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Abstract

Background: The mosquito A. aegypti is vector of dengue and other viruses. New methods of vector control are

needed and can be achieved by a better understanding of the life cycle of this insect. Embryogenesis is a part of

A. aegypty life cycle that is poorly understood. In insects in general and in mosquitoes in particular energetic

metabolism is well studied during oogenesis, when the oocyte exhibits fast growth, accumulating carbohydrates,

lipids and proteins that will meet the regulatory and metabolic needs of the developing embryo. On the other

hand, events related with energetic metabolism during A. aegypti embryogenesis are unknown.

Results: Glucose metabolism was investigated throughout Aedes aegypti (Diptera) embryonic development. Both

cellular blastoderm formation (CBf, 5 h after egg laying - HAE) and germ band retraction (GBr, 24 HAE) may be

considered landmarks regarding glucose 6-phosphate (G6P) destination. We observed high levels of glucose

6-phosphate dehydrogenase (G6PDH) activity at the very beginning of embryogenesis, which nevertheless

decreased up to 5 HAE. This activity is correlated with the need for nucleotide precursors generated by the

pentose phosphate pathway (PPP), of which G6PDH is the key enzyme. We suggest the synchronism of egg

metabolism with carbohydrate distribution based on the decreasing levels of phosphoenolpyruvate carboxykinase

(PEPCK) activity and on the elevation observed in protein content up to 24 HAE. Concomitantly, increasing levels of

hexokinase (HK) and pyruvate kinase (PK) activity were observed, and PEPCK reached a peak around 48 HAE.

Glycogen synthase kinase (GSK3) activity was also monitored and shown to be inversely correlated with glycogen

distribution during embryogenesis.

Conclusions: The results herein support the hypothesis that glucose metabolic fate changes according to

developmental embryonic stages. Germ band retraction is a moment that was characterized as a landmark in

glucose metabolism during Aedes aegypti embryogenesis. Furthermore, the results also suggest a role for GSK3 in

glycogen balance/distribution during morphological modifications.

Background

The mosquito Aedes aegypti is vector of urban yellow

fever and also the main dengue vector [1]. One of the

major problems involving dengue transmission is that A.

aegypti embryos enter dormancy at the end of embryo-

genesis, surviving and remaining viable for several

months inside the egg [2-4]. This extended viability is

possible due to the acquisition of embryonic desiccation

resistance, a biological mechanism that is believed to

involve the formation and maturation of serosal cuticle,

a layer covering the embryo [5]. Despite its importance

as a vector, little attention is given to A. aegypti embryo-

nic development. Taking into account the fact that mos-

quito populations are becoming resistant to the

insecticides currently available for vector control [6], it

is imperative to establish new vector control methods.

These methods can be developed from a better compre-

hension of the biology of these insects, since some parts

of their life cycle, such as embryogenesis, are still poorly

understood.

As a rule, oviparous animals face embryogenesis in the

absence of exogenous nutrient supply. In this case,

maternal nutrients are packaged into the female gamete

(oocytes) during oogenesis [7,8]. In insect oogenesis the
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oocytes exhibit fast growth, accumulating carbohydrates,

lipids and proteins that will meet the regulatory and

metabolic needs of the developing embryo [9]. In mos-

quitoes, the majority of yolk components are synthesized

at extraovarian sites, primarily in the female fat body

[10-14]. Subsequently, these yolk components are trans-

ported via haemolymph and incorporated into the

oocytes [15]. The sequential deposition of yolk compo-

nents was evaluated during oogenesis in A. aegypti. Syn-

chronous protein and lipid incorporation into the

oocytes occurs in the first 36 h, while rapid glycogen

incorporation happens between 36 and 48 h of oogen-

esis [14].

The current literature provides ample information

regarding metabolic events during larval and adult

phases of A. aegypti [14,16-19]. Nevertheless, in A.

aegypti embryogenesis, aspects concerning energy meta-

bolism such as the activity of central metabolic pathways

(e.g. glycolysis and gluconeogenesis) or the determina-

tion of energy reserves to be used have been neglected.

In the fruit fly Drosophila melanogaster an increase in

glycogen content strongly correlated with protein levels

in follicles and young embryos has been described

[20-22]. Histochemical studies reveal that glycogen is

the predominant form of carbohydrate storage in D.

melanogaster eggs [23]. Additionally, the amount of car-

bohydrates was shown to decrease from late oocyte

stages until after 2 h of embryogenesis, and increases up

to the blastoderm stage, during later development [23].

Furthermore, changes in protein content occur in an

opposite direction to that determined for the carbohy-

drate content [22]. Moreover, in D. melanogaster glyco-

gen is abundantly stored in the midgut compartment

during late stages of embryogenesis [23,24].

