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Abstract  

Variants in ETV6, which encodes a transcription repressor of the E26 transformation-specific family, 

have recently been reported to be responsible for inherited thrombocytopenia and hematologic 

malignancy. We sequenced the DNA from cases with unexplained dominant thrombocytopenia and 

identified six likely pathogenic variants in ETV6, of which five are novel. We observed low repressive 

activity of all tested ETV6 variants and variants located in the E26 transformation-specific binding 

domain (encoding p.A377T, p.Y401N) led to reduced binding to co-repressors. We also observed 

large expansion of CFU-MKs derived from variant carriers and reduced proplatelet formation with 
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abnormal cytoskeletal organization. The defect in proplatelet formation was also observed in control 

CD34
+
 cell-derived megakaryocytes transduced with lentiviral particles encoding mutant ETV6. 

Reduced expression levels of key regulators of the actin cytoskeleton Cdc42 and RhoA were 

measured. Moreover, changes in the actin structures are typically accompanied by a rounder platelet 

shape with a highly heterogeneous size, decreased platelet arachidonic response, spreading and 

retarded clot retraction in ETV6 deficient platelets. Elevated numbers of circulating CD34
+
 cells were 

found in p.P214L and p.Y401N carriers, and two patients from different families suffered from 

refractory anemia with excess blasts while one patient from a third family was successfully treated for 

acute myeloid leukemia. Overall, our study provides novel insights into the role of ETV6 as a driver of 

cytoskeletal regulatory gene expression during platelet production and the impact of variants resulting 

in platelets with altered size, shape and function and potentially also in changes in circulating 

progenitor levels. 
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Introduction 

The genetic determinants of non-syndromic autosomal dominant (AD) thrombocytopenia with normal 

platelet size remains largely unknown, yet it is important to identify such variants because they may 

predispose carriers to hematological malignancy. Germline variants in RUNX1 cause a familial platelet 

disorder with increased risk of acute leukemia (FPD/AML) while variants in the 5′ untranslated region 

(UTR) of ANKRD26 have also been shown to predispose individuals to hematologic malignancies. 

Recently, germline variants in ETV6 (TEL) have been reported to underlie AD thrombocytopenia with 

predisposition to leukemia.
1-3

 ETV6, which was initially identified as encoding a tumor suppressor in 

humans, is often found fused with partner genes in samples from human leukemia of myeloid and 

lymphoid origin.
4
 Somatic ETV6 variants have also been found in solid tumors, T-cell leukemias and 

myelodysplastic syndromes, hence the widespread interest in this gene.
5,6 

ETV6 encodes an E26 

transformation-specific (Ets) family transcription repressor. It can bind DNA via a highly conserved Ets 

DNA-binding consensus site located at the C-terminus. The N-terminal domain (pointed domain) is 

necessary for homotypic dimerization and interaction with the Ets family protein FLI.
7,8

 The central 

region is involved in repression complex recruitment (including SMRT, mSin3A and N-CoR)
9
 and 

autoinhibitory activity.
10

 

 

ETV6 plays an important role in hematopoiesis. In mice, ETV6 is essential for hematopoietic transition 

from the fetal liver to the bone marrow (BM).
11

 Conditional disruption of the ETV6 gene has shown that 

ETV6 plays a unique, non-redundant role in megakaryocytopoiesis. Data concerning ETV6 

involvement in megakaryocytopoiesis in humans remains scarce, however, a recent study has shown 

that patients expressing a mutated form of ETV6 displayed abnormal megakaryocyte (MK) 

development with a likely impact on platelet production.
1 

  

We have assessed the biological impact of six likely pathogenic variants in ETV6, of which five are 

novel. We describe in detail how variants in ETV6 lead to increased MK proliferation and various 

cytoskeleton-related platelet defects that include altered platelet shape, reduced Rho-GTPase 

expression in platelets, decreased proplatelet formation and reduced platelet spreading. Additionally, 

we show that patients exhibit elevated levels of circulating CD34
+
 progenitors and predisposition to 

myelodysplastic syndrome and leukemia. 
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Methods  

 

Platelets and circulating CD34
+
-cells analysis 

Blood samples were collected after informed written consent, in accordance with our local Institutional 

Review Boards and the Declaration of Helsinki. Platelet-rich plasma (PRP), washed platelets and 

circulating CD34
+
-cells were prepared according to standard procedures. For electron microscopy 

(EM), platelets were fixed in glutaraldehyde and processed as previously described
12

. For platelet 

spreading, fibronectin-adherent platelets were stained with Alexa 488-phalloidin (F-actin) and Alexa 

594-DNAse I (G-actin). Filopodia and lamellipodia were manually quantified. For clot retraction, 

coagulation of PRP was triggered using thrombin, and clots were allowed to retract. Images were 

recorded using a CoolSNAP CCD-camera and analyzed to evaluate the reduction of the initial clot 

surface (ImageJ). The platelet survival assay was based on the method of Thakur et al..
13 

 

 

High-throughput and Sanger sequencing  

DNA samples from 957 patients enrolled to the BRIDGE-BPD project were subjected to whole-

genome or whole-exome sequencing and the results were used for variant calling as described 

previously.
14,15

 DNA samples from 8 patients in the French collection were subjected to whole-exome 

sequencing and analyzed using Chromas software or Sanger sequencing at the ETV6 locus and 

analyzed with Multalign.
16

 

 

Site-directed mutagenesis and luciferase assays 

ETV6 cDNA was ligated into a pcDNA3 expression vector, and mutagenesis was performed using the 

GENEART® Site-directed Mutagenesis System kit (Life technologies)
17

. Transcriptional regulatory 

properties of wild-type (wt) and mutant ETV6 (mutETV6), as well as ETV6 co-repressor binding
18

, 

were determined by using the luciferase reporter systems in transfected GripTite™ 293 MSR cells.  

 

Immunoassays  

Immunoblots were performed with antibodies directed against human ETV6, SMRT, RhoA (Santa 

Cruz), Cdc42, Rac1 and GAPDH (Millipore) and MYH10 (Cell Signaling Technology) antibodies. 

Chemiluminescence signals were detected and quantified (CCD camera-based ImageQuant LAS 

4000, GE Healthcare). Levels of thrombopoietin (TPO) and stromal cell-derived factor 1 (SDF1α) were 

quantified via ELISA (Abcam). For the co-immunoprecipitation assays, whole cell extracts were 

prepared in NP-40 buffer and pre-cleared with protein A/G magnetic beads (Millipore). 

Immunoprecipitation of the cell extracts with anti-ETV6-coated beads was carried out overnight. 

 

 

MK differentiation and quantification of proplatelet-bearing MKs 
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CD34
+
-cells were grown in serum-free medium supplemented with TPO and Stem Cell Factor (SCF) 

(Life Technologies)
19

. At culture day 10, we assessed ploidy in the Hoechst
+
CD41

+
CD42a

+
 cell 

population
20

 (Navios, BD Biosciences). Proplatelets were quantified between day 11 and 15. 

Microtubule and F-actin organization was determined in MKs adhering to fibrinogen with fluorescently 

labeled polyclonal rabbit anti-tubulin antibody (Sigma-Aldrich) and phalloidin (Life Technologies).  

