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Abstract

Background: Kulldorff's spatial scan statistic and its software implementation – SaTScan – are

widely used for detecting and evaluating geographic clusters. However, two issues make using the

method and interpreting its results non-trivial: (1) the method lacks cartographic support for

understanding the clusters in geographic context and (2) results from the method are sensitive to

parameter choices related to cluster scaling (abbreviated as scaling parameters), but the system

provides no direct support for making these choices. We employ both established and novel

geovisual analytics methods to address these issues and to enhance the interpretation of SaTScan

results. We demonstrate our geovisual analytics approach in a case study analysis of cervical cancer

mortality in the U.S.

Results: We address the first issue by providing an interactive visual interface to support the

interpretation of SaTScan results. Our research to address the second issue prompted a broader

discussion about the sensitivity of SaTScan results to parameter choices. Sensitivity has two

components: (1) the method can identify clusters that, while being statistically significant, have

heterogeneous contents comprised of both high-risk and low-risk locations and (2) the method can

identify clusters that are unstable in location and size as the spatial scan scaling parameter is varied.

To investigate cluster result stability, we conducted multiple SaTScan runs with systematically

selected parameters. The results, when scanning a large spatial dataset (e.g., U.S. data aggregated

by county), demonstrate that no single spatial scan scaling value is known to be optimal to identify

clusters that exist at different scales; instead, multiple scans that vary the parameters are necessary.

We introduce a novel method of measuring and visualizing reliability that facilitates identification of

homogeneous clusters that are stable across analysis scales. Finally, we propose a logical approach

to proceed through the analysis of SaTScan results.

Conclusion: The geovisual analytics approach described in this manuscript facilitates the

interpretation of spatial cluster detection methods by providing cartographic representation of

SaTScan results and by providing visualization methods and tools that support selection of SaTScan

parameters. Our methods distinguish between heterogeneous and homogeneous clusters and

assess the stability of clusters across analytic scales.
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Method: We analyzed the cervical cancer mortality data for the United States aggregated by

county between 2000 and 2004. We ran SaTScan on the dataset fifty times with different parameter

choices. Our geovisual analytics approach couples SaTScan with our visual analytic platform,

allowing users to interactively explore and compare SaTScan results produced by different

parameter choices. The Standardized Mortality Ratio and reliability scores are visualized for all the

counties to identify stable, homogeneous clusters. We evaluated our analysis result by comparing

it to that produced by other independent techniques including the Empirical Bayes Smoothing and

Kafadar spatial smoother methods. The geovisual analytics approach introduced here is developed

and implemented in our Java-based Visual Inquiry Toolkit.

Background
The Kulldorff spatial scan statistic and SaTScan

The scan statistic is a method for detecting non-random
clustering in multi-dimensional point or near-point data-
sets [1]. Although there are numerous variants of the scan
statistic, we focus upon the two-dimensional spatial scan
statistic because of its potential for identifying geographic
clusters of increased disease risk. The concept of a disease
cluster can be defined as an unusually high concentration
of disease events in a region unlikely to have occurred by
chance [2,3]. Put simply, a disease cluster is any area
within the study region of significant elevated risk for a
disease [4], which is often referred to as a hot-spot cluster.
One of the earliest discussions and implementations of
the spatial scan statistic was in the Geographical Analysis
Machine (GAM) by Openshaw and colleagues [5]. Of par-
ticular interest to the present research is the Kulldorff [6]
spatial scan statistic because it is both deterministic (i.e.,
it identifies the locations of clustering) and inferential
(i.e., it allows for hypothesis testing and evaluation of sig-
nificance). Kulldorff's SaTScan [7] software is the most
widely used implementation of the spatial scan statistic
method. The research reported here specifically enhances
interpretation of the output derived from SaTScan; and
the methodology described in the research is applicable to
other spatial scan statistic implementations (and other
cluster detection methods) with minor alterations. The
SaTScan implementation of the spatial scan statistic is
capable of detecting both circular and elliptical clusters;
for simplicity, we consider only circular clustering for the
remainder of the paper, but our method is equally appli-
cable to the elliptical variant.

The spatial scan statistic and the SaTScan software is
described in detail by Kulldorff and colleagues in a series
of papers [6,8-10]. It is summarized here to provide con-
text for the geovisual analytics approach we introduce for
enhancing interaction with and interpretation of SaTScan
results. For disease mortality, the null hypothesis of the
Kulldorff spatial scan statistic states that deaths are ran-
domly distributed in geographic space and the expected
death count is proportional to the population at risk (i.e.,
adjusted by age or other covariates). The alternative

hypothesis is that there is increased mortality within an
area as compared to the outside areas. The spatial scan sta-
tistic imposes a circular window on the map and moves
the circle centre over each point location so that the win-
dow includes different sets of neighbouring points at dif-
ferent positions [10]. For enumerated data, an areal unit
will be included if its centroid is within the bounds of the
circle. By adjusting the centre location and radius, the
method generates a large number of distinct circular win-
dows, each including a different set of neighbouring
points. At each point location, the radius of the circle is
increased continuously from '0' to a user-defined maxi-
mum radius [10]. The user-defined maximum radius used
by SaTScan is referred to subsequently as maximum-size.
The maximum-size parameter sets an upper bound on the
circle radius in one of two ways: (1) by specifying the max-
imum percentage of the total population at risk within the
circle or (2) by specifying the geographic extent of the cir-
cle. The former is the default and is used in the research
reported here. When setting the maximum-size based
upon population at risk, the default maximum-size value,
as recommended in the SaTScan user guide [11], is set to
50% of the total population at risk – with this setting, a
reported cluster can contain at most 50% of the total pop-
ulation at risk.

SaTScan detects potential clusters by calculating a likeli-
hood ratio for each circle. The likelihood ratio is propor-
tional to Equation 1:

where C is the total number of cases, c is the observed
number of cases within a circle, and e is the adjusted
expected number of cases within the circle. I() is a binary
indicator that facilitates identification of high-risk clusters
(hotspots), low-risk clusters ("coldspots"), and both.
When SaTScan is set to scan for high-risk clusters, I() is
equal to '1' when c > e and equal to '0' otherwise; for low-
risk clusters, the ">" would change to "<"; and for both, I()
= 1 [11]. The circle with the maximum likelihood ratio
among all radius sizes at all possible point locations is
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considered as the most likely cluster (called the primary

cluster). SaTScan calculates and reports a logarithm of the
likelihood ratio (LLR) for each cluster. As described in the
SaTScan User Guide, to evaluate the statistical significance
of the primary cluster, "a large number of random replica-
tions of the data set are generated under the null hypoth-
esis. The p-value is obtained through Monte Carlo
hypothesis testing, by comparing the rank of the maxi-
mum likelihood from the real data set with the maximum
likelihoods from the random data sets. If this rank is R,
then the p-value = R/(1 + # simulations)" [[11], p16]. In
SaTScan, the default value for the number of simulations
is 999.

