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Abstract

c-CBL (CBL) encodes a member of the Cbl family of proteins, which functions as an E3 ubiquitin 

ligase. We describe a dominant developmental disorder resulting from germline missense CBL 

mutations, which is characterized by constitutional anomalies that include impaired growth, 

developmental delay, cryptorchidism, and a predisposition to juvenile myelomonocytic leukemia 

(JMML). Some individuals experienced spontaneous regression of their JMML but developed 

vasculitis later in life. Importantly, JMML specimens from affected children show loss of the 

normal CBL allele through acquired isodisomy. Consistent with these genetic data, the common 

p.Y371H mutant Cbl protein induces cytokine-independent growth and constitutive 

phosphorylation of ERK, AKT, and S6 only in hematopoietic cells in which normal Cbl 

expression is reduced by RNA interference. We conclude that germline CBL mutations have 

developmental, tumorigenic, and functional consequences that are reminiscent of disorders that are 

caused by hyperactive Ras/Raf/MEK/ERK signaling and include neurofibromatosis type 1, and 

Noonan, Costello, cardiofaciocutaneous, and Legius syndromes.

Myeloproliferative neoplasms (MPNs) are clonal malignancies characterized by 

overproduction of immature and mature myeloid lineage cells. In particular, juvenile 

myelomonocytic leukemia (JMML) is an aggressive MPN of childhood characterized by 

malignant transformation in the stem cell compartment with clonal proliferation of progeny 

that variably retain the capacity to differentiate (reviewed in 1). Hematopoietic stem cell 

transplantation (HSCT) is the only curative therapy for JMML; however, relapse rates 

approach 30% 2. While spontaneous remissions occur in some infants 3,4, the underlying 

mechanism for this is unknown.

Extensive molecular data implicate germline and somatic mutations that deregulate Ras 

signaling as key initiating events in JMML, with studies showing that 60% of patients 

harbor an oncogenic mutation in PTPN11, NRAS, or KRAS while another 15% have 

neurofibromatosis type 1 (NF1) and demonstrate loss of the normal NF1 allele in leukemic 

cells 5-9. Patients with the myeloproliferative subtype of chronic myelomonocytic leukemia 

(CMML), a similar MPN of adulthood, frequently acquire NRAS, KRAS, and JAK2 

mutations 10,11. Genetically accurate mouse models recapitulate these diseases, supporting 

the hypothesis that hyperactive Ras is necessary and sufficient to cause MPN 12-15. A 

hallmark feature of JMML and CMML is the formation of abnormally high numbers of 

granulocyte-macrophage colony-forming units (CFU-GM) in methylcellulose cultures 

containing low concentrations of GM-CSF 16,17. Phosphorylation of the βc chain of the GM-

CSF receptor creates docking sites for adapters and signal relay molecules, resulting in 

activation of the Ras pathway.
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Recently, we and others used high density single nucleotide polymorphism arrays to analyze 

blood and bone marrow specimens from patients with MPN 18-21. These studies revealed 

copy-neutral loss of heterozygosity (acquired isodisomy) of a region on chromosome 11q in 

some cases, and subsequent studies demonstrated homozygous mutations in CBL. 

Approximately 10-15% of children with de novo JMML are estimated to harbor 

homozygous CBL mutations20,22. CBL mutations are acquired somatically in adults with 

MPN 18,19,21.

Children with NF1 and Noonan syndrome (NS) are predisposed to JMML 8,9,23-25, and we 

therefore considered the possibility that germline CBL mutations occur in some affected 

children. A review of the medical records of the 21 children with JMML found to have CBL 

mutations enrolled in the EWOG-MDS studies or treated at USCF (16 of 21 were previously 

included in a screen of a larger international cohort20) uncovered an unexpectedly high 

percentage with developmental delay and other congenital anomalies, which included 

cryptorchidism, and impaired growth (Tables 1 and 2). All children met diagnostic criteria 

for JMML26,27 but six patients with a follow-up of more than seven years did not undergo 

transplantation for various reasons. Of these, one died of progressive JMML (D088), but the 

MPN improved spontaneously in five others. All of these patients continued to display 

variable degrees of splenomegaly in the presence of normal blood counts and exhibited the 

persistence of a homozygous CBL mutation in CD4, CD8, CD14, and CD19 sorted cells 

from their peripheral blood at last follow-up. In addition, four of these patients have 

developed clinical signs consistent with vascular pathology, including optic atrophy, 

hypertension, and an acquired cardiomyopathy; one was diagnosed with Takayasu arteritis, 

type III by angiography (Figure 1a). Another patient (D256) developed an intracranial 

germinoma harboring the same homozygous CBL mutation as in his bone marrow. Of note, 

among the patients treated with HSCT, there was a high rate of conversion to stable mixed 

chimerism (8/11 patients with available data) (Table 1).