Insulin is a key regulator of energetic metabolism in

many organisms. It increases glucose transport, glycogen

synthesis, diminishes gluconeogenesis, inhibits glycogen-

olysis, and regulates the expression of various genes

[25]. Components of insulin signaling pathway have

been discovered to be extremely conserved in organisms

as distantly related as humans, D. melanogaster and

Caenorhabditis elegans [26]. In A. aegypti, upstream

components of insulin signaling pathway, as phosphati-

dylinositol 3-kinase (PI3K) [27] and protein kinase B

(AKT) [28], have been identified and correlated with

glucose metabolism. Glycogen synthase kinase-3

(GSK3), is a serine-threonine kinase present as two

highly homologous forms, GSK3a and GSK3b, was first

identified based on its action towards glycogen synthase

(an enzyme involved in glycogen biosynthesis), and is

also considered a downstream component of insulin sig-

naling cascade [29,30]. GSK3 is now recognized as a key

component of a surprisingly large number of cellular

processes. A previous study on the cattle tick

Rhipicephalus microplus conducted by our research

group revealed that GSK3 activity was correlated with

diminished glycogen content in eggs during embryogen-

esis [31].

In this paper we correlated different biochemical para-

meters of glucose metabolism with morphological

changes that take place during A. aegypti embryo devel-

opment. It was also demonstrated that glucose and gly-

cogen levels are closely correlated with activity and

transcription levels of GSK3 during embryogenesis. It

suggests a highly conserved participation of GSK3 in

glycogen metabolism in arthropod embryogenesis. To

the best of our knowledge there is no work describing

either function or activity of GSK3 in mosquitoes, or

GSK3 involvement in glycogen metabolism.

Results

Embryonic development

In order to determine the timing of major morphologi-

cal landmarks during A. aegypti embryogenesis at 28°C,

embryos in distinct stages were clarified [32] and

observed (Figure 1). Zero hours after egg laying (HAE),

eggs have just been fertilized and the embryos are

detached from the surrounding endochorion (Figure

1A). Three HAE embryos are at the syncytial blasto-

derm stage, with the pole cells positioned outside the

blastoderm (Figure 1B) [2,33], while 5 HAE embryos are

right before or at the cellular blastoderm stage (Figure

1C) [33]. Ten and 15 HAE embryos are in the middle of

germ band extension and at the beginning of germ band

retraction, respectively (Figure 1D, 1E) [5]. Twenty-four

HAE embryos are in the middle of germ band retraction

(Figure 1F) [4]. Thirty-one HAE, embryos are at the

dorsal closure stage (Figure 1G), while 48 HAE embryos

are at late organogenesis stage [34], with evident larvae

segmentation (Figure 1H). The embryonic development

at 28°C is completed 61.6 HAE [35]. Accordingly, 62

HAE embryos show all the features of larvae ready to

hatch (Figure 1I) [4,35].

Glycolytic pathway increases after germ band formation

in A. aegypti embryos

The glycolytic pathway transforms glucose into pyruvate

obtaining ATP during this process (Figure 2). In

A. aegypti embryogenesis the glycolytic pathway was

evaluated determining the enzymatic activity of hexoki-

nase (HK) and pyruvate kinase (PK) (Figure 3). HK and

PK are respectively the initial and final steps of glycoly-

sis and both are regulatory enzymes that control the

flux of glycolysis. The PK and HK patterns of activity

are positively correlated throughout embryogenesis. This

demonstrates that the activity of these enzymes occurs

concomitantly, exerting a connected action at this phase

of mosquito embryo development. HK and PK activities
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are low during the first 15 h of embryogenesis (Figure

3A and 3B).

Glucose 6-phosphate is mainly destined to pentose-

phosphate pathway before the germ band formation in

A. aegypti embryos

The pentose-phosphate pathway, which produces

NADPH and ribose 5-phosphate (Figure 2), was investi-

gated during embryogenesis by determining the activity

profile of glucose 6-phosphate dehydrogenase (G6PDH),

the rate limiting step of this pathway [36]. The very

beginning of mosquito embryogenesis is marked by high

levels of G6PDH activity 0 HAE, followed by a drastic

decrease in the first 5 h of embryo development (Figure

3C). G6PDH activity was no longer detected 15 HAE

(beginning of germ band retraction).

A. aegypti embryo GSK3 sequence analysis

RT-PCR from cDNA obtained from A. aegypti embryos

between 0 and 9 HAE (see Item 2.12) using degenerated

primers for GSK3 generated an approximately 600-bp

product (data not shown). The cloned fragment was

sequenced and showed a 100% identity with an A. aegypti

GSK3 sequence deposited in GenBank (ascension num-

ber: DQ440045.1) and A. aegypti Gene Index (TC35709).

Then, the full-length mosquito GSK3 sequence was com-

piled from the data obtained by sequencing the cloned

fragment and database sequences analysis. The deduced

amino acid sequence of the A. aegypti GSK3 was com-

pared with orthologs from a number of other species

(Additional File 1). The partial AeGSK3 cDNA is 3,690

bp long and had an open reading frame of 1,476 bp,

beginning with the first ATG codon at position 97 bp

and with the stop codon at position 1,572 bp.