SaTScan also identifies secondary clusters that have a signif-
icantly large likelihood ratio but are not the primary clus-
ter [6]. Many secondary clusters are nearly identical to the
primary cluster in geographic position and extent; such
secondary clusters are usually of little interest, but serve to
remind users that the location and size of detected clusters
are only estimates [6]. These secondary clusters occur
because slight alteration to the circle radius or relocation
of the circle centre to a different, nearby point location
(thus adding or removing only a few locations to the cir-
cle) changes the likelihood ratio only marginally, espe-
cially when the newly included or excluded locations have
a small population at risk. However, secondary clusters
that have no common geographic area with the primary
cluster may be of great interest as they are able to reject the
null hypothesis on their own strength [11]; thus, they are
significant and potentially meaningful from a research
and policy perspective.

Limitations of the Kulldorff spatial scan statistic and 

SaTScan

SaTScan has made the spatial scan statistic widely accessi-
ble, substantially impacting numerous domains in which
spatial clusters are of interest (e.g., crime analysis, epide-
miology). However, two issues make using the method
and interpreting its results nontrivial: (1) SaTScan lacks
cartographic support for understanding the clusters in
geographic context and (2) results from the method are
sensitive to the selection of scaling parameters, but the
system provides no direct support for making these
choices. Each issue is discussed below.

First, SaTScan does not provide cartographic support to
view the identified clusters, nor a visual interface to
explore cluster characteristics. Geographic information
about the identified clusters (e.g., the centre location, the
cluster radius, data entities included in each cluster) is
available only as text. In order to visualize the geographic
location and size of the clusters, a user must process the
textual output and export it to GIS software (e.g., ArcGIS).
This is a time-consuming process and inhibits interactive

exploration of multiple parameter configurations for
interpretation of the results. Because of this limitation,
researchers may choose default parameters or make some
other arbitrary choices that do not reflect characteristics of
the geographic phenomena. Further, in published exam-
ples [12-14], it is typical to see that the studied data (e.g.,
aggregated disease data) and the SaTScan clusters are
depicted on two separate maps, making interpretation of
SaTScan clusters relative to the original dataset difficult. In
one of the few efforts to address this problem, Boscoe and
colleagues propose a single integrated map that combines
the likelihood ratio with relative risk [15]. Our proposed
methodology builds from this core idea of integrating
cluster output with relative risk information and takes
advantage of both established and novel interactive geo-
visualization methods to enhance the understanding of
SaTScan results.

Second, it is difficult to determine an optimal setting for
SaTScan scaling parameters, as discussed in [12,16]. Con-
fusing and even misleading results are possible if the
parameter choices are made arbitrarily. The focus of the
research presented here is on the aforementioned maxi-
mum-size parameter. The default maximum-size setting
of 50% seldom produces usable, informative results
because the reported primary cluster often occupies a large
proportion of the study area [17]. The task of determining
the most appropriate maximum-size is challenging. This
choice can be context dependent, influenced both by the
geographic scale of processes leading to clusters and by
the application goals. In addition, too large of a maxi-
mum-size can hide small, homogeneous clusters within
larger, heterogeneous ones, and too small of a maximum-
size can miss significant, regional-level clusters. SaTScan
provides limited guidance for selection of an appropriate
maximum-size value. Our research to address this prob-
lem prompted a broader question on the sensitivity of
SaTScan results to parameter choices.

The sensitivity to the maximum-size parameter has two
components. The first is that SaTScan clusters tend to con-
tain heterogeneous contents, particularly when using
large maximum-size values. Such clusters are composed of
not only the high-risk locations that are of interest in epi-
demiological cluster detection, but also many low-risk
locations that are not of interest. The second component
relates to stability of clusters in terms of location and size
as the maximum-size value is varied. Adjustments to the
maximum-size parameter by only several percentage
points may cause large shifts in both the location of iden-
tified clusters and their radii. To address these two issues
with SaTScan (cartographic output and sensitivity related
to both heterogeneous content and circle centre/size
instability), we propose a geovisual analytics approach to
enhance interpretation of SaTScan results.
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A geovisual analytics approach

Geovisual analytics is a sub-area of the emerging research
discipline of visual analytics, with specific focus on prob-
lems involving geographic phenomena [18]. Visual ana-
lytics is defined in a recent research agenda [[19], p4] as
"the science of analytical reasoning facilitated by interac-
tive visual interfaces." Geovisual analytics moves beyond
traditional cartographic or GIS output that presents a sin-
gle, optimal map to the user in support of policymaking.
Instead, geovisual analytics allows users to interactively
explore visual representations of geographic information,
tapping perceptual and cognitive abilities to recognize
and process patterns and outliers from a visual scene, link
these patterns and outliers to existing mental schemata
and knowledge bases, and arrive at an appropriate course
of action given the visual input [20,21]. Geovisual analyt-
ics can be used to enhance other methods of scientific
inquiry to the end of gaining insight about geographic
phenomena, drawing conclusions about these phenom-
ena, and directing subsequent scientific investigation or
policy action [20]. The research reported here proposes a
novel geovisual analytics approach that combines the
strength of advanced visualization methods with the ana-
lytical capabilities of the spatial scan statistic. The pro-
posed approach is implemented in the Visual Inquiry

Toolkit (VIT) [22,23], a software package developed at the
GeoVISTA Center at The Pennsylvania State University.

We demonstrate the advantages of our approach through
the analysis of a cervical cancer mortality dataset for the
continental U.S., aggregated by county, from 2000 to
2004. Identification of geographic clusters of increased
cervical cancer risk is a particularly important and timely
issue in the United States because it is one of the few
forms of cancer that is currently preventable. It is believed
that 90–95% of the incidence of cervical cancer are caused
by the human papillomavirus (HPV) [24-28]. Fortu-
nately, early detection and treatment of cervical dysplasia
through regular Pap screening greatly reduces the risk of
cervical cancer. Since the introduction of Pap smears in
the 1950s, national cervical cancer rates have been
reduced by one-half [27]. The recent introduction of the
HPV vaccine offers further promise for prevention of cer-
vical cancer [25].