We analyzed normal tissues from 17 of these children and detected a heterozygous CBL 

mutation in each. Mutational analysis of parental DNA was informative in 13 families and 

confirmed autosomal inheritance of a CBL mutation in seven (Figure 1b, 1c, Table 2, and 

Figure S1). Patients UPN1333 and UPN1125 were from large pedigrees in which several 

individuals had died of JMML (Figure 1b and c).

The proband in family 1 (UPN1333, V:1) (Figure 1a) was referred after transplantation for 

JMML. Initially diagnosed at 7 months of age, he received his first HSCT at age 13 months 

and then developed mixed chimerism 6 months later. A blood sample displayed a 

homozygous CBL mutation at c.1111T>C (Y371H). Importantly, analysis of buccal swab 

DNA revealed a heterozygous lesion. Both maternal relatives died from progressive JMML. 

Peripheral blood or buccal swabs from extended family members revealed multiple 

heterozygous individuals (Figure 1b). Interestingly, detailed medical history from the 

affected maternal great-grandmother revealed a history of infant leukemia characterized by a 

high white blood cell count and splenomegaly that resolved spontaneously. Sorted B (CD19) 

and T (CD3) cells, and granulocytes from her peripheral blood currently display a 

heterozygous c.1111T> C. Leukemia cells from UPN1333 displayed a classic pattern of 

GM-CSF hypersensitivity (Figure 1d) and increased phosphorylation of STAT5 in response 
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to low doses of GM-CSF 28. Peripheral blood mononuclear cells from his heterozygous 

mother did not display either of these features, suggesting that homozygosity for the mutant 

CBL allele is essential for these cellular behaviors (data not shown).

The proband in family 2 (UPN1125, IV:3) was a girl diagnosed at 15 months of age with 

JMML. She also harbored a homozygous c.1111T>C CBL mutation in her bone marrow. 

Family history revealed that her mother had two male first cousins who were diagnosed with 

JMML and died before age 10. The first boy had archived frozen liver tissue available from 

autopsy and demonstrated a heterozygous c.1111T>C mutation. Interestingly, he also 

developed clinical signs and laboratory values consistent with small vessel vasculitis prior to 

his death. Her mother of UPN1125 was found to carry a heterozygous CBL mutation (Figure 

1c).

Three patients in our series displayed homozygous splice site mutations (Table 2, I066, 

D647, and D347). RT-PCR demonstrated several new splice products arising from these 

mutations (Figure 2); most notable are the 2 splice site variants that either delete the entirety 

of exon 8 (D347) or exon 9 (I066 and D647) (Figure S2) or retain an interstitial intron (e.g. 

intron 7 for D347). Each of the deletion splice variants encodes a protein that is predicted to 

lack critical regions of the linker and RING finger domains, while the intron 7 retention 

introduces a premature stop codon to abort translation upstream of the RING finger domain.

To investigate the functional properties of the variant mutant Cbl proteins encoded by 

homozygous point mutations, we first studied the effect of the common p.Y371H 

substitution on the growth of primary hematopoietic cells from murine fetal liver. This 

system reproduces the hypersensitivity to GM-CSF that is characteristic of JMML 16,29. 

Fetal liver cells transduced with retroviral vectors expressing wildtype or mutant Cbl 

proteins demonstrated no increased sensitivity to GM-CSF (Figure 3a). Similarly, 

expression of p.Y371H Cbl in a BaF3-EpoR cell line did not confer cytokine independence 

(Figure 3b). Based on the observation that JMML cells invariably lose the normal CBL allele 

and on recently published data21, we reasoned that reduction of normal Cbl expression 

might be mandatory to deregulate hematopoietic growth. Therefore, we introduced a short 

hairpin RNA, which markedly reduced the expression of murine Cbl in BaF3-EpoR cell 

lines (Figure 3c). We next transduced these cells with a series of wildtype and mutant 

human constructs and demonstrated strong expression of exogenous Cbl (Figure 3c). In this 

context, we observed cytokine independent proliferation (Figure 3d) upon expression of 

p.Y371H Cbl and a known murine oncogenic Cbl protein (70Z)30-32. The 70Z oncogenic 

protein deletes out 17 amino acids located from position 366-382 in the linker domain. 

