not of such fundamental importance as F, as we shall see later. By the 

inclusion of F and Q we have in mind the apparent sources of angular 

momentum (or vorticity) and heat due to the effects of cumulus clouds. 

These effects have been extensively studied from a diagnostic point of 

5 
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view (e.g. Reed and Recker, 1971; Williams and Gray, 1973; Yanai et al., 

1973, 1976; Ogura and Cho, 1973; Reed and Johnson, 1974; Ruprecht and 

Gray, 1976; Chu, 1976; Hodur and Fein, 1977; Reed et al., 1977; Shapiro, 

1978; Thompson et al., 1979; Stevens, 1979). Although the apparent 

sources actually depend on the flow field, we-consider such complica-

tions to be beyond the scope of the present study. The specified time 

distribution of the forcing is arbitrary and has been simply chosen 

so that we can later illustrate the dependence of the adjustment process on 

the time scale l/a. 

In order to simplify the vertical structure of this system as much 

as possible we follow the geostrophic adjustment study of Paegle (1978) 

by considering the standard two layer model version of (2.1)-(2.4). 

In addition, we restrict our attention to small perturbations about a 

basic state of gradient balance, i.e. u= w= 0 and (f+~)v= E! 
r or 

with v assumed to be a function of r but not of p. With (2.1)-(2.3) 

applied at level 1 (250 mb) and level 3 (750 mb), and (2.4) applied at 

level 2 (500 mb), and requiring that w= 0 at the top and bottom pres

sure surfaces, (2.1)-(2.4) reduce to 

au - a<p 
d (f+~)v +---.A = """8t - r d ar 0 (2.5) 

aV
d (f + arv ) u = F 2 t -at 

"""8t+ rar d d a e (2.6) 

a:Pd 0'2 (llp)2 arud RQ 2 2 . -at 
+ =- a te at 2 rar cp 

(2.7) 

where L\p = 500 mb, and where the subscript "d" refers to the difference 

between the upper and lower levels, e.g. ud = ul -u3 . 
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It is convenient to convert (2.5)-(2.7) into non-dimensional form 

by choosing units of time and horizontal distance as follows: 

unit 0 f time: 1 If 

unit of horizontal distance: c/f. 

2 

Here c2 = °2 (lip) 
2 

is the square of the phase speed of pure internal 

gravity wave. Then the dimensionless quantities, time, radial distance, 

basic state tangential wind, shear velocity components, thickness, 

f v 
source terms and forcing time scale, become respectively ft, c r, c' 
ud v d ¢d F d R Q2 f 

C 

v, ¢, 

become 

2' c' c ' 2' c p c 
and -. Using the symbols t, r, v, u, 

a 

F, Q and 1/0, for these new dimensionless variables, (2.5)-(2.7) 

au (1 + 2v ) v + ~ = 0 at - r ar (2.8) 

(2.9) 

(2.10) 

h _. h b . 1 t· t·· arv were s lS t e aS1C state re a lye vor lClty far 



3. METHOD OF SOLUTION 

If F = Q = 0, a flow characterized by u = 0 and (1 + 2v)V = ~ is a steady 
r ar 

state solution of (2.8)-(2.10). If the flow initially deviates from this 

balanced state a transient adjustment process occurs and ultimately a 

balanced flow results. Rossby (1938) and Obukhov (1949) first pointed 

out that the final balanced state can be found without solving the 

transient problem. 

3.1 Fi na 1 adjusted state 

The final adjusted state is most easily obtained by combining (2.9) 

and (2.10) to obtain 

a { a [ rv) } {a [lr+F
r

)-Q}a
2
te-

at
, (3.1) at rar 1 + l: - ¢ = rar ~ 

which, in the absence of forcing, is a local conservation equation. 

Equation (3.1) can be integrated to obtain 

(3.2) 

where the subscripts 00 and a indicate values at infinite time and 

initial time respectively. If we assume that the final tangential 

wind v is in balance, i.e. 
00 

- d¢ 
(1 + 2v ) v = 00 

r 00 err (3.3) 

(3.2) can be written as 

(3.4) 

8 
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- 2v ) -) is where S = (1 + - (1 + s r a measure of the inertial stability of the 

basic state vortex. In the case of a resting basic state (3.4) reduces 

to 

d
2

cp dcp 
cp + drF . 00 00 

Q (3.5) 
dr2 

+ 
rdr - CPoo s - -

0 o rdr 

which, in the absence of forcing, is a statement of the local conser-

vation of perturbation potential vorticity. Analytic solutions of 

(3.5) will be presented in sections 4, 5 and 6, while numerical solu-

tions of (3.4) will be presented in section 9. 

3.2 Transient state 

Transient solutions of (2.8)-(2.10) are most easily obtained when 

the basic state is at rest, i.e. when v = Z = O. Let us suppose that 

u(r,t), v(r,t), cp(r,t), F(r) and Q(r) are sufficiently well behaved 

that their Hankel transforms exist. The order v Hankel transform 

. . 1 pa 1 r 1 s 

l/J(r,t) = r ~(k,t) J)kr)kdk (3.6) 

A 

l/J(k,t) = JCO 1/J(r,t) J (kr)rdr 
o v 

(3.7) 

where J is the order v Bessel function of the first kind. Let us 
v 

define u(k,t), v(k,t) and F(k) as the first order Hankel transforms 
'" A 

of u(r,t), v(r,t) and F(r); in addition let us define cp(k,t) and Q(k) 

as the zero order transforms of ¢(r,t) and Q(r). 

1 Other possibilities for the definition of the Hankel transform 
pair exist. For example, that used by Erdelyi et al. (1954) is written 
in such a way that it reduces to a Fourier transform when v = ± ~2. We 
have chosen the form given by (3.6) and (3.7) since it makes the fol
lowing analysis somewhat simpler. 
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Assuming a basic state of rest, we can take the first order trans-

forms of (2.8) and (2.9) and the zero order transform of (2.10) to 

obtain 

A A 

du A A 

dt - v - k¢ = 0 , 

A 

dv A 

dt + u = 

Qi + k~ 
dt 

A 2 -at 
Fate 

Q
A 2 t -at a e . 