The AeGSK3 sequence was analyzed with BLAST and

ScanProsite tools. The Protein kinase ATP-binding

region (residues Ile-60 - Lys-184) and Serine/Threonine

protein kinase active-site signatures (residues Ile-175 -

Leu-187), which are important for determining its biolo-

gical proprieties, were found (Additional File 1).

The control of glycogen metabolism in A. aegypti

embryos

Glycogen metabolism in A. aegypti embryogenesis was

investigated by determining glycogen and glucose con-

tent (Figure 4), and glycogen synthase kinase (GSK3)

activity and transcription (Figure 5). Total glycogen and

glucose amount in eggs increased between 0 and 15

HAE. After that, glycogen and glucose content greatly

decreased until the end of embryogenesis (Figure 4).

The level of GSK3 activity decreases from 5 HAE to 24

HAE (Figure 5), being inversely correlated with glycogen

distribution from 5 to 15 HAE. From 24 HAE until the

end of embryogenesis GSK3 activity remains at low

levels. To identify the profile of GSK3 mRNA transcrip-

tion, cDNAs obtained from eggs collected at different

embryogenesis stages and from blood-fed and not

blood-fed females ovaries were analyzed by qPCR. Fig-

ure 4 shows the relative amount of GSK3 mRNA, nor-

malized by rp49 mRNA (a constitutively expressed

house-keeping gene). Embryos at different stages of

development were evaluated over the course of embryo-

genesis between 0 HAE (designated as calibrator) (data

not shown) and 62 HAE. The GSK3 gene expression

Figure 1 Aedes aegypti embryogenesis at 28°C. (A) 0 h after egg laying (HAE) embryo, detached from the endochorion. (B) 3-HAE embryo at

the syncytial blastoderm stage. Insert shows the pole cells outside the blastoderm. (C) 5-HAE embryo, at the cellular blastoderm stage. Insert

shows ventral-posterior region of the blastoderm detached from the endochorion and cell boundaries. (D) 10-HAE embryo in the middle of

germ band extension. (E) 15-HAE embryo at the beginning of germ band retraction. (F) 24-HAE embryo at the germ band retraction stage. (G)

31-HAE embryo, at dorsal closure stage. Focal plane is located inside the embryo at the embryo-yolk junction region. (H) 48-HAE embryo at late

organogenesis stage. Larvae segmentation is partially evident. (I) 62-HAE embryo at the end of embryogenesis showing the head, three fused

thoracic segments, eight abdominal segments and the respiratory siphon and associated structures. In B-G, dorsal side is up. Scale bar = 100

μm. Arrow: cephalic region segmented. Arrowhead: serosal cuticle limits, detached from the endochorion. y: yolk. A-C, F, H, I: DIC microscopy.

C insert: Bright field. D, E, G: Stereoscope.
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decreased sharply between 0 and 24 HAE, from 100% to

16% of initial relative amount of GSK3 mRNA (Figure

5). After this moment (middle of germ band retraction)

the relative amount of GSK3 mRNA remained stable,

around 15% of its initial value, until the end of

embryogenesis.

GSK3 mRNA transcripts are present in ovaries from

blood-fed and not blood-fed females (Figure 5-insert). In

contrast to embryos, GSK3 relative expression increased

significantly (nearly 1.5 times), when comparing ovaries

of not blood-fed females (designated as calibrator) and

ovaries of females 24 h after blood meal. In ovaries of

females 48 h after blood meal, GSK3 relative expression

increased significantly by 3 times, when compared to

not blood-fed females.

Gluconeogenesis increases after germ band formation in

A. aegypti embryos

The gluconeogenesis consists of the formation of glu-

cose from noncarbohydrate precursors, such as the

Figure 2 Representative scheme for pathways of glucose

metabolism. The scheme is based on enzyme activities and

metabolites quantification evaluated during Aedes aegypti

embryogenesis. HK - Hexokinase, G6PDH - Glucose 6-phosphate

Dehydrogenase, PK - Pyruvate Kinase, PEPCK - Phosphoenolpyruvate

Carboxykinase, PEP - Phosphoenolpyruvate and PPP - Penthose-

Phosphate Pathway.

Figure 3 HK, PK and G6PDH activities during A. aegypti

embryogenesis. The HK (A), PK (B) and G6PDH (C) activities were

measured in egg homogenates on different hours of embryo

development. Each experiment was replicated three times and error

bars represent standard deviation of sample means. (*p < 0.05;

***p < 0.001, ANOVA). The dashed line indicates the germ band

retraction stage 24 HAE.
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products of lipids and proteins breakdown (Figure 2).

The evaluation of gluconeogenesis during embryogenesis

was carried out by correlating protein and glucose con-

tent in eggs (Figures 6A and 4, respectively), and the

activity of phosphoenolpyruvate carboxykinase (PEPCK)

(Figure 6B), the key enzyme of this pathway. Glucose

content increased until 15 HAE, and then was gradually

reduced towards embryogenesis completion (Figure 4).

