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Abstract
A high-performance and broadband heterojunction photodetector has been successfully fabricated. The

heterostructure device is based on a uniform and pinhole-free perovskite film constructed on top of a single-crystal

germanium layer. The perovskite/germanium photodetector shows enhanced performance and a broad spectrum

compared with the single-material-based device. The photon response properties are characterized in detail from the

visible to near-infrared spectrum. At an optical fibre communication wavelength of 1550 nm, the heterojunction

device exhibits the highest responsivity of 1.4 A/W. The performance is promoted because of an antireflection

perovskite coating, the thickness of which is optimized to 150 nm at the telecommunication band. At a visible light

wavelength of 680 nm, the device shows outstanding responsivity and detectivity of 228 A/W and 1.6 × 1010 Jones,

respectively. These excellent properties arise from the photoconductive gain boost in the heterostructure device. The

presented heterojunction photodetector provides a competitive approach for wide-spectrum photodetection from

visible to optical communication areas. Based on the distinguished capacity of light detection and harvesting from the

visible to near-infrared spectrum, the designed germanium/perovskite heterostructure configuration is believed to

provide new building blocks for novel optoelectronic devices.

Introduction
A photodetector (PD) is an optoelectronic device widely

used to convert light signals into electronic outputs. The

photon response spectrum of a PD is critical for its

detection application. This property is generally deter-

mined by the specific bandgap of a semiconducting active

layer applied in a device1–3. A broadband photodetector,

which can detect from visible (Vis) to infrared (IR) light, is

particularly important in the commercial applications of

imaging sensors, optical communication, environmental

monitoring, and civil engineering4–6. However, a single

semiconductor is hardly able to achieve a broader

response spectrum as an active layer in a photodetector.

For example, the inorganic semiconductor germanium

(Ge) has been applied to construct a key component of

photodetection in optical interconnection and optoelec-

tronic integrated circuits (OEICs). It has unique optoe-

lectronic properties at the IR telecommunication band

and great process compatibility with complementary

metal-oxide-semiconductor (CMOS) techniques7,8.

Unfortunately, the results by far indicate that germanium

has extremely poor response performance among the Vis

light spectrum. The reasons for the shortcoming mainly

lie in the short Vis light penetration length and low

photogenerated carrier collection efficiency in germanium

film (called the "dead region effect"). These limitations

hinder it in the development of Vis-light communication,

not to mention broadband absorption applications9–12.

To overcome the challenges mentioned above, much

efforts have been made to construct heterojunction

devices in recent decades. Many different kinds of mate-

rials, including layer materials such as graphene13 and
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MoS2
14, inorganic and organic semiconductors such as

PbS15, ZnO16, PDPP3T17 and Si18, have been explored

together to capture more incident photons. For example,

the graphene/Bi2Te3 heterostructure photodetector

shows a broadband response from 532 to 1550 nm13.

However, it has low responsivity over the response spec-

trum, especially in the NIR spectrum (0.22 A/W at

1550 nm) due to weak optical absorption of the layered

graphene. The perovskite/MoS2-based photodetector can

detect visible light only due to the bandgap limitation of

the two layers, and shows a peak responsivity of 68 A/W

at a wavelength of 514 nm14. Moreover, a high tempera-

ture over hundreds of degrees is typically used for the

deposition of ZnO, TiO2 and Si film, which would cause

critical damages to the underlying layers or substrates.

Based on the research works conducted so far13–23, the

limited response spectrum, low performance, high work-

ing voltage and incompatibility of the procedure at low

temperatures have become major concerns for the het-

erojunction photodetector construction. These dis-

advantages also strongly hamper their widespread

commercialization applications.