 

Lentiviral particle production and CD34
+
 cell transduction 

Lentiviral particles were prepared as previously described.
21,22

 CD34
+
 cells were infected twice. After 8 

hours, the cells were washed and cultured in serum-free medium. 

 

Clonogenic progenitor assays 

CD34
+
-cells were plated in human methylcellulose medium H4434 (STEMCELL Technologies) 

supplemented with EPO, IL-3, SCF, G-CSF, IL6 and TPO to quantify erythroid (BFU-E, CFU-E), 

granulocytic/macrophage (CFU-GM), mixed (CFU-GEMM) and megakaryocyte (CFU-MK) progenitors 

at day 12.
23

 

 

Statistical analyses  

Analyses were performed using GraphPad Prism software. Statistical significance was determined via 

a 2-tailed Mann-Whitney test. P<0.05 was considered statistically significant. 
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Results 

  

Identification of affected families 

Screening of patients with thrombocytopenia for rare non-synonymous variants in ETV6 revealed six 

families with patients carrying one of six possibly pathogenic variants. The variants encode p.P214L, 

which has been previously reported
3
, and the novel substitutions p.I358M, p.A377T, p.R396G, 

p.Y401N and p.Y401H (Figure 1a). Family studies by Sanger sequencing showed segregation 

between the ETV6 variant and thrombocytopenia in all cases for which DNA samples were available 

(Figure 1b). Henceforth, we refer to the likely pathogenic variants described above as mutETV6.  

 

Description of the families 

Our study includes six families with mutETV6 variants. The proband of the first family (F1-IV3) is a 7-

year-old girl who was admitted for emergency care due to suspicion of acute leukemia with asthenia, 

weakness, paleness, severe thrombocytopenia (44 x 10
9
/L) and anemia (hemoglobin: 50 g/L). BM 

examination unequivocally dismissed a diagnosis of leukemia, and the anemia was attributed to an 

iron deficiency subsequent to repeated episodes of severe epistaxis. The patient underwent a red 

blood cell transfusion, and the anemia was progressively corrected via iron supplementation. 

However, the platelet count remained low (50 x 10
9
/L). Clinical examination of the parents and two 

siblings did not reveal any particular bleeding tendency. However, the patient's mother (F1-III3) had 

undergone a splenectomy at the age of 17 because of chronic thrombocytopenia, and she exhibited 

subnormal platelet counts (116-210 x 10
9
/L) at the time of examination. To gain further insight into the 

possibility of inherited thrombocytopenia, we screened the extended family for platelet counts. An AD 

form of thrombocytopenia was evidenced (Figure 1b) with normal Mean Platelet Volume (MPV) 

compared with a large population of blood donors (figure 1c). Of note 14 over 23 carriers exhibit MPV 

>9 fL (Table).  Plasmatic TPO levels were decreased in affected F1 members (n=4): 160 ± 9 pg/mL vs. 

controls (n=8): 296 ± 39 pg/mL, p=0.02). May-Grünwald Giemsa staining of BM smears of patients F1-

IV3 showed that MKs were present, although a high proportion was of medium size in the early stages 

of maturation and tend to be hypolobulated (Figure 1d). The 7-year-old patient’s grandfather (F1-II2) 

was diagnosed with refractory anemia with excess blasts type 2 (RAEB-2) at the age of 70. Individuals 

from the second and third families had platelet counts between 60 and 125 x 10
9
/L (Table). BM from 

F2-II3 displayed a delay in granulocyte maturation and dyserythropoiesis (data not shown). Peripheral 

blood smears revealed platelet anisocytosis (data not shown) as confirmed via electron microscopy 

(Figure 1e), which further highlighted the presence of occasional hypogranular platelets with a poorly 

organized open canalicular system.  Patient F2-I1 presented with RAEB and required BM 

transplantation. The propositus (F4-II1) from pedigree 4 was referred with acute myeloid leukemia 

(AML)-type M0 at the age of 8 years and suffered from epistaxis, ecchymosis and infections. After 2 

years of chemotherapy treatment, the bone marrow showed no blasts and the peripheral blood counts 

normalized except for a persistent low platelet count (Table). Bone marrow studies showed the 
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presence of many hypolobulated small MKs (data not shown). Thrombocytopenia was also present in 

his father and two sisters without any bleeding problems (Table). EM investigation of platelets from 

affected members F4-I2 and F4-II3 showed the presence of both larger and smaller platelets that were 

significantly of round shape rather than of discoid shape (Figures 1e and 1f; p<0.0001). These 

platelets have normal dense and alpha granules numbers but some alpha granules are elongated 

(data not shown). Pedigree 5 was referred for genetic testing of AD thrombocytopenia in a father with 

very mild bleeding problems (propositus F5-I2) and his 2 asymptomatic daughters (Figure 1b). Bone 

marrow investigation in F5-II2 showed the presence of dysmegakaryopoiesis with almost no mature 

MKs (data not shown). A mother (F6-I1) and daughter (propositus F6-II1) from pedigree 6 (Figure 1b) 

were diagnosed with platelet dense storage pool deficiency (SPD) with platelet aggregation defects 

and abnormal dense granules. Thrombocytopenia was only recorded for the daughter who suffered 

from severe menorrhagia and has an increased bleeding tendency with bruising and nosebleeds. The 

mother has a normal platelet count and did not carry the ETV6 variant. No clinical information or DNA 

was available from the father. Therefore, the ETV6 variant in F6-II1 can be present as a de novo or 

somatic variant. SPD in the mother and daughter is likely to be caused by another additional genetic 

factor. Indeed, in contrast to the obvious platelet aggregation and secretion defects for these two 

patients, such abnormalities were not present in the other 5 families except for a decreased 

aggregation response to arachidonic acid as the only consistent finding in every family (supplemental 

table 1). Consistent with normal dense granules found by EM (Figure 1e), ATP secretion and 

mepacrine uptake and release were normal (Supplemental Table 1). Flow cytometry analysis of key 

platelet surface receptors (αIIbβ3, glycoprotein (GP) Ibα, GPIa, GPIV, CD63 and CD62P) was also 

normal (Supplemental Table 2).  

 

A platelet survival assay was performed (patient F3-II4) (Supplemental Table 3) and revealed 

decreased platelet lifespan (4.6 days) without significant splenic or hepatic sequestration. Notably, this 

patient had not undergone platelet transfusion. Patient F1-III3 underwent a 
111

In-oxine platelet survival 

assessment (autologous transfusion) in 1981 prior to splenectomy, which revealed short platelet half-

life (24 h vs. 3.5 days in the control) and hepatic and splenic platelet sequestration, with predominant 

sequestration in the liver (data not shown). Patient F1-III3 was assessed for anti-HLA antibodies on 

several occasions (National Center of Blood Transfusion, Marseille), but all results were negative (data 

not shown).  

 

Variants in ETV6 lead to a functional defect in transcriptional activity 

Western blot analysis showed that ETV6 protein expression was not reduced in platelets from the 

patients, nor in GripTite™ 293 MSR cells transfected with the ETV6 variants (Figures 2a and 2b). To 

investigate the transcriptional regulatory properties of mutETV6 compared with wtETV6, we analyzed 

repressive activity. Co-transfection of the reporter plasmid along with expression of a plasmid 

encoding wtETV6 resulted in almost 90% inhibition of luciferase activity. Substitution of wtETV6 with 



9 

 

any of the mutETV6 variants led to a significant reduction in repressive activity (85% to 100%) (Figure 

2c).  