While cervical cancer mortality at the scale of the nation is
in decline, geographic disparities remain. It was argued in
a 2005 monograph produced by the National Cancer
Institute that "Despite the consistent decline in cervical
cancer mortality overall," examination of cervical cancer
mortality remains essential because "an entrenched geo-
graphic pattern of deaths from this disease has persisted
for decades" [[28], p1]. The same monograph points to
geographic regions in the U.S. that appear to exhibit this
pattern; they are in the Deep South, Appalachia, along the

Texas-Mexico border, in California, and in the North
Plains states. Determination of statistically significant
geographic clusters is extremely important for interven-
tion at these locations by physicians and policymakers.
Because of the urgency for intervening in areas of high-
risk, we focus only upon high-rate clusters; our proposed
geovisual analytics method could be applied to low-rate
clusters or low- and high-rate clusters together with minor
alteration.

In the following Results section, we introduce our novel
geovisual analytics methods and discuss how they can be
applied to SaTScan results to alleviate the two issues with
SaTScan described in the previous session. In the Conclu-
sion section, we summarize the method, describe its lim-
itations, and recommend a procedure for investigating
geographic clusters of disease. The final Methods section
is reserved for the technical details of data processing, SaT-
Scan application, cartographic mapping, and analysis
design.

Results and discussion
The geovisual analytics methods implemented in VIT
directly address the lack of cartographic support for inter-
preting SaTScan results and the implications of selection
of scaling parameters. In our approach, a tabular interface
enables loading of multiple SaTScan results without any
data manipulation in GIS or other software. This interface
is linked dynamically to a choropleth map, a map matrix,
and related information visualization tools so that an ana-
lyst can select, visualize, and compare SaTScan results pro-
duced by different maximum-size values. In the
remainder of this section, we describe the sensitivity of
SaTScan results to the maximum-size parameter, which is
reflected in two ways: (1) heterogeneous contents and (2)
instability of clusters in location and size. Although static
results from our mapping/visualization tools are used to
support this discussion; the tools derive much of their
power to support analysis and interpretation from their
capabilities for flexible user interaction and dynamic link-
ing among views.

Heterogeneous and core high risk clusters

When analyzing county-level cervical cancer mortality
data for the U.S., we found that SaTScan reports many sta-
tistically significant clusters that contain a relatively high
proportion of low-risk counties. We describe these regions
as heterogeneous clusters.

However, we noticed that there are often smaller, homo-
geneous subsets within heterogeneous clusters that
exhibit Standardized Mortality Ratio (SMR) values high
enough to reject the null hypothesis on their own
strength; other researchers have noted a similar occur-
rence [14]. We describe these regions as core clusters. The
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phenomenon is caused by the tendency of SaTScan "to
identify large areas with large populations but small eleva-
tions in risk, since such areas have the highest statistical
power. Smaller clusters contained within these areas that
have higher elevations in risk but lower, though statisti-
cally significant, likelihood ratios, are ignored" [[15],
p274]. While SaTScan emphasizes the larger clusters on
statistical grounds; the core clusters are of more practical
interest from both a research and policy perspective
because they represent statistically valid homogenous
regions of extreme risk and provide important informa-
tion at a finer scale. More specifically, as presented here, a
core cluster has homogeneous contents, and is stable
against parameter variation (e.g., maximum-size). It is
either explicitly reported by SaTScan or contained in a
larger cluster reported by SaTScan. Although reported as
significant clusters by SaTScan, a heterogeneous cluster
either has heterogeneous contents or is unstable in terms
of location and size under parameter variation. A hetero-

geneous cluster usually contains one or several core clus-
ters.

The existence of heterogeneous clusters can be demon-
strated by applying SaTScan to the cervical cancer dataset.
The SMR map in Figure 1 provides an overview of SMR
values by county. Figure 2 displays only those counties
contained in clusters reported by SaTScan when the max-
imum-size parameter is set to 40%. Two heterogeneous
clusters are present in Figure 2: clusters A and C. Although
these identified regions have statistically higher mean
SMR values than the rest of the country, many counties
within each cluster exhibit low SMR values (shown in
dark blue). Further, it appears as though there are several
homogeneous subsets within Cluster A and C that are pos-
sibly core clusters (e.g., sub-region E in cluster C and sub-
region in orange in cluster A). To evaluate heterogeneity of
the clusters, we measured the percentage of the total
number of counties in a cluster that are not in high risk
(i.e., SMR less or equal to '1'); this percentage is subse-

A choropleth map displaying the SMR for U.S. cervical cancer mortality from 2000–2004Figure 1
A choropleth map displaying the SMR for U.S. cervical cancer mortality from 2000–2004. Cervical cancer SMR is 
divided into five classes using a modified equal-area classification scheme centred on normal, with breaks at '0.4', '0.8', '1.2', and 
'1.6'. A blue-orange diverging colour scheme is used: blue representing low-risk, white representing normal risk, and orange 
representing high-risk. The number of counties belonging to each class is expressed by n in the legend.
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quently referred to as Pct_NH. Cluster A has a Pct_NH
value of 52.4%, and Cluster C has the value of 40.8%.
From a practical perspective (e.g., disease prevention or
policy making), reporting high risk clusters like A and C
that contain a large portion of non-high-risk locations has
obvious negative implications if cluster heterogeneity is
not recognized.

To facilitate identification of core clusters and avoid
potentially misleading heterogeneous clusters, it is neces-
sary to avoid selection of an excessive maximum-size
value. For example, the core cluster B (consisting of only
Los Angeles County, CA but containing 3.4% of the US
population at risk) in Figure 2 is reported as a significant
cluster when the maximum-size value is set to 4%. How-
ever, as the maximum-size is increased to more than 6%,
the core cluster expands to the extent of cluster A.
Although cluster A in Figure 2 is statistically valid at a
maximum-size above 6%, it is a heterogeneous cluster
because 52.4% of its counties (eleven out of twenty-one
counties) are not in high risk. Specifically, nine of the

eleven counties showing no high risk in cluster A (in pur-
ple) have an SMR value of '0.0' (could be extremely low
disease risk) and a population value ranging from '404' to
'9,263' (extremely low population at risk); the other two
counties have SMR less than 1. A SMR value of '0.0' means
that there are no case reported in the area, which could be
because the risk is low or the population is low. This
example demonstrates that a core cluster may be a single
county (i.e., cluster B) as long as its SMR and population
at risk are sufficiently larger than surrounding areas. Sim-
ilarly, we suggest that the heterogeneous cluster C con-
tains core clusters D and E. Cluster E is reported when the
maximum-size is set at 4% or 6%. Cluster E is more
homogeneous than Cluster C because the former has a
considerably smaller Pct_NH value than the latter (as
shown in Table 1). Identification of core cluster D will be
described in the section below on visual identification of
core clusters.

