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Abstract—GEROS-ISS stands for GNSS REflectometry, radio
occultation, and scatterometry onboard the International Space
Station (ISS). It is a scientific experiment, successfully proposed
to the European Space Agency in 2011. The experiment as the
name indicates will be conducted on the ISS. The main focus of
GEROS-ISS is the dedicated use of signals from the currently avail-
able Global Navigation Satellite Systems (GNSS) in L-band for re-
mote sensing of the Earth with a focus to study climate change.
Prime mission objectives are the determination of the altimetric
sea surface height of the oceans and of the ocean surface mean
square slope, which is related to sea roughness and wind speed.
These geophysical parameters are derived using reflected GNSS
signals (GNSS reflectometry, GNSS-R). Secondary mission goals
include atmosphere/ionosphere sounding using refracted GNSS
signals (radio occultation, GNSS-RO) and remote sensing of land
surfaces using GNSS-R. The GEROS-ISS mission objectives and its
design, the current status, and ongoing activities are reviewed and
selected scientific and technical results of the GEROS-ISS prepa-
ration phase are described.

Index Terms—Global Navigation Satellite Systems (GNSS) re-
flectometry, GNSS radio occultation, international space station,
mean sea level, mesoscale ocean currents.
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I. INTRODUCTION

T
HE European Space Agency (ESA) Directorate of Human

Space Flight and Operations released an announcement of

opportunity in July 2011 in coordination with the Directorate of

Earth Observation Programmes soliciting scientific experiments

for the International Space Station (ISS) relevant to global cli-

mate change studies. Twenty-five letters of intent were received

from 237 science team members. After a peer-review of the 16

received proposals and a scientific and technical evaluation, the

GEROS-ISS (GEROS hereafter) proposal [1] was recommended

to proceed to Phase A feasibility studies. The proposing GEROS

team consisted of 12 scientists and engineers from four Euro-

pean countries (Germany, Denmark, Spain, Switzerland) and

one scientist from U.S.

GEROS is a new and innovative ISS experiment primarily

focused on exploiting reflected signals of opportunity from

the GNSS satellites at L-band to measure key parameters

of ocean surfaces which are relevant to characterize climate

change. Secondary mission goals include global atmosphere

and ionosphere observations using the GNSS radio occultation
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Fig. 1. Schematic overview of the GEROS experiment to be installed aboard the International Space Station. Yellow indicate the reflectometry measurements
for water, ice, and land surface monitoring (Field of View 1, see Section III). Red lines indicate coherent reflectometry observations for water, ice, and land surface
(Field of View 2) and GNSS Radio Occultation for atmosphere/ionosphere sounding (Field of View 3). The green lines symbolize the GNSS signals, received
from above the ISS with the nadir antenna for Precise Orbit Determination (POD) of the GEROS payload and 3-D upside ionosphere monitoring.

(RO) technique and the monitoring of land surface parameters

utilizing reflected GNSS signals (see Fig. 1).

Complementing the Earth observations from other current

satellite missions, GEROS will especially pioneer the ex-

ploitation of GNSS remote sensing signals from the European

Galileo system, thereby improving the accuracy as well as the

spatiotemporal resolution of the derived geophysical observ-

ables compared to GPS only measurements. The additional use

of signals from the Russian GLONASS, Chinese BeiDou, and

Japanese QZSS navigation satellite systems is also a goal.

GEROS will contribute to the long-term and climate rel-

evant observation of the major components of the Earth

system: Oceans/Hydrosphere, Atmosphere/Ionosphere, solid

Earth/Landcover, and even Cryosphere/Snow (limited mainly

to glacier regions as Himalayas and Andes due to the ISS or-

bit charcteristics), with innovative and complementary aspects

compared to established Earth Observation satellite missions.

Therefore, the data from GEROS will allow for climate change-

related scientific studies addressing the challenges of ESA’s

Earth Observation strategy [2], [3].

GEROS will mainly provide mid- and low-latitude obser-

vations on submesoscale or longer oceanic variability (see

Fig. 2) with focus on coastal regions, surface ocean currents,

surface winds, wave heights and the vertical atmospheric

temperature, water vapor, and electron density structure for a

period of at least two years, preferably longer, depending on

the space allocation for the external payloads. The GEROS-RO

observations will lead to a better understanding of the climate

system, e.g., of ocean barotropic variability, Rossby wave large-

scale structures, eddy-current systems, and fronts and coastal

upwelling. GEROS hereby takes advantage of the capacious

infrastructure aboard the ISS, which is a unique platform for

the development of further and advanced GNSS-Reflectometry

(GNSS-R) and GNSS-RO techniques, due to minor limitations

with respect to, e.g., antenna size or availability of appropriate

electric power. Promising applications in that respect are future

multismall-satellite constellations for tsunami detection and

early warning [4], [5]. Due to the application of these innovative

GNSS remote sensing methods GEROS is also supported by the

ESA Directorate of Technical and Quality Management (TEC).

GEROS will provide a sensor calibration/validation option

for other upcoming satellite missions including, e.g., the Eu-

ropean twin platform ocean remote mission Sentinel-3 (with

Sentinel-3A launched on February 16, 2016, and Sentinel-3B to
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Fig. 2. Oceanic observations carry signals of a wide range of related processes.
The observed fingerprints of these processes have temporal time scales from
1 h to thousands of years and spatial scales from ten to tens of thousands
of kilometres. The figure illustrates the spatial and temporal scales for these
processes and indicates phenomena, which can be investigated with GEROS
data complementary to and distinct from, the planned NASA SWOT mission
and ESA’s and NASA’s radar altimetry missions (Redrew and revised from [8]).

be launched in 2017, duration 7–12 years), the U.S./European

SWOT (Surface Water Ocean Topography, launch foreseen

2020, with duration three years), and the U.S./Taiwan 12 satel-

lite constellation FORMOSAT-7/Constellation Observing Sys-

tem for Meteorology, Ionosphere and Climate (COSMIC-II) for

GNSS-RO (initial launch of six low inclination orbiting satel-

lites planned for 2017, duration at least 5 years). The GNSS

remote sensing data from GEROS will also complement the

innovative GNSS scatterometry measurements from the U.S.

mission CYGNSS (CYclone Global Navigation Satellite Sys-

tem), which was selected by NASA’s Earth System Science

Pathfinder program and is currently foreseen for launch in late

2016. CYGNSS (eight small satellites, [6]) will study the rela-

tionship between ocean surface properties, moist atmospheric

thermodynamics, radiation and convective dynamics for the in-

vestigation of tropical cyclones. [7]

After introducing the mission (see Section II), we briefly

review the technical concept (see Section III). In Section IV,

we present the structure and initial results of the GEROS-

SIM (GEROS-SIMULATOR), developed by an international

science team in cooperation with ESA. To complete the paper we

present selected scientific results of the ongoing GEROS prepa-

ration phase (Section V), followed by a summary and outlook

(Section VI).

II. GEROS MISSION

A. Mission Goals

The primary mission objectives of GEROS are [9] the fol-

lowing:

1) To measure and map altimetric sea surface height (SSH)

of the ocean using reflected GNSS signals to allow

methodology demonstration, establishment of error bud-

get and resolutions and comparison/synergy with results

of satellite-based nadir-pointing altimeters. This includes

precise orbit determination (POD) of the GEROS payload.

2) To retrieve scalar ocean surface mean square slope (MSS),

which is related to sea roughness, wind speed and direc-

tion, with a GNSS spaceborne receiver to allow methodol-

ogy testing, establishment of error budget and resolutions.

In addition, two-dimensional MSS (directional MSS, re-

lated to wind direction) would be desirable.