To evaluate whether this reduction in repressive activity may result from variations in nuclear co-

repressor complex recruitment, we investigated the interaction of ETV6 with N-CoR, SMRT and Sin3A 

using a mammalian 2-hybrid assay. p.P214L ETV6 interacted with N-CoR, SMRT and mSin3A, 

whereas p.A377T and p.Y401N ETV6 did not (Figure 3d). Immunoprecipitation assays showed that 

the p.A377T and p.Y401N variants reduced ETV6 binding to SMRT and SMRTe (Figure 3e). 

 

Increased numbers of circulating CD34 positive cells in affected family members 

F1 carriers (F1-III3, F1-III7, F1-III8, F1-IV1 and F1-IV3) exhibited a 4- to 6-fold increase in circulating 

CD34
+
/CD38

+
 cells compared with healthy donors (Figures 3a and 3b). Similarly, F3-I2 and F3-II4 

exhibited a 5- and 3-fold increase in circulating CD34+ cells compared with controls (0.16% and 

0.09%, respectively, vs. 0.035%). The expression levels of immature cell markers CD133 and CD117 

did not differ between F1 members and controls. Expression of the myeloid lineage marker CD33 

contrasted with the absence of MK lineage markers CD123, CD41, CD61 and CD42b (data not 

shown). Additionally, plasma levels of SDF-1α did not vary between patients (F1: 1966 ± 95 pg/mL; 

n=8) and controls (2068 ± 75 pg/mL; n=9). 

 

Variants in ETV6 cause MK hyperplasia but reduced proplatelet formation in vitro 

The percentage of CD41
+
CD42a

+
 MKs derived from CD34

+
 (gated on Hoechst

+
 cells) was significantly 

higher in mutETV6 carriers (Figures 4a and 4b). No significant difference in mean ploidy was detected 

between patients and healthy donors (Figure 5c). Accordingly, the number of CD34
+
-derived CFU-

GM/G/M colonies was higher in patients compared with controls (Figure 4d). The number of MK 

progenitors (CFU-MK) from patients F3-I2 and F3-II4 did not differ from controls, although the size of 

CFU-MKs was significantly increased in the two patients (Figures 4e and 4f), thereby suggesting 

increased proliferation of MK precursors in the presence of mutETV6. 

 

Proplatelet (PPT)-bearing MKs derived from controls showed multiple branched thin extensions, 

swellings and tips. In contrast, MKs from patients formed very few PPTs with a reduced number of 

thicker extensions. Although there was no swelling, tips were of increased size (Figure 5a). A two- to 

fifteen-fold decrease in the percentage of PPT-bearing MKs was observed in carriers of the p.P214L 

(F1-III3, F1-III7 and F1-IV3) and p.Y401N (F3-II2 and F3-II4) variants (Figure 5b). β-tubulin and F-

actin staining confirmed the MK-PPT extension defect together with a reduced concentration of both 

actin filaments and microtubules in the residual larger MK cell body (Figure 5c). Additionally, β-tubulin 

failed to accumulate normally in the few extension tips observed in mutETV6 MKs compared with 

controls. 
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To confirm that mutETV6 leads to a defect in PPT formation, CD34
+
 cells from healthy donors were 

transduced with lentivirus containing ETV6 sequences encoding the wt or the p.P214L mutant. Non-

transduced cells were also included as control. After 13 and 15 days of culture in the presence of TPO 

and SCF, cells transduced with mutETV6 lentivirus did not form PPTs, in contrast to non-transduced 

cells or those transduced with wt ETV6 (Figure 5d).  

 

mutETV6 does not alter MYH10 expression but was associated with decreased expression and 

activity of the key regulators of the actin cytoskeleton Cdc42 and RhoA 

To assess potential cooperation between the ETV6, RUNX1 and FLI1 pathways we examined MYH10 

protein expression levels in patient platelets. We did not detect increased MYH10 levels in platelets 

from ETV6 patients (F1-III6 and F1-III8), which contrasted with RUNX1 and FLI1 defects
24

 

(Supplemental Figures 1a and 1b). 

 

PPT formation is dependent on massive reorganization of the actin cytoskeleton. Rho-GTPase family 

members (e.g., Cdc42, Rac1 and RhoA) are key regulators of actin cytoskeleton dynamics in 

platelets
25

 and MKs. p.P214L (n=5) and p.Y401N (n=2) variants led to significantly reduced platelet 

expression levels of Cdc42 and RhoA, without affecting Rac1 expression (Figure 6a). Likewise, Cdc42 

and RhoA mRNA levels were decreased in MKs from F1 and F3, while Rac1 mRNA levels remained 

unaffected (Figure 6b). Notably, patient F3-I2, with 112 x 10
9 

platelets/L, exhibits only slightly 

decreased levels of Cdc42 and RhoA in platelets (Figure 6c) compared with other affected members. 

Cdc42 and RhoA levels significantly correlated with platelet count (n=6 from F1 and F3) (p=0.03 and 

r=0.84 for Cdc42; p=0.008 and r=0.92 for RhoA). To confirm the specificity of this effect, we quantified 

Cdc42 protein levels in FLI1 deficient patients with thrombocytopenia (n=2) (122 and 131 x 10
9
/L). 

None of these patients exhibited reduced levels of Cdc42 (Supplemental Figure 1c). 

 

Overexpression of Cdc42 in CD34
+
-derived MKs from patients (F1-III3, F1-III7, F1-III8) did not fully 

reverse the phenotype, although it did improve the PPT-bearing MK phenotype. Transduced cells 

produced thinner extensions and swellings, which were not observed in control transduced cells 

(Figure 6d). 

 

mutETV6 alters platelet spreading 

Reduced expression of Cdc42 and RhoA suggests that ETV6 is involved in cytoskeletal reorganisation 

that thus not only having an important role in platelet shape (EM showed more round platelets) and 

proplatelet formation but also in regulating platelet spreading. We assessed whether the p.P214L 

transition in ETV6 affects spreading of platelets over immobilized fibronectin and clot retraction. 

Platelets showed reduced capacity to form filopodia and lamellipodia, under unstimulated and ADP-

stimulated conditions, respectively (Figure 7a). The G/F actin ratio was significantly higher in the rare 

patient platelets that spread (Figure 7b). Furthermore, reduced clot retraction velocity was noticeable 
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in the mutant (Figure 7c).  
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Discussion 
 
Here, we present six families with AD thrombocytopenia associated with germline variants in ETV6. 

CD34
+-

derived MKs from mutETV6 carriers showed a reduced ability to form PPTs. The variants in the 

ETS domain impaired interaction with the co-repressors N-COR, SMRT and Sin3B. Patient platelets 

are more round and have a reduced capacity to form filopodia and lamellipodia, which was associated 

with reduced expression levels of cytoskeletal regulators Cdc42 and RhoA. Additionally, mutETV6 

carriers displayed increased numbers of circulating CD34
+
 progenitor cells, which may contribute to 

predisposition to hematologic malignancy. 