If we define uo(k) and vo(k) as the first order transforms of the 
A 

(3.8) 

(3.9) 

(3.10) 

initial winds u(r,o) and v(r,o), and ¢ (k) as the zero order transform 
o 

of the initial geopotential ¢(r,o), we can write the solutions of 

(3.8)-(3.10) as 

u(k,t) = {uo - /a
3

22 (F+kO)} cos vt 
(a +v ) 

+{~ +k¢ + a
2

(a
2

_v
2
) (F+kQ)} v-1 sin vt 

o 0 (a2+v2)2 

+ 2 ~3 2 (F+kQ)( 22V22 -at) e-at 

v(a+v) a+v 

+ (F+kQ)v- 2 a2te-at 

-{~o- 2a3 
A A}_l 

2 2 2 (F + kQ) v sin vt 
(a +v ) 

2 A" (2 2 ) a a - v -at 
- 2 2 2 (F + kQ) 2 2 + at - e 

v(a+v) a+v -

+ {k~ -¢ +(kF-Q) [l-(l+at) e-c,tJ} kv- 2 , 
o 0 

(3.11) 

(3.12) 



11 

¢(k,t) 

_ a k (F + kQ) a-\) + at e -at 2 (2 2 ) 
\)2(a2 + \)2) a2 + \)2 

A ~ A A -at -2 
- {kv -cjJ + (kF-Q) [1- (1 +at) e J} \) , 

o 0 
(3.13) 

2 k: 
where J = (1 + k ) 2. In the absence of forcing these solutions are the 

axisymmetric two-dimensional analogues of the one-dimensional case dis-

cussed by Schoenstadt (1977, 1979). All the terms on the right hand 

sides of (3.11)-(3.13) are associated with the transient solution ex

cept the last term in (3.12) and the last term in (3.13), which are 

associated with the geostrophically balanced state. From (3.12) and 

(3.13) it can be seen that the potential vorticity (k~ - ¢) associated 

with the transient part of the solution is zero while that associated 

A A A A -at 
with the balanced part is kvo - CPo + (kF - Q) [1 - (1 + at)e J, i.e. the 

initial potential vorticity plus the forced potential vorticity. 



4. GENERAL PROPERTIES OF THE SOLUTIONS 

Before proceeding to specific examples let us consider some of the -

general properties of the solutions (3.11)-(3.13). The first two terms 

in the right hand side of (3.11)-(3.13) are terms which are oscillatory 

in time in spectral space. In physical space they represent propagating 

gravity-inertia waves. If one waits long enough for the forcing to be 

essenti ally compl eted and for the gravity-i nerti a '-'laves to di sperse to 

a great distance, only the final balanced flow remains. Then, (3.12) 

and (3.13) yield 

A k2 
A A 1 A A 

Voo = -- (v +F) + -- (v + F ) , 
1+k2 0 1+k2 go g 

A A A 

where vgo ' Fg, cjJgo and Qg -are defined by 

v go = -k ¢o ' 

v = -k;+: 
o 't'go ' 

A A 

F = -kQ , 
g 

F = -kQg • 

( 4.1) 

(4.2) 

(4.3) 

Equation (4.1) states that the final wind v is a weighted average of 
00 

the initial wind v and forced '-'lind F (weight k
2

2
) and the initial 

o - l+k 
geostrophic wind Vgo and forced geostrophic wind F (weight ~2 ) . 

g l+k 
A similar interpretation holds for (4.2). The two important weighting 

k2 
functions are shown in Fig. 1. He may interpret --2 as the spectral 

l+k 
modification of a tangential wind forcing or an initial tangential 

wind disturbance and note that low wave numbers are eliminated. 

Likel'lise, ~2 is the spectral modification of a heat source or an 
l+k 

initial pressure disturbance, with high wave numbers being eliminated. 

12 
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Because of the equivalence of Vo and F and of ¢o and 6 as far as 

the final adjusted state is concerned, let us for the moment consider 

the unforced case. To see the energy implications of (4.1) and (4.2) 

we note that, from the Parceval relation, the kinetic energy associated 

with the tangential component and the available potential energy can 

be written 

J 
00 2 

K = !z v rdr = 

o J 
00 2 

!ZV kdk , 
o 

(4.4) 

J
oo 2 Joo 2 

P = o!z cp rdr = o!z ¢ kdk . (4.5) 

If we assume that there is no radial flow initially all the kinetic 

energy of the initial and final states is associated with v. Then 

(4.1) and (4.2), together with (4.4) and (4.5), imply that if ;Po = 0 

(no initial pressure disturbance) 

r k2 
"2 kdk 

1+k2 
v 

K + P 0 
00 00 0 = (4.6) 

Ko 
J;~02kdk 

while if vo=O (no initial tangential wind) 

f' $0
2 

kdk 
l+k2 

K + P 0 
00 00 

(4.7) 

Po f"' ¢ 2 kdk 
o 0 

K + P K + P 
The ratios 

00 00 

K 
o 

and 
00 co 

represent the fractions of the initial 

energies which end up in balanced flow. The remaining fractions are 

partitioned to gravity-inertia waves. 
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Equations (4.6) and (4.7) imply the following two important rules 

for tropical disturbances, which usually have a horizonal scale small 

compared to the deformation radius. 

(i) For small scale initial disturbances in the tangential wind 

field most of the initial energy ends up in the geostrophic 

flow. Thus, for small scale momentum forcing the efficiency 

of geostrophic energy generation is very high. 

(ii) For small scale initial disturbances in the pressure field 

most of the initial energy .ends up in gravity-inertia waves. 

Thus, for small scale heating the efficiency of geostrophic 

energy generation is very low. 

In order to see just how low or high these efficiencies can be for 

tropical weather systems we shall present examples in sections 5 and 6. 



5. INITIAL TOP-HAT POTENTIAL VORTICITY 

5.1 Continuous initial tangential wind 

Let us assume that the initial potential vorticity is given by 

2 r<a 
7 

1';0 - CPo = 
0 r>a (5. 1 ) 

One interpretation of (5.1) is that 

2 r<a -2 
a 

1';0 0 and CPo = 
0 r>a (5.2) 

i.e. there is no initial vorticity but the amount of "mass" 2n has been 

removed from the region r < a. A second possible interpretation is that 

there is rio initial geopotential perturbation but the initial tangential 

wind has the form' of a Rankine vortex, i.e. 

r2 

~ = 0 and rv -
~o 0 -

7 
r<a 

,r>a (5.3) 

With this initial condition the initial vorticity becomes quite concen-

trated as the radius of maximum wind decreases but the circulation 

around any radi us r> a is 2n. Note also that v 0 is conti nuous at r = a. 