Hereby GEROS will be the first GNSS-R mission with the

capability for mesocale ocean altimetry, which was also the

main idea behind the original mission proposal [1]. The capa-

bility to sample oceanic mesoscale eddies is a driver of any

new altimetric mission. As derived from these observations, the

ocean circulation monitoring and its forthcomming improve-

ments shall rely on the mapping of the complex structures of

the surface velocities (∼10–100 km or longer) in less than few

days in the open ocean and in the coastal regions. Therefore, we

believe that the need to widen the coverage in terms of spatial

and temporal scales—as compared to the Sentinel-3 (ESA) and

the planned SWOT (CNES/NASA) missions—is to be tackled

by other missions. One of the objectives of GNSS-R global ob-

servations is to quantitatively contribute to fill-in the 100 km

“altimetry temporal gap” by combining conventional altime-

ter data with GNSS-R measurements much denser in time. It

has been shown that these additional observations are appro-

priate to address the mesoscale sampling capability, although

the measurement performances are not comparable with the

state-of-the-art in altimetry. In particular, the GNSS-R added-

value is based on its resolving capability, i.e., the ability to re-

solve the signal regionally or globally by tracking the mesoscale

ocean features. It can nicely complement the ability to observe

submesoscale structures, that should be properly addressed by

the future high-resolution altimetric missions using Doppler or

wide-swath measurements.

Secondary mission objectives, which increase the scientific

value of the GEROS data, but are not driving the instrument

developments, include

1) to further explore the potential of GNSS-RO data (ver-

tical profiles of atmospheric bending angle, refractivity,

temperature, pressure, humidity, and electron density),

particularly in the Tropics, to detect changes in atmo-

spheric temperature and climate relevant parameters (e.g.,

tropopause height) and to provide additional information

for the analysis of the reflectometry data from GEROS

and

2) to assess the potential of GNSS scatterometry for land ap-

plications and in particular to develop data products such

as soil moisture, vegetation biomass, and mid-latitudes

snow/ice properties to better understand anthropogenic

climate change.

B. Mission Status

GEROS was selected in result of a complex review process,

initiated by ESA. The review results and decision on further

activities were officially announced in the end of 2012. An

interdisciplinary and international Science Advisory Group

(SAG) of acknowledged experts in oceanography, geodesy,



WICKERT et al.: GEROS-ISS: GNSS REFLECTOMETRY, RADIO OCCULTATION, AND SCATTEROMETRY ONBOARD THE ISS 4555

atmosphere, and GNSS science started to work in June 2013

on details of the preparation of the GEROS mission. This SAG

consists of key members of the proposing GEROS team and ad-

ditional experts, nominated by ESA. It cooperates closely with

the ESA GEROS team. The first important task of the SAG and

ESA, the definition of the initial version of the GEROS Mission

Requirements Document, was finished in mid-November

2013 [9]. The first baseline of System Requirements [10] was

given in December 2013. The GEROS-SAG is closely linked

to other GNSS-R-related missions, e.g., CYGNSS (planned

launch late 2016, [6]), TechDemoSat-1 (TDS-1, launched

July 8, 2014, [11]), 3Cat-2 (launched August 15, 2016, [12])

and the E-GEM project (European GNSS-R Environmental

Monitoring, 2014–2017, [13]). Two external experts from U.S.

support the work of the GEROS-SAG and directly contributing

NASA’s and international scientific interest in GEROS.

Two competitive industrial Phase A studies were started in

November 2014 for the GEROS mission implementation and

finished in April 2016. These studies were led by Airbus De-

fense and Space (ADS, Madrid, Spain) and Thales Alenia Space

(Rome, Italy).

In parallel the scientific study GARCA (GNSS-R Assess-

ment of Requirements and Consolidation of Retrieval Algo-

rithms), which is also funded by ESA [14], was also started in

November 2014 and finished in October 2016. GARCA is per-

formed by 17 scientists, GNSS-R experts and oceanographers,

from 7 institutions in 6 European countries (France, Germany,

Norway, Portugal, Spain, U.K.). The team is supported by the

work of 12 external experts from Denmark, Germany, Italy,

Sweden, Switzerland, and U.S. The main goal of GARCA is

to support the assessment and consolidation of scientific re-

quirements and the consolidation of retrieval algorithms for a

spaceborne GNSS-R experiment, focusing on the GEROS con-

cept and its primary and secondary data products (SSH and

ocean surface roughness). The main GARCA work is the de-

velopment of an end-to-end simulator for the GEROS mea-

surements (GEROS-SIM), and the evaluation of the expected

geophysical data products. Additional work packages are in-

cluded, aimed to assess the oceanographic significance of the ex-

pected GEROS measurements by means of Observing-System

Simulation Experiments (OSSE). The external scientific ex-

perts support the GARCA project and are involved in the work

to test the developments and also to initiate the sustainable

formation of an interdisciplinary GEROS user community. The

scientific results of GARCA were published by the international

project team in six technical notes ([15]–[20]). These documents

describe in detail the GEROS-SIM and its test and performance.

ESA initiated two flight campaigns in the Baltic Sea not

far from the Finish coast line at Helsinki in May 2015 as a

proof-of-concept for the altimetric GNSS-R approach foreseen

for GEROS. Results from these campaigns are introduced in

Section V-A.

The finalization of the industrial Phase A studies in March

2016 and the GARCA study in October 2016 will end with the

decision from ESA on the continuation of GEROS in Phase

B. As defined in the ISS Strategic Plan, GEROS deployment

is foreseen between September 2019 and March 2020 in case

of successful preparative studies and provision of appropriate

funding. The launch is planned from the Kennedy Space Center

(KSC) with a Dragon C3-1 launcher from Space-X and will be

TABLE I
GEROS: SELECTED MISSION SPECIFICATION PARAMETERS AS OF

SEPTEMBER 2016

Orbit altitude: 375–435 km

Inclination: 51.6◦

Orbit period: ∼92 min

Planned Launcher: Dragon C3-1 Space-X

Planned Launch site: Kennedy Space Center

Planned Launch year: 2020

Planned Mission duration: Min. 1 year with possible extension up to 5 years

Payload mounting Columbus external payload facility

at ISS: (box 117 × 86 × 155 cm3 ), upper balcony

Operation: power ≤ 500 W, downlink ≤ 1 Mbps

followed by a short commissioning phase period. A minimum

lifetime of one year is expected, an extension is targeted up to 5

years. Selected mission parameters are summarized in Table I.

III. TECHNICAL CONCEPT

This section presents the results of one of the industrial Phase

A studies as an example of the technical solution found for the

GEROS mission which satisfies the mission requirements set by

the scientists [9].

A. Operational Concept

GEROS will be integrated onto the Columbus External Pay-

load Adapter (CEPA), in turn attached to the Active Flight

Releasable Attached Mechanism of the Space-X Dragon’s un-

pressurized trunk. At KSC, the trunk will be assembled to the

Dragon’s capsule and launched into space by a Falcon 9 booster.

During the transit flight to the ISS the GEROS payload will be

exposed to the space environment. Dragon will approach the ISS

to be captured by the Space Station Remote Manipulator Sys-

tem for docking. The Special Purpose Dexterous Manipulator

will grab and remove GEROS out of Dragon’s trunk, to move

it to the Starboard Overhead, X-direction location (EPF-SOX)

of the Columbus External Payload Facility (CEPF). Installed

at this position, the GEROS payload will perform its nominal

operation. At the end of the mission, the reverse sequence will

be followed to embark GEROS back into the trunk of another

Dragon vehicle for a destructive reentry. During operation, the

Columbus module will provide power to GEROS, and through

the multipurpose computer and communications system, a data

link for telemetry, tracking and command and scientific data

transfer to and from ground. One of the ISS User Support and

Operation center will be used as interface node to the Science

Support Center (SSC), in charge of the payload command, oper-

ations and data processing (at both Levels 1 and 2). The GEROS

payload is expected to run on weekly plans prepared in advance

at the SSC and then uploaded. The European Space Astronomy

Center has been proposed as SSC for this center will host an

archive of Galileo science exploitation data.

