

Research Article Geriatric Nutritional Risk Index Predicts Adverse Outcomes in Human Malignancy: A Meta-Analysis

Guo-yue Lv^(b),¹ Lin An,² and Da-wei Sun^(b)

¹Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, 130021 Jilin, China

²Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, 130033 Jilin, China

Correspondence should be addressed to Da-wei Sun; sundawei2008@sina.cn

Received 7 August 2019; Accepted 28 September 2019; Published 19 November 2019

Academic Editor: Chiara Nicolazzo

Copyright © 2019 Guo-yue Lv et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. Geriatric Nutritional Risk Index (GNRI) has been widely used to assess the nutritional status in a variety of human pathological conditions, but the prognostic value of the GNRI in malignancies has not been evinced. *Methods.* Relevant studies updated on Jul 27, 2019, were retrieved in available databases, including PubMed, Web of Science, Cochrane library, Chinese CNKI, and Chinese Wan-fang. Hazard ratios (HRs) and 95% confidence intervals (CIs) were extracted and pooled by using STATA 14. *Results.* A total of 15 studies involving 8,046 subjects were included in this meta-analysis. Meta-analysis results evinced that low GNRI was associated with poor OS (HR = 1.95, 95% CI: 1.49-2.56, $p \le 0.001$), poor CSS (HR = 1.81, 95% CI: 1.49-2.19, $p \le 0.001$), poor DFS (HR = 1.67, 95% CI: 1.28-2.17, $p \le 0.001$), and poor PFS (HR = 1.68, 95% CI: 1.28-2.21, $p \le 0.001$), and the correlation of GNRI with OS was not changed when stratified by possible confounding factors, suggesting that malignancy patients with low GNRI would suffer from reduced survival rate and increased recurrence rate. Moreover, low GNRI was also associated with postoperative complications in malignancies. *Conclusions.* In summary, GNRI is associated poor prognosis in human malignancies, and GNRI should be used as a predictive indicator of adverse outcomes during malignancy treatment.

1. Introduction

In 2005, Bouillanne et al. created a new index of malnutrition, called the Geriatric Nutritional Risk Index (GNRI), which is based on three parameters: height, body weight, and serum albumin level. The GNRI was calculated as follows: $[1.489 \times \text{albumin} (g/L)] + [41.7 \times (body weight/ideal$ body weight)]. The ratio of body weight to ideal body weightwas set to 1 when the patient's body weight exceeded the idealbody weight [1]. This study firstly reported that GNRI was asimple and accurate tool for predicting the risk of morbidityand mortality in hospitalized elderly patients [1]. Thereafter,the GNRI has also been widely used to assess the nutritionalstatus and also reported to be associated with adverseoutcomes in a variety of human pathological conditions. Forinstance, the low-GNRI group was reported to be associatedwith a higher rate of postoperative complications and longer length of hospital stay when compared with those in the high-GNRI group in patients who underwent abdominal surgery [2], an increased risk of all-cause and cardiovascular mortality in chronic hemodialysis patients [3], all-caused death and cardiac death in patients who underwent percutaneous coronary intervention [4], poor prognosis (including higher risk of mortality, metastatic infection, and organ dysfunction) in pyogenic liver abscess patients [5], shortterm hospital mortality in older patients with sepsis [6], and long-term survival plus cardiovascular/limb events in patients with peripheral arterial disease [7].

Malnutrition is a common problem among cancer patients, and cancer-associated malnutrition is associated with increased morbidity and mortality [8]. Meanwhile, the occurrence and development of cancers have been shown to be associated with aging [9] and the elderly subjects are considered to be susceptible with more risk of nutritional

FIGURE 1: Literature selection process by following PRISMA guidelines in our meta-analysis.

problems [10]. As a simple and well-established nutritional assessment tool, the GNRI is also reported to be a significant prognostic factor for various malignancies recently.

However, the prognostic significance of GNRI on human malignancies has not been thoroughly clarified. Therefore, this meta-analysis was conducted to verify the prognostic role of GNRI in human malignancies based on available evidence.

2. Materials and Methods

2.1. Search Strategy. Our literature search strategy was performed according to the preferred reporting items for systemic reviews and meta-analysis (PRISMA) statement criteria [11]. We retrieved literatures about the prognostic significance of the GNRI in patients with malignancies, which were published before July 27, 2019, in available databases, including *PubMed*, *Web of Science*, *Cochrane library*, *Chinese CNKI*, and *Chinese Wan-fang*. We used the following search words: "Geriatric Nutritional Risk Index," "GNRI," and "cancer," "carcinoma," "leukemia," and "lymphoma." The search strategy in Cochrane was "Geriatric Nutritional Risk Index in Abstract OR GNRI in Abstract." The search strategy in PubMed was "(Geriatric Nutritional Risk Index[Title/Abstract]) OR GNRI[Title/Abstract]." The search strategy in

Web of Science was "TS=(Geriatric Nutritional Risk Index in Abstract OR GNRI)." The reference lists of retrieved literatures were also screened to identify more potential studies.

2.2. Inclusion and Exclusion Criteria. Studies included in this meta-analysis were required to meet all of the following criteria: (1) reporting the prognostic role of the GNRI in human malignancy; (2) analyzing prognostic outcomes, including overall survival (OS), cancer-specific survival (CSS), disease-free survival (DFS), or progression-free survival (PFS); and (3) providing the hazard ratio (HR) and 95% its confidence interval (CI) for prognosis (or calculable according to data provided in the original literature). The studies were excluded if they met any of the following items: (1) case report, (2) review article, (3) redundant publication, and (4) HR and 95% CI unacquirable.