The solution of (3.5) and (5.1) which remains bounded at the origin 

and at infinity and which possesses continuous cP and v at r = a is 
00 00 

- ~ [1_ K (a)I (r)] 
a a 1 0 

r<a 

¢oo = 

2 
Il ( a ) Ko (r ) (5.4) - - r>a 

a 

15 
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2 
Kl (a) 11 (r) dcp 

-
a 

00 

r<a 

v = ---ar -00 

2 
11 (a) Kl (r) -

a 
r>a (5.5) 

where I and K. are the order v modified Bessel functions. The final 
v v 

vorticity is easily computed from (5.5) or from (5.4) and the invariance 

of C;;-cp. The result is 

d(rv ) 
00 

r<a 

r>a (5.6) 

The final geopotential CPoo' tangential wind Voo and vorticity C;;oo 

for different values of a are shown in figures 2-4. From Fig. 2 and 

the interpretation (5.2) we see that for a large scale pressure dis

turbance (a» 1) there is little change in the pressure field. From 

Fig. 3 and the interpretation (5.3) we see that for a radius of 

maximum wind small compared to the radius of deformation (a« 1), there 

is little change in the tangential wind and vorticity fields. 

A simple way of computing the total energy of the final adjusted 

state is to note that in this special case 

K + P = !21 a - ¢ (¢ - C;; ) rd r + -2a 
¢ ( a) [v ( a -) - v ( a + ) ] . ( 5 .7) 

00 00 00 00 00 00 00 

o . 

Since the tangential wind remains continuous the last term in (5.7) 

vanishes. Since the initial available potential energy associated with 

2 
(5.2) is Po = lla ,·'t/e can derive from (5.4) and {5.l} 

K + P 
00 00 

Po 
(5.8) 
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The separation of the final total energy K + Pinto K and P 
co co co co 

can be accomplished by using (4.4) and (4.5) with ¢ and v replaced by 

¢ and v , which are given by (5.4) and (5.5). The integration of the 
co co 

square of the modif:ed Bessel functions can be carried out by the use 

2 d {r2 22 l 2 d {r2 2 } 
of rIo (r)= dr 2" [Io (r) - Il (r)]j , rI l (r) = dr 2" [11 (r) - Io(r)I 2(r)] , 

2 - 2 
and the analogous relations for rKo (r) and rK

l 
(r). The results are 

K 
P: = -1 + 2I 1 (a) [ a K2 ( a) - Kl (a)] , ( 5 . 9 ) 

The energy relations (5.8)-(5.10) are plotted in Fig. 5a. For a tropical 

cloud cluster of radius 300 km in a region with a deformation radius of 

1500 km, the dimensionless scale a is 0.2. Fig. 5a then shows that only 

about 4% of the initia'\ energy remains in the final balanced flow while 

about 96% is partitioned to the outward propagating gravity-inertia 

waves. 

A similar discussion of the energetics of the initial Rankine 

vortex is not possible because the initial kinetic energy associated 

with (5.3) is not finite. 

5.2 Discontinuous initial tangential wind 

Because of the difficulty in determining the energetics of (5.3) 

let us consider the initial condition 

r<a 

o r> a . (5.11) 
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The solution of (3.5) and (5.11) is similar to that for the initial 

condition (5.3) except that v should possess the same discontinuity 
00 

as v 
0 

at r = a. The solution is 

2 
K2 ( a) 10 ( r) - 7 r<a 

<Poo = 

12 (a) Ko (r) r>a (5.12) 

/ 

K2(a) 11 (r) r<a 

v 
00 

I2(a) Kl (r) r>a (5.13) 

K2 (a) 10 (r) r<a 

1';00 
= 

12 (a) Ko (r) r>a (5.14) 

Noting that (5.11) implies that the initial kinetic energy Ko=1/8, 

we can use (5.7) to obtain 

K + P 
00 00 

(5.15) 

Following the same procedure used in deriving (5.9) and (5.10) we can 

also obtain 

K 
00 

(5.16) 

P 
K: = 2 - 4 K2 (a) [ a I 1 (a) - 2 I 2 (a) ] , ( 5 . 1 7) 

The energy relatio~s (5.15)-(5.17) are plotted in Fig. 5b. In general 

the initial wind case shows just the opposite energetic .characteristics 

as the initial geopotential case. For example, in the initial wind 
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case for a = 0.2, about 99% of the initial energy remains in the final 

balanced flow while about 1% is partitioned to gravity inertia waves. 

5.3 Transient solution 

As an example of the transient adjustment let us consider the case 

where F = Q = u = ¢ = 0 and v is the Rankine vortex given by (5.3). 
000 

Equation (3.11) then reduces to 

(5.18) 

where 1 

(5.19) 

.The inverse Hankel transform (3.6) then gives 

u(r,t) = J: (l+k2)-~ 2(kaf l Jl(ka) sin[(1+k2
)J2tJ Jl(kr) dk. (5.20) 

If we let all the initial vorticity become concentrated at the origin 

(a+O), then (kaf l J l (ka)+~, in which Gase (5.20) can be evaluated to 

obtain 
1: 

[ ( 2 r2) 2 ] sint-sin t-

ru (r, t) = 

sin t 

The divergence computed from (5.21) is given by 

a (ru (r, t) ) 
ra r o 

t>r 

t<r (5.21)2 

t>r 

t < r . (5.22) 

lThe Hankel transforms used here and in the following sections can 
be found in Erdelyi et al. (1954), Volume II. 

2A solution similar to (5.21) appears in the work of Fischer (1963). 
In Fischer's paper, if r on the right hand side of (5.21) is re
placed by a, the resulting function gives the time dependence of 
the divergence at the origin for an initial Rankine vortex of 
arbitrary radius a. In contrast our result holds at any radius 
r but only for an initial point vortex (a -+ 0). 
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Isolines of the radial mass flux ru(r,t) in the (r,t) plane are shown 

in Fig. 6. Plots of the divergence as a function of time for r = TI/4 

and r = 3TI / 4 are shown in Fi g. 7. The geopotenti a 1 fi e 1 d, computed from 

the time integration of (5.22), is shown in Fig. 8. For t»r (5.21) 

() . r Clru cos t -1 
and 5.22 become u - 2t cos t and rClr - -t- , whi ch show the t decay 

characteristic of adjustment in two dimensions (Obukhov, 1949). 