Total protein content in eggs increased until 5 HAE, at

the stage of cellular blastoderm formation. From then

until the middle of germ band retraction (24 HAE),

protein content was maintained and then declined dras-

tically between 24 and 48 HAE, and remained at low

levels until the end of embryogenesis (Figure 6A).

PEPCK activity decreased continuously until 15 HAE,

being inversely correlated with glucose content up to

that point (compare Figures 4 and 6B). PEPCK activity

subsequently doubled between 24 and 48 HAE, remain-

ing at high levels until the end of embryogenesis, conco-

mitantly with a significant decrease in protein content

(Figure 6).

Discussion

In a previous work with the cattle tick R. microplus

embryos our group demonstrated a correlation between

the kinetics of egg energetic components mobilization

and the morphological changes occurring during early

embryogenesis [37]. In this work, stages of A. aegypti

embryogenesis were visualized in clarified embryos (Fig-

ure 1) and compared with the metabolic modifications

Figure 4 Glucose and glycogen levels during A. aegypti

embryogenesis. The glucose (open lozenge) and glycogen (black

up-pointing triangle) concentration were measured in egg

homogenates on different hours of embryo development. Each

experiment was replicated six times and error bars represent

standard deviation of sample means. The dashed line indicates the

germ band retraction stage 24 HAE.

Figure 5 Glycogen Synthase Kinase-3 (GSK3) activity and

relative expression during A. aegypti embryo development. The

GSK3 activity (open lozenge) and GSK3 transcripts levels (black

down-pointing triangle) (normalized by rp49 cDNA) were measured

on different hours of embryo development. Each experiment was

replicated three times and error bars represent standard deviation

of sample means. Insert shows GSK3 transcripts levels in ovaries of

A. aegypti females dissected in different hours after blood meal

(**p < 0.01; ***p < 0.001, ANOVA). The dashed line indicates

the germ band retraction stage 24 HAE.

Figure 6 Gluconeogenesis pathway during A. aegypti

embryogenesis. (A) The protein concentration was measured in

egg homogenates. (B) The PEPCK activity was measured in egg

homogenates. Each experiment was replicated three times and

error bars represent standard deviation of sample means.

(**p < 0.01; ***p < 0.001, ANOVA). The dashed line indicates

the germ band retraction stage 24 HAE.
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related to glucose metabolism throughout embryogen-

esis. Farnesi et al. [35] demonstrated that A. aegypti

embryonic development is completed around 62 HAE

when the specimens are reared at 28°C. According to

our analysis, A. aegypti exhibits the same pattern of

embryo formation as described for D. melanogaster [38]

and for another mosquito, Anopheles albitarsis [39].

Acquisition of drug resistance by insects vectors of

diseases is a major global health problem, due to a rapid

selection of insects resistant to compounds used as con-

ventional insecticides [6]. In fact, insecticide resistance

is the fastest case of evolutive adaptation ever observed

and it is extensively documented [40]. The discovery of

new drugs aimed at working as insecticides demand a

high investment in research and these drugs might have

a short lifetime efficacy due to the acquisition of resis-

tance by insects. Therefore, the discovery of new drugs

that can be used as new insecticides must be a constant

process. A strategy for development of new control

methods can rely on the characterization of the existing

metabolic pathways in insects, in order to identify tar-

gets present in the insect but not it the host. This

approach was successfully employed regarding chitin

metabolism and the moulting process, with juvenile hor-

mone analogues [41]. So, further studies are needed to

confirm the viability of this strategy to new metabolic

pathways and distinct life stages, such as the embryo.

Hexokinase and Pyruvate Kinase catalytic activities

were detected throughout embryogenesis, and presented

increase from 24 HAE on which suggest that glycolysis is

intensified after germ band retraction stage (Figure 3)

remaining elevated until the end of embryogenesis. At

the very beginning of embryogenesis, however, the glu-

cose 6-phosphate (G6P) produced by hexokinase would,

most likely, be driven to the pentose-phosphate pathway

(PPP), due to the high activity of G6PDH, 0 HAE. After,

G6PDH catalytic activity declined abruptly between 0

and 5 HAE, and was nearly null 15 HAE. This result sug-

gests an intense participation of PPP in the initial part of

A. aegypti embryogenesis. Our observations support an

abrupt shift in glucose fate at the moment of cellular

blastoderm formation (CBf), which occurs 5 HAE. Before

CBf, A. aegypti embryos must sustain a high synthesis of

nucleic acids due to the intense nuclei division for the

formation of the syncytial blastoderm occurring prior to

CBf [33]. At this moment the PPP would supply ribose 5-

phosphate units for the synthesis of nucleotides. The

NADPH produced by PPP would also be used for phos-

pholipids necessary for blastoderm cellularization hap-

pening 5 HAE. A similar increase in G6PDH activity

prior to CBf was observed during embryonic develop-

ment of the hard tick R. microplus [42].