B. GEROS Payload

The key GEROS payload is a beamforming antenna (GAB,

GEROS Antenna Beamformer), which has 4π steradian field

of view (FoV) capability to receive GNSS signals arriving from

any direction. The half space is however masked by the structure

of the Columbus module so that only starboard azimuth angles
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Fig. 3. GEROS deployment at the upper Columbus External Payload Facility
“upper balcony” of the ISS Columbus module with limited field of view (credits
ESA).

between 0◦ (velocity) and 180◦ (anti-velocity) are really acces-

sible. In elevation, the nadir angle ranges from 0◦ (nadir) to 90◦

(antenna horizon) but the FoV is blocked for values below 17◦

byAtmosphere-Space Interactions Monitor, the payload in the

CEPF location just below GEROS (see Fig. 3).

Ignoring other less important blockages like those produced

by the main truss and the rotating solar wings, Fig. 4 de-

picts the resulting FoV accessible to the GAB. Three distinct

parts are distinguished within the GEROS FoV involving near

nadir reflections (FoV-1) for altimetry and scatterometry, graz-

ing reflections for altimetry (FoV-2), and RO (FoV-3) for atmo-

sphere/ionosphere sounding. FoV-1 comprises nadir angles from

17◦ till 41◦, corresponding to direct signals with zenithal angles

between 20◦ and 50◦. The FoV-2 nadir angle range is between

54◦ and 69◦, corresponding to direct signals between a zenith

angle of 68◦ and a nadir angle of 80◦—GNSS satellites at the

antenna horizon generate specular point at a nadir angle of 65◦.

Finally, the FoV-3 comprises the first 250 km of the atmosphere

spanned by nadir angles between 69◦ (Earth surface) and 77◦ .

The right panel of Fig. 4 shows the antenna directivity,

averaged over azimuth, at frequency bands F1 (1547.1–

1594.5 MHz, with center frequency at 1,570.8 MHz, solid

line) and F5 (1157.4–1221.3 MHz, with center frequency at

1189.3 MHz, dashed line) as a function of zenithal and nadir

angles. The antenna directivity at zenith (and nadir) is 24.5 dB

at F1 and 22.5 dB at F5, rolling down some 3–4 dB at the edge

of FoV-1. The directivity within the FoV-2 varies from 3 to

19 dB depending mainly on the location of the specular point.

The directivity in FoV-3 is between 14 (toward the troposphere)

and 10 dB (top of the atmosphere).

The visibility analysis performed (see Section IV-A) con-

cluded that the optimum number of antenna beams for the

GEROS payload was 4 because this is the amount of near nadir,

grazing, and RO events, altogether, that will happen simultane-

ously most of the time, when considering a realistic set of GNSS

satellites expected to be in orbit in the 2020–2024 time frame.

The way the four beams are arranged in frequency and polariza-

tion for the various applications is shown in Fig. 5. The GEROS

payload can track, in parallel, three direct signals in right-handed

circular polarization (RHCP) and the corresponding three near

nadir reflected signals in both RHCP and left-handed circular

polarization (LHCP), at F1. The same capability is available

at F5 but only in LHCP polarization for the near nadir re-

flected signals. An additional fourth dual-frequency beam set

can be used to observe either a fourth near nadir reflection, a

grazing reflection, or a RO event. The GEROS payload provides

yet an additional configuration for precipitation observations in

which the fourth dual-frequency beam set is used to receive an

occultation in both polarizations.

When the fourth dual-frequency beam set is used for grazing

altimetry, the beam configuration depends on whether the corre-

sponding direct signal is received from the zenithal or the nadir

space. In either case, it is the RHCP polarization at frequency

band F5 which is processed. Grazing altimetry is performed in

GEROS by implementing the master–slave technique in [21]

but taking the direct signal as the master signal.

The bandwidth of the GEROS payload is of 47 MHz at F1,

and 64 MHz at F5. The two reception bands F1 and F5 are

placed to maximize the number of GNSS signals which can be

observed. As shown in Fig. 6, GEROS can perform GNSS-R

and RO with a wide variety of signals from different GNSS

systems, including GPS, Galileo, GLONASS, BeiDou, QZSS,

and their augmentation systems MSAS, WAAS, EGNOS, and

IRNSS.

The main Level 1 output of the GEROS payload is provided

at 1 s output rate and is depicted in Fig. 7. For three of the

beam sets, it consists of three delay Doppler maps (DDM) with

a particular sampling of the 1500 m, 8 KHz delay-Doppler

domain and polarization combination. Each of the solid lines

in Fig. 7 represents a 400 delay lag waveform at a specific

Doppler obtained at a high delay resolution of 3.75 m. The

dashed lines correspond to 133 delay lag waveforms with

a lower delay resolution of 11.25 m. There is a maximum

of nine Doppler lines in each DDM, whose location is pro-

grammable. The specular point is nominally located at delay lag

600 m. The three DDMs are provided both in power, after an

internal incoherent accumulation has taken place, and in com-

plex form, obtained by only coherent integration. These three

DDMs constitute the observables to perform near nadir altimetry

and scatterometry.

The Level 1 data produced from the fourth beam set de-

pends on the application. When used for near nadir altimetry

and scatterometry the output data are the one just described.

When used for one of the special applications, the output data

rate for this specific beam set is increased to 20 Hz, and con-

sists of two 11.25 m resolution 900-m long delay waveforms

(80 delay lags), at F1 and F5, with a polarization combination

according to the observation: RHCP × RHCP for grazing al-

timetry and RO, and RHCP × LHCP for precipitation. These

waveforms are provided only in complex form.

The GEROS payload is shown in Fig. 8. Its overall dimen-

sions are 1.55 m × 1.17 m × 0.86 m. Its most prominent feature

is the antenna (green array in Fig. 8), a double-face GAB, with

30 elements on each side (zenith and nadir). An additional

element, right at the center position in the zenith array, is used

only for POD. Similarly, a laser retro-reflector is placed at

the central nadir position for POD verification (see the grey

element in Fig. 8). In between the two faces of the antenna

are the calibration and low noise amplifier units. These units
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Fig. 4. The left panel shows the Field of View (FoV) of the GEROS payload: FoV-1 corresponds to near nadir reflections; FoV-2 to grazing reflections; FoV-3 to
radio occultation; the primed FoV-1 and FoV-2 correspond to the respective direct signals. The right panel presents the antenna directivity at frequency bands F1
(1,570.8 MHz, solid line) and F5 (1,189.3 MHz, dashed line) as a function of the zenith and nadir angles (antenna directivity is relatively constant for all azimuth
angles).

perform the critical functionality of routing both the direct

and reflected signals through the same receiving chain, referred

to as the swapping technique. This way the GEROS payload is

self-calibrated in delay and amplitude (except for the antenna

patterns).

The GAB signals are routed into six identical beamformers

(see orange boxes below the antenna in Fig. 8): three beamform-

ers at F1 for the direct RHCP signals, and the reflected signals at

RHCP and LHCP polarizations, and a similar set at F5. The out-

put from these beamformers consists of the 21 beams depicted

in the left upper panel of Fig. 5, which are routed to 2 identical

signal processing units (SPU).

The two SPU are sitting in the two inner corners of the pay-

load (see blue boxes below the beamformer units in Fig. 8).

They are in charge of the analog to digital conversion and signal

correlation. With the help of modeled delays, the SPU can delay

direct signals to match the reflected ones to perform interfer-

ometric GNSS-R, useful for near nadir and grazing altimetry

as well as scatterometry. Clean replicas are generated on board

for RO, which can also be performed with the interferomet-

ric approach. The implementation of the SPU is based on a

specifically designed PARIS Correlator (PACO) digital circuit.

Another important function of the SPU is to blank the input

signal when there is interference, a likely situation in F5 due

to the distant measurement equipment used by civil aviation

radars. The output of the SPU are the set of DDM described

earlier.