 

Loss of ETV6 function has been reported to contribute to leukemia, predominantly due to somatic 

variants and fusion transcripts.
3
 Four amino acid substitutions described in this study are listed in the 

catalog of somatic mutations in cancer (COSMIC). The p.P214L, p.R396G and p.A377T variants were 

present in digestive tract tumors
26

 while p.Y401C has been associated with acute myeloid leukemia.
27

 

More recently, also germline ETV6 variants have been found to predispose to cancer. Eleven patients 

carrying mutETV6 (p.P214L, p.R399C, p.R369Q, p.L349P, p.N385fs or p.W380R) developed acute 

lymphocytic leukemia or myelodysplastic syndrome.
1-3,28

 Two affected members of the families F1 and 

F2 had myelodysplasia with RAEB and one of the F4 family was successfully treated with 

chemotherapy for AML-M0. 

 

Variants reduced the repressive activity of ETV6 without altering ETV6 protein expression levels in 

platelets. Alteration of ETV6 repressive activity can be explained by modification of ETV6 cellular 

localization, as p.P214L and four other variants affecting the ETS domain lead to ETV6 sequestration 

in the cytoplasm in both HeLa transfected cells and cultured MKs.
1-3

 However, three of these variants 

only partially prevented nuclear localization, thereby indicating other possible mechanisms. The 

p.A377T and p.Y401N variants prevented co-repressor complex recruitment. These substitutions are 

located in the ETV6 Ets second and third alpha helix, contiguous to amino acids involved in key 

hydrophobic contacts with the H5 helix of the C-terminal inhibitory domain (aa 426-436)
29

 thus possibly 

affecting ETV6 DNA-binding ability. In immunoprecipitation assays, overexpression of wt or p.P214L 

ETV6 did not modify the interaction between SMRT and ETV6, while p.A377T and p.Y401N ETV6 

significantly reduced this interaction. Overall, this suggests that variants in the Ets DNA-binding 

domain exert a dominant negative effect. 

ETV6 has been shown to drive MK differentiation of hematopoietic stem cells.
30

 From literature and 

supported by bone marrow studies in F4-II1 and F5-II2, ETV6 defects seem to result in an increased 

percentage of small MKs
1
. Our MK colony assays confirmed an increased proliferation of early MK 

progenitors characterized by increased production of CD41
+
CD42a

+
 MKs compared to control 

conditions. This may explain the reduced TPO levels observed in the affected members of family F1. 

Accordingly, loss of ETV6 in the erythro-megakaryocytic lineage in mice also results in large, highly 

proliferative early MKs and mild thrombocytopenia. We cannot exclude that ETV6-driven deregulation 
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of MK proliferation may take place in hematopoietic progenitors, thereby promoting oncogenic 

transformation. Altogether, these data do not support the concept that signaling between the ETV6 

and RUNX1/FLI1/ANKRD26 pathways is involved in the underlying mechanism, as variants in these 

genes were associated with a decreased or normal MK colony formation.
19,31,32

 Furthermore, MYH10 

expression levels remained low in patients with mutETV6, which indicates unaltered RUNX1 and FLI1 

function.
24

 

Despite the increased early MK proliferation potential, CD34
+
-derived MKs from patients with 

mutETV6 showed reduced capacity to form PPTs. These altered MK features suggest that a defect in 

cytoskeletal reorganization during PPT formation likely causes thrombocytopenia in patients. 

Sequencing of platelet RNA from patients with p.P214L ETV6 revealed a considerable reduction in the 

levels of several cytoskeletal transcripts.
1
 Furthermore, Palmi et al

33
 showed that the ETV6-RUNX1 

fusion protein, which is associated with a loss of ETV6 repressive activity
34,35

, alters the expression of 

genes regulating cytoskeletal organization. In particular, the ETV6-RUNX1 fusion protein led to 

reduced expression of Cdc42. The mechanism by which the loss of ETV6 repressive activity results in 

reduced Cdc42 and RhoA expression remains to be resolved. 

 

Cdc42 is an important mediator of platelet and MK cytoskeleton reorganization.
36

 Therefore, we 

hypothesize that ETV6 repressive activity is a key regulator of MK cytoskeleton remodeling driven via 

Rho-GTPases in mutETV6 carriers. mutETV6 was associated with a decrease in Cdc42 and RhoA 

expression levels in platelets without affecting Rac1 expression. Additionally, mutETV6 platelets 

showed defects in functions classically associated with Cdc42 (i.e., filopodia formation) and RhoA (i.e., 

lamellipodia formation and clot retraction).
36

 Electron microscopy also showed platelets of variable 

sizes and having a more round instead of discoid shape. RNA sequencing previously performed on 

mutETV6 transfected cells, patient platelets and leukemia cells did not reveal any modification in Rho-

GTPase mRNA levels
1,3

, which may be due to variations in the models applied. Indeed, Rho-GTPase 

mRNA levels were evaluated in CD34
+
-derived MKs, and the reduced mRNA levels were confirmed at 

the protein level in patient platelets. Moreover, we observed a correlation between platelet count and 

Cdc42 and RhoA expression levels, thereby suggesting a relationship between thrombocytopenia 

severity and Rho-GTPase levels. Key regulators of the actin cytoskeleton Cdc42 and RhoA have 

already been shown to be associated with thrombocytopenia due to defects in cytoskeleton 

organization.
37-41

 In affected individuals, we found abnormal tubulin organization in PPT-forming MKs 

and altered actin polymerization in platelets. Rescue experiments with Cdc42 lentiviral particles were 

not able to fully reverse the phenotype, although the cells produced thinner extensions and swellings, 

which were barely observed in control cells. 

In mice, Cdc42 or RhoA deficiency causes increased platelet clearance.
37,38

 Such an observation was 

noted in two patients: one young girl who never received platelets (F3-II4) and a patient for whom 

splenectomy improved the platelet count (F1-III3). This suggests that ETV6 mutations are linked to 
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several defects with reduced platelet formation and survival, although this latter mechanism requires 

further confirmation.  

Individuals carrying a germline ETV6 variant showed increased numbers of circulating 

CD34
+
/CD133

+
cells. The phenotype of these stem cells did not differ between patients and controls. 

This increase has to be considered as a helpful marker of the ETV6-related thrombocytopenia. It may 

not be attributed to excessive proliferation, as Zhang et al. showed reduced proliferation of CD34
+
 

cells expressing wt or mutETV6.
3
 Interestingly, the defect in Cdc42 expression may also account for 

increased hematopoietic progenitor mobilization, as chemical inhibition of Cdc42 in mice efficiently 

improved progenitor recruitment in the peripheral blood. Altered interaction between mutated 

progenitors and the BM microenvironment, as reported in the case of the ETV6-RUNX1 fusion protein, 

may also be involved.
33

 Further investigations are required to more precisely delineate the role that 

ETV6 plays in stem cell progenitor mobilization. 