Recently, a series of solution-processed organic-inor-

ganic hybrid perovskite has attracted extensive attention

in the research area of optoelectronic devices. Methy-

lammonium lead triiodide (CH3NH3PbI3) is the most

representative one among these materials. The

CH3NH3PbI3 perovskite thin film can be easily synthe-

sized, which has excellent advantages such as a direct

bandgap24, long charge carrier diffusion length25, low

recombination rate and high absorption coefficient in the

Vis light range26. Its application in the areas of optical

amplification27, nonlinear optical areas28, and light-

emitting diodes29 has been studied. In the last two dec-

ades, the CH3NH3PbI3 thin film has been mostly explored

as light harvester of a solar cell30,31, which has an energy-

conversion efficiency of over 25%32. The perovskite thin

film has also been explored as an active layer in photo-

detectors with vertical (photovoltaic type) and lateral

(metal-semiconductor-metal type) device architectures33–

43. The devices exhibited good photo response properties

under Vis light illumination. However, they cannot absorb

the photons in the IR spectrum. The reported photo-

detectors show a cut-off wavelength of 780 nm due to the

bandgap limitation of the perovskite absorber37–40. This

means that the CH3NH3PbI3 perovskite features strong

absorption in the Vis light spectrum and high transpar-

ency in the near-IR spectrum. Therefore, the perovskite

material is an appropriate candidate, being constructed

with germanium, which is a heterostructure photo-

detector aiming to match the Vis-to-IR broad photo

response requirement.

Results
A perovskite/germanium heterojunction photodetector

with excellent photo-response properties has been suc-

cessfully fabricated. As shown in Fig. 1, the fabrication

process of a germanium/perovskite heterojunction pho-

todetector is schematically exhibited. First, a germanium

layer with a thickness of 300 nm is grown by a solid-

source molecular beam epitaxy (MBE) technique. The

germanium on insulator (GOI) samples are fabricated by a

wafer bonding process44,45. Second, interdigital gold

electrodes are formed by using a thermal vapor deposition

method. The channel length and width are defined by a

shadow mask. Third, a PbI2 layer is deposited on top of

Germanium filmWafer treatment
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Fig. 1 Schematic illustration of the germanium/perovskite heterojunction device fabrication process. a A cleaned SiO2/Si substrate. b A

germanium layer growth by MBE. c Au electrode deposition on the substrate. d Perovskite layer construction by the vapor-solution method. e Three-

dimensional diagram of the heterojunction photodetector. f Top-view and g cross-sectional SEM image of the achieved heterostructure device (scale

bar= 200 nm). h Steady-state photoluminescence spectrum of the constructed perovskite film.
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the sample, the thickness of which is monitored precisely

by a quartz crystal oscillation. Then, a drop of CH3NH3I

solution (in isopropanol) is spin-coated onto the as-

constructed PbI2 film. Finally, the heterojunction photo-

detector is constructed via an annealing process per-

formed for 30min at 100 °C. More details can be found in

the experiment section and our previous works43.

Three-dimensional diagram of a perovskite/germanium

heterojunction photodetector is shown in Fig. 1e. A top-

view scanning electron microscopy (SEM) image of the

perovskite layer is illustrated in Fig. 1f. A cross-sectional

SEM image of the device is presented in Fig. 1g. These

images present a compact and pinhole-free perovskite

film fully covering on the germanium layer. Figure 1h

shows the steady-state photoluminescence (PL) spectrum

of the constructed perovskite layer. The peak wavelength

is located at 765 nm, which is consistent with previous

results27–31. For comparison, devices based on pristine

perovskite and germanium active layers have been fabri-

cated. The optical and electronic properties of these

obtained photodetectors were further performed under

the same conditions as those of the heterojunction devi-

ces. All these measurements were characterized in air

without being encapsulated at room temperature.

In a germanium-based IR photodetector, a considerable

portion of incident IR light is reflected from the germa-

nium surface. The germanium active layer has a relatively

high refractive index (nG=4.0) and a low absorption

coefficient44,45. The light off the device suppresses pho-

tocurrent formation, which is undesirable in photon-

absorption-based devices. Use of an antireflection (AR)

coating is an efficient approach to reducing light reflec-

tion and maximize transmission into the active layer46–48.