On the other hand, when the maximum-size parameter is
too small, SaTScan may report only the smallest core clus-

Heterogeneous versus core clustersFigure 2
Heterogeneous versus core clusters. Clusters A and C are the heterogeneous clusters reported by SaTScan with a large 
maximum-size. Cluster B, D, E are identified as core clusters by the proposed reliability visualization. The clusters' properties 
are listed in Table 1. The clusters above are manually circled and labelled for illustration purposes. Other irrelevant clusters 
(e.g., a single-county cluster near the Great Lakes) are not circled and labelled.
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ters, missing regional-level core clusters of homogenous
high-risk contents. This occurs when a core cluster has a
percentage of the total population at risk above the maxi-
mum-size value. For example, we ran scans with a maxi-
mum-size of 1%, 2%, and 3%. No cluster is reported in
the area where cluster A occupies. This finding suggests
that cluster B is the only core cluster in cluster A. We also
examined the LLR values of clusters A and B; a LLR value
provides a cluster the statistical power to reject the null
hypothesis. With a maximum-size of 6%, Cluster B has an
LLR value of '25.30' (with the associated p-value of
0.001). The value is much higher than other significant
clusters (e.g., one with LLR of '13.77', with p-value of
0.005) and is close to the LLR of cluster A ('31.29', with p-
value of 0.001). It suggests that the statistical power of
cluster A is contributed primarily by core cluster B.

Instability of SaTScan clusters

In order to obtain core clusters, it is necessary to run SaT-
Scan multiple times using different maximum-size values,
particularly for relatively large datasets (e.g., U.S. data
aggregated by county). To examine this issue, we ran fifty
scans, increasing the maximum-size parameter in 1 per-
centage point increments from 1% to the default 50%. We
then interactively compared the fifty SaTScan runs using
the map matrix [29] component of VIT. In a map matrix,
each SaTScan result is shown on a small choropleth map,
allowing for side-by-side comparison; this display tech-
nique is also referred to as small multiples. Eight of these
scans (4%, 6%, 8%, 10%, 20%, 30%, 40%, and 50%) are
displayed in Figure 3 to illustrate the variation in SaTScan
results caused by increasing the maximum-size parameter.
It can be seen in Figure 3 that, as the maximum-size is
increased, the primary SaTScan cluster (marked in a black
circle on each small map) expands from the core cluster at
a maximum-size of 4% (in circle E) to its fullest extent at
a maximum-size of 50% (in circle H). In the process, core

clusters F and G, which were not near core cluster E at a
maximum-size of 4%, are encompassed by the large het-
erogeneous cluster H. As shown in Table 1, the contents of
the core, primary clusters at 4% are much more homoge-
nous than those in the heterogeneous, primary cluster at
50% (i.e., cluster H). Thus, it appears as though the simple
solution to avoid heterogeneity is to restrict the maxi-
mum-size.

However, we noticed that as we reduced the maximum-
size, the location and size of the core clusters varied signif-
icantly, producing a new problem of core cluster instabil-
ity in both location and size. For example, cluster J is
reported at the maximum-sizes of 4%, 6% and 10%; how-
ever, it expands into cluster J2 at a maximum-size of 8%
and then disappears when the maximum-size is above
10%. Such a finding suggests that a unique maximum-size
value might be necessary for identifying the correct
bounds of each core cluster, and that the clusters are scale-
dependent. Hence, it is unlikely that there is a single, opti-
mal maximum-size value for the entire study extent when
scanning a large spatial dataset (e.g., U.S. data aggregated
by county). Therefore, we recommend running multiple
scans, systematically increasing the maximum-size param-
eter with each run. The above issue of core cluster instabil-
ity still raises several important questions: First, how
reliable are the clusters reported by a single scan, as com-
pared to those by multiple scans? Second, how do we cope
with the sensitivity of SaTScan results to the maximum-
size parameter? Lastly, can we identify more stable, homo-
geneous clusters by running multiple scans, and how? We
address these questions in the following sections.

Visualizing Reliability of SaTScan clusters

To assist discrimination of stable, core clusters from heter-
ogeneous and/or unstable ones, we have developed a
method that we term reliability visualization. The method
visualizes the reliability that a county is reported within a
cluster when SaTScan is run multiple times with a system-
atically varying maximum-size parameter. In epidemiol-
ogy, reliability is defined as the capacity of a test to give
the same result – positive or negative – on repeated appli-
cations [30]. Reliability is separated into two different
types: (1) intra-observer reliability (agreement of results
from the same diagnostic test being given at multiple
times or with multiple settings) and (2) inter-observer
reliability (agreement of multiple observers on the result
of one diagnostic test). We consider reliability visualiza-
tion to be of the intra-observer type of reliability because
we are considering the agreement of results from multiple
SaTScan runs, each with a slightly different parameter con-
figuration. Reliability is estimated by Equation 2:

R
Ci
S

i = (2)

Table 1: Properties of the clusters discussed in this paper.