Other additional units of the GEROS payload shown in Fig. 8

are the instrument control unit (ICU, in light green), the power

supply unit (PSU, in red) and the POD GNSS receiver (POD,

in yellow). The GEROS payload is mounted on the CEPA tray,

which provides all necessary interfaces to the Columbus module.

The GEROS payload has a total mass of 376 kg (with 20%

margin), 395 W (with 20% margin), a 2 GB mass memory

(80% storage capacity) and a 1.2 Mbps output data rate.

C. Instrument Error Budget

The GEROS payload is very similar to the PARIS IoD one

[22]. During the PARIS IoD Phase A activities, a detailed in-

strument optimization and error budget was performed [23]. It

included for each band, the effect of thermal and speckle noises,

coherent and incoherent averaging, and the signal-to-noise ra-

tio (SNR) degradation due to antenna losses, amplitude and

phase errors in the beamformer, antenna phase center error, re-

ceivers noise figure, frequency response mismatch (bandwidth

and group delay), quantization efficiency, and the delay and

Doppler refresh rate retracking updates, with the help of an

ad hoc end-to-end simulator that evolved from the passive ad-

vanced unit (PAU) end-to-end simulator [24]. The error budget

was later improved by computing the Cramer–Rao bound (CRB,

[25]). Fig. 9 shows the computed performance for the Galileo

signals. The altimetric error increases with wind speed and the

cross-track distance from the nadir. It shows the advantage of

the interferometric GNSS-R (iGNSS-R) in terms of the altimet-

ric performance, as comparing the lines of σiF with those of

σcF in Fig. 9.

IV. GEROS-SIMULATOR

One of the key parts of the GARCA study is to implement

an end-to-end simulator covering from detailed instrumental

aspects to higher level data products useful to assess GEROS

oceanographic impact in the current or near-future Earth

Observation System. It includes the simulation of GNSS-R

observables (Product Level 1, L1), a large suite of extraction
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Fig. 5. Schematics of the GEROS payload beam configuration. Thick lines indicate cross-correlation pairs or autocorrelation. The left column presents (top to
bottom) (a) beams, frequencies, and polarizations (R = RHCP, L = LHCP), (b) near nadir altimetry and scatterometry, and (c) same as (b) but with one beam used
for grazing altimetry with the direct signal in zenith. The right column presents (top to bottom) (d) same as (c) but the direct signal in nadir, (e) the same as (d) but
using one beam for radio occultation instead of grazing altimetry, and (f) same as (e) but using one beam for precipitation observations.

algorithms to generate geophysical products (Product Level 2,

L2), their time- and geo-location, and noise and systematic

effects. The GEROS-SIM consists of a core of modules which

produce the GNSS-R observables from detailed geometric

and instrumental parameters, plus a series of other modules

with well-established input/output interfaces to generate all

the other steps. Each of the modules runs independently of the

others if the right input data format is provided. The advantage

of this approach is that the different L1-to-L2 modules can

be used as retrieval algorithms also for real experimental

data, if these are provided in the right format. Consequently,

the modules, developed within the GARCA project, provide

already the initial version of the potential GEROS processor for

the generation of the geophysical Level 1 and 2 data products

(see Section IV-F) to serve the primary mission objectives (see

Section II-A) altimetry (code and phase) and scatterometry.

Fig. 10 provides a schematic view of this processor. In this

section, each simulator module is briefly explained with some
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Fig. 6. GNSS signals which can be processed by the GEROS payload for GNSS Reflectometry and radio occultation within its two frequency channels, F1 and
F5 (Courtesy: ADS-CASA).

Fig. 7. Delay Doppler maps (DDM) are provided by GEROS-ISS every 1 s. The output from beam 4 depends on the application it is being used for. The DDM
domain is limited within 1500 m, 8 KHz or 900 m, 8 KHz depending on application. The cross indicates the nominal position of the specular point. Each line
represents a waveform along delay for a specific Doppler frequency. The delay resolution is 3.75 (solid lines) and 11.25 m (dashed lines). The position of all
Doppler lines can be programmed. The set of all DDMs is given in power (except for special applications) and in complex form in parallel.

examples of simulation results, which are described in detail

in [18].

A. Simulation of GEROS Observation Coverage

The GEROS-ISS observation modes are defined according

to the GEROS mission objectives (see Section II-A for three

different FoVs; see Figs. 3 and 4 and Section III-B). As a

requirement, the payload should be able to track beams with

incidence angles up to 80◦, for both up- and down-looking

antenna arrays. The GEROS simulator performs the geolocation

of the specular points. It includes the ESA Earth Observation

Customer Furnished Items (CFI) software [26] for accurate tim-

ing, coordinate conversions, antenna pointing, and reflections
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Fig. 8. GEROS-ISS payload (left) accommodated on the upper CEPF of the Columbus module (right). (Courtesy: ADS-CASA)

Fig. 9. GEROS instrument 1-s integrated rms errors (σ) as predicted by theoretical CRB techniques using Galileo signals for the cases of ISS height 330 km
(a, b) and 450 km (c, d). The figures in left column (a, c) show the result for cross-track distance 0 km, and ones in the right column (b, d) are for 250 km
cross-track distance. The legends denote iF1 (E1 interferometric), iF5 (E5 interferometric), cF1 (E1 conventional), cF5 (E5 conventional). The bias denotes total
bias (electromagnetic and waveform bias).

calculations. The simulations for this study used a 30 days

period with 10 s sampling.

The GNSS systems, predefined for the calculations in

GEROS-SIM are the following:

1) BeiDou including 35 satellites (5 in GEostationary Orbit,

GEO; 3 in Inclined GeoSynchronous Orbit (IGSO); and

27 in Medium Earth Orbit (MEO)),

2) Galileo including 30 MEO satellites (24 operational + 6

spares),

3) GLONASS including 24 operational MEO satellites,

4) GPS with 31 MEO satellites (24 core + 7 extra), and

5) QZSS with 3 satellites (1 in IGSO; and 2 in GEO).

The ISS orbit is set with an orbit altitude of 400 km and

a revolution of 90 min. The figure below (see Fig. 11) shows

the resulting distribution of the GEROS measurements and the

average revisit time for FoV-1 [27].

Due to technical limitation of the payload, the observations

are limited by the number of beams, which can be tracked by the

GAB (see Section IV-B). For near nadir FoV-1, four beams are in

view more than 80% of the time, with 50% of the measurements

lower than 33◦ incidence (see Fig. 12).

For FoV-2 (grazing angle), an update in the system require-

ments during the GARCA scientific assessment, allowing the

use of the up-looking antenna, made a great improvement in
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Fig. 10. Schematic overview of the GEROS-SIM. The developed module
“Instrument to Level 1” and the three modules “Level 1 to Level 2 processor”
provide already the core of the potential GEROS processor for the primary
mission data products (see Section IV-F).

the number of beams that can be simultaneously observed,

where now 4 beams are in view more than 97.7% of the time

(see Fig. 13). About 24% of the beams pairs coming from the

down-looking antenna only, while 76% use the up-looking an-

tenna to track the direct signal and the down-looking tracks the

reflected one. The plateau in the cumulative incidence angle

distribution, observed in Fig. 13 (right), shows this up–down

transition in the direct signal tracking, limited in the limb direc-

tion by the antenna beamformer maximum incidence angle of

80◦ (see Fig. 4).

B. Instrument to Level 1 Processing

This module includes algorithms to generate GEROS-SIM

instrument measurements (L0) and corresponding L1 data. Us-

ing the inputs of observation geometry, sea surface state, and

instrument hardware specification, it computes the observable

DDM/Waveforms [28]. For efficient implementation, an estab-

lished GNSS-R simulator, PAU/PARIS E2E Simulator (P2EPS)

[24], [29] has been largely reused by adapting to the particular

GEROS specifications, which are antenna array beamforming,

receiver effect, tracking, and noise characteristics, etc.