As we know, the CH3NH3PbI3 perovskite layer is trans-

parent at the telecommunication band due to its bandgap

limitation of 1.5 eV. Meanwhile, it has a relatively lower

refractive index (np) of 2.3 compared with that of ger-

manium49,50. These advantages suggest that the per-

ovskite material is an appropriate AR coating for

germanium-based high-performance photodetectors. To

take advantage of both materials to overcome the chal-

lenges discussed above, we introduce a germanium/per-

ovskite heterojunction based on the following

considerations. First, the perovskite and germanium films

are used as absorbers for the effective absorption of Vis

and IR light, respectively. Second, the top perovskite layer

is applied as an AR coating with regard to the IR spectrum

due to its lower refractive index and wider bandgap than

those of germanium. At a wavelength of 1550 nm, the

thickness of the perovskite AR coating is optimized to

achieve the lowest reflection in the photodetector. Third,

type-I energy band alignment forms in the germanium/

perovskite heterojunction. It can be noted that there is a

large band offset between the conduction and valence

bands of the two semiconducting materials. This offset

easily produces a charge carrier transport from the per-

ovskite into the germanium. The ultra-high carrier

mobility in germanium results in a photoconductive gain

boost in the heterojunction photodetector. Above all, the

germanium/perovskite hetero-structure configuration not

only benefits the broadband photodetector but also pro-

vides a possible method of developing novel optoelec-

tronic applications. The mechanism of the germanium/

perovskite heterojunction photodetector is described in

detail below.

As shown in Fig. 2a, the incident IR light is partly

reflected off the device because of the refractive difference

between the semiconductor layer and air. Based on the

fundamental principles of optics51, the reflectivity portion

is determined by the perovskite AR coating thickness (l)

and the incident wavelength (λ). To clarify the function of

the perovskite AR coating, a calculation is first carried out

to evaluate the relationship between the reflectivity and

perovskite film thickness. As shown in Fig. 2c, the basic

reflectance off surface of the pristine germanium layer is

~36% at a telecommunication wavelength of 1550 nm.

The value becomes significantly lower when a perovskite

layer is coated onto the germanium as the AR coating.

When the perovskite film thickens to approximately

150 nm, the lowest reflectance of 7% is obtained. Then,

the value rises slightly and reaches the highest value (35%)

as the AR film thickness exceeds 300 nm. The images of

the optical field distribution in the bilayer device are also

simulated and presented. The full 3D electrodynamics

finite element method (FEM) simulations are performed

using the COMSOL Multiphysics software. Figure 2b and

Fig. S1 show the simulation results for the photodetector

with different AR coating thicknesses (0, 100, 120, 150,

180, and 300 nm) at a wavelength of 1550 nm. It can be

seen that a 150 nm AR coating exhibits the lowest IR

photon loss. The theoretical results predict that the lowest

reflectance can be achieved with an optimized perovskite

AR thickness about 150 nm. Meanwhile, the enhanced

transmit effect in the IR spectrum is observed, as shown in

Fig. S2. This effect indicates that a perovskite AR coating

with an optimized thickness at a wavelength of 1550 nm

can effectively reduce the photon loss in the range of IR

spectrum. Based on the analysis above, a batch of het-

erojunction photodetectors with different of perovskite

AR coating thicknesses are constructed and characterized.

The perovskite thickness can be precisely controlled in

the first step during the PbI2 layer fabrication process.

The cross-sectional SEM figures of the devices are shown

in Fig. 1g and Fig. S3 for different perovskite thicknesses.

The photocurrents (Iph), defined as the current difference

between illumination and darkness, are presented in Fig.

2d under an incident wavelength of 1550 nm. Compared

with the pristine germanium device, Iph increases
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obviously in the perovskite AR-coated device. The highest

Iph value is obtained in a heterojunction device when the

perovskite AR coating thickness is approximately 150 nm.

The experimental results also match the theoretical pre-

dication discussed above. Figure S4 presents the Iph-V

comparison for the pristine germanium and AR coating

optimized device. The higher Iph of the perovskite/ger-

manium heterojunction device is obvious.

Meanwhile, the photodetector performance is char-

acterized at an optical communication wavelength of

1550 nm. Figure 3a shows the illumination-power-

dependent Iph-V curves of the device. This figure indi-

cates that the Iph increase with the applied bias and

incident power. Figure 3b (solid circle) exhibits the

dependence of Iph on the illumination power at a bias of

1 V. It shows a good linear relationship as the power

density increases from 0.08 to 3.24 mW cm−2, which

suggests that our heterojunction PD is capable of

detecting incident light power over a wide range. The

important figure of merits, the photodetector spectral

responsivity (R) and the detectivity (D*) have also been

characterized. R= Iph/PIn is defined as the ratio of the

device photocurrent to the incident light intensity, in

which PIn is the incident optical power. Figure 3b shows

the varying trend of R (star) with incident power under a

bias of 1 V. A maximum value of R= 1.4 AW−1 at

1550 nm is achieved for the heterojunction photodetector.

