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Germline variant burden in cancer genes correlates
with age at diagnosis and somatic mutation burden
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Jeffrey P. Townsend 2,4, Mark Gerstein2,5,6,7, Christos Hatzis1,10, Yuval Kluger 2,8,9 & Lajos Pusztai 1✉

Cancers harbor many somatic mutations and germline variants, we hypothesized that the

combined effect of germline variants that alter the structure, expression, or function of

protein-coding regions of cancer-biology related genes (gHFI) determines which and how

many somatic mutations (sM) must occur for malignant transformation. We show that gHFI

and sM affect overlapping genes and the average number of gHFI in cancer hallmark genes is

higher in patients who develop cancer at a younger age (r=−0.77, P= 0.0051), while the

average number of sM increases in increasing age groups (r= 0.92, P= 0.000073). A

strong negative correlation exists between average gHFI and average sM burden in increasing

age groups (r=−0.70, P= 0.017). In early-onset cancers, the larger gHFI burden in cancer

genes suggests a greater contribution of germline alterations to the transformation process

while late-onset cancers are more driven by somatic mutations.
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Approximately 40% of the population living in the USA will
develop cancer during their lifetime1,2. The transforma-
tion of a normal cell to a cancer cell requires many

genomic and epigenetic alterations in key cellular metabolic and
regulatory processes that are collectively referred to as the hall-
marks of cancer3. Family history and increasing age are the two
most consistent risk factors for cancer, suggesting that both
inherited and acquired events contribute to cancer
development4,5. The higher incidence of cancer in older indivi-
duals is attributed to accumulation of acquired somatic mutations
(sMs) and epigenetic changes during lifetime, that can be accel-
erated by environmental factors in various tissues6. Large-scale
cancer genome sequencing projects have confirmed that most
cancers harbor a few highly recurrent sMs in classical oncogenes
and tumor suppressor genes (e.g. p53, PIK3CA) along with many
more individually rare sMs in unique combinations7. All indivi-
duals also carry hundreds of common and rare (at population
level) high-functional impact germline variants that contribute to
our susceptibilities for disease and account for heritability of
cancer8. A small minority of cancers are associated with known
pathogenic germline variants in high-penetrance cancer-predis-
posing genes (e.g. BRCA, p53), but most cancers, including early-
onset cancers, develop in the absence of high-penetrance germline
mutations9. Genome-wide association (GWAS) studies, based on
the statistical premise that the same loci are altered more fre-
quently in at least a subset of cases with cancer compared to
individuals without cancer, have identified many low-penetrance
germline variants that are associated with slightly increased risk
of cancer development10,11. Currently, about 1,300 cancer risk
single-nucleotide polymorphisms (SNPs) have been identified by
GWAS studies. However, even when these variants are combined
into polygenic risk scores, they only explain a small fraction of
heritability of cancer12.

A limitation of variant-level GWAS analyses is that variants
that are not statistically associated with cancer risk could still
contribute to cancer development and mediate heritability
through phenotypic convergence at biological process level13. In
phenotypic convergence, distinct genomic alterations in different
members of a biological pathway could lead to the same—or
similar—phenotypic effect. Germline variants that are not asso-
ciated with cancer risk could also shape the somatic mutagenesis
processes14 and function as co-oncogenes through interactions
with sMs10,15. We hypothesize that in all cancers the alterations
in biological processes that are required for malignant transfor-
mation occur through the combined effects of acquired sMs and
common and rare high-functional impact germline polymorph-
isms (gHFI) in cancer-relevant genes. The gHFI were defined as
germline variants that were predicted to alter the structure,
expression, or function of protein-coding genes. In this model,
germline alterations that contribute to malignant transformation
are not necessarily recurrent in the population level to reach
statistical significance in association studies and are not suffi-
ciently penetrant to increase cancer risk alone. Instead, such
germline abnormalities would increase cancer risk only in the
presence of other germline alterations and specific acquired sMs
that disable compensatory pathways or activate complementary
oncogenic processes. This high level of context-dependent effect
implies that the totality of sMs in cancer hallmark genes collec-
tively constitutes driver events in cancer, and the outcome of
these sMs is conditional on the constellation of germline high-
functional-impact (gHFI) variants in cancer-relevant genes. Based
on this hypothesis, we predict that (i) causative germline and
somatic variants affect similar sets of genes (those in cancer
hallmark pathways) and provide complementary hits; (ii) on
average, patients who develop cancer at a younger age will have a
higher gHFI variant burden and hence require fewer acquired