Total protein content in A. aegypti eggs was signifi-

cantly increased between 0 and 5 HAE. Elevations in

protein levels were previously observed in D. melanoga-

ster embryos, and an early elevation in protein content

during embryogenesis can be explained by maternal

mRNA driven protein synthesis (transcription of mater-

nal message) [22]. Our data suggest that such protein

biosynthesis in A. aegypti embryos could be supported

by concomitant generation of reducing potential

(NADPH) by the highly active PPP.

An increase in glucose and glycogen content was

observed during the first hours of embryogenesis

(between 0 and 15 HAE). The peak of glucose, observed

15 HAE, might be important for the synthesis of the

chitinized serosal cuticle that happens at this very

moment [5]. This hypothesis is supported by evidences

which indicate that the amino sugar pathway (leading to

chitin formation) is upregulated at this development

stage (unpublished data). Therefore, chitin production

(employed on the construction of the serosal cuticle),

might be a sink for glucose consumption at this stage of

development. Further experiments will confirm this

hypothesis. Additionally, chitin production used for

organogenesis and synthesis of the larval cuticle at late

embryogenesis, starting from 31 HAE [5,34], might also

be consuming glucose, although at this moment no

peak of glucose is observed. Previous works in Droso-

phila embryogenesis also identified an increase in glyco-

gen and carbohydrates content, which nevertheless

occurred at the earlier developmental stage of blasto-

derm formation [21,22]. It has been previously observed

that glycogen accumulates in embryos of the cattle tick

R. microplus in parallel with an increase in PEPCK cata-

lytic activity. It was suggested that glycogen biosynthesis

could be supported by concomitant gluconeogenesis

[42]. On the other hand, during A. aegypti embryogen-

esis, PEPCK activity declined between 0 and 24 HAE

(Figure 6B), suggesting the availability of other carbohy-

drates source in insects, such as trehalose [43-46], which

should be mobilized and converted into glucose and/or

glycogen.

After the progressive drop until 24 HAE, a significant

increase in PEPCK catalytic activity was observed

between 24 and 48 HAE, concomitant with a consistent

reduction in total protein content, the main gluconeo-

genic substrate (Figure 6A and 6B). Taken together,

these results suggest a correlation between protein con-

tent, gluconeogenic pathway, and morphogenetic modi-

fications that occur during germ band retraction (24

HAE), dorsal closure stage (31 HAE) and late organo-

genesis (48 HAE) (compare Figures 6 and 1). In this sce-

nario, glycogen would be produced using proteins as

substrate, during the whole organogenesis process that

takes place after germ band retraction [34,4]. Yamazaki

and Yanagawa [23] also reported an oscillation in glyco-

gen distribution during D. melanogaster embryogenesis.
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Conversely, after being almost totally consumed, glyco-

gen content increased at the late stages of embryo

formation (when organogenesis takes place) and accu-

mulates in embryo midgut.

Our previous work demonstrated that glycogen distri-

bution throughout R. microplus embryogenesis was

inversely associated with GSK3 activity [31]. Due to its

role on glycogen synthesis regulation, both GSK3 activ-

ity and its relative expression were determined during

A. aegypti embryogenesis (Figure 5). We observed that

GSK3 activity was directly related to GSK3 transcript

levels in A. aegypti embryos. Both GSK3 activity and

gene transcription dropped between 5 and 24 HAE.

Furthermore, GSK3 activity was inversely related to the

glycogen content in the interval 5 to 15 HAE (Compare

with Figures 4 and 5) suggesting that glycogen accumu-

lation in eggs can be regulated by GSK3 activity during

cellular blastoderm formation and germ band extension

(Figure 1). GSK3 activity is classically described as nega-

tively regulated by insulin signaling pathway [28]. We

suggest that such regulation may be conserved in inver-

tebrate organisms, like mosquitoes. In this perspective, a

high insulin signal would be present during the first 15

h, leading to drop in GSK3 activity and increasing glyco-

gen formation (GSK3 activity inhibits glycogen synthase,

the enzyme responsible for glycogen formation). In fact,

three out of the eight genes encoding insulin-like pep-

tides in A. aegypti were previously reported to be

expressed in eggs [47]. On the other hand, it has been

already demonstrated that GSK3 is involved with

embryo dorsoventral axis formation in D. melanogaster

[48-50] and Xenopus [51-53], rather as a component of

Wnt signaling pathway than as regulator of the metabo-

lism of glycogen. Further studies will be necessary to

describe whether GSK3 plays a role on the control of

cell differentiation and embryo polarity patterning dur-

ing mosquito embryogenesis. Additionally, we compared

the AeGSK3 cDNA amino acid sequence (ascension

number: DQ440045.1) and it was revealed a high

homology indexes for vertebrates and invertebrates spe-

cies (Additional File 1).