2.3. Data Extraction. This procedure was conducted by two authors (Da-wei Sun and Lin An), and disagreements were resolved by consensus among all the participating authors. The hazard ratios (HRs) and 95% confidence intervals (CIs) for prognosis were our main concern. When the prognostic results were provided in the Kaplan-Meier curve, Engauge Digitizer 4.1 was used to

				H	able 1: Sume	nary chara	cteristics of includ	ed studies in this	meta-analys.	is.			
Author information	Year	Country	Cancer species	No. of patients	Age	Gender ratio	Primary therapy	Cut-off for GNRI (no- risk/risk)	Endpoint	HR and 95% CI	Source of HR	Analytic method	Follow-up interval (months)
Konishi	2019	Japan	Acute myeloid leukemia	63	>50	21/42	Stem cell transplantation	98 (31/32)	OS, DFS	OS HR: 2.30 (1.19-4.46)	Data	Univariate	Median 33.9 (0.6-68.1)
et al. [15]										DFS HR: 2.18 (1.11-4.26)	Data	Univariate	
Mizuno et al. [16]	2019	Japan	Follicular lymphoma	130	Median 67 (32-91)	70/60	Chemotherapy	99.2 (96/34)	SO	OS HR: 5.65 (2.66-12.00)	Data	Univariate	Median 52
Li et al. [17]	2018	China	DLBCL	267	NR	121/156	Chemotherapy	98 (162/105)	SO	OS HR: 0.81 (0.44-1.48)	Crude	Multivariate	Up to 72
Kanemasa	2018	Japan	DLBCL	476	Median 68 (27-97)	210/266	Chemotherapy	96.8 (221/255)	OS, PFS	OS HR: 2.05 (1.31-3.22)	Crude	Multivariate	Median 45
et al. [18]										PFS HR: 1.93 (1.47-2.53)	Data	Univariate	
Yang et al.	2018	China	DLBCL	249	Median 60 (18-85)	107/142	Chemotherapy	96.6 (136/113)	OS, PFS	OS HR: 1.28 (0.79-2.06)	Crude	Multivariate ¹	Median 16 (0- 51)
[19]										PFS HR: 1.46 (1.11-1.91)	Data	Univariate	
Yamana et al. [20]	2018	Japan	ESCC	216	NR	NR	Resection	92 (153/63)	SO	OS HR: 2.44 (1.59-3.70)	Crude	Univariate	Up to 60
Kubo N	2018	Japan	EC	240	Mean 63.3 (66-113)	44/196	Resection	92(196/44)	OS, CSS	OS HR: 1.69 (1.04-2.74)	Crude	Multivariate	Up to 60
[21]										CSS HR: 1.60 (0.91-2.82)	Crude	Multivariate	
Migita et al.	2018	Japan	ESCC	137	NR	21/116	Resection	98 (92/45)	OS, DFS	OS HR: 2.10 (1.18-3.72)	Crude	Multivariate	Up to 60
[22]										DFS HR: 1.23 (1.00-1.51)	Data	Univariate	
Bo et al.	2016	China	ESCC	239	Mean 67.9 (60-88)	89/150	Radiotherapy	98 (184/55)	SO	OS HR: 1.69 (1.02-2.80) sub1	Crude	Multivariate	Up to 60
[23]										OS HR: 2.70 (1.51-4.82) sub2	Crude	Multivariate	
[1: 04 0]	2018	China	Hepatocellular carcinoma	261	Median 68 (67-70)	46/215	Resection	98 (197/64)	OS, DFS	OS HR: 1.05 (0.97-1.14)	Data	Univariate	Up to 60
Li Ci di. [24]										DFS HR: 1.29 (1.06-1.57)	Data	Univariate	
Hu et al. [25]	2019	China	Pancreatic cancer	265	NR	109/156	Resection	98 (170/95)	SO	OS HR: 1.54 (1.12-2.12)	Crude	Multivariate	Up to 60
	2017	Japan		432	NR	155/277	Resection	98 (325/107)	CSS, DFS		Data	Univariate	Up to 100

Disease Markers

Author information	Year	Country	Cancer species	No. of patients	Age	Gender ratio	Primary therapy	Cut-off for GNRI (no- risk/risk)	Endpoint	HR and 95% CI	Source of HR	Analytic method	Follow-up interval (months)
Miyake et al. [26]			Renal cell carcinoma							CSS HR: 3.37 (1.86-6.14) DFS HR: 1.52 (1.04-2.22)	Data	Univariate	
	2019	Korea	Renal cell carcinoma	4591	NR	1224/3367	Resection	98 (3859/732)	CSS, DFS	CSS HR: 1.67 (1.19-2.34) sub1	Crude	Multivariate	Median 37 (18- 68)
Kang et al.										CSS HR: 1.61 (1.13-2.28) sub2	Crude	Multivariate	
[27]										DFS HR: 1.33 (0.82-2.17) sub1	Crude	Multivariate	
										DFS HR: 3.18 (2.00-5.06) sub2	Crude	Multivariate	
Okamoto	2018	Japan	Prostate cancer	339	Median 72	0/339	Androgen- deprivation	92 (273/66)	OS, CSS	OS HR: 1.80 (1.13-2.87)	Crude	Multivariate	Median 26 (12- 53)
et al. [28]										CSS HR: 1.76 (1.04-2.98)	Crude	Multivariate	
	2017	Japan	Lung cancer	141	Median 68 (37-86)	80/61	Resection	98 (119/22)	OS, CSS, DFS	OS HR: 4.58 (2.36-8.87)	Data	Univariate	Median 58 (0- 94)
Shoji et al. [29]										CSS HR: 3.09 (0.98-9.68)	Data	Univariate	
										DFS HR: 4.03 (1.45-10.73)	Crude	Multivariate	
Abbreviations survival; PFS:	: DLBC] progres	L: diffuse la sion-free su	rge B cell lymphom rvival; HR: hazard 1	ia; NR: no ratio.	reported; ESCC	C: esophageal s	quamous cell carc	cinoma; EC: esophag	eal cancer; OS): overall survival; C9	SS: cancer	-specific survival	; DFS: disease-free

TABLE 1: Continued.