sMs for malignant transformation than those who develop cancer at
older age; and (iii) conversely, sMs play a relatively greater con-
tribution to carcinogenesis in older patients. To test these predic-
tions, we calculate the gHFI variant burden in protein-coding
regions of hallmarks of cancer genes in three separate data sets—
The Cancer Genome Atlas (TCGA), the Pancancer Analysis of
Whole Genomes (PCAWG), and the UK Biobank (UKBB)—and
correlate these variant burdens with age at cancer diagnosis. We also
examine the gene-level overlap in gHFI and sM, and using TCGA
data, assess the correlation between these two different sources of
functional variants as a function of age at cancer diagnosis.

Results
Germline variants and sMs in the TCGA. The high-functional-
impact sMs were defined as acquired sMs including missense, non-
sense, frameshifting, or splice-site altering single-nucleotide chan-
ges or indels. In the TCGA, we restricted our analysis to 7468
cancers in patients with European ancestry (to minimize ancestry-
related confounders in the germline) corresponding to 31 cancer
types. (Supplementary Table 1). Cancers on average harbored 136
gHFI variants (range 79–239) and 216 high-functional impact sM
in protein-coding genes (range from 1 mutation in some testicular
germ-cell tumors, low-grade gliomas, mesotheliomas, thyroid
carcinomas (THCAs), and urothelial bladder carcinomas to 31,087
mutations in a cutaneous melanoma, Fig. 1a). Germline and
somatic events tended to affect non-overlapping loci (Fig. 1b). Not
all protein-coding genes, when altered, play an equally important
role on malignant transformation. Several dozens of oncogenes and
tumor suppressor genes have been extensively studied for their
biological function, but a much broader range of genes also con-
tribute to cancer biology16. The exact number of human genes that
enable malignant transformation is unknown and different genes
may contribute to a different extent to transformation in different
cell types. In this analysis, we use a manually curated list of 1558
cancer hallmark genes assigned to 21 pathways (Supplementary
Data 1) and assembled by NanoString Technologies (Seattle, WA).
Among these cancer hallmark genes, 1544 genes were affected by
sMs, and 1257 were affected in the germline of at least one case
across all cancers (Fig. 1c). Figure 1c also illustrates that the
majority of cancer hallmark genes (n= 1253) can be affected at
either germline or somatic level. Cancers on average harbored 13
gHFI variants (range 4–29) and 23 high-functional-impact sM
(range 0–3593) in cancer hallmark genes. It is important to note
that only 0.38% of gHFI variants in the cancer hallmark genes that
we detected have previously been linked to cancer risk in the
ClinVar database.

Age at cancer diagnosis and germline variant burden. We
hypothesize that patients who develop cancer at younger age will
carry a greater load of gHFI in cancer hallmark genes, rendering
cell lineages more vulnerable to cancer. Therefore, in these
individuals fewer acquired sMs are required to trigger malignant
transformation. Since there is no uniform age threshold to define
early-onset versus late-onset cancers, and the proposed biological
phenomenon operates along the continuum of age, we binned
TCGA patients into non-overlapping age intervals in increments
of 5 years with special two additional groups for the very young
(i.e. ≤30) and old (≥81 years). The number of patients in the
different age interval groups are not equal, due to increasing
cancer incidence with age (Supplementary Fig. 1a). We created
the age interval bins to minimize the impact of uneven sample
sizes of the various age groups when assessing the age versus
variant burden relationship. Cancer types are also not evenly
represented across the different age groups: low-grade glioma,
thymoma, testicular germ-cell tumors, and pheochromocytoma
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are more common in age groups less than 45. Mean age for these
cancers was 44 years. In contrast, urothelial bladder carcinoma,
lung cancer, and uterine corpus endometrial carcinoma were
more common in the age groups older than 65. Mean age for
these cancers was 66 years (Supplementary Fig. 1b).