The transient solution can be summarized as follows. For t < r 

fluid particles are undergoing a pure inertial oscillation, with zero 

associated divergence. At t = r the influence of the initial vorticity 

at the origin is first felt. There is then a spike in the divergence 

field, followed by oscillation and gradual decay as t-+oo. Most of the 

lowering of the geopotential is associated with the spike in the diver-

gence. Fig. 7 shows that this spike becomes narrower as r increases. 

In order to check the consistency of the transient results with 

the final adjusted state obtained in section 5.1 we note that the net 

effect of the oscillatory divergence field on the geopotential fi.eld is 

given by the integrated divergence, i.e. 

(5.23) 

A change of variable allows (5.23) to be written 

CPoo = -J: cos (r sinh T) d T, (5.24) 

which is the integral representation of the zero -order modified Bessel 

function. Thus, cP = -K (r) and v = Kl (r), which are consistent with 
00 0 co 

(5.4) and (5.5). 



6. INITIAL GAUSSIAN-TYPE POTENTIAL VORTICITY 

In this section we consider a second simple example, one in which 

the initial potential vorticity is given by 

[ 

2] 2 [ 4 - r~ ] e"[ 1 - :~J . 
1;;0-<1>0 = a22 ;::2 1- 2:2 1+ 4+aa2 (6.1) 

One interpretation is that So = 0 and -<Po is given by the right hand side 

of (6.1). A second ; nterpretati on is that <Po = 0 and 1;;0 is gi ven by the 

right hand side of (6.1), which implies that 

(6.2) 

a vortex with circulation 27T at r= a. The vortex (6.2) was first studied 

by Obukhov (1949). 

The solution of (3.5) and (6.1) which remains bounded at the origin 

and at infinity is 

2 

_ (2 -:2) ~ (1 - r~J 
~ - - e a 
'+'00 2 ' 

3+a 
(6.3) 

_ (4 -:~) r ~(l -r~J 
Vo;, - 2 2 ea. 

3 + a a 
(6.4) 

For the s = 0 i nterpretati on of (6.1) the compari son of <p and cp for 
00 00 

a = 5 and a = + is made in Fig. 9, which shows that for large a, <Po and 

cjJoo are nearly identical. For the <Po = a interpretation the comparison 

of v and v for the same two als is shown in Fig. 10. When a is small o 00 

21 



22 

Vo and Voo are nearly the same, a fact which is also easily seen by com

paring (6.2) and (6.4). 

For the case when So = v 0 = Ko = 0 we may substitute the ri ght hand 

side of (6.1) into (4.5) and evaluate the integral to obtain P. K and o 00 

P may be similarlY'obtained by substituting (6.4) and (6.3) into (4.4) 
00 

and (4.5). This results in 

K 3a2 
00 

= 

~ a4 + 6a2 + 12 
(6.5) 

P a4 
00 

Po 
= 

a4 +6a2 +'12 
(6.6) 

which are shown in Fig. lla. For the case when <Po = Po = 0 a similar 

procedure yields 

K 6 00 

= 
K a4 + 4a2 + 6 0 

(6.7) 

P 2a2 
00 

K a4 + 4a2 + 6 0 

(6.8) . 

which are shown in Fig. llb. The total energy curves in Figs. lla and llb 

show the same characteristics as the example given in Fig. 5. An in-

teresting feature of Fig. llb for large a is that an equipartition of 

energy between K and P does not occur. Such an equipartition does 
00 00 

occur in the example shown in Fig. 5b. 



7. INITIAL RADIAL WIND 

In (2.1) we omitted the source term for the divergent part of the 

wind. Such a source term or a nonvanishing initial condition on u is 

not of such fundament~l importance as F, Q, v and ¢. The reason for o 0 

this is that the local conservation equations (3.4) and (3.5) will not 

contain such effects, i.e. the final adjusted state is independent of 

U
o 

and a source term for u. AlthJugh they do not effect the final 

adjusted state, they can have interesting transient effects on the vor-

ticity and geopotential fields. We illustrate these effects by consid

-r 
ering a simple example with F = Q = Vo = ¢o = 0 and ruo = 1 - e ,i .e. at 

the origin the radial mass flux vanishes but as r increases the radial 

mass flux increases until it attains the value of unity, resulting in 

an initial divergence which is concentrated near the origin. Equation 

(3.11) then reduces to 

u(k,t) = uo(k) cos vt , 

where 

uO(k) = J; (l_e-r ) Jl(kr) dr = k- l (1+k2
)-!:2 

The inverse Hankel transform (3.6) then gives 

1" 

J 
00 cos [( 1 + k2 )'\] 

u(r,t) = 0 J (kr)dk 
(1+k2)~ 1 ' 

which can also be written 

cost-cos [(t2_r2)~2J t>r 

ru(r,t) 
2 2!2 

cos t - e - (r - t ) t<r 

23 

(7. 1 ) 

(7.2) 

(7.3) 

(7.4) 
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The divergence computed from (7.4) is 

a ( ru ( r , t ) ) = 
rar -1: (2 2 ~ 

( 2 2) 2 - r -t) r - t e 

(7.5) 

t < r . 

Isolines of the radial mass flux ru(r,t) in the (r,t) plane are shown 

in Fig. 12. Plots of the divergence as a function of time for r = n/4 

and r= 3n/4 are shown in Fig. 13. The geopotential field, computed 

from the time integration of (7.5), is shown in Fig. 14. 

The time integrated divergence does not have a net effect on the 

geopotential field, which eventually returns to its original flat shape. 

Since potential vorticity conservation requires that the vorticity is 

always equal to the geopotential in this case, Fig. 14 can also be 

interpreted as the vorticity. 



8. THE FORCED CASE 

In this section we shall illustrate how the adjustment process 

depends on the time scale of the forcing. To do this let us consider 

the case where the basic state is at rest and u = v = ¢ = F = O. 
000 

8.1 Balanced Model 

For purposes of comparison we now derive solutions of the balanced 

model version of (2.8)-(2.10), i.e. 

'dv 
af+u=O, 

~ + 'dru = Q 2 t -at 
8t r8r a e . 