Cluster Pop Pct_Pop p-value SMR Pct_NH County#

A 8387.8 k 5.76% 0.001 1.25 52.4% 21

B 4928.8 k 3.38% 0.001 1.3 0% 1

C 23,249 k 16.0% 0.001 1.28 40.8% 790

D 360.5 k 0.25% 0.000 1.84 0% 1

E 4957.2 k 3.41% 0.001 1.53 30% 260

F 878.8 k 0.6% 0.001 1.59 25.5% 47

G 454.4 k 0.3% 0.005 1.74 18.8% 16

H 60154.3 k 41.3% 0.001 1.14 45.4% 1644

The table list following properties for the clusters: Pop (population at 
risk), Pct_Pop (the percentage of total population at risk), p-value, 
SMR (Standardized Mortality Ratio), Pct_NH (the percentage of the 
counties in a cluster that are not in high risk), and County# (the 
number of counties contained in a cluster). Extremely small p-values 
(e.g., less than 0.001) are reported by SaTScan as 0.000, which means 
extremely small values rather than 0.
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A map matrix displaying eight SaTScan runs for cervical cancerFigure 3
A map matrix displaying eight SaTScan runs for cervical cancer. The eight runs increase the maximum-size parame-
ter systematically (4%, 6%, 8%, 10%, 20%, 30%, 40%, and 50%). As the maximum-size parameter is increased, the clusters 
reported by SaTScan vary in both location and size (as illustrated by the growing black circles and gray circles). For illustration 
purposes, we carefully draw circles around the boundary of the clusters. For each result, the primary cluster is in a black circle; 
and some secondary clusters are in gray circles.
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where Ri is the reliability value for location i, S is the total
number of scans, and Ci is the number of scans for which
that location i is within a significant cluster. The reliability
measure has a value range from '0' to '1,' where '0' means
that the location is not found in a significant cluster in any
of the scans and '1' means that the location is within a sig-
nificant cluster in all scans. The reliability score measures
the stability of clusters reported by multiple scans. Relia-
bility is distinct from the concept of validity, which is a
measure of the probability that the cluster represents a
true high-risk region. Therefore, the goal of reliability vis-
ualization is to identify stable core clusters rather than to
evaluate the validity of the core clusters. Since we are
applying it to the results of an analysis that measures
validity, the end result is to identify the locations that are
reliable within a significant high risk cluster.

Using VIT, reliability scores for each county were calcu-
lated using the eight scans in Figure 3 and are visualized
in Figure 4 (top), outlining the same five clusters (i.e.,
cluster A, B, C, D, and E) from Figure 2. The map of SMR
(Figure 4, bottom) has been filtered to show only those
counties with a reliability score above '0.75', the top two
classes in the legend of Figure 4 (top).

Visual identification of core clusters

Interpreted with the SMR map, the reliability visualization
facilitates initial visual discrimination of core clusters
from heterogeneous ones. The task involves two steps: (1)
interpreting the reliability scores with SMR values and (2)
comparing the reliability score of a cluster with the places
neighbouring or inside the cluster.

When interpreting the reliability visualization in tandem
with SMR values (step #1 above), a heterogeneous cluster
can be identified if it exhibits heterogeneity in both relia-
bility scores and SMR values. Examples are clusters C and
H in Figure 4 (top), which are reported during the scans of
40% and 50% respectively. In contrast, a cluster that con-
tains homogeneous, high reliability scores and high SMR
values is likely to be a core cluster. For example, the relia-
bility visualization (Figure 4, top) displays three potential
core clusters: E (centred upon the lower Mississippi River
basin), F (centred upon West Virginia), and G (centred
upon South Carolina). By comparing the reliability visu-
alization with the SMR map (Figure 4, bottom), we found
the three clusters are significant high risk regions (all have
SMR > '1.2' and p-value < '0.05') and are found to be reli-
able (all counties have reliability scores above '0.75'). In
addition, the heterogeneity measure (Pct_NH) for clusters
E, F, and G are significantly less than clusters C and H (as
shown in Table 1). Therefore, we can reasonably conclude
that clusters E, F, and G are reliable core clusters. The reli-
ability visualization also shows some single county clus-
ters (e.g., Cook County, Illinois containing the city of

Chicago) that are linked to no obvious heterogeneous
clusters and are repeatedly reported by SaTScan with dif-
ferent maximum-size values.

When interpreting the reliability score, an analyst must
compare both sub-regions of high risk within the cluster
to adjacent areas within the cluster (i.e., an internal com-
parison) and the cluster as a whole to adjacent areas out
of the cluster (i.e., an external comparison). This is partic-
ularly important for the clusters that have high a heteroge-
neity measure (Pct_NH). For example, cluster A in Figure
4 has homogenous reliability scores of '0.875' or higher,
therefore it initially appears to be a core cluster. However,
cluster B, an internal sub-region of cluster A, has a higher
reliability score of '1' and is reported as a single county
cluster by the 4% SaTScan run. The comparison of reliabil-
ity scores and SMR values between cluster A and B suggests
that cluster A is possibly a heterogeneous cluster depend-
ent upon core cluster B. The comparison can also be con-
ducted between a cluster and its outside adjacent places.
For example in Figure 4, cluster D, containing only a sin-
gle county, has a reliability score of '0.875' and has an
SMR of '1.84'. Cluster D is likely a core cluster because it
is surrounded by counties with very low reliability scores.
Meanwhile, cluster J (and J2) in Figure 3 is not stable as
the maximum-size varies and is therefore probably a het-
erogeneous cluster.

Evaluating the reliability visualization

To evaluate whether the reliability visualization technique
is consistent enough to help users understand and cope
with the sensitivity of SaTScan results to the choices of
maximum-size, we generated another reliability visualiza-
tion (Figure 5) based on a different set of eight maximum-
size values: 5%, 7%, 9%, 11%, 19%, 29%, 39%, 49%. The
set is selected systematically to have the same number of
runs and similar maximum-size values as the previous set.
By comparing Figure 4 and Figure 5, we found that the
location and size of most core clusters (e.g., D, E, F, and
G) remain relatively stable. To evaluate the similarity
between the two reliability maps, we compared the relia-
bility scores of the two maps. For each reliability map, let
vector R = {r1, r2, ..., rn}, where ri represents the reliability
score of county i in the map, and county i in one map
matches the county i in the other map. The similarity
between the two vectors R1 and R2 is measured in terms
of Euclidean distance [31]; and the similarity value ranges
between '0.0' (completely different) and '1.0' (completely
identical). The similarity value of '0.931' for the two vec-
tors indicates a high similarity between the two reliability
maps. Figure 5 (bottom) visually shows the differences in
reliability score between the two reliability maps. The dif-
ferences are slight (ranging from '0.125' to '0.25' in relia-
bility score) and most of them occur at regions with low
reliability scores; therefore, the differences in reliability
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Visualization of reliability and SMRFigure 4
Visualization of reliability and SMR. Top: A reliability visualization of the eight SaTScan runs mapped in Figure 3. The reli-
ability values are classified into eight categories (one category for each possible value); darker shading represents a higher reli-
ability. Boundaries of the heterogeneous clusters (A, C, and H) and the core clusters (B, D, E, F, and G) marked in Figure 3 are 
also marked here for comparison. Bottom: A choropleth map of SMR filtered to show only those counties with a reliability 
score above '0.875' (the top two classes in Figure 4, top). Boundaries of the core clusters are marked. The clusters above are 
manually circled and labelled for illustration purposes.
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Evaluate reliability visualization by comparing reliability mapsFigure 5
Evaluate reliability visualization by comparing reliability maps. Top: a reliability map with another set of eight SaTS-
can runs (5%, 7%, 9%, 11%, 19%, 29%, 39%, 49%). This set of eight runs offer approximately same scales at the previous eight 
runs (4%, 6%, 8%, 10%, 20%, 30%, 40%, and 50%) that produces the reliability visualization in Figure 4. For illustration purposes, 
we carefully draw circles (A, C, D, E, F, G, H) that approximately match the corresponding clusters in Figure 4. As compared 
to Figure 4, the location and size of most core clusters (in dark green) remain relatively stable in Figure 5(top). Bottom: a map 
that shows the different in reliability score between the Figure 5(top) and Figure 4(top). Areas in light yellow (e.g., marked as 
#1) show no difference in reliability score. Areas in yellow (e.g., #2) show a difference of '0.125', and areas in light green (e.g., 
#3 and #4) show a difference of '0.25'.