We first tested the association between average log2-trans-
formed gHFI burden (expressed as number of variants
per sequenced megabase) in all protein-coding genes (n=
19,581) across the age groups. We found no significant
correlation between age and gHFI variant burden for all genes
(Fig. 2a, Pearson's r=−0.21, P= 0.54). Next, we repeated the
analysis focusing only on cancer hallmark genes (n= 1558), and
observed a significant negative correlation (Fig. 2c, r=−0.77,
P= 0.0051) with decreasing gHFI burden as age at diagnosis
increased. This higher gHFI burden in younger patients could be
driven by the higher incidence of known high-penetrance cancer-
predisposition genes in this population. To examine this
possibility, we removed all known clinically validated germline
cancer predisposition genes from our gene list (Supplementary
Data 2). Germline cancer predisposition genes were taken from
the National Comprehensive Cancer Network (NCCN) high-risk
cancer germline screening guidelines. We repeated the analysis
with 1508 genes that remained after removing the known cancer-
risk genes. The gHFI variant burden remained significantly and
negatively correlated with age of diagnosis (Supplementary
Fig. 3a, r=−0.77, P= 0.0058), indicating that the association is
not driven by known cancer-predisposition genes.

When we examined the relationship between age groups and
average sM burden, we observed a significant positive correlation
between increasing age and higher sM burden for all human genes
(Fig. 2b, r= 0.91, P= 0.000091) and for cancer hallmark genes
(Fig. 2d, r= 0.92, P= 0.000073). As expected, the gHFI and sM
burdens showed a strong negative correlation across age groups (r=
−0.70, P= 0.017; Fig. 2e). We estimated the impact of age on this
negative correlation in a linear regression model (sM~ gHFI+Age).
The sM burden showed a significant positive correlation with age
(Beta=−0.018, P= 0.0030) but the gHFI variant burden did not
(Beta= 0.46, P= 0.91). This indicates that the strong negative
correlation between gHFI and sM across age groups is primarily
driven by the age associated increase in sM burden.

To confirm the negative association between gHFI variant
burden and age at cancer diagnosis, we examined two
independent data sets where germline whole-exome sequence
data was available. In the PCAWG (n= 1487 cancers), we also
observed statistically significant negative correlation between
average gHFI variant burden and age at diagnosis as seen in the

TCGA (Fig. 3a, r=−0.61, P= 0.047). In the UKBB data (n=
7198 cancers), we found a negative correlation between gHFI and
age, but the trend did not reach the threshold for statistical
significance (Fig. 3b, r=−0.55, P= 0.16).

Because the underlying principle applies across cancer types and
the combined data provides greater power to detect associations,
we performed these analyses on data combining all cancers
together. However, in the TCGA data, we could also examine the
correlation between average gHFI and sM burdens across age
groups within each of the 23 cancer types that included at least 100
cases of European ancestry separately. The sample sizes for the
cancer cohorts ranged from 109 to 745, and the sample sizes of the
age subgroups were substantially smaller, leading to variable and
low power to detect statistically significant correlations by cancer
type. In most cancer types we observed a negative trend between
gHFI burden and age except in glioblastoma, urothelial bladder
carcinoma, and stomach adenocarcinoma. The negative association
reached nominal statistical significance (unadjusted for multiple
comparisons) in ovarian cancer, thyroid carcinoma, and papillary
renal cell carcinoma (Supplementary Fig. 4). In pheochromocy-
toma, ovarian, liver, glioblastoma, and thymoma, we also observed
a significant negative correlation between gHFI and sM burdens
across age groups. Unexpectedly in uterine cancer, lung squamous
cell cancers, and pancreatic cancer, we observed the opposite
relationship increasing gHFI and increasing sM burden in older
patients (Supplementary Fig. 5). Whether this difference in
relationship indicates distinct oncogenic processes in these tissues,
or represents statistical anomalies due to modest sample sizes, will
need to be investigated.

We also examined the correlations between age and gHFI and
sM burdens as continuous variables across all patients in the
TCGA cohort. We again observed a weak negative but highly
significant correlation between age and gHFI burden (r=−0.031,
P= 0.0070). The positive correlation between age and sM burden
stronger and also statistically highly significant (r= 0.24, P <
2.45 × 10−95, Supplementary Fig. 6). These findings suggest that
there are powerful confounders that weaken the association
between age at cancer diagnosis and deleterious germline variant
burden or sM burden that particularly affect cancers that develop
in ages between 50 and 70. To further assess interaction between
age, sM, and gHFI as continuous variables at individual patient
level we performed linear regression analysis to adjust for the
effect of uneven cancer types distribution in each age interval.
After adjusting for cancer type, the age of diagnosis remained
significantly correlated with gHFI (Beta=−0.00023, P= 0.032)
and sM (Beta= 0.0025, P= 6.79 × 10−12) burdens.
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Cancer pathways are affected by germline and somatic events.
Next, we examined the average fraction of altered genes affected
by either gHFI or by sM in each of the 21 cancer hallmark
pathways in the TCGA (Fig. 4a). All pathways were affected by
both types of events although the contribution of gHFI versus sM

was highly variable across pathways (Fig. 4b). Germline variants
were the dominant source of effect on innate immunity,
epithelial–mesenchymal transition, and extracellular matrix
pathways whereas sMs were the dominant contributor to altera-
tions in cancer driver genes, cell cycle and apoptosis, WNT and
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TGFbeta pathways. Figure 4c shows the correlation between
average germline variant burden and average sM burden for the
21 pathways across all cancer types.