(8. 1 ) 

(8.2) 

(8.3) 

If we assume that Q vani shes outsi de r = a and is constant (4-) i nsi de 
a 

r=a, and if we eliminate u and v from (8.1)-(8.3), we obtain 

r<a 

l{_a (r~)-~}= 
at rar ar 'f' 

(8.4) 

a r> a . 

The solution of (8.4) is analogous to (5.4) and can be written 

- .?. [1_ Kl (a) I (r)] [1-(1 +at)e-at] 
a a 0 

r<a 

¢(r,t) = (8.5) 

- ~ Il(a) Ko(r) [1- (1 +at)e-
at

] r > a . 

The solution for u and v can be easily obtained using (8.1) and (8.2) . 

The balanced solution (8.5) for a = 1/5 is depicted in Fig. 15a. 

25 
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8.2 Primitive Equation Model 

The solution of the primitive equation model for this case is 

obtained from (3.6) and (3.13), which, together with Q=2(karlJl(ka), 

yield 

</l(r,t) = fro ¢(k,t) J (kr) kdk , 
o 0 

(8.6) 

¢(k,t) = 

2 2-2{ 2222 -22 22(ci-v2 
(a +v) c< (a -v )k cos vt + 20. vk sin vt - a k 2 2 

a +v 

-at} -2 -1 + [1 - (l+at)e ] v 2(ka) J
l 

(ka) (8.7) 

The balanced solution given by (8.5) is also obtained from the inversion 

of the last term in (8.7). The remaining terms are associated with the 

gravity-inertia wave field. An asymptotic approximation to the gravity

inertia wave terms can be obtained by using the method of stationary 

phase for Hankel transform integrals (Miles, 1971, Chapter 4). Here 

we present exact results, which can be obtained by the numerical eval-

uation of (8.6) and (8.7). 

Figs. 15b. and 15c show </l(r,t) for a=~ and 0.=2 respectively. In 

both cases a = 1/5. Fi gs. 15a through l5c have been constructed wi th a 

time axis of at. When at = 5 ninety-six percent of the eventual total 

forcing has already occurred. Although the final state will be the same 

in the three cases shown in Fig. 15 (e.g. see Eq. (3.5)), the transient 

states are different. In the case of rapid forcing (a = 2) a large 

gravity-inertia wave front propagates outward and large time oscillations 

occur. This is in.contrast to the slow forcing (a=~) case, where only 

a small amount of gravity-inertia wave activity is excited. The balanced 

model result can be considered a slightly smoothed version of the slow 
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forcing case. The similarity of Figs. 15a and l5b is, of course, support 

for the use of balanced models when the time scale of the forcing is 

large compared to l/f. A criticisn, of the use of balanced models for 

tropical studies is that the vertical motion patterns associated with 

gravity-inertia waves can interact nonlinearly with the moisture field, 

a pr)cess which cannot be simulated with a filtered model. 



9. NON-RESTING BASIC STATE 

In order to understand the effects of a basic state tangential flow 

on the adjustment ~rocess we derived in section 3 the local conservation 

relation (3.4), which is the analogue in circular geometry of the equa

tion solved by Blumen and Washington (1969) in their study of the effects 

of horizontal shear on geostrophic adjustment in a barotropic fluid. 

Equation (3.4) can be regarded as the differential equation for 

¢oo when the basic state, the initial conditions and the forcing are all 

known. l~e might consider the problem where Vo = ¢o = 0 and F to, Q to, 

or alternatively the problem where F = Q = 0 and vo::J 0, <Po::J o. If these 

two problems result in the same radial distribution for the right hand 

side of (3.4), they are equivalent in the sense that they produce the 

same final adjusted state. As we saw in section 8, they do not neces-

sarily produce the same transient response since slow forcing tends to 

result in smooth transient solutions which are never far from gradient 

balance while impulsive forcing tends to result in highly oscillatory 

transient solutions. For simplicity we limit our discussion to the 

final adjusted state and to the case where F = Q = o. 

In order to solve (3.4) we specify the inner boundary condition 

to be 

d¢ 
00 err - 0 at r = 0 . (9.1) 

To derive an outer boundary condition we note that if R denotes a 

radius large enough such that 1 + Z and S approach unity and the right 

hand side (3.4) approaches zero, then (3.4) becomes 

28 
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d
2

<p d<p 00 00 
-- + - - ¢ = 0 for r> R , 

dr2 rdr 00 
(9.2) 

which is the order zero modified Bessel equation. The solution which 

is bounded for r -+ 00 behaves as ¢ - constant· K (r). Si nce 00 0 
dKo (r) 

dr -Kl (r), our boundary condition is 

d<p 
Ko(r) dr

oo 
+ Kl (r) <poo = 0 at r = R . (9.3) 

Using the boundary conditions (9.1) and (9.3) we can compute solutions 

of (3.4) using the numerical procedure given by Richtmyer and Morton 

(1967) . Once <p is determined, v can be computed from (3.3). 00 00 

The energetics for the non-resting basic state case are somewhat 

more complicated than the resting basic state case since energy can be 

extracted from the basic flow. From (2.8)-(2.10), with F = Q = 0, we 

can obtain 

The last term in (9.4) represents a perturbation energy source term due 

to the integrated interaction of the Reynold's stress and the basic 

state tangential wind. Using (2.9) we can rewrite (9.4) as 

f 
00(- 2V~ 

1:; - ~ !2V 2 rd r . 
o Hi:; 

(9.5) 

Using the definitions (4.4), (4.5) and 

f
OO(- 2V) i:; - ~ 2 2 

C = _.~ (v 00 - v 0 ) rd r , 
. 0 1 + 1:; 

(9.6) 

we can obtain from (9.5) the energy relation 
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K + P (gravitY-inertia) 
00 00 + wave energy = 

K +P K +P 
o 0 0 0 

C 
1 + K + P 

o 0 

(9.7) 

Thus, the final energy in the balanced flow (Koo + Pro) and the energy in 

gravity-inertia wave motion come from the initial energy (Ko + Po) and 

the conversion from the basic state (C). 