Disease Markers

Study ID	HR (95% CI)	% weight
Okamoto T 2018	1.80 (1.13, 2.87)	7.45
Shoji F 2017	4.58 (2.36, 8.87)	6.08
Kanemasa Y 2018	2.05 (1.31, 3.22)	7.56
Yang BX 2018 —	1.28 (0.79, 2.06)	7.35
Liz 2018 —	1.23 (0.68, 2.27)	6.48
Mizuno K 2019	$\longrightarrow 5.65 (2.66, 12.00)$	5.49
Konishi T 2019	2.30 (1.19, 4.46)	6.09
Kubo N 2018	1.69 (1.04, 2.74)	7.32
Li L 2018	◆ 1.05 (0.97, 1.14)	9.48
Hu SP 2019	154 (1.12-2.12)	8.44
Bo Y sub 2 2016	2.70 (1.51, 4.82)	6.64
Yamana I 2018	2.44 (1.59, 3.70)	7.76
Migita K 2018	2.10 (1.18, 3.72)	6.68
Bo Y sub 1 2016	1.69 (1.02, 2.80)	7.17
Overall ($I^2 = 84.2\%$, $p = 0.000$)	1.95 (1.49, 2.56)	100.00
▲ Note: weights are from random effects analy	sis	
.0833	1 12	

FIGURE 2: The forest plot for the effect of GNRI on OS in human malignancies.

FIGURE 3: The forest plot for the effect of GNRI on CSS in human malignancies.

read and calculate the number of death/recurrence in each group. Then according to the total numbers of observed deaths/recurrences and the number of samples in each group, we calculated the HR and 95% CI by following Tierney et al.'s method [12]. The other important items included the 1st author information, publication year, patient country, cancer species, sample capacity, dividing line for GNRI, HR origin, analytic methodology, and follow-up interval. For studies based on the same study center, we collected data from the study with the largest sample size. Here, we declared that the data extraction method in this part was nearly the same as that used in our team's previously published meta-analysis researches.

2.4. Statistics Analysis. Hazard ratios (HRs) and 95% confidence intervals (CIs) were used to compare the prognostic outcomes, including OS, CSS, DFS, and PFS. Chi-square test and I^2 were used to check the interstudy heterogeneity, with significance set at p < 0.1 or $I^2 > 50\%$. A random effects model was employed in case of significant heterogeneity; otherwise, a fixed effects model was applied. Publication bias was examined by both Begg's and Egger's

FIGURE 4: The forest plot for the effect of GNRI on DFS in human malignancies.

FIGURE 5: The forest plot for the effect of GNRI on PFS in human malignancies.

tests [13, 14]. In this meta-analysis, a p value < 0.05 was considered significant. Meanwhile, we performed a sensitivity analysis by removing each study to evaluate the effect of an individual study on the overall pooled HRs. Here, we also declared that the statistics analysis method in this part was nearly the same as that used in our team's previously published meta-analysis researches.

3. Results

3.1. Systemic Review for Included Studies. Figure 1 illustrates the searching procedure of potential included studies. In the end, a total of 15 studies with 8,046 cases were identified through systemic search [15–29]. Five studies were based on patients with hematological malignant tumors [15–19], 4 studies were based on esophageal cancers [20–23], 2 studies were based on renal cell carcinoma [24, 25], and 4 studies were based on hepatocellular carcinoma, prostate cancer, pancreatic cancer, and lung cancer respectively [26–29]. Among these studies, two studies reported HRs for prognosis by two subsets in each study [23, 27]. On the basis of population origin, all the studies were based on Asian countries (1 in Korea, 9 in Japan, and 5 in China). The publication year happened between 2017 and 2019, the study sample size varied from 63 to 4,591, and the demarcation for GNRI ranged from 92 to 99.2. The other characteristics of the included studies, such as age, gender ratio, primary therapy, endpoint, source of HR, analytic method of HR, and follow-up interval, could be seen in Table 1.

3.2. Meta-Analysis for OS. The prognostic value of GNRI for OS was available in 13 studies (including one study consisting of two subcohorts) with 3,023 cases. On the basis of random effects model ($I^2 = 84.2\%$, $p \le 0.001$), the GNRI was significantly associated with OS (HR = 1.95, 95% CI: 1.49-2.56,

Disease Markers

		No. of patients	No. of patients		Heter	ogeneity
Subgroup	No. of studies	without risk	at risk	Pooled HR (95% CI)	I^2 (%)	<i>p</i> value
Altogether	13	2,030	993	2.01 (1.49-2.71)	85.0	≤0.001
Publishing time						
≥2018	10	1,565	811	1.86 (1.38-2.51)	84.4	≤0.001
<2018	3	465	182	2.21 (1.31-3.75)	69.3	0.021
Country						
Japan	8	1,181	561	2.40 (1.86-3.10)	44.7	0.081
China	5	849	432	1.43 (1.08-1.90)	72.2	0.031
Sample capacity						
≥240	7	1,355	742	1.45 (1.13-1.85)	70.5	0.002
<240	6	675	251	2.66 (2.00-3.55)	42.6	0.107
Dividing line for GNRI						
≥98	8	1,051	452	2.07 (1.41-3.03)	86.9	≤0.001
<98	5	979	541	1.84 (1.49-2.28)	6.3	0.371
Cancer system						
Hematological	5	646	539	2.02 (1.27-3.20)	69.4	0.011
Digestive	6	992	366	1.74 (1.25-2.43)	84.0	≤0.001
Urinary	1	273	66	1.80 (1.13-2.87)	_	—
Respiratory	1	119	22	4.58 (2.36-8.88)	_	_
Primary therapy						
Resection	6	927	333	1.90 (1.25-2.88)	88.6	≤0.001
Chemotherapy	4	615	507	1.97 (1.12-3.49)	76.3	0.005
Radiotherapy	1	184	55	2.09 (1.32-3.30)		—
Others	2	304	98	1.95 (1.33-2.86)	0.0	0.552
HR source						
Crude	9	1,587	841	1.78 (1.54-2.06)	0.00	0.441
Data	4	443	152	2.71 (1.06-6.90)	92.9	≤0.001
Analytic method						
Univariate	5	596	215	2.62 (1.28-5.35)	92.7	≤0.001
Multivariate	8	1,434	778	1.70 (1.46-1.99)	0.0	0.590

TABLE 2: Stratification analysis for the meta-analysis with overall survival (OS) in patients with malignancies.