We further evaluated the average fraction of gHFI and sM in
the 21 cancer hallmark pathways at cancer-type level including
the 23 cancer types with at least 100 cases. The contribution of
gHFI variant and sM to the total number of pathway alterations
varied by cancer type. sMs were the dominant source of
alterations in cutaneous melanoma, lung squamous cell carci-
noma, uterine corpus endometrial carcinoma, urothelial bladder
carcinoma, and colon adenocarcinoma. Notably, most of these
cancers are strongly associated with environmental carcinogen
exposure. In contrast, gHFI variants showed stronger contribu-
tion to testicular germ-cell tumor, pheochromocytoma and
paraganglioma, thyroid carcinoma, and prostate cancer (Supple-
mentary Fig. 7).

Discussions
Cancer biology tends to focus on genes with frequent sMs that
have a large impact on cell proliferation and cell viability. Many

of these genes were discovered three or four decades ago as
transforming oncogenes and tumor suppressor genes17. In con-
temporary literature, alterations in these genes are often described
as cancer-driver events and the large number of other, seemingly
random sMs in a tumor are considered passenger mutations with
little importance for cancer biology18. However, many passenger
mutations are predicted to alter protein function and affect genes
that could be important in bringing about the malignant phe-
notype19. All sMs accumulate against the background of the
unique combination of germline variants in protein-coding genes,
and in non-coding regulatory sequences that each individual
harbors10,14. Mounting evidence suggests that this genomic (and
epigenomic) context influences the biological impact of sMs in
classical oncogenes and tumor suppressor genes10,11. The cell-
line-restricted effect of transforming oncogenes was recognized
since their discovery. Transgenic mouse models also demonstrate
mouse strain-specific effects. A growing list of common germline
variants in cancer-relevant genes have been experimentally
demonstrated to impact protein function without having a
detectable association with cancer risk15. For example, the M326I
variant (rs3730089, variant allele frequency [VAF] 22%) in the
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Fig. 4 Contribution of germline variants and somatic mutations to alterations in cancer pathways. a Violin plots show the average fraction and
distribution of member genes affected by either germline variants or somatic mutations in 21 pathways. Red lines indicate the average fraction of affected
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p85α regulatory subunit of phosphatidylinositol 3-kinase (PI3K)
results in constitutively increased activity of the PI3K pathway20.
These data support the hypothesis that the combined effect of
sMs and many germline variants, including common and rare
variants that are not associated with increased cancer risk, lead to
malignant transformation.

Our analysis has demonstrated that genes mediating the
important biological processes in cancer are affected by both
germline variants and sMs and both types of alterations are
present in large numbers in each cancer. This dual appearance
suggests a functional complementarity that is consistent with a
growing number of functional studies in the laboratory that
demonstrate functional interaction between germline and somatic
events. For example, the common human germline variant
rs56391007 (T1010I, VAF 1%) in the hepatocyte growth factor
receptor (cMET) increases colony formation, cell migration, and
invasion when introduced into MCF-10A immortalized breast
epithelial cell line that already harbors heterozygous deletion of
the CDKN2A locus and amplification of MYC along with other
somatic alterations in BRAF, EGFR, PIK3CA, ERBB2, and ALK
genes21. Another example is germline deletion of PALB2 in
transgenic mice that leads to mammary tumor formation with a
long latency—however, co-deletion of TP53 accelerates tumor
formation dramatically, providing support for synergistic inter-
actions between a germline deletion and a frequently observed sM
in a mouse model system22. Correspondingly, we have shown in
three independent data sets that patients who develop cancer at
younger age have on average a greater load of high-functional-
impact germline variants in cancer hallmark genes than do
individuals who develop cancer at an older age. This differential
mutational load is consistent with the hypothesis that some
individuals reach a critical level of alterations in cancer hallmark
genes that are required for carcinogenesis with fewer sMs because
they carry more deleterious germline variants. Indeed, we
observed a statistically significant inverse relationship between
gHFI variant burden and sM burden in cancer hallmark genes
across age groups in the TCGA. However, at the level of indivi-
dual cancer types, and at patient level, substantial heterogeneity of
the results was observed. In most cancer types, when examined
separately, the negative trend between gHFI variants and sM
across age intervals was weak; it met our threshold for statistical
significance only in five cancer types. The power of cancer-type-
specific analyses is limited by sample size, but the weak correla-
tions also suggest that many other factors can also influence at
what age cancer develops in an individual.