International Journal of Health Geographics 2008, 7:57 http://www.ij-healthgeographics.com/content/7/1/57

Page 12 of 18

(page number not for citation purposes)

score found between the two maps barely affect the iden-
tification of reliable clusters. In summary, the comparison
suggests that the reliability visualization, when applied to
multiple SaTScan results produced by systematically cho-
sen maximum-sizes, can effectively reduce the influence
of parameter choices on the interpretation of SaTScan
results.

For further evaluation, we compared our reliability visual-
ization with the maps generated by the Empirical Bayes
Smoothing method (Figure 6) and the Kafadar spatial
smoother [32] (Figure 7). The comparisons yielded many
similarities as well as some differences. The Empirical
Bayes Smoothing method produced a similar outcome to
the reliability visualization – both methods report high
risk regions in Southeastern U.S. and Southern California
(cluster A in Figure 7). However, areas of clustering on the
Empirical Bayes Smoothing map were much less distinct
than those on the reliability visualization, making it diffi-
cult to determine significant high risk regions on the
Empirical Bayes Smoothing map. Comparison of the reli-
ability visualization to the Kafadar spatial smoother out-

put showed more compelling results. Both methods
reported a high risk region in Southern U.S. (cluster C in
Figure 7), the Mississippi River basin (cluster E), West Vir-
ginia (cluster F), and South Carolina (cluster G). How-
ever, the Kafadar spatial smoother reported the Texas-
Mexican border as a region of extreme high risk, while the
reliability visualization showed this region as less stable
than other core clusters. This is a region that SaTScan may
have missed due to use of circular scans rather than ellip-
tical scans. The Kafadar spatial smoother also reported
Southern California (cluster A) as a relatively low or nor-
mal risk cluster and did not identify core cluster B. Fur-
thermore, the Kafadar spatial smoother identified some
sparsely-populated regions (e.g., region L in Figure 7) as
high risk, which SaTScan does not report.

There are several limitations to Empirical Bayes Smooth-
ing and the Kafadar spatial smoother that may be causing
the discrepancies with the reliability visualization. First,
through smoothing, isolated groupings of high rate values
are averaged into the surrounding low rate values, missing
the smaller core clusters (e.g., cluster B, D). Second,

Smoothed SMR produced by the Empirical Bayes Smoothing method available in GeoDaFigure 6
Smoothed SMR produced by the Empirical Bayes Smoothing method available in GeoDa. For illustration pur-
pose, we draw three circles (A, C, H) that approximately match the cluster A, C and H in Figure 4. The counties with top 25% 
high SMR (in red and dark orange) are considered in high risk.
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although the method smoothes the rates in small popula-
tion areas, it does not eliminate the small number prob-
lem. For example, the smoothed map suggests a high risk
region that has sparse population (i.e., region L in Figure
7, which has average population of 3,800). In contrast,
SaTScan does not report the region as high risk. Finally,
the primary goals and advantages of smoothing methods
are to stabilize rates and reduce noise [33] rather than to
identify clusters. Although smoothing methods can be
used to produce disease maps that dampen the noise in
the original data (e.g., for evaluating other methods), clus-
tering methods are still needed to identify and verify clus-
ters.

In summary, the reliability visualization helps users cope
with the parameter sensitivity of the Kulldorff's spatial
scan statistic by providing one summary view of multiple
SaTScan runs completed with varying maximum-size val-
ues. The reliability visualization can effectively discrimi-

nate core clusters from heterogeneous ones – as
demonstrated above. The discrimination is important for
(1) identification of spatially small, yet important and sta-
ble high risk core clusters (e.g., cluster B, D, E) that can
otherwise be easily hidden in the reported SaTScan clus-
ters and (2) for improving the understanding of heteroge-
neous clusters and their formation. Such discrimination is
difficult when interpreting a single scan using traditional
visualization methods. The reliability visualization
method can be used in any situation where a method's
parameter sensitivity is a concern and when analysis of
multiple outcomes is needed, thus allowing application
beyond the maximum-size parameter of the Kulldorff spa-
tial scan statistic.

Conclusion
The Kulldorff spatial scan statistic and the SaTScan soft-
ware represent an important first step to cluster identifica-
tion and interpretation. However, two issues make using

Smoothed SMR produced by the Kafadar spatial smoother available in GeoDaFigure 7
Smoothed SMR produced by the Kafadar spatial smoother available in GeoDa. Because GeoDa does not allow for 
flexible classification in the same way as VIT, we chose a classification similar to the one adopted in the Figure 1. We consider 
the counties with top 25% high SMR (in red and dark orange) as high risk. A sparsely-populated region in red (indicates "high 
risk") is highlighted in the circle L. For illustration purposes, we carefully draw circles (A, C, E, F, G, and H) that approximately 
match the corresponding clusters in Figure 4.
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the method and interpreting its results non-trivial: (1)
SaTScan lacks cartographic support for understanding the
clusters in geographic context, and (2) results from the
method are sensitive to the selection of scaling parame-
ters. The system provides neither direct support for mak-
ing these choices, nor methods to evaluate the results
from selection of various parameters.