Furthermore, the p.Y371H and 70Z transduced cells demonstrated hypersensitivity to 

increasing concentrations of human EPO (Figure 3e), mimicking the growth factor 

hypersensitivity seen in JMML (Figure 1d). In cells depleted of endogenous Cbl and 

expressing exogenous p.Y371H and 70Z Cbl proteins, we observed constitutive 

phosphorylation of ERK, AKT and S6 in cells deprived of cytokine. We also found 

heightened responses to low dose EPO (Figure 2f).

In order to determine if mutant Cbl proteins retain E3 ligase activity, we assessed their 

ability to promote ubiquitylation of a known Cbl substrate. Soon after activation, the 
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epidermal growth factor receptor (EGFR) undergoes Cbl-dependent polyubiquitylation and 

proteosomal degradation. HA-Cbl(p.Y371H)-expressing HEK293 cells exhibited markedly 

elevated levels of phosphorylated EGFR upon EGF stimulation in comparison to HA-

Cbl(WT)-expressing counterpart (Figure 4a), which indicates a possible defect in clearance 

of pEGFR by Cbl(p.Y371H). Cbl(p.C384R) mutant exhibited a similar defect in pEGFR 

clearance (data not shown). Upon polyubiquitylation of targets, Cbl promotes its own 

polyubiquitylation and subsequent auto-degradation. Consistent with this model, levels of 

Cbl(WT), but not Cbl(p.Y371H or p.C384R), rapidly diminished following EGF treatment 

in the absence of proteasome inhibitor MG132 (Figure 4a, b and data not shown,). However, 

Cbl(WT) levels were markedly stabilized in the presence of MG132 while Cbl(p.Y371H) 

levels remained relatively high irrespective of MG132 (Figure 4b), which suggest that Cbl 

mutants p.Y371H and p.C384R have an inherent defect in E3 function. Consistent with this 

notion, Cbl(WT) promoted robust polyubiquitylation of pEGFR while p.Y371H and 

p.C384R showed diminished capacity to polyubiquitylate pEGFR in an in vitro 

ubiquitylation assay (data not shown), similar to that of Cbl(70Z), which is known to be 

defective in E3 ligase activity, and in concordance with recently published data by Sanada et 

al 21, who demonstrated that p.Y371S and p.Q367P mutants detected in human patients also 

have diminished ubiquitylation activity. The Y371 residue most commonly affected in 

germline CBL mutations has been the focus of extensive biochemical analysis 21. This 

literature supports a key role for Y371 in maintaining the integrity of the alpha-helical 

structure of the linker region, which plays a critical role in substrate specificity. 

Interestingly, Y371 has been found to be phosphorylated despite its predicted location away 

from the protein surface. Substitution of this residue with phenylalanine results in a 

nononcogenic form of the protein, which lacks E3 ligase activity. Conversely substitution 

with a glutamate constitutively activates E3 ligase activity 33,34.

In most ways, CBL appears to function as a classic tumor suppressor gene in this cohort, 

with germline heterozygosity predisposing to neoplasia upon reduction to homozygosity in 

target tissues. However, the predominance of specific missense mutations makes CBL 

distinct from most tumor suppressor genes such as RB and NF1, which typically 

demonstrate more severe loss of function mutations such as deletion or protein truncation. 