As an example let us consider the basic state given by 

4L 

8Fr 
Z;; - --=-

a 

(9.8) 

.( 9.9) 

where the Froude number Fr is the value of v at r = a, the radius of 

vanishing relative vorticity. The basic state tangential wind v reaches 

a maximum at r = a/1""3 and the relative vorticity is sl ightly negative 

outside r = a, as shown in Fig. 16. In the follo\'ling we assume Fr = 0.40 

and a=O.25. Then, for an internal gravity wave speed of 40 ms- l and a 

Coriolis parameter corresponding to a latitude of 15.9°, the radius of 

vanishing relative vorticity is 250 km, the radius of maximum wind is 

144 km, and the maximum wind is 21 ms-l. This is typical of a distur-

bance which has passed the tropical depression stage but still requires 

considerable intensification before becoming a hurricane. 

As a perturbation on this basic state let u~ consider both the 

case where vo=O and -<Po is given by the right hand side of (6.1) and 

the case where ¢o = 0 and va is given by (6.2). For any given horizontal 

scale of the initial perturbation, the final balanced state is obtained 
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from the numerical solution of (3.4) subject to the boundary conditions 

(9.1) and (9.3), followed by numerical evaluation of (3.3). In this way 

we can construct energetic diagrams analogous to those of section 6, 

where the basic state was assumed to ue at rest. 

Fig. 17a summarizes the energetics associated with the case Vo = 0 

but <porO, while Fig.17bcorresponds to the case ¢o=O but vorO. In 

additicn to the final normalized geostrophic energy curves, we have in-

cluded the normal ized exchange of energy between the basic state and 

perturba t ion (Ko ~ Po ). It is important to note that, beca use of thi s 

exchange, the normalized amount of energy which ends up in gravity-
K + P - C 

00 00 

inertia wave motion is now given by the difference between K + P 
o 0 

and unity. 

From a qualitative point of view Figs.17aand17bare similar to 

their resting basic state counterparts, Figs. 11a and llb. That is, for 

small scale rotational wind perturbations the efficiency of geostrophic 

energy generation is high, while small scale pressure perturbations 

result in low geostrophic energy. For a> 1 the diagrams are barely 

modified by the presence of the non-resting basic state fields which 

we have chosen. But for a < 1 there are some significant changes in the 

quantitative character of the energy curves. We see in Fig. 17a that the 

presence of the non-resting basic state increases the efficiency of the 

geostrophic energy generation for small scale pressure perturbations. 

For example, when the basic state is at rest (Fig. 11a) and a = 0.2, 
K + P 

oopo 00 is only about 1%, i.e. 99% of the energy escapes as gravity-

inertia wave motion~ However, with the non-restfng basic state we have 
K + P 

chosen and a = 0.2, oop 00 is about 13%. Thus, it would appear that, 
o 

when a tropical disturbance acquires a significant relative vorticity 
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field, convective heating within the region of positive relative 

vorticity can become much more efficient at producing balanced flow. 

The comparison of Fig.17bwith Fig.llbalso reveals significant quanti

tative differences. The directions of the changes found in this initial 

tangential wind case are generally opposite to those found in the initial 

pressure case. In addition, the magnitudes of the changes are generally 

larger. The large conversion of energy from the basic state to the 

perturbation for small horizontal scales more than compensates for the 

loss of energy to gravity-inertia wave motion. This results in a 
K + P 

00 00 

which slightly exceeds unity for certain horizontal scales. 



10. IMPLICATIONS FOR BOUNDARY CONDITIONS 

In the numerical simulation of a tropical cyclone using a primitive 

equation model one is forced to use a limited domain and hence to impose 

an outer boundary condition. There then arises the question of the 

distortion of the geostrophic adjustment process by the boundary condi

tion. Althou0h this problem is common to all limited area modeling with 

the primitive equations, it is particularly important in tropical cyclone 

models because the large amounts of latent heat released in convective 

clouds continually disrupt any approximate balance of pressure and wind 

and, as suggested in sections 4 and 6, most of the latent heating is 

partitioned to gravity-inertia waves. The continual excitation of 

gravity-inertia waves by the heating patterns leads to the view that 

tropical cyclones must be highly radiating systems. Gravity-inertia 

waves falsely reflected back into the interior cause excessively high 

levels of ageostrophic motion. Although there are instances when this 

might be considered annoying but tolerable, in a moist model these 

spuriously reflected waves interact non-linearly with the moisture 

field, producing an erroneous modulation of the pattern of latent heat 

release. 

It might be argued that dissipation can effectively remove these 

reflected waves before they reenter the region of interest so that the 

boundary condition is unimportant. A commonly used domain for tropical 

cyclone models is a region within a circle of about 1000 km radius. 

For such a domain size the transit times for waves with phase speeds 

of 200, 100 and 50 ms- l are 1.4, 2.8 and 5.6 hours respectively. 

Damping coefficients with damping times of only a few hours seem exces

sively large. 
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A thorough study of open boundary conditions for dispersive VJaves 

has been carried out by Bennett (1976). The application of Bennett's 

approach to the present problem proceeds as follows. Defining $(r,p) 

as the Laplace transform of ~(r,t), assuming the basic state is at 

Y'est, and assuming no initial disturbance and no forcing for r~a, 

we can transform (2.8)-(2.10) to obtain 

A A d~ 
PJ - V +~ = 0 

dr ' 
(10.1) 

pv + U = 0 , (10.2) 

;h + dru = 0 
P't' rdr ' (10.3) 

for r> a. E1 iminating ¢ and v yields 

(10.4) 

The sol ut i on wh i ch rema ins bounded as r -HO is gi ven by 

u(r,p) = A(p) Kl [(1+p2)~ rJ for r> a. (10.5) 

The transformed radial velocity component G satisfies 

The exact outgoing condition is obtained by inverting (10.6). Although 

this can be done, the resulting expression is somewhat complicated. 

In order to illustrate the practical problems encountered with (10.6), 

let us use the asymptotic form of the modified Bessel function K
1

, and 

simplify (10.6) to 
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dr!2 u" " 2 _1: 
U + (l+p ) 2 -1-, - = a for r> a 

r'2 dr 
(10.7) 

which can be inverted to give 

u(r,t) + J (t-t l
) ar ~ r,t I

t ~ ( I) 

o 0 r~ ar 
dt 1 = a for r ~ a . (lO.S) 

Expressions of this type do not appear to be of great practical use 

since they require that Wt~ store and repeatedly sum (with different 

weights) boundary values of u and ~~. In an approximate sense this 

procedure is equivalent to allowing the computational domain to expand 

in time, which is exactly what we are trying to avoid. Thus, in prac

tice we may have to abandon the idea of using an exact outgoing bound

ary condition and be satisfied with something which gives low gravity-

inertia wave reflection. 