Environmental exposure to carcinogens and mutations in DNA
repair genes can alter the rate of accumulation of sMs and distort a
simple age-related negative relationship between gHFI variant and
sM burden. Single-nucleotide changes and indels do not fully cap-
ture the extensive genomic changes in cancers that include deletions
and amplifications of otherwise structurally intact genes as well as
epigenetic changes that each can influence gene expression levels.
Cancer cell proliferation rate can influence the duration of the latent
phase of cancer before it becomes clinically detectable, some cancers,
particularly those that develop from premalignant lesions, likely have
been growing and accumulating alterations for many years, maybe
even decades, before diagnosis. For sMs, we observed an increase in
mutation number and mutation burden with increasing age in both
all human genes and the subset that are cancer hallmark genes. This
is consistent with reports that demonstrated accumulation of
mutations in normal tissues during aging23.

Testicular germ-cell tumors (TGCT), thyroid carcinoma
(THCA), and low-grade glioma (LGG) were unique in the TCGA
data because these cancers dominated the youngest age groups
(253 cases had one of these 3 cancers out of 545 patients under
age 40). The early onset of these cancers is well known and family

and twin studies showed high heritability although no shared
high risk germline alterations were identified that could explain it.
For example, heritability of TGCTs is between 37% and 49%
which is higher than breast (31%) or ovarian cancers (39%)24,25,
but known GWAS TGCT-associated germline risk variants only
explain about 9% of TGCT heritability25. Similarly, about 20–25%
of THCAs are familial26 and the heritability of gliomas is about
25%25. There are no know recurrent, high-penetrance germline
variants associated with these cancers9. Our results suggest that
the combined effects of deleterious germline variants in cancer
biology-related genes may account for at least some of the
heritability.

This study cannot answer what, and how many genes must be
affected by sMs or deleterious germline variants before malignant
transformation is complete, or how germline variants and somatic
events complement each other at the level of relevant pathways.
Gene memberships in pathways are fluid concepts, depending on
the organizing principles and selection criteria adopted by
investigators. We also assumed that our list of 1558 genes
encompasses most genes that are important for cancer biology,
and in our calculations we assigned equal importance to each of
these in the different cancer types. These assumptions are likely
simplifications, different genes may have variable importance in
different cancer types and the number of genes that could
influence cancer biology is likely larger than 1558. However,
despite these limitations, in three data sets, each including
thousands of different solid tumors we found that patients who
develop cancer at a younger age carry on average a greater
number of deleterious germline variants in a manually curated list
of 1558 cancer related genes than patients who develop cancer at
an older age. We note that very few (~0.38%) of these germline
protein-coding variants have been linked to cancer risk. In the
TCGA, where both germline and sM data were available, we also
observed a significant negative correlation between deleterious
germline variant burden and average sM burden in the same 1558
cancer-related genes across the increasing age groups. Overall,
these results suggest that in early-onset cancers, the larger
number of germline variants in cancer genes implies a greater
contribution of germline alterations to the transformation pro-
cess; in contrast, late-onset cancers are more dependent on
acquired sMs.

Methods
Study subjects. Germline variants of 10,389 patients included in the TCGA
corresponding to 33 cancer types generated by Huang et al. were downloaded from
the Genomic Data Commons (GDC, https://gdc.cancer.gov/about-data/
publications/PanCanAtlas-Germline-AWG) of the National Cancer Institute (NCI)
9,27. The sMs were obtained from the TCGA PanCancer Altlas MC3 set28. We
restricted our analysis to patients of European ancestry, the largest ancestry cohort,
to maximize statistical power while accounting for potential population stratifi-
cation effects. We only kept individuals with data on both germline and sMs. In
addition, we restricted our analysis to solid tumor. We also excluded pediatric
patients with a cancer diagnosis before age 18. Our final analysis included 7468
cancer patients and 31 cancer types. We included variants of autosomal exome
region that met the quality control metrics set by Huang et al.9, variants with at
least five counts of the alternative allele and alternative allele frequency of at least
30%. The included samples and patient characteristics are summarized in Sup-
plementary Table 1.