Several authors have reported the effect of mosquito/

insect blood meal on gene expression [54-56]. GSK3

was upregulated in ovaries from bloodfed A. aegypti

females, when compared to unfed females. Hence, one

must consider a possible role for GSK3 during mosquito

oogenesis. In A. aegypti mosquito, an insulin-like pep-

tide was shown to regulate oocyte maturation and meta-

bolism [19]. Monosaccharides were previously measured

in mature oocytes well after follicular growth, and glyco-

gen appeared during or even after oocyte chorionation

[14]. It has been suggested that chorionated oocytes

must retain enzymes able to synthesize glycogen long

after the end of oogenesis, presumably due to activation

of glycogen synthase enzyme (GS). Additionally, Briegel

et al. [14] postulate that late accumulation of glycogen

in A. aegypti developing oocytes could be due to GS

activity inhibition. The increase in GSK3 transcript

levels observed during A. aegypti oogenesis suggests its

activation as a mechanism to inhibit GS activity and

regulate glycogen incorporation kinetics in developing

oocytes. Therefore, from late oogenesis up to the initial

developmental stages GSK3 activity and expression are

high and glycogen content is relatively low. From 24

HAE on, glycogen metabolism appears to switch in

order to reduce its biosynthesis and accumulation (Fig-

ure 4). Coincidentally, this same period of development

is marked by a strong reduction in both GSK3 activity

and expression (Figure 5).

Conclusions

The results presented here demonstrated that glucose

metabolism is closely correlated to A. aegypti developmen-

tal embryonic stages. Furthermore, germ band retraction is

a landmark regarding both glucose and glycogen metabo-

lism. It is important to stress that the shift in glucose

metabolism is related with the cellular processes that are

taking place before and after germ band retraction. We

intend to study these processes in detail in the future. The

results observed in the present study are schematically

represented together in Figure 7. Nevertheless, further elu-

cidation of these phenomena would lead to a better under-

standing of the regulatory mechanisms in glucose

metabolism during A. aegypti embryogenesis.

Methods

Mosquito maintenance

Aedes aegypti (Rockefeller strain) were reared constantly

in the laboratory. Larvae were fed with rat food, and adults

were fed ad libitum with 10% (w/v) sucrose. For egg pro-

duction, female mosquitoes were blood-fed on a mouse.

To perform oogenesis assays, females were kept at 28°

C in a BOD humid chamber with a 12·h:12·h, light:dark

cycle for a period of 24 and 48 h after blood meal.

Synchronous Egg-laying

This method was performed as described previously [5],

but oviposition lasted 30 minutes. Hours after egg laying

(HAE) were considered as the age assigned to a sample

starting from after the 30-min egg laying period. Eggs

were kept humid/wet at 28°C until the end of embryo-

genesis or collected at indicated HAE. For all biochem-

ical assays embryo development was interrupted by

freezing the samples in liquid nitrogen.

Egg homogenates

Egg homogenates were prepared by grinding eggs in

appropriate extraction buffer (80 mg of eggs/mL of

Vital et al. BMC Developmental Biology 2010, 10:25

http://www.biomedcentral.com/1471-213X/10/25

Page 7 of 12



buffer). Then, homogenates were centrifuged at 200 × g

for 10 min to sediment insoluble eggshell fragments.

Supernatant aliquots were assayed. The composition of

each extraction buffer is described on items 2.4 - 2.11.

In order to determine the content of metabolites (glu-

cose, glycogen and total protein) the average weight of

eggs of each age used was estimated (data not shown).

Egg homogenates for determination of total protein

and enzymatic activities were prepared in the presence

of the following protease inhibitors: 1 μM phenylmethyl-

sulfonyl fluoride (PMSF), 1 mM ethylenediamine tetraa-

cetic acid (EDTA), 10 μM iodacetamide, 1 μM pepstatin

A and 10 μM leupeptine.

Determination of glucose content

Eggs were homogenized in 200 mM phosphate buffered

saline (PBS) pH 7.4. Glucose content was enzymatically

quantified by glucose oxidase (glucox® enzymatic Kit for

glucose dosage; Doles, inc.). After 30 min incubation at

37°C the samples were read at 510 nm in a Shimadzu

U1240 spectrophotometer, according to the manufac-

turer’s instructions.

Determination of glycogen content

Egg glycogen content was determined as described else-

where [42]. Egg homogenates were prepared in 200 mM

sodium acetate, pH 4.8, and supernatant aliquots (five

replicates from each sample) were incubated with 1 unit

of a-amyloglucosidase (Sigma Chemicals) for 4 h at 40°

C. The newly generated glucose was enzymatically

determined by glucose oxidase as described for glucose

content determination. Free glucose was subtracted

from samples without a-amyloglucosidase. Glycogen

content was determined using a standard curve sub-

mitted to the same conditions.

Determination of Protein Content

Eggs were homogenized 0, 3, 5, 15, 24, 48, 62 and 72

HAE in 200 mM phosphate buffered saline (PBS) pH

7.4. The protein content of samples was determined

Figure 7 Proposed scheme for glucose metabolism during the A. aegypti embryo development. The components represented herein

were determined as described in Materials and Methods. HK: Hexokinase, G6PDH: Glucose 6-phosphate Dehydrogenase, PEP:

Phosphoenolpyruvate, PEPCK: Phosphoenolpyruvate Carboxykinase, PK: Pyruvate Kinase, PPP: Pentose-Phosphate Pathway and GSK3: Glycogen

Synthase Kinase 3.
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according to the Lowry method [57], using bovine

serum albumin as standard.