The VIT addresses the first issue by providing a tabular
interface (Figure 8) for loading and visualizing identified
cluster footprints on a geographic map, without requiring
prior data manipulation in GIS software. For the second
issue, we contend that it is unlikely that there is one opti-
mal maximum-size value for the entire study extent when
scanning a relatively large spatial dataset (e.g., U.S. data
aggregated by county). Rather, it is probable that the core
clusters exist at different geographic scales, each requiring
a unique maximum-size value for detection. Therefore, we
recommend completing multiple SaTScan runs, each
adjusting the maximum-size value systematically. The
map matrix (Figure 3), reliability visualization (Figure 4),

and interactive tabular interface (Figure 8) can then be
used to for interactive investigation and interpretation of
the multiple scans. In summary, the proposed geovisual
analytics approach compliments statistical approaches in
cluster identification, enhancing the interpretation of
identified clusters.

It is important to note that our geovisual analytics meth-
ods, as they are currently proposed, have limitations. A
primary limitation is that the methods are contingent
upon the quality of the incoming SaTScan results. It is
possible that the incoming SaTScan results can be flawed
themselves due to limited user guidance, arbitrary param-
eter selections, the miss-match between any geometric
shape scan (whether circular and elliptical) and some real-
world geographic clusters, or general misuse of the soft-
ware. Because of this, we recommend comparison of SaT-
Scan outcomes with other, independent clustering
techniques (e.g., methods provided by WinBUGS, Clus-
terSeer, etc.). At present, VIT is not equipped with suffi-
cient methods (e.g., rate-smoothing methods) for

A tabular user interfaces to display and interact with multiple SaTScan output filesFigure 8
A tabular user interfaces to display and interact with multiple SaTScan output files. VIT loads SaTScan output in 
text format. Display panel A shows results for the fifty SaTScan runs; selection of a specific file or set of files displays clusters 
identified in those runs in tables B and C as well as in the linked choropleth and parallel-coordinate plot views. The result with 
maximum-size of 4% is currently selected and highlighted. Table B displays clusters reported by SaTScan, with significant clus-
ters highlighted. Table C displays counties contained within those clusters displayed in Table B.
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appropriate comparisons. Secondly, visual interpretation
can be more difficult than statistical interpretation, partic-
ularly when the analyst is not accustomed to using visual
methods of analysis. Therefore, it is extremely important
that visual evidence is used to complement statistical evi-
dence, and not to replace it. Further, we recommend con-
sultation with multiple epidemiologists and other
domain experts prior to the development and implemen-
tation of health care policy.

Figure 9 summarizes our suggested procedure for inter-
preting SaTScan results. First, SaTScan should be run mul-
tiple times, starting from a small maximum-size (e.g., a
default 1% or the percentage of total, nationwide popula-
tion at risk contained by the most populated county) and
increasing to the 50% default value. Second, the SaTScan
results should be visualized in a map matrix for side-by-
side comparison of different maximum-sizes. Third, the
map matrix should be used to select 6–10 SaTScan runs
that are representative of the maximize-size parameter
range. Fourth, the reliability visualization should be con-
structed based on the selected SaTScan runs. Fifth, core
clusters should be discriminated from heterogeneous
clusters through interpretation of the reliability visualiza-
tion and the SMR map. Sixth, the interpretation of core
clusters should be confirmed by comparing the results to
other independent techniques and consultation with
domain experts. Finally, and most importantly, the appro-
priate health care policy should be developed for inter-
vention in core clusters of increased disease risk.

Methods
Cervical cancer data processing and SaTScan runs

The cervical cancer mortality data for the United States
between 2000 and 2004 were obtained from the National
Cancer Institute using the Surveillance, Epidemiology,
and End Results (SEER) program via the SEER*Stat soft-
ware. The data are aggregated into 3,105 county and
county-like enumeration units in the forty-eight contigu-
ous states of the U.S., including the District of Columbia.
We removed Alaska and Hawaii to ensure geographic con-
tinuity for the cluster analysis. The mortality data were
originally grouped into nineteen age groups by county of
residence at the time of death; the first two age groupings
(age 0 and age 1–4) were combined to produce eighteen
5-year intervals through age 85. The U.S. female popula-
tion, estimated by the U.S. Census for each year in the
study period, was summed to produce the population at
risk.

SaTScan evaluates disease risk in terms of relative risk,
reporting the ratio of observed to expected cases for both
the total cluster and individual enumeration units within
the cluster. This ratio, when applied to mortality rates, is
formally known as the Standardized Mortality Ratio

(SMR) in epidemiology, expressed as the ratio of observed
to expected deaths. An SMR of '1' suggests no difference in
risk, lower than '1' suggests low-risk, and larger than '1'
suggests high-risk. To calculate SMR, we obtained age-spe-
cific observed deaths from SEER*Stat. We calculated the
number of expected deaths using Equation 3:

where the population is categorized in n age groups, pi is
the population of a county in an age group, Ci is the sum
of the mortality count for all the counties in the age group,
Pi is the sum of the population of all counties in the age
group.

We chose to visualize indirectly adjusted relative risk
rather than a directly adjusted mortality rate because it is
less subject to bias than the directly adjusted rate in areas
with small populations. Furthermore, SaTScan evaluates
and reports clusters in terms of relative risk, which is com-
parable to SMR. Therefore it is easier to analyze SaTScan
results by visualizing SMR.

Visualizing aggregated disease data with a choropleth map

The choropleth mapping technique is commonly applied
to aggregated disease data and Brewer and Pickle contend
it is well suited to this application [34]. Choropleth maps
symbolize numerical attribute values for each enumera-
tion unit in the study area by filling the area with a colour
or shade that represents the value, allowing for visual dis-
crimination of spatial clustering based on the adjacency of
similar colours [35]. Because of their ease in creation and
familiarity with the general public, the cartographic liter-
ature pays a great deal of attention to the limitations of the
choropleth technique and the possible map reading errors
these limitations may cause. We describe the recom-
mended visualization solutions that address three impor-
tant issues that must be considered when representing
disease data in choropleth maps: (1) data classification,
(2) colour selection, and (3) the small number problem.
This discussion serves as an introduction for those not
familiar with the cartographic techniques already devel-
oped for visualizing aggregated disease data and acts as a
segue into the description of our methods specific to
enhancing SaTScan outcomes with geovisual analytics.