 $p \le 0.001$) (Figure 2). As a result, patients with low GNRI suffered from poor OS when compared with patients with normal GNRI.

3.3. Meta-Analysis for CSS. Five studies (including one study consisting of two subcohorts) with 5,743 cases reported the prognostic role of GNRI for CSS. According to a fixed effects model ($I^2 = 14.4\%$, p = 0.322), the GNRI was also significantly relevant to CSS (HR = 1.81, 95% CI: 1.49-2.19, $p \le 0.001$) (Figure 3). That is, patients with low GNRI suffered from poor CSS when compared with patients with normal GNRI.

3.4. Meta-Analysis for DFS. The correlation of the GNRI with DFS was available in 6 studies (including one study consisting of two subcohorts) with 5,625 cases. Meta-analysis results from a random effects model ($I^2 = 70.5\%$, p = 0.002) evinced that GNRI was also significantly correlated with DFS (HR = 1.67, 95% CI: 1.28-2.17, $p \le 0.001$) (Figure 4). That is, patients with low GNRI suffered from poor DFS when compared with patients with normal GNRI.

3.5. Meta-Analysis for PFS. The association between GNRI and PFS was investigated by only 2 studies with 725 cases. Heterogeneity could be identified among these 2 studies ($I^2 = 50.8\%$, p = 0.154); thus, a random effects model was adopted to perform this meta-analysis. Meta-analysis results evinced that low GNRI was associated with PFS (HR = 1.68, 95% CI: 1.28-2.21, $p \le 0.001$) (Figure 5), suggesting that patients with low GNRI suffered from poor PFS when compared with patients with normal GNRI.

3.6. Stratification Analysis for the Meta-Analysis with OS. Considering that more than ten studies were included in the meta-analysis with OS and heterogeneity was identified in this meta-analysis result, thus, stratification analysis was conducted in this process. As shown in Table 2, despite the variation of publishing year, population country, sample capacity, cancer system, primary therapy, GNRI dividing line, HR source, or analytic methodology, the low GNRI was associated with poor OS in human malignancies. Nevertheless, no heterogeneity could be found the subgroup meta-

	HR (95% CI)	% weight
Sample size ≥ 240		
Okamoto T 2018	1.80 (1.13, 2.87)	7.45
Kanemasa Y 2018	• 2.05 (1.31, 3.22)	7.56
Yang BX 2018	• 1.28 (0.79, 2.06)	7.35
Li Z 2018	• 1.23 (0.68, 2.27)	6.48
Kubo N 2018	• 1.69 (1.04, 2.74)	7.32
Li L 2018 🔫	1.05 (0.97, 1.14)	9.48
Hu SP 2019	+ 1.54 (1.12, 2.12)	8.44
Subtotal ($I^2 = 70.5\%$, $p = 0.002$)	1.45 (1.13, 1.85)	54.09
Sample size < 240		
Shoji F 2017	4.58 (2.36, 8.87)	6.08
Mizuno K 2019	\longrightarrow 5.65 (2.66, 12.00)	5.49
Konishi T 2019		6.09
Ro V sub 2 2016	2.50(1.1), 1.10)	6.64
Vermana I 2010		7.76
ramana 1 2018		7.76
Migita K 2018	2.10 (1.18, 3.72)	6.68
Bo Y sub 1 2016	1.69 (1.02, 2.80)	7.17
Subtotal ($I^2 = 42.6\%$, $p = 0.107$)	2.66 (2.00, 3.55)	45.91
Overall ($I^2 = 84.2\%$, $p = 0.000$)	1.95 (1.49, 2.56)	100.00
▲ Note: weights are from random effects analy	ysis	
.0833 1	12	
	(a)	
udy		%
)	HR (95% CI)	weigh
NRI dividing line < 98		
kamoto T 2018	1.80 (1.13, 2.87)	7.45
anemasa Y 2018	2.05 (1.31, 3.22)	7.56
ing BX 2018 —	• 1.28 (0.79, 2.06)	7.35
1bo N 2018	1.69 (1.04, 2.74)	7.32
imana I 2018	2.44 (1.59, 3.70)	7.76
ibtotal ($I^2 = 6.3\%$, $p = 0.371$)	1.84 (1.49, 2.28)	37.44
NRI dividing line ≥ 98		
10ji F 2017	4.58 (2.36, 8.87)	6.08
Z 2018 —	• 1.23 (0.68, 2.27)	6.48
izuno K 2019	◆ → 5.65 (2.66, 12.00)	5.49
anishi T 2010	2.30 1.19, 4.46)	6.09
	1.05 (0.07, 1.14)	9.48
L 2018	+ 1.05 (0.97, 1.14)	
L 2018 u SP 2019	+ 1.05 (0.97, 1.14) + 1.54 (1.12, 2.12)	8.44
L 2018 u SP 2019) Y sub 2 2016	→ 1.05 (0.9', 1.14) → 1.54 (1.12, 2.12) → 2.70 (1.51,4.82)	8.44 6.64
L 2018 u SP 2019 > Y sub 2 2016 igita K 2018	Image: 105 (0.97, 1.14) Image: 105 (0.97, 1.14)	8.44 6.64 6.68
L 2018 u SP 2019 o Y sub 2 2016 igita K 2018 o Y sub 1 2016	• 1.05 (0.9', 1.14) • 1.54 (1.12, 2.12) • 2.70 (1.51,4.82) • 1.69 (1.02, 2.80)	8.44 6.64 6.68 7.17
L 2018 U SP 2019 Y sub 2 2016 igita K 2018 Y sub 1 2016 ibtotal ($I^2 = 86.9\%$, $p = 0.000$)	• 1.05 (0.9/, 1.14) 1.54 (1.12, 2.12) 2.70 (1.51,4.82) • 2.10 (1.18, 3.72) • 1.69 (1.02, 2.80) 2.07 (1.41, 3.03)	8.44 6.64 6.68 7.17 62.56
L 2018 L 2018 u SP 2019 \Rightarrow Y sub 2 2016 igita K 2018 \Rightarrow Y sub 1 2016 ibtotal ($I^2 = 86.9\%$, $p = 0.000$) verall ($I^2 = 84.2\%$, $p = 0.000$)	↓ 1.05 (0.9', 1.14) ↓ 1.54 (1.12, 2.12) ↓ 2.70 (1.51,4.82) ↓ 2.10 (1.18, 3.72) ↓ 1.69 (1.02, 2.80) ↓ 2.07 (1.41, 3.03) ↓ 1.95 (1.49, 2.56)	8.44 6.64 6.68 7.17 62.56
L 2018 L 2018 U SP 2019 > Y sub 2 2016 igita K 2018 > Y sub 1 2016 ibtotal ($I^2 = 86.9\%$, $p = 0.000$) verall ($I^2 = 84.2\%$, $p = 0.000$) Note: weights are from random effects analysis	• 1.05 (0.9/, 1.14) 1.54 (1.12, 2.12) • 2.70 (1.51,4.82) • 1.69 (1.02, 2.80) • 2.07 (1.41, 3.03) • 1.95 (1.49, 2.56)	8.44 6.64 6.68 7.17 62.56 100.00