In order to invest.igate the gravity-inertia wave reflectivity 

properties of various boundary conditions we begin by noting that the 

system ( 2 . 8) - ( 2. 10), with v = Z = F = Q = a , has the solution 

u H (1)( kr) 
1 

H (2)(kr) 
1 

v i 
v 

H (1 )(kr) 
1 

+R H
l
(2)(kr) e -ivt 

¢ 
ik H (1)( kr) H (2)(kr) - -- (10.9) v a a 

where v = (l+k2)!2, R is a complex constant, and H (1) and H (2) are 
v v 

the order v Hankel functions of the first and second kind. Using the 

asymptotic expansions valid for large kr we can write 

1 3ni 

( 
2)2 --'\., e 4 

nkr { i(kr-vt) 'R -i(kr+vt)} e - 1 e (10.10) 
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Hence, the first term of (10.9) and (10.10) corresponds to an outqoing 

wave and the second term to an incoming wave. 

If a denotes the radius of the boundary, the asymptotic form of 

the outgoing wave satisfies 

(I) 

with similar expressions for v and~. Equation (I) should serve as 

a fairly accurate radiation condition. Since r +1 as k+oo (1) might 

be approximated by 

o at r = a , (II) 

or by 

8u 8'1 
at + 8r = 0 at r = a . (II I) 

Two other boundary conditions in common use are 

8ru 
= 

r8r o at r = a , (IV) 

and 

u = 0 at r = a . (V) 

The reflectivities of conditions (I) - (V) can be found by sub

stituting (10.9) and solving for IRI. The results are shown in Table 

and Fig. 20. Boundary condition II appears to give reflectivities 

nearly as low as I. In addition it has the advantage of using the pure 

gravi ty II/ave speed (unity in thi s case) for v/k. 

A survey of the literature on tropical cyclone models indicates 

that the boundary conditions used are either type IV (Rosenthal, 1970; 
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Boundary Condition Reflectivity 

d r~ H 1 ( 1)( k r ) 
- ikHl(l)(kr) 

k 1, 

~+ ~ Clr 2U r'2 dr 
(I) -- =0 I RI = at r=a 

Clt k k: dr~Hl{2J(kr) r 2Clr 

I - i kH} 
2 

\ kr) I k: 
r 2 dr 

I 
ar~ H} 1)( kr) 

- iVH}l )(kr) I k k 
~ + Clr 2U = 0 r 2 dr (II) I RI = 

dr~H (2)(kr) 
at r=a 

at r J2Clr 
- iVH}2)(kr) I 

1 
k 

r 2 dr 

dHl(l )(kr) 
- iVH/

1 
)(kr) I 

(III) ~+ au 
=0 IRI = 

dr 
at r=a 

Clt Clr dH (2)(kr) 
1 - iVH

l
(2)(kr) 

dr 

(IV) Clru = 0 
rClr IRI = 1 

(V) u = 0 I RI = 1 

Table 1. Reflectivities for the various boundary conditions. 
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Anthes, 1971, 1977; Anthes et al., 1971a,b) or type V (Yamasaki, 1968a; 

KUl~ihara, 1975; Kurihara and Tuleya, 1974; Rosenthal, 1978). Rosenthal 

(1971) has compared the ultimate intensity attained by model cyclones 

with either boundary conditions IV or V as a function of the size of 

the computational domain. For domain sizes less than 2000 km there 

are substantial differences, with boundary condition V resulting in 

less intense model cyclcnes. Rosenthal IS interpretation is that bound-

ary condition V, coupled with a small domain size, forces upper level 

outflow air to subside too strongly and too near the storm center, 

resulting in an unrealistic decrease in the radial temperature gradient. 

The analysis presented in this paper would indicate that neither IV 

nor V is very satisfactory from the geostrophic adjustment point of 

view. 

The generalization of boundary condition (II) to the fully strati

fied case involves the solution of the vertical structure problem for 

its eigenvalues (h ) and eigenfunctions. The dimensional form of the 
n 

boundary condition (with the factor ~ in front of the second term) 
n 

is then applied to each vertical mode. Some comparison tests which we 

have made indicate that boundary condition (II) results in less distor

ticn of the adjustment process than the numerical extrapolation tech

nique of Orlanski (1976), which is, however, somewhat easier to implement. 

The stratified version of boundary condition (II) is presently being 

used in an axisymmetric tropical cyclone model developed at Colorado 

State University. 



11. CONCLUDING REMARKS 

It has been shown that there exist simple analytical solutions for 

the geostrophic adjustment of an axisymmetric vortex. The examples dis-" 

cussed above indicate that, when the basic flow is at rest, the energetical 

efficiency of cloud cluster heating in producing balanced vortex flow is 

very low while the efficiency of cloud cluster forcing of the vorticity 

field is VEry high. When the basic flow is not at rest, important mod

ifications of these energy partition relations can occur. 

In tropical cloud cluster budget studies it is common prac~ice to 

compute either the apparent heat source or the apparent vortici~y source. 

The results presented here emphasize that the effect of clouds on the 

potential vorticity field (i.e. the apparent potential vorticity source) 

is the important ingredient in understanding the feedback of clouds on 

the large-scale fields. 

Because gravity-inertia waves can be so strongly excited by heating 

on horizontal scales small compared to the radius of deformation, the 

lateral boundary condition becomes an important factor in the abil ity 

of a primitive equation tropical cyclone model to simulate geostrophic 

adjustment. Although not perfect, a suitable radiation condition may 

be sufficient for most purposes. 

There are several ways to generalize the results presented here. 