 

In conclusion, we identified 6 variants in ETV6, of which 5 are novel, associated with dominant 

thrombocytopenia. Our study provides novel insights into the role that ETV6 plays in platelet function, 

morphology and formation that seem all driven by changes in the cytoskeleton and potentially also in 

circulating CD34
+
 progenitor levels.  
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Table 1: Hematological parameters in the six studied family members 
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Family-

Individuals 

Gender ETV6 

genotype 

Current 

age 

Red cell 

count 

Hyperdense 

Red blood 

cells 

Hemoglobin Mean 

corpuscular 

hemoglobin 

concentration 

Mean 

corpuscular 

volume 

Platelet 

count 

Mean 

platelet 

volume 

Absolute 

neutrophil 

count 

Absolute 

lymphocyte 

count 

Absolute 

monocyte 

count 

Normal 
range 

  

 
4.0-5.0   x 

10
12

/L 

0.0-2.5     
% 

115-160  
g/L 

310-350   
g/L 

80-100     
fL 

150-400 x 
10

9
/L 

7.0-9.0 fL 
2.0-7.5    x 

10
9
/L 

1.5-4.0      
x 10

9
/L 

0.2-2.0    x 
10

9
 /L 

F1-II1 F WT 70 5.0 1.1 155 343 89 242 8.4 2.4 1.2 0.3 

F1-II2 M P214L 69 3.3 4.3 117 350 101 44 7.2 1.3 1.0 0.2 

F1-II4 F P214L 69 4.5 1.1 144 342 94 64 8.0 3.6 0.8 0.3 

F1-III1 M WT 53 4.6 1.5 130 340 84 224 10.2 4.3 1.6 0.3 

F1-III3 F P214L 43 4.0 0.6 125 323 95 116-210 12.4 2.9 1.5 0.5 

F1-III5 M P214L 27 4.3 5.0 140 359 92 55 8.8 3.9 1.0 0.5 

F1-III6 M P214L 18 4.8 6.4 152 353 89 51 8.4 3.1 1.4 0.5 

F1-III7 M P214L 43 4.5 ND 147 ND 94 58 10.6 4.6 0.8 0.6 

F1-III8 M P214L 27 5.0 2.6 169 354 92 38 7.9 2.7 1.8 0.5 

F1-IV1 F P214L 13 4.2 2.0 130 337 91 85 8.7 2.3 1.7 0.2 

F1-IV2 M WT 11 5.0 1.7 138 338 81 184 8.5 2.0 2.1 0.2 

F1-IV3 F P214L 8 4.3 5.7 131 354 83 50 10.2 1.6 1.5 0.2 

F2-II2 F A377T 28 4.9 ND 162 342 97 84 9.0 4.0 2.0 0.4 

F2-II3 M A377T 24 4.8 ND 167 343 102 60 7.9 3.2 1.2 0.5 

F2-III1 M ND 7 4.4 ND 125 330 87 85 7.7 1.6 2.8 0.5 

F2-III2 F A377T 2 4.6 ND 122 325 81 111 8.7 1.0 4.1 0.8 

F3-I1 F ND 54 5.2 1.2 131 347 88 280 9.3 3.2 1.5 0.3 

F3-I2 M Y401N 56 5.0 2.0 160 360 86 125 9.8 4.4 2.3 0.5 

F3-II1 F ND 29 4.8 1.1 130 347 79 285 10.4 7.5 5.0 0.6 

F3-II2 M Y401N 21 4.7 1.3 147 350 88 112 10.0 2.1 1.8 0.3 

F3-II3 F ND 22 4.9 0.5 139 352 80 389 9.6 3.1 1.6 0.4 

F3-II4 F Y401N 16 4.4 1.3 145 350 87 80 9.4 2.5 1.5 0.3 
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*in remission (2 year after chemotherapy) 

ND not done 

Bold values are outside the normal range 

 

F4-I1 F WT 55 3.9 ND 120 348 88 209 9 3.1 4.9 0.2 

F4-I2 M I358M 56 4.6 ND 149 353 91 57 11.7 2.6 1.6 0.5 

F4-II1* M I358M 24 3.0 ND 125 349 92 29 10.7 1.5 2.1 0.5 

F4-II2 F I358M 30 4.3 ND 142 351 95 134 10.5 2.5 1.5 0.7 

F4-II3 F I358M 27 4.1 ND 142 351 98 121 9.8 2.8 1.9 0.7 

F5-I2 M R396G 59 ND ND 140 ND ND 58 10.8 ND 3.5 ND 

F5-II1 F R396G 26 ND ND 133 ND ND 76 11.2 ND 4.0 ND 

F5-II2 F R396G 20 ND ND 109 ND ND 75 9.9 ND 3.9 ND 

F6-I1 F WT ND 4.4 ND 137 ND ND 199 ND ND ND ND 

F6-II1 F Y401H ND 3.9 ND 132 ND 100 77 ND ND ND ND 

F6-II2 F ND ND ND ND ND ND ND 159 ND ND ND ND 
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Figure legends 

 

Figure 1: Identification of variants in ETV6 underlying AD thrombocytopenia, megakaryocyte 

and platelet characteristics 

(a) Schematic representation of the different domains of the ETV6 protein. The N-terminal domain 

(PNT), central domain and C-terminal domain containing a DNA-binding domain (ETS) are depicted. 

Arrows indicate the location of the ETV6 variants and the corresponding family is mentioned into 

brackets. 

(b) Pedigrees for the affected families. Squares denote males, circles denote females and slashes 

represent deceased family members. Black filled symbols represent thrombocytopenic family 

members and dotted line symbols represent non-tested members. The families F1, F2, F3, F4, F5 and 

F6 carried the ETV6 p.P214L, p.A377T, p.Y401N, p.I358M, p.R396G and p.Y401H variants, 

respectively, which segregated with thrombocytopenia. See Table for blood cell count values.  

(c) Sex-stratified histograms of platelet count and mean platelet volume measurements obtained using 

a Coulter haematology analyser from 480,001 UK Biobank volunteers after adjustment for technical 

artefacts. The red arrows superimposed upon the histograms indicate the sex and values for patients 

with a deleterious variant in ETV6. The green arrows indicate the sex and values for relatives 

homozygous for the corresponding wildtype allele. 

(d) BM smears (May-Grünwald Giemsa staining) from family F1 propositus (F1-IV3). Left: a relatively 

immature MK with reduced cytoplasm. Middle: a micromegakaryocyte without granules, with immature 

cytoplasm (basophilic) and nucleus. Signs of impaired proplatelet formation can be observed. Right: a 

mature megakaryocyte of reduced size with a hypolobulated nucleus. Table indicates the % of 

megakaryocytes at each stage of maturation in the BM samples from family F1 proposita (F1-IVI3) and 

a healthy control.  

(e) Ultrastructural aspects of platelets from patients F3-I2 and F3-II4, F4-I2 and F4-II3 and unrelated 

healthy controls. Upper panel: aspect of healthy platelets; middle panel: serie of mostly rounder 

platelets from patients F4-I2 and F4-II3, lower panel: a serie of platelets emphasizing anisocytosis in 

F3-II4 patient and a platelet from patient F3-I2 with abnormal membrane complex (MC). Note the 

heterogeneous presence of α-granules with an occasional granule of increased size. 

(f) The platelet area and roundness was quantified. Perfect round platelets would have a value of 1. 

Values are the means and SD as quantified for 50 randomly selected platelets per subject using two-

tailed unpaired t-test with Welch’s correction. *** p<0.0001. 

 

Figure 2: Effect of the variants on repressive activity and co-repressor recruitment. 