One particular difference of GEROS from other spaceborne

GNSS-R instruments (e.g., TDS-1 and CYGNSS) is the antenna

array beamforming capability. To increase the SNR, GEROS is

capable of pointing the antenna beam to the specular reflection

point. GEROS-SIM also provides this function for analyzing the

impact of pointing error. Fig. 14 shows a simple demonstration

of the pointing error. The error of 10 ◦ in Fig. 14(c) causes a

serious degradation of DDM shape as shown in Fig. 14(d). We

note, that the ISS attitude can vary up to±15◦ per axis. However,

variations are typically around 1◦ per axis per orbit (maximum

3.5◦ per orbit). The typical attitude variations are much smaller

that the antenna beamwidth (of about 11◦ or wider) and hence

do not prevent pointing the antenna beams toward the GNSS

satellites or the specular points.

The GEROS-SIM algorithm of DDM generation is based

on the efficient DDM computation method [30]. This method

is known as a fast and efficient computation version of the

Zavorotny–Voronovich model [28]. This baseline algorithm was

used for P2EPS, and was validated as comparison to spaceborne

(UK-DMC) and airborne measurements (PIT-POC) [31] the lat-

ter including the interferometric GNSS-R approach. Addition-

ally, the GEROS-SIM has been validated using the 57 samples

of TDS-1 data. Examples for these comparison between TDS-1

and GEROS-SIM DDMs are shown inFig. 15. More detailed

results of validation test are reported in [18].

C. Level 1 to Level 2 Processing

In this section, we describe the three processing modules and

test results for the generation of the primary GEROS geophys-

ical data products. SSHs are derived using the code and phase

altimetry approach, which are treated separately and were de-

veloped by IEEC and GFZ, respectively. Surface roughness and

wind observations are generated with the scatterometry process-

ing module, developed by NOC.

1) Code Altimetry: The interferometric GNSS-R technique

provides the cross-correlation between the signal received

through the zenith-looking antenna system and the nadir-looking

one. The zenith-looking antenna collects the signals directly

propagated from the transmitter to the receiver, while the nadir-

looking system acquires the signals reflected off the Earth sur-

face. If the reflection were generated by a smooth mirror-like

surface, the cross-correlation of both branches of the signal

would result in the autocorrelation function of the transmit-

ted signals, with its peak delayed as ∆ρ = ρR − ρD , where

ρ accounts for the propagation time between signal trans-

mission and signal reception, whereas subindexes R and D

state for specular reflection radio-link and direct radio-link,

respectively. As explained in Section IV-B, the roughness of

the surface is an input parameter of the simulator, as it dis-

torts the shape of the cross-correlation function, also called

waveform. Unlike reflections off smooth surfaces, the delay

of the peak of the distorted waveform does not correspond

to the delay of the ray-path reflected at the specular point,

as diffuse scattering around the specular point tend to add

further delayed contributions to the received signal. How is

it then possible to estimate the delay of the specular point?

Which point along the waveform must be used as reference

for the specular point reflected signal? Different possibilities

have been suggested in the literature, such as fitting a model

of the waveform so the information about the specular point

delay is embedded in the fit (e.g., [32]), using the peak of the

first derivative of the leading edge as delay of the signal re-

flected at the specular point (e.g., [33]–[35]), or the delay of

an intermediate power-value [35], [36]. The code delay algo-

rithm implemented in the GEROS-SIM identifies the peak of

the leading edge derivative (LED) as the specular delay. The

LED is computed on the central Doppler slice of the DDM,
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Fig. 11. ISS observation coverage and average revisit time for near nadir observations, FoV-1 [27].

Fig. 12. GEROS FoV-1 cumulative distribution of the number of beams (left) and incidence angles (right).

that is, the slice that corresponds to the Doppler frequency of

the specular point. Then, the measured delay, ∆ρLED , has the

following terms:

∆ρLED = ρR − ρD

= (ρgeo
R + ρtropo

R + ρiono
R + ρT −clk

R + ρR−clk
R + ρinstr

R

+ρshape
R + ǫR )

−(ρgeo
D + ρtropo

D + ρiono
D + ρT −clk

D + ρR−clk
D + ρinstr

D

+ρshape
D + ǫD )

= ∆ρgeo + ∆ρtropo + ∆ρiono + ∆ρT −clk + ∆ρinstr

+∆ρshape + ǫ (1)

where geo relates to the geometric distance, tropo and iono to the

atmospheric induced delays at the troposphere and ionosphere,

respectively, T −clk and R−clk the transmitter and receiver clock

offsets (note that the receiver offset cancels out, as both the di-

rect and reflected signals are acquired with the same instrument

at the same instant of time), instr accounts for other instru-

mental delays (cabling, connectors...), shape includes any delay

error induced by unexpected distortion of the waveforms shape

(sea surface roughness, sampling and filters, antenna pattern

effects, near-field multipath, ...), and ǫ is noise. The altimetric

information is embedded in the term ∆ρgeo

∆ρgeo = |�S(SSH) − �T | + |�R − �S(SSH)| − |�R − �T | (2)

being �T and �R the coordinates of the transmitter and receiver,

respectively, and �S those of the specular point on the sea surface,

the latter depending on the SSH.

A common approach to extract ∆ρgeo from the measured

∆ρLED is to correct for as many terms in (1) as possible (e.g.,
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Fig. 13. GEROS FoV-2 cumulative distribution of the number of beams (left) and incidence angles (right).

Fig. 14. Example of GEROS-SIM beam pointing simulation. A case of perfectly pointing to specular reflection: (a) antenna beam pattern (in direction cosine)
and (b) corresponding DDM, and the case of 10 ◦ error: (c) antenna beam pattern, and (d) the corresponding DDM.

[35]). Most corrections rely on external information (atmo-

spheric models or observations, International GNSS Service

information, calibration of the receiver payload...). Any noncor-

rected or miscorrected term will be absorbed as ∆ρgeo, intro-

ducing an error (bias or random-like) in the SSH retrieval. In

GEROS-SIM, the approach taken is fully equivalent to these a

posteriori corrections, but they are applied as input of a refer-

ence modeled waveform against which our observed waveform

is compared. Any external available information is used to gen-

erate a modeled waveform that takes them all into account. The

modeled waveform also uses a good a priori estimate of the

SSH at the expected specular point location. Then the delay
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Fig. 15. Examples of GEROS-SIM validation test results comparing TDS-1 data. GEROS-SIM can generate waveforms in addition to the full and configurable—in
terms of number of bins and spacing—DDMs.

of the peak of the LED is computed for both measured wave-

form, ∆ρobs
LED, and modeled waveform, ∆ρmod

LED. If the model were

perfect both LED-delay would agree, meaning that the a priori

SSH assumed in the model, SSH0 , was correct. If the a priori

values were wrong, there would be a difference between the

observed and modeled ∆ρLED, which shall be interpreted as a

correction to the a priori SSH0

SSH = SSH0 +
∆ρobs

LED − ∆ρmod
LED

2 cos θ
(3)

being θ the incidence angle at the specular point. If the model is

accurate, this differential approach cancels out some of the dis-

torting errors (∆ρshape) as they are present in both actual data and

model, such as surface roughness effects or well-characterized

instrumental filters or sampling effects. Note that these type of

distorting effects are harder to correct when using posteriori

corrections for the systematic delay offsets (troposphere, iono-

sphere, clocks).