First of all, the effects of stratification could be more throughly 

studied by considering all the vertical modes rather than just the 

first internal mode, as we have done here. This has been done to a 

certain extent by Bolin (1953), Kibel (1955, 1957, 1963), Fje1sted (1958), 

Monin (1958) and Fischer (1963), although not with axisymmetric tropical 
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disturbances in mind. Secondly, the f-plane assumption could be retained 

but the axisymmetric assumption relaxed, and a Fourier representation 

used in the tangential direction. Then, using Hankel transforms whose 

order is determined by the azimuthal wavenumber, many of the results 

presented here can be easily generalized. This asymmetric adjustment 

problem will be discussed in a future paper. Thirdly, curvature effects 

could be included and differences between geostrophic and gradient 

adjustment studied. However, gradient adjustment is less amenable to 

theoretical analysis. Finally, in order to study the adjustment process 

ve~y near the equator, it is preferable to abandon the f-plane in favor 

of the equatorial S-plane. Then, an unbalanced initial state can be 

projected onto the eigenfunctions of the equatorial S-plane and the 

subsequent flow patterns studied. This has been done by Silva Dias and 

Schubprt (1979), who show that the energy partition relations derived 

on the f-plane are qualitatively valid if the energy of the final geo

strophic state is now interpreted as the energy in Rossby wave motion. 

However, there are important differences between the f-plane and B-plane 

results. For example, if the unbalanced initial state has circular 

symnetry, gravity-inertia wave dispersion quickly leaves behind a quasi

balanced symmetric flow which is then slowly distorted by the Rossby 

wave dispersion process. 
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Figure 2. Normalized initial geopotential perturbation (see Eq. (5.2)) 

and final adjusted geopotential for the initial top-hat 

potential vorticity perturbation. The three final states cor-

respond to initial perturbations with horizontal scales of 

a=-O. 2, 1.0, and 5. O. 

Figure 3. Normalized initial tangential velocity perturbation (see Eq. 

(5.3)) and final adjusted tangential velocity for the initial 

top-hat potential vorticity perturbation. The three final 

states correspond to initial perturbations with horizontal 

scales of a = 0.2, 1.0 and 5.0. 

Figure 4. Normalized initial vorticity perturbation (interpreted ac-

cording to Eq. (5.1), ¢o = 0) and final adjusted vorticity for 

the initial top-hat potential vorticity perturbation. The 

three final states correspond to initial perturbations with 

horizontal scales of a = 0.2, 1.0, and 5.0. 

Figure 5. (a) Ratios of the final perturbation energies in geostrophic 

flow to the initial p~rturbation available potential energy 

(top-hat geopotential perturbation) as a function of the 

horizontal scale of the initial perturbation. The basic state 

is at rest. The distance of the curves below unity indicates 

the fraction of the initial perturbation energy partitioned to 

gravity-inertia wave motion. 

(b) Same as (a) except that the initial perturbation is in the 

tangential velocity field. 
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Figure 6. Isolines of radial mass flux ru(r,t) in the (r,t) plane for 

the case where the initial vorticity is concentrated at the 

origin and the initial geopotential field is flat. The con-

tour interval is 0.5 with dashed lines indicating negative 

ru(r,t). 

Figure 7. aru 
Divergence, rar' as a function of time for r = n/4 and 

r = 3n/4. The initial condition is the same as for Fig. 6. 

Figure 8. The geopotential surface ¢(r,t) in the (r,t) plane for the 

same initial condition as in Figs. 6 and 7. This may also 

be interpreted as the vorticity since in this case s(r,t) = 

¢(r, t) for all r 10. 

Figure 9. Normalized plots of the final adjusted geopotential fields 

(dashed) as contrasted with the initial geopotential fields 

(solid) where the initial geopotential fields represent 

Gaussian-type potential vorticity perturbations. Curves 

are plotted for perturbations with horizontal scales of 

a = 0.2 and 5.0. 

Figure 10. Normalized plots of the final adjusted tangential velocity 

fields (dashed) as contrasted with the initial tangential 

velocity fields (solid) where the initial tangential velocity 

fields represent Gaussian-type potential vorticity perturba

tions. Curves are plotted for perturbations with horizontal 

scales of a = 0.2 and 5.0. 
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Figure 11. (a) Ratios of the final perturbation enerqies in qeostrophic 

flow to the initial perturbation available potential energy 

(Gaussian-type geopotential perturbation) as a function of 

the horizontal scale of the initial peiturbation. The basic 

state is at rest. The distance of the total energy curve 

below unity indicates the fraction of the initial perturba-

tion en~rgy partitioned to gravity-inertia wave motion. 

(b) Same as (a) except that the initial perturbation is in 

the tangential velocity field (Eq. (6.2)). 

Figure 12. Isolines of radial mass flux ru(r,t) in the (r,t) plane for 

the case where the initial divergence is concentrated near 

the origin, the initial tangential velocity is everywhere 

zero, and the initial geopotential field is flat. The con-

tour interval is 0.5 with dashed lines indicating negative 

ru(r,t). 

F· 13 D' aru ft' ft' f /4 d 1 gure . lVergence, rar ' as a unc lon 0 lme or r = Tf an 

r = 3Tf/4. The initial condition is the same as for Fig. 12. 

Figure 14. The geopotential surface ¢(r,t) in the (r,t) plane for the 

same initial condition as in Figs. 13 and 14. This may also 

be interpreted as the vorticity since in this case ~(r,t) = 

¢(r,t) for all r. 

Figure 15. The geopotential surface ¢(r,t) in the (r, at) plane for the 

case of (a) the balanced model, (b) the primitive equation 

model with slow forcing (a=~) and (c) the primitive equation 

model with rapid forcing (a = 2). 
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Plots of the bas i c state quantiti es v, (1 + 2v ) and (1 + Z) , 
r 

as function of r/a, for the case a=0.25 and Fr=0.40. The 

dimensional scales, included for convenience, are based on 

-1 
an intel nal gravity wave speed of 40 ms and a Corio1is 

parameter corresponding to a latitude of 15.9°. 

Figure 17. (a) Ratios of the final perturbation energies in balanced 

flow to the initial perturbation available potential energy 

(Gaussian-type geopotential perturbation) as a function of 

the horizontal scale of the initial perturbation. The basic 

state, which is not at rest, was shown in Fig. 17. A curve 

showing the ratio of the energy exchange with the basic state 

to the initial available potential energy is also included 

Poo+Koo-C 
(C/P

o
)' The distance of the p curve below unity 

o 
indicates the fraction of initial perturbation available 

potential energy which ends up in gravity-inertia wave motion. 

(b) Same as (a) except that the initial perturbation is in 

the tangential velocity field (Eq. (6.2)). 

Figure 18. Plots of wave reflectivities for the boundary conditions pre

sented in Table 1. Unity indicates perfect reflection. The 

abscissa can be read in either ka (wavenumber in units of 

domain size) or 2n/ka (wavelength in units of domain size). 
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