This suggests that the mutant Cbl proteins retain an essential biochemical function 20,21. It is 

further supported by our data showing that exclusive expression of a mutant CBL allele has 

positive effects on cytokine signaling and proliferation. The specific disruption of E3 ligase 

activity may leave intact adapter functions, resulting in a relative imbalance of CBL's 

positive and negative roles in signal transduction. Sanada et al hypothesized that this may 

result in inhibitory effects on Cbl-b, a related family member21. This is similar to what has 

been reported for p53, a classic tumor suppressor gene with specific gain of function 

mutations in the context of loss of heterozygosity 35,36. Beyond missense mutations, 

truncated Cbl proteins are also known to confer transforming effects by countering the 

negative action of full-length Cbl on RTK signaling. The Drosophila analogue of the 

mammalian v-Cbl oncogene (i.e. Dv-Cbl), for example, functions as oncogenic dominant-

negative variant whose expression results in vivo in enhanced signaling of the EGFR 

cascade and cooperates with activating mutations in the Ras pathway to ultimately produce 

melanotic tumors 37.
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In addition, clinical data reveals that some patients may experience spontaneous resolution 

of JMML but go on to develop clinical features consistent with vasculitis and other 

autoimmune phenomena later in life. Interestingly, autoimmunity has also characterized 

genetically engineered mouse strains with Cbl mutations. Lck-Cre+ c-Cblflox/flox Cbl-b−/− 

mice, which delete c-Cbl in T cells, develop severe vascular lesions with massive infiltration 

of T-cells and high concentrations of anti-double stranded DNA antibodies 38. Furthermore, 

these T cells are hypersensitive to T cell receptor signaling and display prolonged ERK 

phosphorylation. Similarly, Cd19-Cre+ c-Cblflox/flox Cbl-b−/− mice that delete c-Cbl in B 

cells develop a lupus-like syndrome associated with perivascular infiltration and 

hyperactivation of B cell receptor signaling 39. In mice, loss of Cbl-b is required for these 

phenotypes. Oncogenic c-Cbl proteins thus may inhibit Cbl-b in vivo, resulting in a 

functional loss of both Cbl and Cbl-b, which in turn contributes to dysregulated lymphocyte 

signaling and subsequent vasculitis. Indeed, the redundant role of c-Cbl and Cbl-b was 

further explored by Sanada, et al, who demonstrated the inhibitory effects of c-Cbl p.Y371S 

on wildtype Cbl-b 21. It is of clinical interest that patients with JMML and homozygous CBL 

mutations who undergo HSCT are not known to develop vasculitis later in life, implying that 

a normal immune system is critical to preventing this late manifestation.

We describe a new syndrome in which affected children display several congenital 

anomalies that overlap with NF1, NS, and Legius, suggesting that the affected proteins 

converge on the Ras/MAPK pathway. Indeed, several Ras/MAPK pathway proteins regulate 

developmental programs in multiple species - for instance, the Drosophila homologs of each 

of these genes--CBL (D-cbl), PTPN11 (csw), NF1, and SPRED perform critical functions for 

growth and patterning 40-43.

Patients with germline CBL mutations are at increased risk of developing JMML, which 

may follow an aggressive clinical course or resolve without treatment. Some affected 

individuals develop vasculitis later in life. The CBL mutations found in JMML can arise de 

novo or can be transmitted through the germline, and human leukemia samples invariably 

show loss of the normal CBL allele. Consistent with this tumor suppressor function, JMML-

associated Cbl proteins confer cytokine hypersensitivity in transduced BaF3-EpoR cells in 

the absence of wildtype Cbl, have defective E3 ligase activity, and constitutively activate 

key Ras effector pathways. The role of aberrant Cbl signaling in vasculitis remains to be 

determined, and it will be particularly interesting to investigate if patients with germline 

CBL mutations who have been cured of JMML after HSCT remain at risk of developing 

vasculitis. It is also of great interest that some of these patients continue to display 

homozygous CBL mutations in their peripheral blood despite having improved their blood 

counts. Finally, our data provide strong evidence that Cbl is a key negative regulator of Ras 

signaling networks in hematopoietic cells and it will be important to identify key targets of 

the Cbl ubiquitin ligase and to uncover other biochemical mechanisms involved in growth 

control.
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METHODS

Subjects

Patients were diagnosed and treated either in Europe under the auspices of the European 

Working Group of Myelodysplastic Syndromes in Childhood (EWOG-MDS) or enrolled as 

research subjects at the University of California, San Francisco. The Committees on Human 

Research at each of the institutions in EWOG-MDS, as well as UCSF approved these 

studies. Informed consent was obtained from parents or guardians, and in the case of 

pedigree analysis, all screened relatives. Family and clinical histories were reviewed, as 

were physical exams at diagnosis.