A study has been conducted to assess the impact of differ-

ent mismodeling/miscorrections in the final altimetric retrievals,

such as the errors introduced by the mistaken SSH0 (how good

the a priori must be?); residual effects of the troposphere and

ionosphere; of the sea surface roughness; antenna pattern and

pointing effects; errors induced by inaccurate orbit determina-

tion; or the effect of the speckle in the precision of the altimetric

solution. The results agree with similar studies conducted for

similar GNSS-R spaceborne altimetric missions, e.g., [23], [35],

[37]. A brief summary is given below:

Errors in the a priori SSH0 of a few meters would intro-

duce cm-level inaccuracies in the SSH retrievals. This seems

feasible taking into account the accurate knowledge of the

TABLE II
ASSESSMENT OF THE ERRORS IN ECMWF ANALYSIS FIELDS, AS OBTAINED

FROM THE ANALYSIS OF ECMWF EDA PRODUCTS

Variable: Percentage error: Error correlation length:

Surface pressure: 0.03% ∼500 km

Surface temperature: 0.16% ∼400 km

Integrated water vapor (IWV): (− 0.147 IWV + 8.457) % ∼200 km

mean sea surface topography and tide models. This LED-based

and differential approach has also been shown to be robust to

mismodeling of the sea surface roughness, introducing

millimeter-level bias when simulations are run free of speckle

and thermal noise. As for the tropospheric errors, we have con-

sidered that the corrections would be obtained from European

Centre for Medium-Range Weather Forecasts (ECMWF) anal-

ysis products, which are not perfect. The error characterization

of such products have been assessed using the dispersion and

spatial correlation of ECMWF ensemble of data assimilation

(EDA). The error characterization of the tropospheric fields has

resulted in the values provided in Table II. Using these per-

centage errors and their spatial correlation, the systematic alti-

metric error produced by them is assessed using actual values

of the ECMWF analysis fields, interpolated in time and space

to the specular points of GEROS observations. Fig. 16 depicts

an example of the tropospheric error in the altimetric retrievals

generated for the OSSE exercise in Section V-B.3.

Errors in the antenna beam pointing smaller than ±5◦ intro-

duce SSH errors smaller than 1 mm. Pointing errors smaller

than these values seem feasible even from the ISS platform in
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Fig. 16. Example of altimetric errors induced by the fact that the ECMWF
analysis products are used as corrections of the tropospheric delay (term ∆ρtropo)
in (1), whereas these products do not represent the actual atmosphere, but
mistaken as statistically indicated in Table II. The example corresponds to the
area of the OSSE presented in Section V-B.3, as seen from FoV-1 for June 19,
2014.

most conditions. Errors in the radial component of the receiver

positioning (POD) map directly as SSH errors. As a

consequence, the radial component of the GEROS POD must

have an accuracy within the GEROS altimetric objective. This

seems feasible as discussed in Section IV-D.

Errors in the assumed ionosphere of the order of 1 TECU

introduce large errors in both L1 and L5 altimetric solutions (a

few decimeter level), but they are strongly reduced when us-

ing the ionospheric-free combination (e.g., [38]) applied to the

single-frequency SSH solutions. This results in unbiased solu-

tions when using simulated data free of speckle, thermal noise,

and ionospheric scintillation effects. Nevertheless, specke-free

data is unrealistic and it is well known that ionospheric-free fre-

quency combinations further increase the noise of the solution.

Among all the effects evaluated in this study, the noise asso-

ciated to the speckle has the largest contribution to the random-

component of the precision budget. The effect is a random dis-

persion of the SSH retrievals, with a standard deviation below

0.5 m for observations at 1 s integration (GPS L1 with smoothed

2-frequency ionospheric correction). Together with the rest of

the precision figures assessed in this study [18], this finally rep-

resents less than 15 cm in 100 km averaging, which fulfills the

objectives of the mission. This level of precision agrees with the

analyzes of similar GNSS-R scenarios in [23], [35], [39] and it

is consistent with the CRB analysis performed for the mission

(see Fig. 9). Moreover, as shown in [40], the precision could

still be improved by multi-Doppler processing techniques.

2) Phase Altimetry: The motivation of phase delay altimetry

lies in the centimeter precision of GNSS phase observations to

be used for sea surface anomaly measurements. The resolution

of such decimeter scale anomalies on a submesoscale (in time

and space) is still challenging [41]. Investigations to improve

resolution by potential phase altimetric observations are impor-

tant in this respect. The altimetric use of GNSS-R carrier phase

information has been demonstrated already over the Antarctic

ice sheet based on spaceborne records [42], over in-land lakes

Fig. 17. Ground track of the E03 event (black dots) with 1 min time spacing.
The Agulhas region is shown with the mean dynamic topography (MDT) of the
sea surface, taken from the DTU-10 model.

[43] and over the Mediterranean sea [21] based on airborne

records in the range of elevation angles between 0◦ and 30◦,

respectively. Geometries closer to the nadir generally cannot

provide continuous phases, as the surface roughness increases

the diffuse component of the scattering. Phase delay altimetry

for ISS therefore is constrained to FoV-2.

Simulation results for an ISS-based receiver setup are pre-

sented here. A comprehensive description of the phase altimetric

simulator and aspects of potential observations made on a low

earth orbit are found in [44]. The following simulation demon-

strates the retrieval of ocean topography signatures based on

phase residuals. The presented case study assumes sufficient

correction of troposphere and ionosphere effects. An a priori

sea surface given by the geoid is considered. This means that

only the ocean topography h = H − G remains for simulated

retrieval where H denotes the ellipsoidal SSH and G is the

surface undulation w.r.t. the ellipsoid that is provided by geoid

models [45], [46]. The retrieval concept, based on topography-

dependent phase residuals φ(h), has been demonstrated exper-

imentally for airborne records cf. [21]. In the following part,

a simulated reflection event over the Agulhas current region is

considered, see Fig. 17, as a potential example of spaceborne

records.

It belongs to the Galileo satellite PRN E03 observed at the ISS

on March 9, 2015 00:43 UTC and comprises 9 min of simulated

observations. The satellite passes elevation angles between 5◦

and 30◦ long the 2500 km reflection track. These angles are

observed at the reflection points and correspond exactly to the

GEROS FoV-2 with 54–66◦ nadir angle at the ISS. The mean

dynamic topography (MDT) model [47] rises from about 30 to

about 60 cm with respect to the geoid along this track.

Height Retrieval: A comprehensive description of the height

retrieval is given in [44]. The following simulation concen-

trates on the topography resolution and the ambiguity ef-

fect within the phase altimetric retrieval. Noise-affected phase

data are simulated based on MDT information and plotted in
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Fig. 18. Phase altimetric retrieval in three panels starting from phase residuals
φ via phase path estimates p resulting altimetric tracks h. MDT-based model
information (red line) is added in each panel. There is a model compliant
estimate p0 (gray). Two further estimates p+ (dark gray) and p− (light gray)
are shown with deviating ambiguity solutions. Different tracks h result from
p+ , p0 , p−.

Fig. 18 (first panel). The wrapped phase φ shows aliasing in

the range (−π,+π) and does not necessarily map the complete

topographic information. The aliasing effect is corrected by

an unwrap operation U (MATLAB standard algorithm) adding

±2π if changes |∆φ| ≥ π occur (unwrap condition). Further-

more, the resolution of the integer ambiguity N is required to

construct a path estimate that finally reads

p = λ

[

U {φ}

2π
+ N

]

(4)

depending on the GNSS carrier wavelength λ. The second panel

shows three ambiguity solutions p+ , p0 , p− for respective N
being +1, 0, −1. The model-compliant ambiguity solution is

trivial (N = 0) as the initial path residual is smaller than the

wavelength. A phase ambiguity solution is not required in this

case. These estimates can be mapped to altimetric results

h =
p

2 sinE
(5)

where E denotes the transmitter elevation angle defined in the

reflection point. The results are plotted in the third panel of

Fig. 18. According to the path estimate, the track h(p0) shows

best agreement with the underlying MDT model. Tracks for the

other solutions h(p−) and h(p+ ) have a significant deviation

from the model (starting with several decimeter). The decrease

in deviation magnitude is remarkable. It is related to the increase

of E from 5◦ to 30◦ during the event and has two consequences.

On one hand, it indicates the increase of altimetric precision

with elevation. On the other hand, it shows that the ambiguity

solution is easiest at low elevation angles where the separation of

possible solutions N is particularly large. Scenarios of residual

troposphere and ionosphere effects and the influence of the SNR

on the height retrieval are examined in [44]. Furthermore, ocean

roughness influences the retrieval and is a critical parameter

with respect to a sufficient SNR [48].