Germline variants of 1823 PCAWG patients were downloaded from the ICGC
Data Portal (https://dcc.icgc.org/)14. We excluded 131 samples without age of
diagnosis information and an additional 205 patients with cancer diagnosis before
age 18. The final analysis set included 1483 cases; none of these patients were
included in the TCGA.

Germline variants derived by exome sequencing of 49,960 individuals were
obtained from UK Biobank (UKBB) including 8,959,608 variants29. The germline
data generated according to the Functionally Equivalent analysis pipeline30 and
filtered with inbreeding coefficient <−0.03 or without at least one variant genotype
of DP ≥ 10, GQ ≥ 20 and, if heterozygous, AB ≥ 0.20. Our analysis only focuses on
the 8,758,489 autosome variants (http://biobank.ctsu.ox.ac.uk/showcase/label.cgi?
id=170). In addition, based on the genetic ethnic information provided by UKBB,
only 41,212 (82.4%) samples with European ancestry were included in this study.
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We further selected the variants in the exome region of 19,396 genes and discarded
variants with a missing rate larger than 20% across all the individuals. The final
variant set included 3,965,725 high-quality variants. We identified individuals with
cancer (n= 7205, age range 11–76 years) as described by Cristopher et al.29, data
available at UKBB. We further excluded pediatric patients with diagnosis before
age 18, leaving 7198 cases in our final analysis. This work was conducted under UK
Biobank application 29900.

The sequencing protocols and variant calling pipelines are different between
TCGA, PCAWG, and UKBB. The average exome-sequencing depth of TCGA
normal sample is approximately 100×. The PCAWG data in our analysis are
derived from whole-genome sequencing with the mean read depth equal to 39× in
normal samples. The depth of UKBB exome-sequencing data exceeds 20× at 94.6%
of exome capture sites on average. TCGA and PCAWG pancancer consortium used
the same pipeline for germline variants calling9, but UKBB used a different
Functionally Equivalent (FE) pipeline.

High-functional impact variants. The functional impact of missense germline
variants was predicted using MetaSVM ensemble algorithm28 and annotation by
ClinVar database when available31. We considered a missense variant high-
functional impact if classified as Deleterious by MetaSVM or listed as Pathogenic/
Likely-Pathogenic in ClinVar. Variants annotated as Tolerance by MetaSVM or
Benign in ClinVar were excluded. We used MetaSVM scores from the dbNSFP
database which includes pre-calculated function impact scores for 75,931,005
human non-synonymous single-nucleotide variants32. Loss-of-function (LoF)
variants, including frameshift indels, stop gain, and stop loss variants, were also
considered high-functional impact as well as variants annotated as high-confidence
LoF in gnomAD33 or Pathogenic/Likely-Pathogenic in ClinVar. Variants annotated
as Benign in ClinVar were excluded. The variant burden in a particular sample was
calculated as the total number of variants in the regions of selected genes divided by
total length of the selected genes in megabeses.

Statistical analyses. The TCGA and PCAWG samples were separated into eleven
age groups based on patient age at diagnosis (≤30, 31–40, 41–45, 46–50, 51–55, 56–60,
61–65, 66–70, 71–75, 76–80, ≥81). In the UKBB, very few individuals had cancer
between ages 18–30 years or after age 70; therefore, in this data set we created only
eight age groups (≤40, 41–45, 46–50, 51–55, 56–60, 61–65, 66–70, ≥71). We calculated
the average variant burden of gHFI and sM for each group along with the standard
error of the mean. The Pearson correlation coefficient was used to assess the rela-
tionship between gHFI and sM burden across increasing age groups. Spearman’s Rho
test was employed to calculate statistical significance and P ≤ 0.05 was considered
significant. All analyses were performed in R (http://www.R-project.org/).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The TCGA germline variants are available at https://gdc.cancer.gov/about-data/
publications/PanCanAtlas-Germline-AWG. The TCGA somatic mutations are available
at https://gdc.cancer.gov/about-data/publications/mc3-2017. The germline PCAWG data
set is available at https://icgc.org/daco. Access to the germline UKBB data can be
requested at https://www.ukbiobank.ac.uk/. Data supporting the findings of this study are
available in the Article, Supplementary Information, or from the authors upon
reasonable request.
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