FIGURE 6: Continued.

Study ID	% ۲۱D (۵۶۵/ ۲۱) میتواد
	HR (95% CI) weight
Crude :	
Kanemasa V 2018	
Vang BX 2018	2.03(1.51, 5.22) 7.30
	1.26(0.79,2.00) 7.55
Kubo N 2018	- 1.60 (1.04, 2.74) 7.22
Hu SP 2019	1.09(1.04, 2.74) 7.52 1.54(1.12, 2.12) 8.44
Bo V sub 2 2016	◆ 2 70 (1 51 4 82) 6 64
Vamana I 2018	2.70(1.51, 4.62) 0.04
Migita K 2018	
Bo V sub 1 2016	- 1.69 (1.02, 2.80) 7.17
Subtotal $(I^2 = 0.0\%, p = 0.441)$	1.09(1.02, 2.00) 7.17
Subiotal (1 – 0.070, p – 0.111)	1.76 (1.34, 2.00) 72.00
Data	_
Shoji F 2017	4.58 (2.36, 8.87) 6.08
Mizuno K 2019	$\longrightarrow 5.65 (2.66, 12.00) 5.49$
Konishi T 2019	2.30 (1.19, 4.46) 6.09
LiL 2018	1.05 (0.97, 1.14) 9.48
Subtotal (<i>I</i> ² = 92.9%, <i>p</i> = 0.000)	2.71 (1.06, 6.90) 27.14
Overall ($I^2 = 84.2\%$, $p = 0.000$)	1.95 (1.49, 2.56) 100.00
▲ Note: weights are from random effects analysis	
.0833 1	12
(c)	
	06
Study ID	HR (95% CI) weight
Multivariate	
Okamoto T 2018	- 1.80 (1.13, 2.87) 7.45
Kanemasa Y 2018	<u> </u>
Yang BX 2018	1.28 (0.79, 2.06) 7.35
Li Z 2018	1.23 (0.68, 2.27) 6.48
Kubo N 2018	- 1.69 (1.04,2.74) 7.32
Hu SP 2019	1.54 (1.12, 2.12) 8.44
Bo Y sub 2 2016	270(151482) 664
	2.70 (1.31, 4.82) 0.04
Migita K 2018	- 2.10 (1.18, 3.72) = 6.68
Migita K 2018 Bo Y sub 1 2016	$\begin{array}{c} - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - $
Migita K 2018 Bo Y sub 1 2016 Subtotal ($I^2 = 0.0\%$, $p = 0.590$)	2.70 (1.31, 4.32) 0.04 2.10 (1.18, 3.72) 6.68 1.69 (1.02, 2.80) 7.17 1.70 (1.46, 1.99) 65.10
Migita K 2018 Bo Y sub 1 2016 Subtotal ($I^2 = 0.0\%$, $p = 0.590$) Univariate	$\begin{array}{c} 2.70 (1.31, 4.82) \\ - \\ - \\ 1.69 (1.02, 2.80) \\ 1.70 (1.46, 1.99) \\ - \\ \end{array} \begin{array}{c} 0.04 \\ - \\ 0.$
Migita K 2018 Bo Y sub 1 2016 Subtotal ($I^2 = 0.0\%$, $p = 0.590$) Univariate Shoji F 2017	2.70 (1.31, 4.82) 0.04 2.10 (1.18, 3.72) 6.68 - 1.69 (1.02, 2.80) 7.17 1.70 (1.46, 1.99) 65.10
Migita K 2018 Bo Y sub 1 2016 Subtotal (<i>I</i> ² = 0.0%, <i>p</i> = 0.590) Univariate Shoji F 2017 Mizuno K 2019	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Migita K 2018 Bo Y sub 1 2016 Subtotal (I ² = 0.0%, p = 0.590) Univariate Shoji F 2017 Mizuno K 2019 Konishi T 2019	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Migita K 2018 Bo Y sub 1 2016 Subtotal (I ² = 0.0%, p = 0.590) Univariate Shoji F 2017 Mizuno K 2019 Konishi T 2019 Li L 2018	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Migita K 2018 Bo Y sub 1 2016 Subtotal (I ² = 0.0%, p = 0.590) Univariate Shoji F 2017 Mizuno K 2019 Konishi T 2019 Li L 2018 Yamana I 2018	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Migita K 2018 Bo Y sub 1 2016 Subtotal ($I^2 = 0.0\%$, $p = 0.590$) Univariate Shoji F 2017 Mizuno K 2019 Konishi T 2019 Li L 2018 Yamana I 2018 Subtotal ($I^2 = 92.7\%$, $p = 0.000$)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Migita K 2018 Bo Y sub 1 2016 Subtotal ($I^2 = 0.0\%$, $p = 0.590$) Univariate Shoji F 2017 Mizuno K 2019 Konishi T 2019 Li L 2018 Yamana I 2018 Subtotal ($I^2 = 92.7\%$, $p = 0.000$) Ovarall ($I^2 84.2\%$, $p = 0.000$)	$\begin{array}{c} 2.76 (1.31, 4.82) \\ 2.10 (1.18, 3.72) \\ 1.69 (1.02, 2.80) \\ 1.77 \\ 1.70 (1.46, 1.99) \\ \hline \end{array}$
Migita K 2018 Bo Y sub 1 2016 Subtotal ($I^2 = 0.0\%$, $p = 0.590$) Univariate Shoji F 2017 Mizuno K 2019 Konishi T 2019 Li L 2018 Yamana I 2018 Subtotal ($I^2 = 92.7\%$, $p = 0.000$) Overall (I^2 -84.2%, $p = 0.000$)	$\begin{array}{c} 2.70 (1.31, 4.82) \\ 2.10 (1.18, 3.72) \\ 1.69 (1.02, 2.80) \\ 1.70 (1.46, 1.99) \\ \hline \end{array} \begin{array}{c} 6.68 \\ 7.17 \\ 1.70 (1.46, 1.99) \\ 65.10 \\ \hline \end{array} \begin{array}{c} \bullet \\ \bullet $
Migita K 2018 Bo Y sub 1 2016 Subtotal ($I^2 = 0.0\%$, $p = 0.590$) Univariate Shoji F 2017 Mizuno K 2019 Konishi T 2019 Li L 2018 Yamana I 2018 Subtotal ($I^2 = 92.7\%$, $p = 0.000$) Overall (I^2 -84.2%, $p = 0.000$) \blacktriangle Note: weights are from random effects analysis	$\begin{array}{c} 2.70 (1.31, 4.32) \\ 2.10 (1.18, 3.72) \\ 1.69 (1.02, 2.80) \\ 1.70 (1.46, 1.99) \\ \hline \\ 4.58 (2.36, 8.87) \\ \hline \\ 5.65 (2.66, 12.00) \\ 5.49 \\ 2.30 (1.19, 4.46) \\ 1.05 (0.97, 1.14) \\ 9.48 \\ 2.44 (1.59, 3.70) \\ 7.76 \\ 2.62 (1.28, 5.35) \\ 34.90 \\ \hline \\ 1.95 (1.49, 2.56) \\ 100.00 \end{array}$
Migita K 2018 Bo Y sub 1 2016 Subtotal ($I^2 = 0.0\%$, $p = 0.590$) Univariate Shoji F 2017 Mizuno K 2019 Konishi T 2019 Li L 2018 Yamana I 2018 Subtotal ($I^2 = 92.7\%$, $p = 0.000$) Overall (I^2 -84.2%, $p = 0.000$) \land Note: weights are from random effects analysis .0833	$\begin{array}{c} 2.70 (1.31, 4.62) & 0.04 \\ 2.10 (1.18, 3.72) & 6.68 \\ - & 1.69 (1.02, 2.80) & 7.17 \\ 1.70 (1.46, 1.99) & 65.10 \\ \hline \\ \bullet & \bullet & 5.65 (2.66, 12.00) & 5.49 \\ 2.30 (1.19, 4.46) & 6.09 \\ 1.05 (0.97, 1.14) & 9.48 \\ 2.44 (1.59, 3.70) & 7.76 \\ 2.62 (1.28, 5.35) & 34.90 \\ \hline \\ \bullet & 1.95 (1.49, 2.56) & 100.00 \end{array}$