The simulated event, considered here, has a rather small to-

pography range. The concept also applies for larger ocean topog-

raphy variations that occur, for example, in the eastern Agulhas

region, cf. Fig. 17. In general, it applies at rather low eleva-

tion angles (here assumed from about 5◦ to 30◦) as solutions

N are then more easily confined and as the impact of ocean

roughness is reduced there. Phase altimetry at these elevations

potentially improves the coverage achieved with code altimetric

observations (with E > 60◦).

3) Scatterometry: By virtue of its passive nature and the

potential for multiple simultaneous measurements across a wide

swath, GNSS-R offers attractive possibilities also to improve

global monitoring of ocean surface winds. These measurements

belong to the second main mission objective of GEROS. It is

foreseen to provide scalar ocean surface MSS, which is related

to sea roughness, wind speed and direction.

The feasibility of spaceborne GNSS-R for scatterometry was

first demonstrated and validated by the pioneering GNSS-R ex-

periment by Surrey Satellite Technology Ltd (SSTL) onboard

the UK-Disaster Monitoring Constellation satellite in 2003. At

that time, only about 50 separate data acquisitions were per-

formed over the ocean ([49], [50]), with just a handful of data

ever becoming available to the wider community for analysis

([51], [52]). This shortage of spaceborne GNSS-R data was fi-

nally addressed following the successful launch by SSTL on

July 8, 2014 of the UK-funded TDS-1 satellite and its GNSS-R

Sea State Payload (SSP) instrument. Since then, efforts have

been underway at the National Oceanography Centre (NOC) and

SSTL to develop and publicly disseminate TDS-1 SSP Level 1

DDM and Level 2 wind speed products via the web-based MER-

RBys portal (http://www.merrbys.co.uk). NOC is also respon-

sible for the development of the GEROS “Level 1 to Level 2

Processor” for the surface winds, which profited significantly

from the availability of real satellite data from TDS-1.

Level 2 Wind Speed Inversion Algorithms: So far, two types

of Level 2 wind speed inversion algorithms have been investi-

gated at NOC: the so-called “Fast-Delivery Inversion” algorithm

(FDI) and the more complex “Bistatic Radar Equation” algo-

rithm (BRE). Both algorithms are based on the SNR calculated

as the ratio of the average signal power (S) in a box located

around the peak of the DDM and the average noise power (N)

measured in a noise box in the signal-free area. For both algo-

rithms, the size of the signal box is chosen to achieve a spatial

resolution around 25 km. For TDS-1, the dimensions of the sig-

nal box are 1 chip (4 delay bins) by 1500 Hz (3 Doppler bins)

corresponding to a spatial resolution between 22 and 30 km

(median value 25 km) depending on the elevation angle of the

specular point. Since the position of the peak can fluctuate in

both delay and Doppler space, the signal box is positioned dy-

namically around the peak using an automatic peak detection

scheme based on the application of a median filter and extraction

of the local maxima in the DDM.
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Fig. 19. NOC (National Oceanographic Centre) fast-delivery inversion algorithm for TDS-1: Left—Two-dimensional histogram of the TDS-1/ASCAT matchup
dataset and fitted empirical power law relating U10 to SNR; Right—Retrieved TDS-1 wind speed against ASCAT winds for a validation subset of the TDS-1/ASCAT
matchup database.

The BRE algorithm is an advanced inversion model that cor-

rects for the GNSS-R bistatic viewing geometry and the receiver

antenna gain pattern effects in accordance with the BRE. A full

description of the BRE algorithm and its performance can be

found in [11]. Briefly, [11] showed that TDS-1 BRE wind speed

are retrieved without bias and a precision around 2.2 m/s for

winds between 3 and 18 m/s, even without calibration.

In contrast, the FDI algorithm is a simple empirically based

inversion developed from spaceborne GNSS-R measurements

acquired with TDS-1 while operating in automatic gain mode.

The only essential inputs to FDI are the SNR from the Level 1

DDMs and the antenna gain at the specular point (AGSP). The

FDI was designed as a placeholder for the MERRBys portal

to rapidly deliver TDS-1 Level 2 wind speed products in a

simple easy-to-understand format for potential operational and

commercial end-users of the data. The aim of FDI was, therefore,

not to achieve the best possible retrieval performance, but to

quickly deliver Level 2 product that demonstrate the sampling

capability of GNSS-R and encourage the uptake of GNSS-R

data by users.

The FDI algorithm was derived from a globally distributed

matchup dataset of TDS-1 GNSS-R data collocated with sur-

face wind speed from the METOP ASCAT-A/B satellite scat-

terometers. ASCAT data were collocated within 1 h and 1◦

of latitude/longitude of TDS-1 and correspond to 10 m wind

speed over ice-free and rain-free ocean conditions. The matchup

dataset served to establish the empirical relationship between

SNR and surface wind speed, which is illustrated in Fig. 19.

The relation can be approximated by a power law with fitted co-

efficients determined by least-square fitting of the TDS-1 data

U10 = AXB , (6)

and

X = SNR − k1 ∗ AGSP + k2 . (7)

Nominal values of A, B, k1 and k2 for TDS-1 are 97.24,

−2.28, 0.215, and 3, respectively.

Application to GEROS: Validation of GEROS-SIM for Scat-

terometry: The “L1-to-L2-Processor-Scatterometry” module of

GEROS-SIM (see Fig. 10) is based on the implementation of

the NOC FDI algorithm developed for TDS-1. A series of tests

was performed to validate the GEROS-SIM simulation suite

in its integrated form, consisting of the application of the pro-

cessing module to 1 Hz DDM produced by the GEROS-SIM

Instrument-to-L1 module.

The complete simulation suite, beginning from Level 0 in-

strument data was tested for several instrument configurations,

including one that adopted parameters representing as closely

as possible the mission characteristics of TDS-1 in terms of

altitude, antenna-beam pattern/pointing, DDM size/resolution,

etc. The TDS-1 setup consists of a fixed highly directional re-

ceiving antenna with main beam pointing slightly off-nadir (6◦

behind the spacecraft in the direction of flight), so that changes

in incidence angle at the specular point are also associated with

changes in AGSP. GEROS-SIM was also tested for setup pa-

rameters representative of the GEROS instrument and orbital

elements of the ISS platform. However, only results for the

“TDS-1 setup” are presented here.

The input test parameter space for the simulations comprised

a wide range of wind speeds and incidence angles. The parame-

ters used to run GEROS-SIM in the “TDS-1 configuration” are

summarized in Table III. The incidence angle at the specular

point ranged from 0◦ (nadir) to 60◦ in 10◦ steps. In order to

avoid possible numerical singularities, the incidence angle at

nadir was deliberately set to 0.01◦. Retrieved wind speed reso-

lution will vary according to the size of the illuminated surface

area corresponding to the fixed-size DDM signal box selected

by the scatterometry algorithm. Illuminated area depends on the

incidence angle following an inverse cosine-square law 1/cos2θ,

where θ is the incidence angle.

Input U10 spanned across three wind speed regimes—low,

medium, and high winds—with different incremental steps,

which overall covered the range 0.01 to 60 m/s wind speed.

This permitted detailed assessment of the performance of the

integrated GEROS-SIM across the full range of wind speed
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Fig. 20. Examples of L1 DDM produced by the GEROS-SIM M2 module with the TDS-1 configuration. The L1 DDM correspond to different wind speeds and
incidence angles as indicated in the legend of each subplot (Inc: 0.1◦ corresponds to nadir).