As far as we know, this is the highest R among the

reported IR photodetectors to date at a low working

voltage of 1 V7–12. The responsivity drops significantly as

the incident light intensity increases. This result suggests

that the photocurrent flowing through the device does not

proportionately increase as the incident light intensity

increases. The major potential reason is the limited

absorption coefficient of the active layer. As the propor-

tion of illumination photons increases, the absorption

gradually saturates in the germanium active layer. Then,

the photogenerated carrier and photocurrent do not
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increase accordingly, which results in a decrease in the R

values. The photodetector performance is presented in

Fig. 3d at an incident wavelength of 980 nm. The highest

R value of 32 AW−1 is achieved at a bias of 1 V. Another

important parameter, D*, is used to quantitatively evaluate

the capability of a detector in weak light detection. It is

determined by the responsivity and noise of a photo-

detector, D� ¼ AΔfð Þ
1
2R=in, in which A is the device

effective area and Δf and in are the electrical bandwidth

and noise current of the device, respectively. Figure 3c

shows the noise currents of a heterojunction device at

various frequencies. The results for the pristine germa-

nium device are shown in Figure S5. The curves indicate

that noise currents decrease as the frequency increases

and reach a higher level under a larger voltage due to a

higher dark current. At a wavelength of 1550 nm, the

D* of a germanium/perovskite photodetector is estimated

to be 1 × 108 Jones (cm Hz1/2 W−1) at 0.1 V, which is
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better than the reported results for the telecommunica-

tion band. The higher values of R and D* suggest that our

heterojunction photodetector has enhanced performance

compared with that of the pristine germanium device. We

ascribe the promotion mainly to the introduction of the

perovskite AR coating. The perovskite thickness is opti-

mized to reduce the IR photon loss efficiently due to

reflection. As more IR photons are transmitted and

trapped in the germanium film, more photon-induced

charge carriers are generated in the active layer. Conse-

quently, the constructed heterojunction photodetector

exhibits higher photocurrent and better performance than

those of the pristine germanium detector. Device response

speed experiments are also carried out. Figure 3e shows

the time-resolved on-off switching behaviors of the pho-

todetector being investigated at an IR wavelength of

1550 nm. The rise and decay time of the heterojunction

photodetector are measured to be 2.1 and 5.7 ms at room

temperature, respectively, which show higher speeds than

those of pristine germanium device7–10.