FIGURE 6: Stratified analysis for the meta-analysis with OS by study sample size (a), GNRI dividing line (b), HR source (c), and analytic method (d).

Meta-analysis estimates, given named study is omitted

Meta-analysis estimates, given named study is omitted

FIGURE 7: Sensitivity analysis for the correlation of GNRI with OS (a), CSS (b), DFS (c), and PFS (d).

analysis when defined by study sample size < 240 (Figure 6(a)), GNRI value < 98 (Figure 6(b)), HR source from crude origin (Figure 6(c)), or multivariate analysis (Figure 6(d)).

3.7. Sensitivity Analyses. To examine the robustness of our results, sensitivity analysis was performed by removing each individual included study. Omitting any of the included studies did not change the combined meta-analysis effect of GNRI

on the HRs for OS, CSS, DFS, or PFS (Figures 7(a)-7(d)). That is to say, our findings were robust across sensitivity analyses.

3.8. Publication Bias. For the meta-analysis with OS, no publication bias was found by Begg's test (p = 0.155), but publication bias was found by Egger's test ($p \le 0.05$). Publication bias was not examined in the other meta-analysis, since the included study number was less than ten.

4. Discussion

With the ratio of older people continuing to rise, designing age-specific nutritional policies is a matter of necessity [30]. As a dichotomous index, the GNRI combines two nutritional indicators: albumin and actual weight compared with desirable weight, and the GNRI seems to account for both acute and chronic reasons of nutrition-related outcomes [30]. When compared with Mini Nutritional Assessment (MNA) validated for grading nutritional status in the elderly, the GNRI has been reported to show poor agreement in nutritional assessment but appeared to better predict outcome [31].

To our knowledge, this present meta-analysis firstly evinced that lower GNRI is associated with poor prognosis in human malignancies. Based on current evidence, our meta-analysis exploited 15 studies with 8,046 malignancy cases. Meta-analysis results proved that low GNRI was associated with poor OS, poor CSS, poor DFS, and poor PFS, indicating that malignancy patients with low GNRI would suffer from reduced survival rate and increased recurrence rate. Meanwhile, stratified meta-analysis showed that low GNRI was associated with poor OS, though the publishing year, population country, sample capacity, cancer system, primary therapy, GNRI dividing line, HR source, and analytic methodology varied between different groups.