(a) Western blot analysis of ETV6 expression in platelets of 6 affected F1 members and 7 external 

controls. GAPDH was used as a protein loading control. 
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(b-c) GripTite™ 293 MSR cells were co-transfected with the luciferase reporter plasmid containing 3 

tandem copies of the Ets Binding Site (EBS) upstream of HSV-Tk (E743tk80Luc), pCDNA3.1 

expression vector (empty, wt or mutETV6) or pGL473 Renilla luciferase control vector. (b) Western 

blot analysis of ETV6 expression in whole cell lysates of GripTite™ 293 MSR transfected with wtETV6 

or mutETV6 expression vectors. GAPDH was used as a protein loading control. The data are 

representative of 4 to 8 independent experiments. (c) The firefly to renilla luminescence ratios 

(Fluc/Rluc) were calculated to compensate for transfection efficiency. The data represent the mean ± 

SEM of 4 to 8 independent experiments, student’s t-test *** p< 0.001 (each condition was compared 

with wt).  

(d) Effects of the ETV6 variants on co-repressor recruitment. Mammalian two-hybrid analysis of the 

protein interactions between wt N-CoR, SMRT or mSin3A (expressed using the GAL4(DBD) plasmid) 

and wtETV6 or mutETV6 (expressed using the GAL4-VP16 activation domain vector). The results are 

expressed as mean ± SEM of 3 to 8 independent experiments, student’s t-test *p<0.05, **p< 0.01, *** 

p< 0.001. 

(e) Immunoprecipitation of endogenous co-repressor SMRT and ETV6 from GripTite™ 293 MSR cells 

transfected with wt and mutETV6. Immunoprecipitation was performed on cell lysates with ETV6 

antibody. The total cell lysates (lower panel) and immunoprecipitates (upper panel) were analyzed via 

immunoblotting with anti-SMRT antibody. Quantification of band intensity for SMRT and SMRT-

extended (SMRTe) is shown below the western blot. The results are expressed as mean ± SEM, 

student’s t-test, *p<0.05 vs. wt. 

 

Figure 3: Increased numbers of circulating CD34 positive cells in variant carriers. 

Flow cytometry analysis of CD34
+
 cells. (a) Representative CD34

+
/CD38

+
 dot plot of cells from 2 

controls and 1 patient (F1-III7). (b) Histograms show the percentage of CD34
+
 cells in 8 controls and 5 

affected family members (F1-III3, F1-III7, F1-III8, F1-IV1, F1-IV3) (mean ± SEM, student’s t-test, 

**p<0.01). 

 

Figure 4: Megakaryocyte differentiation and colony-forming cell potential. 

(a-c) In vitro MK differentiation in control or patient peripheral blood CD34
+
 cells, the cells were 

analyzed at culture day 10. (a) The data show a representative dot plot of CD41
 
and CD42a

 

expression in Hoechst
+
 cells from a control individual and F1-III6. The gate represents mature MKs. 

(b) The histogram represents the MK (CD41
+
CD42a

+
Hoechst

+
) numbers (nb) in the affected family 

members (n=9) expressed as fold increase over healthy controls (n=10), student’s t-test, **p< 0.01. (c) 

The ploidy level (N) was analyzed for CD41
+
CD42a

+
 MKs, and mean ploidy was calculated using the 

percentage of cells with 2N, 4N, 8N, 16N and 32N. 

(d) Methylcellulose assay. The histograms present the number of erythroid (BFU-E), granulo-

monocyte (CFU-G/M/GM) and mixed (CFU-GEMM) progenitors from two patients of family F3 with the 
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p.Y401N variant (F3-I2 and F3-II4) and two independent controls. Mean ± SEM, student’s t-test, 

*p<0.05.  

(e) Fibrin clot culture. The histograms present the number of MK progenitors (CFU-MK) from two 

independent controls and two patients (F3-I2 and F3-II4). The CFU-MKs are divided in four categories: 

<5 MKs per colony, 5-10 MKs per colony, 10-50 MKs per colony or >50 MKs per colony. Error bars 

represent ± SD of triplicate experiments.  

(f) Representative pictures of CFU-MKs after CD41 immunostaining. Control 1 and Control 2 represent 

2 independent controls, and F3-I2 and F3-II4 are two affected patients. 

 

Figure 5: ETV6 variants lead to defective proplatelet (PPT) formation. 

(a-b) In vitro MK differentiation induced from control or patient peripheral blood CD34
+ 

progenitors in 

the presence of TPO and SCF. (a) Representative microscopic images of PPT formation in control 

(n=2) and patient (F1-III7, F1-III3) MKs after 11 or 13 days of culture. (b) The histograms show the 

percentage of PPT-bearing MKs from members of 2 families (F1-III3, F1-IV3, F1-III7, F3-I2, F3-II4) 

and 5 independent controls evaluated (3 to 5 evaluations) between culture days 10 to 15. The 

percentage of PPT-forming MKs was estimated by counting MKs exhibiting ≥1 cytoplasmic processes 

with areas of constriction. Double-blinded researchers quantified a total of 300-500 cells. The results 

are expressed as mean ± SEM, student’s t-test **p<0.01 and ***p<0.001. (c) F-actin and β-tubulin 

staining on PPT-forming MKs from F1-III3 and a control individual, adhering to fibrinogen. Confocal 

images were acquired at day 12 of culture (x60). (d) In vitro MK differentiation was induced from 

control peripheral blood CD34
+ 

progenitors transduced with wt or mutETV6 (family F1, c.641C>T, 

p.P214L) lentiviral particles in the presence of TPO and SCF. Microscopic images of PPT formation 

were acquired at days 13 and 15 of culture.  

 

Figure 6: Rho-GTPase expression analysis. 

(a) Western blot analysis and quantification of Cdc42, Rac1 and RhoA expression in platelet lysates 

from healthy controls (n=7 for Cdc42, n=4 for Rac1, n=4 for RhoA) and affected members from F1 

(n=6 for Cdc42, n=4 for Rac1 and n=5 for RhoA). GAPDH was used as a protein loading control. The 

results are expressed as mean ± SEM, student’s t-test *p<0.05 and ***p<0.001.  

(b) Quantification of Cdc42, Rac1 and RhoA mRNA levels in CD34
+
-derived MKs from healthy controls 

(n=10) and affected family members from F1 (n=6) and F3 (n=2). mRNA expression levels were 

measured via RT-PCR, and expression levels were normalized to housekeeping 36b4 RNA. The 

results are expressed as mean ± SEM, student’s t-test, **p<0.005. 

(c) Western blot analysis and quantification of Cdc42, RhoA and GAPDH expression in platelets from 

two affected members of the F3 family (F3-I2 and F3-II4) and a healthy control. 

(d) In vitro MK differentiation was induced from F1-III7 CD34
+ 

progenitors transduced with control or 

Cdc42 lentiviral particles in the presence of TPO and SCF. Microscopic images of PPT formation were 
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acquired at days 14 and 16 of culture. The arrows indicate thinner proplatelet extensions and 

swellings in the presence of Cdc42.  Extensions were enlarged in the control. 

 

Figure 7: Platelet spreading and clot retraction.  

(a) Left: Representative images of unstimulated platelets spread over immobilized fibronectin. Middle: 

filopodia formation was quantified according to the number of extensions per unstimulated platelet 

derived from affected individuals (F1-III3, F1-III7) and healthy controls (n=2). Right: Quantification of 

lamellipodia-forming cells, at resting and ADP-stimulated conditions, from affected members (F1-III7, 

F1-III8) and healthy controls (n=2). The data are expressed as mean ± SEM of 5 different view fields. 

Student’s t-test, ***p<0.001.  