Hexokinase (HK) activity Assay

Eggs were homogenized in extraction buffer containing

20 mM Tris-HCl, pH 7.5 with 6 mM MgCl2 5, 15, 24,

48 and 72 HAE. Supernatant aliquots (in triplicate) were

assayed in 20 mM Tris-HCl pH 7.5 containing 6 mM

MgCl2, 1 mM ATP, 0.5 mM NAD+ and 2 mM glucose.

HK catalytic activity was measured by adding Leuconos-

toc mesenteroides glucose 6-phosphate dehydrogenase

(Sigma-Aldrich Chemicals) (Worthington Code: ZF or

ZFL) dissolved at a concentration of 1 UI/mL in the

above Tris-MgCl2 buffer [58]. The production of b-

NADH was monitored at 340 nm in a Shimadzu U1240

spectrophotometer using a molar extinction coefficient

of 6.22 M-1, as described by Worthington [59].

Pyruvate kinase (PK) activity Assay

Eggs were homogenized in extraction buffer containing

20 mM Tris-HCl pH 7.5 with 5,5 mM MgCl2 5, 15, 24,

48 and 72 HAE. Supernatant aliquots (in triplicate) were

assayed in 1 mL of 20 mM Tris-HCl pH 7.5 containing

5.5 mM MgCl2, 1 mM ADP, 0.4 mM NADH, 1 unit/mL

lactate dehydrogenase and 1 mM phosphoenolpyruvate.

The b-NADH consumption was monitored at 340 nm

in a Shimadzu U1240 spectrophotometer using a molar

extinction coefficient of 6.22 M-1 as described by

Worthington [59].

Glucose-6-phosphate dehydrogenase (G6PDH)

activity Assay

Egg homogenates were homogenized in extraction buf-

fer containing 55 mM Tris-HCl pH 7.8 0, 3, 5, 15, 24,

48 and 72 HAE. Supernatant aliquots (in triplicate) were

assayed in 1 mL of 55 mM Tris-HCl, pH 7.8 containing

6 mM MgCl2, 100 mM glucose 6-phosphate and 0.5

mM b-NADP+. The reaction was started with sample

addition. The formation of b-NADPH was monitored at

340 nm in a Shimadzu U1240 spectrophotometer during

5 min, using a molar extinction coefficient of 6.22 M-1

as described by Worthington [59].

Phosphoenolpyruvate carboxykinase (PEPCK)

activity Assay

Egg homogenates were homogenized in extraction buf-

fer containing 100 mM HEPES buffer, pH 7.0 0, 5, 15,

24, 48 and 72 HAE. Supernatant aliquots (in triplicate)

were assayed in 400 μL of 100 mM HEPES buffer pH

7.0 containing 10 mM MnSO4, 100 mM KHCO3, 2 mM

reduced glutathione, 10 mM PEP, 0.2 mM NADH, and

24 units of malate dehydrogenase (Sigma Chemicals).

The reaction started by the addition of 10 μL 2.5 mM

inosine diphosphate (IDP) and the consumption of b-

NADH was monitored at 340 nm and PEPCK activity

was determined as described by Petersen et al. [60].

Glycogen Synthase Kinase activity (GSK3) Assay

Egg homogenates were homogenized 5, 15, 24, 48 and

62 HAE in 20 mM Tris-HCl buffer pH 7.4 with 1 mM

ammonium molibdate, 1 μg/mL heparin, 1 μM phenyl-

methylsulfonyl fluoride (PMSF), 1 mM ethylenedia-

mine tetraacetic acid (EDTA), 10 μM iodacetamide,

1 μM pepstatine A and 10 μM leupeptine. Total GSK3

was immunoprecipitated from egg homogenates super-

natant aliquots (100 μg of protein) (in triplicate) with

anti-GSK3 commercial antibody (Sigma-Aldrich Che-

micals). The immuno-complex was captured with pro-

tein A-agarose suspension (Sigma-Aldrich Chemicals)

by incubating the mixture at room temperature with

gentle agitation for 20 min. The resin was collected by

centrifugation, washed three times and ressuspended in

reaction buffer [20 mM Tris-HCl, pH 7.5, 10 mM

MgCl2, 5 mM dithiothreitol, 1 mM ammonium molyb-

date, 1 μg/mL heparin and 50 μM CREB phosphopep-

tide (Calbiochem). GSK3 activity was determined by

incubating the suspension with 100 μM g-[P32]-ATP

(500-3000 CPM/pmol) at 37°C for 30 minutes [61].