As a new nutrition-related risk assessment toll, the GNRI was also reported to be associated with postoperative complications in cancer patients (consisting of esophageal cancer, gastric cancer, liver cancer, gallbladder cancer, pancreatic cancer, and colon cancer) after abdominal surgery [2, 32]. Additionally, the preoperative GNRI was also reported to be a risk factor for surgical site infection in patients with soft-tissue sarcoma resection [33]. Taking all these results together, as an indicator of nutritional assessment, the GNRI is associated with adverse outcomes in human malignancies.

The obvious limitation for our meta-analysis is heterogeneity, especially in the meta-analysis with OS and DFS. However, no heterogeneity could be found in the subgroup meta-analysis using the studies defined by study sample size < 240, GNRI value < 98, HR source from crude origin, or multivariate analysis. Due to the small number of included studies in the meta-analysis with DFS, stratified analysis was not conducted in this part. The minor limitation for our meta-analysis is publication bias, which was found in the meta-analysis with OS. Nevertheless, the combined meta-analysis effect of GNRI on the HRs for OS, CSS, DFS, and PFS was not altered during the sensitivity analysis. Finally, we must declare that the data extraction, statistics analysis, and stratified analysis methods used in this research were nearly the same as those used in our team's previously published meta-analysis researches [34, 35]. Therefore, there was a textual overlap between this present research and our previously published researches.

5. Conclusion

In summary, GNRI is associated with poor prognosis in human malignancies, and GNRI should be used as a predictive indicator of adverse outcomes during malignancy treatment.

Data Availability

The data supporting this meta-analysis are from previously reported studies, which have been cited. The processed data are available from the corresponding author upon request.

Conflicts of Interest

All the authors declared no conflicts of interests in this metaanalysis.

Authors' Contributions

Guo-yue Lv and Lin An contributed equally to this work.

Acknowledgments

We appreciated all the authors who performed the 15 included studies used in this meta-analysis. Without their previously published work, we could not draw our conclusions by meta-analysis.

References

- O. Bouillanne, G. Morineau, C. Dupont et al., "Geriatric nutritional risk index: a new index for evaluating at-risk elderly medical patients," *The American Journal of Clinical Nutrition*, vol. 82, no. 4, pp. 777–783, 2005.
- [2] M. Hanada, K. Yamauchi, S. Miyazaki et al., "Geriatric nutritional risk index, a predictive assessment tool, for postoperative complications after abdominal surgery: a prospective multicenter cohort study," *Geriatrics & Gerontology International*, vol. 19, no. 9, pp. 924–929, 2019.
- [3] J. Xiong, M. Wang, Y. Zhang et al., "Association of geriatric nutritional risk index with mortality in hemodialysis patients: a meta-analysis of cohort studies," *Kidney & Blood Pressure Research*, vol. 43, no. 6, pp. 1878–1889, 2018.
- [4] H. Wada, T. Dohi, K. Miyauchi et al., "Prognostic impact of the geriatric nutritional risk index on long-term outcomes in patients who underwent percutaneous coronary intervention," *The American Journal of Cardiology*, vol. 119, no. 11, pp. 1740– 1745, 2017.
- [5] J. Xu, X. Zhou, and C. Zheng, "The geriatric nutritional risk index independently predicts adverse outcomes in patients with pyogenic liver abscess," *BMC Geriatrics*, vol. 19, no. 1, 2019.
- [6] J. S. Lee, H. S. Choi, Y. G. Ko, and D. H. Yun, "Performance of the geriatric nutritional risk index in predicting 28-day hospital mortality in older adult patients with sepsis," *Clinical Nutrition*, vol. 32, no. 5, pp. 843–848, 2013.
- [7] Y. Matsuo, H. Kumakura, H. Kanai, T. Iwasaki, and S. Ichikawa, "The geriatric nutritional risk index predicts long-term survival and cardiovascular or limb events in peripheral arterial disease," *Journal of Atherosclerosis and Thrombosis*, 2019.
- [8] J. M. Argilés, "Cancer-associated malnutrition," *European Journal of Oncology Nursing*, vol. 9, pp. S39–S50, 2005.
- [9] H. Hong, Q. Wang, J. Li, H. Liu, X. Meng, and H. Zhang, "Aging, cancer and immunity," *Journal of Cancer*, vol. 10, no. 13, pp. 3021–3027, 2019.