(b) Actin polymerization quantification in spread unstimulated platelets. Left: representative images of 

G-actin, F-actin and the G-actin/F-actin ratio in control platelets and the rare spread platelets detected 

in F1-III7. Platelets were spread over fibronectin and stimulated with ADP. Right: quantification of the 

area with the high G-actin/F-actin ratio. Quantification of the ratio was performed according to the 

lookup table as the percentage of the platelet surface (n=20 different cells; mean ± SEM. Student’s t-

test *p<0.05).  

(c) Clot retraction. Left: representative images at 0, 30 and 50 minutes. Right: quantification of the 

extent of clot retraction expressed as percentage the initial clot (mean ± SEM, n=2 for F1-III7 and n=4 

for controls. Two-way ANOVA, ***p<0.001). 

 

















Supplemental methods 
 
Exome sequencing and sequencing validation in the F1 family 

Whole-exome sequencing was performed on genomic DNA, as previously described
1
, from 6 

members of F1: the index case (F1-IV3), 2 unaffected members (F1-II1 and F1-IV2) and 3 affected 

members (F1-II2, F1-III3 and F1-III8). Direct Sanger sequencing confirmed the genotype among all 

family members (Big Dye Terminator kit V3; Life Technologies). Sequences were subsequently 

analyzed (Chromas X software) and aligned (Multalign: http://multalin.toulouse.inra.fr/multalin/).  

 

Antibodies  

Immunoblots were performed using goat polyclonal anti-ETV6 (N19, #sc8546, Santa Cruz), mouse 

monoclonal anti-SMRT (1212, #sc32298, Santa Cruz), rabbit polyclonal anti-RhoA (119, #sc179, 

Santa Cruz), rabbit polyclonal anti-MYH10 (#3404, Cell Signaling Technology), mouse monoclonal 

anti-Cdc42 (#05-542, Millipore), mouse monoclonal anti-Rac1 (23A8, #05-389, Millipore) and mouse 

monoclonal anti-GAPDH (6C5, MAB374, Millipore) antibodies.  

 

Real-Time PCR 

cDNA was synthesized using MMLV-reverse transcriptase from 10 ng of total RNA. Real-time PCR 

were performed using a LightCycler 480 (Roche) and Eva Green MasterMix (Euromedex). Relative 

levels of mRNA were measured using the comparative CT method. Primer sequences are available 

upon request. 

 

Quantification of circulating CD34
+
 hematopoietic progenitors in the blood 

Before labeling, 2 mL of each blood sample was subjected to red blood cell lysis. Equivalent numbers 

of cells were incubated for 15 minutes at 20°C with the appropriate monoclonal antibody cocktails: 

CD133-PhycoErythrin (BD Biosciences), CD19-FITC, CD34-AlloPhyco Cyanin/Alexa Fluor750, CD3-

Pacific Blue, CD45-Krome Orange, CD33-PE/Cyanin7, CD38-AlloPhyco Cyanin, CD41-PE/Cyanin5, 

CD42b-PE/Cyanin5, CD61-FITC and CD123-PE (Beckman Coulter). Progenitors were characterized 

by CD34/CD133/CD33/CD38 co-expression; cells were gated on the CD34
+
 and SS

low
/CD45

low
 

population and excluded co-expression of lymphoid markers (Navios, Beckman Coulter).  

 

Glycoprotein surface expression on platelets  

PRPs were incubated in the presence or absence of platelet agonist ADP (10 µM) or TRAP (50 µM) 

with antibodies against αIIbβ3 (clone P2), the active form of αIIbβ3 (clone PAC-1; BD), glycoprotein (GP) 

Ibα, Ia, IV, CD63 (clone CLB-grad12; Beckman Coulter) and CD62P (clone CLB-Thromb/6) for 30 min 

at 20°C. Scatter signals and fluorescence intensity were analyzed using a FC500 flow cytometer 

(Beckman Coulter). 

 

Platelet survival assay 

The platelet survival assay was based on the method of Thakur et al.
2
. Autologous platelets were 

washed and incubated with 3 MBq of 
111

In-oxine for 10 min at 37° C. The platelets were then washed 



and suspended in autologous platelet-poor plasma. An aliquot was withdrawn for platelet count and 

measurement of labeling efficiency. The remainder of the labeled platelets was used for intravenous 

administration. Successive blood samples were collected at 15 minutes as well as 2, 24, 48, 72, 96, 

120 and 144 hours post-injection for platelet count and radioactivity quantification. An exponential 

model was used to calculate platelet survival time according to the International Committee for 

Standardization in Hematology (ICSH).
3
 The platelet recovery and platelet production rates were 

calculated based on platelet survival time, initial platelet recovery and platelet count. 

 

Platelet spreading analysis 

Non-stimulated or ADP-stimulated (10 µM) washed platelets (10
7
 platelets/ml) were allowed to adhere 

(45 min, 37°C) to fibronectin-coated coverslips (20 µg/ml; Sigma-Aldrich). Fixed platelets were stained 

with Alexa 488-phalloidin (F-actin) and Alexa 594-DNAse I (G-actin). Images were recorded (Axio-

Imager M1 microscope with an Axiocam MRm camera; Carl Zeiss) and analyzed (ImageJ software). 

Filopodia and lamellipodia were manually quantified in five different view fields. The G-actin/F-actin 

ratio was evaluated on 20 different platelets. For each pixel, the G-actin fluorescence intensity was 

divided by the corresponding F-actin signal. A 5-ramps look-up table was applied to the ratio image. 

The surface of high G-actin/F-actin ratio corresponded to the platelet area with a signal above the LUT 

threshold, defined as >3. Measurements were made on unprocessed images obtained using the same 

staining conditions, microscope objective and settings, and camera exposure time.  

 

Clot retraction 

PRPs were diluted in Tyrode’s buffer with red blood cells. Coagulation was triggered using thrombin 

(1.25 U/mL), and clots were allowed to retract (1h, 37°C). Images were recorded using a CoolSNAP 

CCD-camera and analyzed to evaluate the reduction (%) of the initial clot surface (ImageJ software). 

 

Co-immunoprecipitation assay  

Whole cell extracts were prepared in 20 mM Tris, 140 mM NaCl, 1 mM EDTA and 0.05% Nonidet P-

40, with EDTA-free protease cocktail inhibitor. The cell lysates were pre-cleared with protein A/G 

magnetic beads (Millipore) for 2 hours at 4ºC. The immunoprecipitation was carried out overnight at 

4
o
C via incubation of cell extracts (500 µg protein) with anti-ETV6-coated beads. Immunoprecipitates 

were washed five times with lysis buffer, suspended in SDS sample buffer and boiled for 5 min at 95 

ºC. The bound proteins were assessed for SMRT expression (Santa Cruz) via western blotting.  

 

Cell transfection and luciferase assays 

Transcriptional regulatory properties of wtETV6 and mutETV6 were analyzed using 

p(E74)3tk80Luc plasmid containing the luciferase gene driven by an enhancer/promoter cassette 

composed of three tandem copies of the Ets Binding Site (E74-binding sites AACCGGAAGTA, found 

in the Drosophila E74 gene promoter) inserted 5′ of the herpes simplex virus thymidine kinase 

promoter. This plasmid was a gift from J Ghysdael
4
. GripTite™ 293 MSR Cells were transfected with 

the indicated reporter gene constructs (166 ng), the expression plasmid (333 ng) and pGL473-hRLuc 



(50 ng) to normalize transfection efficiency. Luciferase activity was assayed 48 hours after transfection 

(Dual-Luciferase® Reporter Assay system, Promega).  