The heterojunction photodetector performance in the

Vis light region has also been characterized. The per-

ovskite layer is chosen to have an optimized thickness of

150 nm, which is approximately two times thinner than

the reported devices, including perovskite solar cells and

photodetectors21–26. Figure 4a, c summarizes the Iph and

R values of the device under two typical Vis wavelengths,

namely, 405 and 680 nm. Figure S6 shows the I-V curve

comparison between the pristine germanium and the

heterojunction photodetectors. The photocurrents of the

heterojunction device are noted to be higher than those of

the pristine germanium device. The I-V performance of a

heterojunction device at different illumination powers is

presented in Fig. S7 for varying wavelength in the Vis

spectrum. The figures indicate that Iph increases drama-

tically with the incident power density. The typical values

of R and D* under Vis light illumination are obtained for

the heterojunction device. For example, a high R of 228 A

W−1 (1 V) at an illumination wavelength of 680 nm is

achieved. D* is estimated to be 1.6 × 1010 Jones at a 0.1 V

bias. These parameters are comparable with the those of

the pristine perovskite photodetectors, the active layer

thickness of which is approximately two times that of this

device21–29. Figure 4b, d shows the on-off switching

behaviors of the heterojunction device. Under incident

light of 680 nm (405 nm), the device rising and decay

times are measured to be 1.8 and 5.1 ms (4.1 and 9.2 ms),

respectively. The constructed photodetector exhibits

higher performance and faster response in the Vis spec-

trum than those of the pristine device. We ascribe these

promotions to bilayer structures based on perovskite and

germanium layers in the detector. The device physics

based on the energy-band model and optical techniques

are studied comprehensively below. Figure 5a shows the

energy band of isolated germanium and perovskite

materials. The conduction and valence band edges for

intrinsic perovskite (germanium) are 3.87 (4.13) eV and

5.45 (4.80) eV40–44, respectively. There is a relatively high

energy band difference between the two semiconductor

materials (0.26 eV for the conduction band and 0.65 eV

for the valence band). The Fermi energy difference is

0.18 eV based on the obtained ultraviolet photoelectron
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spectroscopy (UPS, Fig. S8). At thermal equilibrium,

energy band bending occurs at the heterojunction inter-

face due to the requirement of the Fermi level coincident

on both sides52–55. Then, the conduction band energy

difference at the interface is approximately 0.44 eV, aris-

ing from band bending, as shown in Fig. 5a. Driven by the

large band offset, the photogenerated free electrons in the

perovskite layer are transferred easily into the germanium

layer. However, the holes in the valence band of the

perovskite layer are confined in the valence band due to

barrier formation as the band bends downwards. Optical

and photoelectronic methods have been carried out to

evaluate the effect of interface properties on the device

performance. Figure 5b shows the time-resolved PL and

decay transient curves for pristine perovskite and on the

germanium layer. The experiments are all performed

under the same situation. The inset of Fig. 5b shows the

PL spectrum with a peak wavelength of 765 nm, which

corresponds to the band-edge emission of the

CH3NH3PbI3 layer. A slightly lower intensity can be

observed for perovskite constructed on germanium. This

observation suggests that the density of the photon-

generated carrier becomes lower in the perovskite layer

constructed on the germanium layer. Based on the curves

fitted by the bi-exponential decay function, the carrier

lifetime is obtained as shown in Table S1. The fast decay

component is associated with trap-assisted recombina-

tion, and the slow decay part is ascribed to radiative

recombination. In terms of the perovskite on germanium,

the obtained decay times are 11.5 and 2.87 ns (fast and

slow lifetimes, respectively), which are obviously shorter

than the values of 19.0 and 6.1 ns for the pristine per-

ovskite on glass. The PL decay curves suggest that the

photogenerated carriers have a marginally faster recom-

bination rate in the perovskite layer of the heterojunction

device than that in pristine film. This observation indi-

cates that a number of photogenerated carriers will be

delocalized from the perovskite absorption layer. The

lower charge carrier lifetime also explains the faster

response speed of the heterojunction device. There are

two potential reasons for this lower PL intensity and

shorter charge carrier lifetime. The first one is that a

number of charge carriers are localized by trap states at

the interface. The second is that part of the charge carriers
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will be transported from the perovskite to the germanium

layer due to the existence of a large band offset. Benefit-

ting from electron transportation from perovskite to

germanium, an enhanced photoconductive gain has also

been estimated. The gain is defined as1,2 G= Iph/IPI= τ/tp
= τξ(μn+ μp)/L, where IPI is the primary photocurrent, τ

is the carrier lifetime, tp is the carrier transit time across

the electrodes, ξ is the applied electric field, L is the

channel width, and μn and μp are the electron and hole

mobility, respectively. Under Vis light excitation, some of

the photogenerated electrons are transferred from the

perovskite layer to the germanium layer. Compared with

perovskite, the ultra-high electron mobility (≈3800 cm2

V−1 s−1) and long carrier lifetime (≈ 200 μs) in the ger-

manium layer result in an enhanced gain of ~104 in our

heterojunction photodetector. This is approximately two

orders higher than that in the pristine perovskite photo-

detector. This result indicates a photoconductive gain

boost obtained in the heterojunction device. It proves the

superior photocurrent (Fig. 5c) and device performance

that have been achieved in the Vis light region even with a

thinner perovskite layer.

Discussion
To compare the performance of our work and those

reported, the main parameters of the heterostructure

broadband photodetectors are summarized in Table 1.

Notably, the achieved device in this work shows sig-

nificant performance promotion compared with pre-

viously reported works on the Vis and IR spectra. As

discussed above, the reasons and mechanisms behind

device performance enhancement are attributed to the

perovskite/germanium heterostructure.