Mutation Screening

Bone marrow or peripheral blood samples at diagnosis were obtained. Mononuclear cells 

were isolated using standard Histopaque 1111. Buccal swabs, fibroblasts, or tissues 

unaffected by tumor were also obtained when available. Genomic DNA was extracted using 

PureGene reagents (Qiagen, Foster City, CA). Patients were screened for mutations in CBL, 

NRAS, KRAS, and PTPN11 as previously described6,7,20.

RNA was prepared according to usual methods. cDNA was generated using the 

SuperScript® III First-Strand Synthesis System for RT-PCR (Invitrogen). Splice variants 

were identified through PCR using an annealing temperature of 58 °C and the following 

primers: 5’-TTGAGGGAACACATACTCGCT-3’ and 5’-

TATGTTACTGCTGATGGGAACA-3’. Splice variants were gel extracted using the 

QIAquick Gel Extraction Kit (Qiagen). The resulting fragments were subcloned using the 

TOPO® TA Cloning Kit (Invitrogen) according to the manufacturer's instructions. Positive 

colonies were picked, mini prepped using the QIAprep Spin Miniprep Kit (Qiagen), and 

sequenced with standard M13 Forward (-20) and M13 Reverse primers.

Cbl and shRNA expression constructs

For the CFU-GM experiments, Gateway technology (Invitrogen) was used to clone WT and 

mutant Cbl cDNAs into the murine stem cell virus (MSCV) backbone containing a green 

fluorescent protein (GFP) cassette driven by an internal ribosome entry site (IRES) 

downstream of the Cbl sequence (pMIG). The human WT and 70Z Cbl plasmids were a 

kind gift from Hamid Band 44. For the subsequent experiments using Ba/F3 cells, the same 

Cbl cDNAs were cloned into an MSCV-IRES-Venus (pMIV) backbone to allow for co-

transduction with the GFP-tagged shRNA. MiR30 based shRNA sequences targeting murine 

Cbl were graciously designed by Johannes Zuber and Scott Lowe. We selected one of these 

putative sequences (cbl.2364) and custom ordered a single 110-bp oligonucleotide (Bioneer) 

to serve as a template for PCR amplification. PCR products were digested with XhoI and 

EcoRI and ligated into the LTR-driven MiR30 SV40-GFP (LMS) MSCV-based vector (also 

graciously provided by the Lowe lab) to produce the LMS-2364 retrovirus encoding the Cbl 

shRNA. The sequence for cbl.2364 is 

TCGAGAAGGTATATTGCTGTTGACAGTGAGCGATACCTATGAAGCGATGTAT 

AATAGTGAAGCCACAGATGTATTATACATCGCTTCATAGGTACTGCCTACTG 

CCTCGG.
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Hematopoietic progenitor assays

All experimental procedures involving mice were reviewed and approved by the UCSF 

Committee on Animal Research. These assays were performed as described previously 

using murine fetal liver cells transduced with MSCV-Cbl-IRES-GFP retroviruses engineered 

to express WT or mutant Cbl proteins. For the human CFU-GM assays, mononuclear cells 

from peripheral blood or bone marrow were plated in MethoCult H4230 (StemCell 

Technologies), supplemented with recombinant human GM-CSF (Peprotech) and counted 

14 days later as described previously 28. For the CFU-GM assays, GFP-positive cells were 

sorted using a FACS Aria (BD Biosciences) and then seeded in methylcellulose medium 

(M3231; StemCell Technologies) 45, supplemented with recombinant murine GM-CSF 

(Peprotech). Colonies were counted by indirect microscopy after 8 days.

Cell Viability and Proliferation assays and Western blots

Murine pro-B Ba/F3 cells were transduced with MSCV-EpoR-IRES-puro as described 

previously 46. These cells were maintained in RPMI-1640 with 10% FCS (HyClone), 

penicillin, streptomycin, L-glutamine, 10 ng/ml puromycin (Calbiochem), and 10 µg/ml 

murine IL-3 (Peprotech).

The Ba/F3-EpoR cells were transduced with the LMS-2364 construct or the LMS vector 

alone. GFP-positive cells were sorted on a FACS Aria (BD Biosciences) and then 

transduced with the MSCV-Cbl-IRES-Venus retroviruses expressing WT or mutant Cbl 

proteins. Cells positive for both GFP and YFP expression were sorted on the FACS Aria and 

studied in proliferation and Western blot assays.