After incubation, supernatant aliquots (in quintupli-

cate) of the supernatant were spotted onto Whatman

P81 phosphocellulose paper strips. The strips were

washed three times with phosphoric acid solution

(75 mM), dried and immersed in scintillation liquid for

radioactivity count determination on a 1600TR TRI-

CARB-Packard. The activity was determined as the

amount of GSK3 required to catalyze the transfer of 1

pmol of phosphate to CREB Phosphopeptide in 1 min

at 30°C.

RNA isolation and reverse transcription (RT) for

GSK3 cloning

Messenger RNA (mRNA) was extracted from embryos

collected at 0, 6 and 9 HAE with QuickPrep Micro

mRNA Purification kit (Amersham Biosciences), accord-

ing to the manufacturer’s instructions. Approximately

10 ng of mRNA from each sample were reversely tran-

scribed with the First Strand cDNA Synthesis Kit

(Amersham Biosciences) using an oligo-dT primer,

according to manufacturer instructions.

PCR and cloning

Primers for GSK3 were designed as degenerated pri-

mers based on conserved regions in previously known

sea urchin GSK3 cDNA sequence [62]. The pair of

degenerated primers used to amplify A. aegypti GSK3

is (5’-GTIGCIATHAARAARGTIYTICARGAY-3’, and

5’-YTTRWRYTCIRTRTARTTIGGRTTCAT-3’) (see

Additional File 2). cDNA obtained from embryos (see
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Item 2.12) was used as templates for PCR. The PCR

reactions were performed as follows: 94°C for 5 min,

40 cycles of denaturation at 94°C for 1 min, annealing

at 45°C for 1 min, and elongation at 72°C for 1 min,

followed by a 10 min extension at 72°C and cooling at

4°C.

PCR products were analyzed by agarose gel electro-

phoresis, purified with the Wizard SV Gel and PCR

clean up systems (Promega) and cloned into pGEM-T

Easy vector (Promega). Both strands were sequenced

with a BigDye Terminator v3.0, model ABI 377XL

sequencer (Applied Biosystems).

Sequence analysis

Nucleotide sequence identity was performed using the

BLAST program (GenBank, NCBI). Amino acid align-

ment and analysis of GSK3 similarity from selected

species was performed using the Clustal W multiple

sequences alignment program and BioEdit version

7.0.5.2 software program [63]. The presence of con-

served patterns was determined using InterProScan

[64].

Embryo morphology analysis

Eggs obtained from synchronous egg laying were fixed

and clarified according to Trpiš (1970) 0, 3, 5, 10, 15,

24, 31, 48 and 62 HAE. This technique fixes the embryo

while making the eggshell transparent. Clarified embryos

were observed with an Axiophoto microscope (Zeiss)

with bright field and DIC and a Stereo Discovery V.12

stereoscope (Zeiss). The embryonic stages were identi-

fied according to Raminani and Cupp [33], Clements

[4], Rezende et al. [5] and Farnesi et al. [35]. For every

time point at least 150 embryos were clarified and

examined. Images were captured from embryos showing

representative morphologies of each time point.

GSK3 relative expression by qPCR

To evaluate GSK3 mRNA expression, total RNA was

extracted from the ovary of sucrose-fed females and

blood-fed females (24 and 48 h after blood meal) and

eggs 0, 5, 15, 24, 48 and 62 HAE. Mosquitoes were

washed with 50% ethanol and rinsed with PBS prior to

ovary dissection under a microscope. Total RNA was

extracted with Trizol reagent (Invitrogen) according to

the manufacturer’s instructions. RNA quantity and qual-

ity were estimated by spectrophotometry at 260/280 nm.

Two micrograms of total RNA was reverse-transcribed

at 37°C using the High-capacity cDNA Reverse Tran-

scription kit with random primers according to the

manufacturer’s recommendations (Applied Biosystems).

Amplification was performed on LightCycler 1.5 capil-

lary platform (Roche). Serial dilutions of cDNA were

used for calibration curve preparation. Reaction

efficiencies between 85 and 100% were determined from

calibration curves for each set of primers in 10-μL reac-

tions. The primers utilized for specific GSK3 expression

were 5’-CGTACATCTGCTCGCGATAC-3’(forward)

and 5’-GGATGCGTACTAGCCGAATT-3’ (reverse)

(Additional File 2). Relative expression was determined

by using the Cp values from each run on Relative

Expression Software Tool-REST [65], using primers for

the constitutive gene rp49, used as a reference gene

[66]. Values from 0 HAE and ovary from not blood-fed

females were designated as calibrators for the expression

of relative amount of GSK3 mRNA in embryogenesis

and oogenesis, respectively.

Additional file 1: GSK3 protein sequence is evolutionary conserved

between A. aegypti and selected organisms. Sequence alignment of

AeGSK3 and percentage of identical residues between A. aegypti and the

other respective organisms indicating some conserved regions.

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1471-213X-10-

25-S1.DOC ]

Additional file 2: A. aegypti GSK-3 complete cDNA sequence and

primer annealing positions. Representation of the forward and reverse

degenerated primers used to clone AeGSK-3 and the primers used for

qPCR.

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1471-213X-10-

25-S2.DOC ]
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