In this study, we design and construct a heterostructure

photodetector successfully by combining inorganic semi-

conductor germanium with hybrid inorganic-organic

perovskite CH3NH3PbI3. A vapor-solution process pro-

vides a uniform and pinhole-free perovskite film on a

germanium layer. The constructed heterojunction pho-

todetector shows broader bandwidth and enhanced per-

formance compared with those of the single-material-

based device. The detection properties of the hetero-

junction photodetector are characterized at a Vis light

wavelength of 680 nm and an optical communication

band of 1550 nm. Under Vis light illumination, the free

electrons photogenerated in the perovskite are partly

transferred to the germanium, resulting in a photo-

conductive gain boost. The device shows outstanding

responsivity and detectivity of 228 A/W and 1.6 × 1010

Jones at a wavelength of 680 nm, respectively. When the

perovskite AR coating thickness is optimized, the het-

erojunction device possesses the highest responsivity of

1.4 A/W at an optical fiber communication band of

1550 nm. The germanium/perovskite heterostructure has

a broadband detection range from the ultraviolet to the

Vis and then to the IR spectrum. Its high performance

shows great potential application in wide-spectrum pho-

todetection, ultraviolet-Vis or optical communication,

tandem solar cells, and next-generation optoelectronic

devices.

Materials and methods
Fabrication procedure

The Si coated with SiO2 substrates is cleaned by the

traditional method. First, a 300 nm Ge is deposited by

means of epitaxy onto the cleaned Si substrate using a

solid-source MBE system, which is covered by a 350 nm-

thick SiO2 film deposited by using a plasma enhanced

chemical vapor deposition (PECVD) system. This wafer is

directly bonded to a handle Si substrate using the ben-

zocyclobutene (BCB) wafer bonding technique, followed

by thermal treatment at 260 °C under vacuum for 6~8 h.

Then, the initial Si substrate on the Ge film is completely

removed by the inductively coupled plasma (ICP) dry

etching and tetramethylammonium hydroxide (TMAH)

wet etching techniques. Then, gold interdigital electrodes

with an electrode width (W) and inter-electrode space

length (L) of 2 and 0.05 mm, respectively, are formed by

thermal evaporation. The active area of the heterojunction

photodetector is 0.6 mm2. A highly crystalline and com-

pact perovskite CH3NH3PbI3 thin film is constructed by a

two-step method on the germanium layer. A high-purity

and homogeneous PbI2 film was first prepared by using a

thermally physical vapor phase growth at a pressure of

10−4 Pa. The deposition rate and film thickness are

monitored by a quartz crystal oscillator. The samples are

kept at room temperature during the deposition process.

An isopropanol solution of CH3NH3I (10 mg/ml) is then

spin-coated onto the high-quality PbI2 films at 3000 rpm

for 30 s. Immediately, the samples are moved to a hot

plate for annealing at 100 °C for 30min in an ambient

environment. The PbI2 and CH3NH3I powders are pur-

chased from Xi'an Polymer Light Technology Corporation

and used without further purification.

Material and device characterizations

The morphology is characterized by a scanning electron

microscope (SEM, Hitachi S-4800, Japan). The perfor-

mance measurements are all performed in a clean room at

a constant room temperature of 23 °C. The current-

voltage characteristics are determined on a probe station,

and the data are recorded by a semiconductor parameter

analyser (Keithley 4200) in the atmosphere. A xenon lamp

(PL-SPS1000, Perfect Light Co. Ltd., China) with a

monochromatic light source is used as the Vis light

source. Two semiconductor lasers (980 and 1550 nm) are

used at the IR light source. The incident light power is

calibrated before the measurements by a standard silicon
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photodetector (PM100D, Thorlabs, Germany). The PL

spectrum is characterized by confocal microscopy (LEICA

DM 2700M) and recorded by a spectrometer equipped

with a CCD and a TCSPC detector (ANDORSR-500i-B1-

R). The time-resolved PL spectrum measurements are

performed by the TCSPC, in which a picosecond diode

laser (λ= 405 nm, ≈80 ps, 20MHz) is used as the excita-

tion source and the overall time resolution is ~250 ps. All

measurements are performed at room temperature.
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