For the proliferation assays, cells were washed 3x and then cultured for 6 hours in cytokine-

free media before being plated in 6-well plates at a density of 500,000 cells/ml at increasing 

doses of hEPO (R&D Systems). Growth was monitored every other day using a ViCell cell 

counter (Beckman Coulter).

For Western blot analysis, cells were washed 3x and cultured for 6 hours in cytokine-free 

media before being stimulated for 15 minutes with increasing doses of hEPO (R&D 

Systems). Whole-cell lysates were blotted and probed with the following antibodies: anti-

phospho-p44/42 mitogen-activated protein kinase/extracellular signal-regulated kinase 1/2 

(ERK1/2) (Thr202/Tyr204, cat. 9101), anti-phospho-AKT (S473, cat. 4060), anti-phospho-

S6 (Ser235/236, cat. 2211) (all from Cell Signaling Technology); anti-phospho-STAT5 (cat. 

44-390G) (Invitrogen) and anti-alpha-tubulin (Abnova). ERK1/2 (cat. 9102), AKT (cat. 

9272), S6 (2217), and STAT5 (9363) antibodies were from Cell Signaling Technology.

HEKCells

HEK293 cells were obtained from the American Type Culture Collection (Rockville, MD) 

and maintained in Dulbecco's modified Eagle's medium supplemented with 10% heat-

inactivated fetal bovine serum (FBS) (Wisent, St. Bruno, QC, Canada) at 37°C in a 

humidified 5% CO2 atmosphere.
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Antibodies

Mouse monoclonal antibodies against HA (12CA5) and α-tubulin were obtained from 

Boehringer Ingelheim (Laval, QC, Canada) and Sigma (Milwaukee, WI), respectively. 

Rabbit polyclonal antibodies against pEGFR, EGFR and ubiquitin were obtained from 

Upstate (Temecula, CA), Santa Cruz Biotechnology (Santa Cruz, CA) and DAKO Canada 

(Mississauga, ON, Canada), respectively. EGF ligand was obtained from Sigma 

(Milwaukee, WI). MG132 proteasome inhibitor was obtained from Boston Biochem 

(Cambridge, MA).

Plasmids

Plasmids encoding HA-CBL(WT, 70Z, Y371H, C384R) were subcloned into the pcDNA-

DEST4.0 vector via Gateway Cloning technology (Invitrogen, Carlsbad, CA) and confirmed 

by DNA sequencing. Plasmid encoding EGFR was generated as previously described 47.

Immunoblotting and immunoprecipitation

Immunoprecipitation and immunoblotting were performed as described previously 48. Cells 

were lysed in EBC buffer (50mM Tris pH 8.0, 120mM NaCl and 0.5% NP-40) 

supplemented with protease and phosphatase inhibitors (Roche, Laval, QC, Canada). Cell 

lysates were immunoprecipitated with indicated antibodies in the presence of Protein-A 

agarose beads (Repligen, Waltham, MA). Bound proteins were washed five times with 

NETN buffer (20mM Tris pH 8.0, 120mM NaCl, 1mM EDTA, and 0.5% NP-40), eluted by 

boiling in sodium dodecyl sulfate (SDS)-containing sample buffer, and resolved by SDS-

polyacrylamide gel electrophoresis (PAGE).

In vitro ubiquitylation assay

In vitro ubiquitylation assay was performed as described previously 49.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Germline mutations in CBL can be inherited in an autosomal dominant fashion and 
are associated with a phenotype, GM-CSF hypersensitivity and vasculitis

Panel (a) demonstrates the angiograms from the aorta and left subclavian artery from patient 

D048 nine months after the diagnosis of Takayasu arteritis type III. Panel (b) The family 

tree of UPN1333 is shown in panel a, where the diseased bone marrow of UPN1333 

displayed a homozygous CBL c.1111T>C (red) mutation as well as a heterozygous lesion 

from his buccal swab (black). Only women appear to be heterozygote carriers, and only 

boys appear to be affected by JMML in this family. Panel (c) The bone marrow of UPN1125 

demonstrated a homozygous CBL mutation—her mother (III:5) is a known carrier, and she 

had two male cousins dying from JMML (III:6, III:7). Panel (d) demonstrates a classic GM-

CSF hypersensitivity response on a colony assay for patients with CBL mutations (n=3) 

versus normal (n=13). Error bars represent standard error of the mean (s.e.m.) Panel (e) 

shows one toddler (D703) diagnosed with JMML and a homozygous mutation at p.C384R. 