 

Mammalian two-hybrid experiments. GripTite™ 293 MSR cells were co-transfected with  

GAL4(UAS)5-TkLUC reporter plasmid (166 ng); GAL4(DBD)-N-CoR, GAL4(DBD)-SMRT, or 

GAL4(DBD)-mSin3A expression vector (or an empty vector, pGALO) (166 ng); expression vector 

pVP16-wtETV6 or pVP16-mutETV6 (166 ng) and pGL4-hRLuc (50 ng) to normalize transfection 

efficiency
5
. Luciferase activity was assayed 48 hours after transfection.  

 

Ploidy analysis 

At culture day 10, Hoechst 33342 (10 µg/mL; Sigma-Aldrich) was added to the medium of cultured 

MKs for 1 hour at 37°C. The cells were then stained with directly coupled monoclonal antibodies: anti–

CD41-allophycocyanin and anti-CD42a-phycoerythrin (BD Pharmingen) for 10 minutes at 4°C. Ploidy 

was measured on the CD41
+
CD42

+
 cell population by means of a flow cytometer (Navios BD 

Biosciences) and calculated as previously described.
6
  

 

Quantification of proplatelet-bearing MKs 

PPT-forming MKs were quantified on 300-500 total cells between days 11 and 15 of culture. PPT-

bearing MKs exhibited cytoplasmic extensions with constriction areas (3 separate culture wells for 

each individual and condition). Microtubule and F-actin organization was determined on MKs (12 

days) adhering to fibrinogen with fluorescently labeled anti-tubulin antibody (Sigma-Aldrich) and 

phalloidin (Life Technologies).  

 

Lentiviral particle production and CD34+ cell transduction 

Wild-type (wt) and p.P214L ETV6 DNA were subcloned into a third generation of HIV-derived lentiviral 

vector pRRLsin-PGK-IRES2-eGFP-WPRE (Genethon), and lentiviral stocks were prepared as 

previously described.
7, 8

 CDC42 DNA was subcloned into pRRLsin-PGK-IRES-ZsGreenGFP-WPRE, 

and lentiviral particles were produced by Vect’UB (Plateforme de Vectorologie, Bordeaux, France). 

CD34
+
 cells (3.5 to 5x10

4
) were infected twice with lentiviral particles. After 8 hours, the cells were 

washed and cultured in serum-free medium supplemented with TPO (100 ng/ml) and SCF (250 

ng/ml). 

 
  



Supplemental figure 1   
 

 

 

Supplementary Figure 1: Effect of ETV6 mutations on MYH10 levels. 

Western blot analysis (a) and quantification of MYH10 (b) and Cdc42 (c) expression in platelets of 

affected members (F1-III3, F1-III6, F1-III8, F1-IV3), 2 healthy controls and members of family affected 

by a FLI1 mutation: 2 carriers of the mutation (FLI1-1, FLI1-3) and 1 non-carrier (FLI1-2). GAPDH was 

used as a protein loading control. First lane corresponds to the protein ladder. The results are 

expressed as mean ± SEM, n=2. 



Supplemental Table 1: Summarized results of platelet aggregation, ATP secretion and dense granule defects by electron microscopy or a mepacrine uptake 

assay. Human Phenotype Ontology (HPO) phenotyping was used as described (PMID: 25949529) to present the functional platelet laboratory results. As the 

different laboratories have used different type of aggregometers, concentrations of agonists and dense granule studies, the HPO methodology allows standard 

platelet function phenotyping of laboratory data.  As expected, platelet aggregation performed with platelet rich plasma containing < 120 x 10
3
 platelets/µL 

plasma is highly variable and was not included in the analysis. 

 Impaired ADP-

induced 

platelet 

aggregation 

Impaired 

epinephrine-

induced 

platelet 

aggregation 

Impaired 

collagen-

induced 

platelet 

aggregation 

Impaired 

arachidonic 

acid-induced 

platelet 

aggregation 

Impaired 

ristocetin-

induced 

platelet 

aggregation 

Impaired 

thrombin-

induced 

platelet 

aggregation 

Impaired 

thromboxan A2 

analog-induced 

platelet 

aggregation 

Abnormal 

platelet ATP 

dense granule 

secretion 

Abnormal 

dense granule 

F1-III3 Yes No No Yes Yes ND ND ND No 

F2-II3 No No No Yes No No No No No 

F3-II4 No No No Yes No No Yes No No 

F4-I2 No Yes No Yes No No No No No 

F4-II2 No Yes No Yes ND No No No No 

F4-II3 No Yes No Yes ND No No No No 

F5-I2 No No No Yes No ND No No No 

F5-II1 No No No No No ND ND No No 

F6-I1 (WT) No No No No ND No No Yes Yes 

F6-II1 Yes Yes Yes Yes ND ND No No Yes 

 

ND: not done 

 

 



Supplemental Table 2: Flow Cytometric Analysis of Platelet-Membrane Glycoproteins  
 
 

Baseline αIIbβ3 (P2) 
αIIbβ3 
(Pac1) 

GPIb GPIa GPIV CD63 CD62P 

MFI Normal range 23-40 2.8-6.9 21-40 1.8-6.9 6.0-16 0.3-0.9 1.1-4.3 

F1-II2 29 2.1 23 2.2 5.9 0.2 2.0 

F1-III3 37 3.3 35 3.4 5.4 1.6 1.9 

F1-III5 30 2.9 18 3.0 5.1 0.4 2.2 

F1-IV3 22 2.3 21 2.8 7.0 0.6 2.9 

 
 

ADP (10 µM) αIIbβ3 (P2) 
αIIbβ3 
(Pac1) 

GPIb GPIa GPIV GP53 CD62P 

MFI Normal range 23-45 5.4-16 5-21 2.2-6.7 6.7-19 0.4-1.2 3.2-16 

F1-II2 32 3.1 9.8 ND ND 0.3 3.2 

F1-III3 45 20 16 ND  ND 2.1 8.5 

F1-III5 22 17 4.8 ND  ND 0.6 6.8 

F1-IV3 24 12 8.3 ND  ND 0.7 7.9 

 
 

       

TRAP (50 µM) αIIbβ3 (P2) 
αIIbβ3 
(Pac1) 

GPIb GPIa GPIV GP53 CD62P 

MFI Normal range 29-55 3.5-9 10-27 2.0-6.5 7.2-18 0.5-3.6 5-12 

F1-II2 37 2.4 10 ND ND 0.5 5.1 

F1-III3 47 9.4 18 ND ND 3.4 12 

F1-III5 30 5.5 12 ND ND 1.1 9.7 

F1-IV3 33 3.4 13 ND ND 1.3 8.7 

 
ND: not done 
 
  



Supplemental Table 3: Platelet kinetic parameters for patient F3-II4 
 

 
Parameter value Reference value 

Platelet survival time (days) 4.6 8 - 10 

Platelet recovery (% per day) 15 10 - 15 

Platelet production rate 0.8 N NA 

Platelet sequestration Absence NA 

 
 
The platelet count at the day of analysis was 128 x 10

9
 /L. The injected dose was 2.2 MBq. N: 

reference value of the laboratory. 
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