The first concern with choropleth mapping is the classifi-
cation strategy imposed on the dataset. There are two
forms of choropleth maps: (1) classed and (2) unclassed.
Classed choropleth maps divide the attribute space into a
set of intervals, filling all enumeration units in the same
interval with a single colour, while unclassed or n-classed
choropleth maps mathematically relate each attribute
value to a position on a colour ramp, pairing every unique
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value with a unique colour [34]. We chose the classed
choropleth map (as opposed to the unclassed map) for
visualizing the disease risk because of its simpler interpre-
tation and its emphasis on the hot spots of low- and high-
risk [36]. Like any abstraction, data classification has the
potential to mislead the analyst [37]. Thus, care must be
taken to select a classification approach that fits the data
and the application. The two most important parameter
settings for choropleth classification are the number of
classes into which the data are divided and the method of
classification. Depending on the map complexity, most
authors agree that the appropriate number of classes for
choropleth mapping ranges from five to seven [34,38].
Application of fewer total classes results in a map pattern
that is heavily dependent on the position of class breaks,
and therefore unstable; application of more total classes

(or use of an unclassed choropleth map) makes it more
difficult to comprehend general map patterns and retrieve
specific information from the resulting map. For analysis
of SMR in relation to spatial cluster results, we recom-
mend a five-class, modified equal-interval classification
scheme centred on normal for mapping cervical cancer
SMR by US county, with breaks at '0.4', '0.8', '1.2', and
'1.6'. Expert input from epidemiologists was used to select
meaningful SMR class breaks influential to policymaking
(e.g., '0.4' and below representing extreme low-risk, '1'
representing normal conditions, and '1.6' and above rep-
resenting extreme high-risk). Similar classifications are
used in other research involving the visualization of SaTS-
can results [12,15,39].

The second concern with choropleth mapping is the
choice of colour scheme used to symbolize the deter-
mined classes. Improper colour selection inhibits map
users from retrieving both general patterns and specific
details from the map display [40]. SMR is a bipolar dataset
centred upon '1' with increasing low- and high-risk
towards either antipode. Because of this, a divergent col-
our scheme (i.e., ordered colour steps in two directions
away from a middle point [41]) is recommended for
choropleth representation of SMR. Specifically, we used a
blue-orange diverging colour scheme, with high-risk in
dark orange to draw attention, normal risk in white, and
low-risk symbolized in dark blue (this is a colour combi-
nation usable by those with common colour deficiencies).
Figure 1 presents a five-class choropleth map of cervical
cancer SMR by US county using the aforementioned clas-
sification and colour scheme.

The third concern with choropleth mapping is the small
numbers problem. Disease rates tend to be unstable for
enumeration units that have a small population at risk or
for diseases that are rare [2]. For such enumeration units,
the inclusion or removal of only a few cases may have a
large influence on the rate itself. Because disease rates vary
widely for enumeration units with the small unit prob-
lem, epidemiologists have less confidence in the rates
when developing a public health policy. Cervical cancer is
unfortunately frequent enough to be outside the category
of a rare disease, but still infrequent enough to exhibit the
small numbers problem when aggregated to the county
level. A solution for the problem is spatial smoothing. The
basic idea is to borrow information from neighbouring
regions to produce a more stable and less noisy estimate
of disease rates for each enumeration unit, thus separating
out spatial pattern from noise [33]. One representative
smoothing method, Empirical Bayes Smoothing, adjusts
(or smoothes) rates upward or downward, pulling them
toward the national or regional average according to the
population on which they are based [42-44]. Consequen-
tially, the rates for small areas are adjusted more than

A logic process for geovisual analytics of SaTScan resultsFigure 9
A logic process for geovisual analytics of SaTScan 
results. We propose this seven-step process for addressing 
the sensitivity issues of SaTScan, and enhancing the interpre-
tation of SaTScan result.
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those for large areas [2]. However, the general Empirical
Bayes Smoothing method involves no geography and
does not perform well in the high noise situations typical
of epidemiologic data [45]. Kafadar [32] proposed a more
accurate smoother that was developed specifically for geo-
graphic data; we refer to it as the Kafadar spatial smoother.
For comparison purposes, this research adopted both
smoothing methods, which are provided in GeoDa [46].
The smoothed SMR produced by Empirical Bayes
Smoothing and the Kafadar spatial smoother are shown
in Figure 6 and Figure 7 respectively.

Finally, choropleth mapping suffers problem visual bias
(e.g., some high-risk, densely-populated, but geographi-
cally tiny regions are often visually hidden). An area-
based cartogram [35,47] would be useful to address the
problem, and this is one of our future research works.

Analysis design

A primary objective of this research was to determine the
sensitivity of SaTScan results to the maximum-size param-
eter. It is important to reiterate that the maximum-size
parameter can be either the percentage of the total popu-
lation at risk or the geographic size of the circle. We use
the former because it is the default setting in SaTScan. To
understand the sensitivity of SaTScan results to the maxi-
mum-size parameter, we ran the SaTScan spatial scan sta-
tistic on the cervical cancer dataset fifty times, starting
with a maximum-size of 1% and increasing the parameter
by an interval of 1 percentage point with each run until
reaching the default value maximum-size value of 50%.
For each run, we set the number of Monte Carlo replica-
tions to 999. The SaTScan software allows users to set the
maximum-size in two ways: (1) through restriction of the
upper limits of the maximum-size parameter before run-
ning the scan or (2) through retention of the default max-
imum-size of 50%, but selecting for the software to report
only circles with a maximum-size value below the desired
value. We adopted the second method to avoid pre-selec-
tion bias, as recommended by Kulldorff [11]. The output
for each SaTScan run produces a place ID for each identi-
fied cluster; the FIPS code was used as the place ID for this
research. The FIPS code at the county level is a five-digit
textual code that uniquely identifies counties and county
equivalents in the United States. The user can load the
files of the fifty SaTScan results into VIT as a batch by spec-
ifying the folder where the files are stored in the computer.
They are examined in tabular form using the interactive
user interface shown in Figure 8. Once the results have
been loaded into the VIT's tabular interface, an analyst can
interactively investigate each cluster or the individual
counties. By selecting one or multiple cluster(s) in the tab-
ular interface, the analyst can select and highlight the clus-
ter(s) on the choropleth map, blurring those counties not
included in the selection. We drew a circle around the

boundary of each cluster for illustration purposes only;
this feature is not implemented in VIT. Specific details
(e.g., SMR, p-value, population, etc) about each cluster
and individual counties can be interactively retrieved
from the map and the tabular interface.
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