She displays frontal bossing, downslanting palpebral fissues, hypertelorism, and a low nasal 

bridge. Photographs of her father, who harbors a heterozygous mutation at p.C384R, are 

included in Figures S1, panel d. Of note, both father and daughter also display bilateral 

ptosis.
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Figure 2. Consequences of splice site mutations in cDNA from individuals D347, 647, and I066

Panel (a) RT-PCR using an exon 6 forward primer and an exon 10 reverse primer on cDNA 

generated from these patients. The wildtype amplicon is 616 base pairs long. Lane 1: MW 

ladder, Lane 2: I066, Lane 3: D347, Lane 4: D647, Lane 5: CBL point mutant, Lane 6: 

HM2833 CBL wildtype, Lane 7: Genomic DNA control, Lane 8: no template control. Panel 

(b) is a schematic representation of the splice site variants detected either recurrently (D347) 

or that were shared by I066 and D647. Sequences are shown in Figure S2. Deletions of base 

pairs are indicated by Δ# of base pairs and insertions by ins # base pairs. Premature stop 

codons are indicated by asterisks (*).
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Figure 3. p.Y371H does not confer cytokine sensitivity or cytokine independent growth until 
silencing of murine Cbl

Panel (a) Transduction of p.Y371H or the known murine oncogeneic mutant 70Z in 

wildtype hematopoietic cells from fetal liver, did not confer hypersensitivity to GM-CSF, 

nor did expression of these mutants in BaF3-EpoR cells result in cytokine independent 

growth (b). Panel (c) An shRNA to murine Cbl (cbl.2364) demonstrated near complete 

shutdown of expression in BaF3-EpoR cells by Western blot with re-expression upon 

introduction of the human WT, 70Z, or p.Y371H in these same cell lines. Panel (d) Both the 

p.Y371H and 70Z Cbl conferred cytokine independent growth in the presence of cbl.2364. 
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Controls included the Venus vector pMIV and BaF3-EpoR. Error bars for triplicate 

replicates (s.e.m.) are shown and when not visible, indicate tight clustering. Using a paired t-

test: day 7 comparing 2364+ WT-Cbl versus 2364+p.Y371H, p-value= 0.017, and at day 9: 

p-value <0.001. Panel (e) Serial transduction of the hairpin (2364) and p.Y371H or 70Z 

constructs also conferred hypersensitive growth after assessing cell proliferation on day 5 in 

increasing concentrations of Epo. Using a paired t-test at each concentration of Epo when 

comparing 2364+WT-Cbl versus 2364+p.Y371H: Epo 0 unit/ml: p = 0.036, Epo 0.01 

units/ml: p= 0.0015, Epo 0.1 units/ml: p= 0.029, Epo 1 unit/ml (saturating dose) P= 0.697. 

Panel (f) Both the p.Y371H and 70Z containing cells demonstrated activation of pERK, 

pAKT, and pS6 in the absence of Epo or in low dose 0.01 unit/mL of Epo in comparison to 

negative controls. All cell proliferation work was done in triplicate.
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Figure 4. Cbl mutant proteins exhibit prolonged protein turnover and are associated with 
increased phosphorylated EGFR levels upon EGF stimulation

Panel (a) HEK293 cells transfected with plasmids encoding EGFR in combination with HA-

Cbl(WT) or HA Cbl(p.Y371H) were serum starved for 18 h followed by 15 min EGF (50 

ng/ml) stimulation. Cells were then washed and maintained in serum-free media for the 

indicated periods of time. Equal amounts of whole cell extracts were resolved on SDS-

PAGE and immunoblotted with the indicated antibodies. Panel (b) HEK293 cells transfected 

with plasmids encoding EGFR in combination with HA-Cbl(WT) or HA-Cbl(p.Y371H) 

were serum starved for 18 h followed by 15 min EGF (50 ng/ml) stimulation. Cells were 

then washed and maintained in serum-free media with (+) or without (-) MG132 for the 

indicated periods of time. Equal amounts of whole cell extracts were resolved on SDS-

PAGE and immunoblotted with the indicated antibodies.
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