- [10] P. Durán Alert, R. Milà Villarroel, F. Formiga, N. Virgili Casas, and C. Vilarasau Farré, "Assessing risk screening methods of malnutrition in geriatric patients: mini nutritional assessment (MNA) versus geriatric nutritional risk index (GNRI)," *Nutrición Hospitalaria*, vol. 27, no. 2, pp. 590–598, 2012.
- [11] A. Liberati, D. G. Altman, J. Tetzlaff et al., "The PRISMA statement for reporting systematic reviews and metaanalyses of studies that evaluate health care interventions: explanation and elaboration," *PLoS Med*, vol. 6, no. 7, p. e1000100, 2009.
- [12] J. F. Tierney, L. A. Stewart, D. Ghersi, S. Burdett, and M. R. Sydes, "Practical methods for incorporating summary timeto-event data into meta-analysis," *Trials*, vol. 8, pp. 1–16, 2007.
- [13] C. B. Begg and M. Mazumdar, "Operating characteristics of a rank correlation test for publication bias," *Biometrics*, vol. 50, no. 4, pp. 1088–1101, 1994.
- [14] M. Egger, G. Davey Smith, M. Schneider, and C. Minder, "Bias in meta-analysis detected by a simple, graphical test," *BMJ*, vol. 315, no. 7109, pp. 629–634, 1997.
- [15] T. Konishi, N. Doki, Y. Kishida et al., "Geriatric nutritional risk index (GNRI) just before allogeneic hematopoietic stem cell transplantation predicts transplant outcomes in patients older than 50 years with acute myeloid leukemia in complete remission," *Annals of Hematology*, vol. 98, no. 7, pp. 1799–1801, 2019.
- [16] K. Mizuno, T. Nakazato, C. Ito et al., "The prognostic value of geriatric nutritional risk index in patients with follicular lymphoma," *Annals of Hematology*, vol. 98, no. 7, pp. 1777– 1779, 2019.
- [17] Z. Li, Q. Guo, J. Wei, J. Jin, and J. Wang, "Geriatric nutritional risk index is not an independent predictor in patients with diffuse large B-cell lymphoma," *Cancer Biomarkers*, vol. 21, no. 4, pp. 813–820, 2018.
- [18] Y. Kanemasa, T. Shimoyama, Y. Sasaki, T. Hishima, and Y. Omuro, "Geriatric nutritional risk index as a prognostic factor in patients with diffuse large B cell lymphoma," *Annals* of *Hematology*, vol. 97, no. 6, pp. 999–1007, 2018.
- [19] B. X. Yang, D. F. Cheng, L. L. Pan et al., "Prognostic value of geriatric nutritional risk index in diffuse large B cell lymphoma," *J Clin Hemato (China)*, vol. 31, no. 9, pp. 682–686, 2018.
- [20] I. Yamana, S. Takeno, H. Shimaoka et al., "Geriatric nutritional risk index as a prognostic factor in patients with esophageal squamous cell carcinoma -retrospective cohort study," *International Journal of Surgery*, vol. 56, pp. 44–48, 2018.
- [21] N. Kubo, K. Sakurai, T. Tamura et al., "The impact of geriatric nutritional risk index on surgical outcomes after esophagectomy in patients with esophageal cancer," *Esophagus*, vol. 16, no. 2, pp. 147–154, 2019.
- [22] K. Migita, S. Matsumoto, K. Wakatsuki et al., "The prognostic significance of the geriatric nutritional risk index in patients with esophageal squamous cell carcinoma," *Nutrition and Cancer*, vol. 70, no. 8, pp. 1237–1245, 2018.
- [23] Y. Bo, K. Wang, Y. Liu et al., "The geriatric nutritional risk index predicts survival in elderly esophageal squamous cell carcinoma patients with radiotherapy," *PLoS One*, vol. 11, no. 5, p. e0155903, 2016.
- [24] L. Li, H. Wang, J. Yang et al., "Geriatric nutritional risk index predicts prognosis after hepatectomy in elderly patients with hepatitis B virus-related hepatocellular carcinoma," *Scientific Reports*, vol. 8, no. 1, p. 12561, 2018.

- [25] S. P. Hu, M. Y. Tu, W. H. Lin, C. Y. Lin, and M. T. Zhou, "The prognostic value of preoperative geriatric risk index for patients with pancreatic ductal adenocarcinoma," *Journal of Hepatopancreatobiliary Surgery*, vol. 31, no. 5, pp. 271–276, 2019.
- [26] H. Miyake, H. Tei, and M. Fujisawa, "Geriatric nutrition risk index is an important predictor of cancer-specific survival, but not recurrence-free survival, in patients undergoing surgical resection for non-metastatic renal cell carcinoma," *Current Urology*, vol. 10, no. 1, pp. 26–31, 2017.
- [27] H. W. Kang, S. P. Seo, W. T. Kim et al., "A low geriatric nutritional risk index is associated with aggressive pathologic characteristics and poor survival after nephrectomy in clear renal cell carcinoma: a multicenter retrospective study," *Nutrition and Cancer*, vol. 1, pp. 1–10, 2019.
- [28] T. Okamoto, S. Hatakeyama, S. Narita et al., "Impact of nutritional status on the prognosis of patients with metastatic hormone-naïve prostate cancer: a multicenter retrospective cohort study in Japan," *World Journal of Urology*, vol. 37, no. 9, pp. 1827–1835, 2018.
- [29] F. Shoji, T. Matsubara, Y. Kozuma et al., "Preoperative geriatric nutritional risk index: a predictive and prognostic factor in patients with pathological stage I non-small cell lung cancer," *Surgical Oncology*, vol. 26, no. 4, pp. 483–488, 2017.
- [30] E. Cereda and C. Pedrolli, "The geriatric nutritional risk index," *Current Opinion in Clinical Nutrition and Metabolic Care*, vol. 12, no. 1, pp. 1–7, 2009.
- [31] E. Cereda, C. Pusani, D. Limonta, and A. Vanotti, "The ability of the geriatric nutritional risk index to assess the nutritional status and predict the outcome of home-care resident elderly: a comparison with the mini nutritional assessment," *The British Journal of Nutrition*, vol. 102, no. 04, pp. 563–570, 2009.
- [32] S. Kushiyama, K. Sakurai, N. Kubo et al., "The preoperative geriatric nutritional risk index predicts postoperative complications in elderly patients with gastric cancer undergoing gastrectomy," *In Vivo*, vol. 32, no. 6, pp. 1667–1672, 2018.
- [33] H. Sasaki, S. Nagano, N. Taniguchi, and T. Setoguchi, "Risk factors for surgical site infection after soft-tissue sarcoma resection, including the preoperative geriatric nutritional risk index," *Nutrients*, vol. 10, no. 12, p. E1900, 2018.
- [34] G. Y. Lv, L. An, X. D. Sun, Y. L. Hu, and D. W. Sun, "Pretreatment albumin to globulin ratio can serve as a prognostic marker in human cancers: a meta-analysis," *Clinica Chimica Acta*, vol. 476, pp. 81–91, 2018.
- [35] G. Y. Lv, Y. Yu, L. An, X. D. Sun, and D. W. Sun, "Preoperative plasma fibrinogen is associated with poor prognosis in esophageal carcinoma: a meta-analysis," *Clinical & Translational Oncology*, vol. 20, no. 7, pp. 853–861, 2018.

Journal of Immunology Research

The Scientific World Journal

Research and Practice

BioMed Research International

PPAR Research

Journal of Ophthalmology

Computational and Mathematical Methods in Medicine

International

Behavioural Neurology

Evidence-Based Complementary and Alternative Medicine

Research and Treatment

Oxidative Medicine and Cellular Longevity

Submit your manuscripts at www.hindawi.com