TABLE III
PARAMETERS OF THE GEROS-SIM SIMULATOR IN THE TDS-1 CONFIGURATION

Receiver altitude 635 km

Coherent integration time 1 ms

Incoherent integration time 1 s

Number of delay bins in DDM 200

Delay bin resolution 0.2 C/A chip

Number of Doppler bins in DDM 30

Doppler bin resolution 500 Hz

Maximum antenna gain 13.3 dBi

Incidence angle at the specular point 0.01 (near-nadir), 10, 20, 30, 40, 50, 60 deg

Input wind speed Low range: 0.01, 0.05, 0.1, 0.25, 0.5, 1, 2, 3 m/s

Medium range: 3–20 m/s (3 m/s interval)

High range: 20–60 m/s (5 m/s interval)

regimes. However, the current implementation of the GEROS-

SIM simulator solely supports spatially uniform winds across

the glistening zone. This is not always fully representative of

reality, particularly so at high (U10 > 30 m/s) wind speeds.

Examples DDMs produced by the GEROS-SIM Instrument-

to-L1 processing module are shown in Fig. 20 for a sub-

set of the input wind speed and incidence angles detailed in

Table III. The format and appearance of the simulated DDMs

were found to be qualitatively consistent with real DDM mea-

sured with TDS-1.

Next, the Scatterometry module was applied to the L1 dataset

produced by the Instrument-to-L1 module for the full range

of parameters shown in Table III, corresponding to approxi-

mately 150 individual simulations. Fig. 21 shows the SNR es-

timated with the NOC FDI algorithm of the L1-to-L2-module

against input wind speed. The simulated SNR was found to

Fig. 21. Signal-to-noise ratio obtained with the GEROS-SIM M5 scatterome-
try module applied to M2 L1 DDM obtained for different input wind speed and
incidence angle of the specular point (Inc: 0.1◦ corresponds to nadir).

decrease with increasing input wind speed, with the sensitivity to

wind speed asymptotically tending to zero at high winds. In this

TDS-1 configuration, the SNR also decreases with increasing

incidence angle, which agrees with experimental observations

from TDS-1.

Finally, the FDI algorithm was tuned to the GEROS-SIM sim-

ulated data to obtain the fitted parameters of the FDI geophysical

model function for GEROS-SIM. Given the limited number of

simulator realizations available (96), the training dataset was

also used for validation. The results are shown in Fig. 22. Af-

ter tuning, the performance of the simulated L2 wind speed

for GEROS-SIM was found to be similar to that obtained with
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Fig. 22. GEROS-SIM results with the TDS-1 setup showing (left) the FDI algorithm tuned to GEROS-SIM data and (right) the performance of the retrieved L2
wind speed for GEROS-SIM.

TDS-1 data, namely wind speed is retrieved with very small

bias and with a precision around 4.5 m/s in the 0–60 m/s wind

speed range and across all incidence angles. Although further

tests are needed to fully validate the GEROS-SIM simulator for

scatterometry, these preliminary results give confidence in the

ability of GEROS-SIM to realistically capture the main charac-

teristics of GNSS-R signals over the ocean.

D. Precise Orbit Determination for GEROS

The success of the GEROS experiment critically depends on

the ability to accurately geolocate the phase centre position of

the GNSS-R antenna in a well-defined Earth-fixed terrestrial ref-

erence frame. For this purpose, POD using GNSS carrier phase

tracking data, collected by a dedicated zenith-looking antenna,

is a prerequisite and thus a key task of the GEROS experiment.

Most stringent POD accuracy requirements are needed for many

satellite missions, typically demanding (1-D) position RMS er-

rors of few centimeters, e.g., for gravity missions such as GOCE

[53] and altimetry missions such as Jason-2 [54]. Especially the

radial component is crucial for the altimetry missions to derive

high quality data products. We note that the POD measurements

from GEROS also can be used for three-dimensional (3-D) up-

side ionosphere monitoring, as initially demonstrated with data

from the CHAllenging Minisatellite Payload [55] satellite [56].

Offline reduced-dynamic POD based on dual-frequency GPS

data has been evolved to a mature and well-established technique

offering cm-accuracies, provided that the attitude motion of the

onboard GNSS receiver antennas in inertial space is precisely

known from additional measurements, e.g., star camera read-

ings, and/or using additional GNSS antennas. Only marginally

worse accuracies are today achieved in the kinematic mode if

the number of simultaneously and continuously tracked GPS

satellites is sufficiently large [57]. Whereas reduced-dynamic

POD of the center-of-mass position of a smaller satellite is in

principle straightforward, a much greater challenge is posed by

large platforms such as the ISS [58]. Significant errors might

be introduced by the inaccurate knowledge of the center-of-

mass position with respect to the POD antenna phase center,

the poor knowledge of deformations and vibrations of the plat-

form structure, for example, due to Earth shadowing effects, and

the presence of signal obstruction effects degrading the num-

ber of simultaneously tracked satellites even for zenith-looking

POD antennas. Even when using dual-frequency GNSS data,

the achievement of subdecimeter orbit accuracies for the ISS

would be a challenge when relying on dynamic POD. Due to

these difficulties, a kinematic determination of the phase center

position of the POD antenna is planned for the GEROS ex-

periment. For this purpose, the POD antenna is embedded as

part of the GEROS antenna itself, removing the need for auxil-

iary attitude knowledge of the ISS. With a typical separation of

10–20 cm between the up-looking and down-looking antenna,

an attitude uncertainty of the ISS of about 3◦–4◦ only translates

into a vertical impact of about 0.3 mm in the worst case.

E. GNSS Radio Occultation with GEROS

A further additional objective, which was identified already

in the GEROS proposal is GNSS-based RO for precise sound-

ing of the neutral atmosphere and the ionosphere. GNSS-RO

data are currently already operationally available from several

missions, e.g., FORMOSAT-3/COSMIC, Metop-A/B, GRACE,

or TerraSAR-X [59], [60] and several new operational missions

with GNSS-RO will be realized (e.g., COSMIC-2, EUMET-

SAT Polar System—Second generation, EPS-SG). Therefore,

the need to get RO data from GEROS is less compelling and

is regarded as mission goal with lower priority, compared to

GNSS-based ocean remote sensing.
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TABLE IV
LIST OF FORESEEN DATA PRODUCTS FROM GEROS

Sea Surface Height:

L1: Time collocated waveforms of the reflected signals

L2: Sea surface height along the reflection tracks, geo-located and time-tagged

Mean Square Slope:

L1: Waveforms or Doppler Delay Maps of the reflected signal

L2: Surface roughness, wind speed, geo-located and time-tagged

Precise Orbit Determination:

L1: Dual frequency GNSS POD data, GNSS-R antennae phase centers

L2: POD and GNSS-R antennae phase centers, inter-constellation bias data

GNSS Radio Occultation:

L1: Dual frequency excess phases, bending angles

Scatterometry over land (if instrument allows):

L1: Time collocated waveforms or Doppler Delay Maps of the reflected signals

Nevertheless, there are several new aspects supporting RO

measurements within GEROS. These are as follows:

1) Innovation for the RO technique: The ISS inclination al-

lows for better data coverage and stronger RO signals in

the tropics and the mid-latitude regions compared to the

polar/near-polar orbiting RO missions. GEROS might en-

able initial application of Galileo and GLONASS signals

for RO, as well as initial application of the polarimetric oc-

cultation concept for the detection of strong precipitation

events [61], [62] in parallel and to continue measurements

of the Spanish PAZ satellite.

2) Strong complementarity to the GNSS-R approach, the

coherent reflectometry measurements for altimetric mea-

surements of sea and ice surface topography (part of the

primary mission goal, [42], [63]).

3) Provision of useful additional atmospheric (dry and wet

tropospheric) and ionospheric delay information partially

collocated with the GEROS GNSS-R measurements and

relevant for the analysis and correction of the reflectome-

try measurements for ocean surface height measurements

obtained aboard ISS.

4) Application of a new interferometric RO technique [64].

This approach replaces the use of the on-board generated

code replicas by recorded segments of the live received

GNSS signals. The GEROS payload, designed for best al-

timetry performance, enables such kind of RO processing

in a rather straightforward manner.

F. Anticipated GEROS Data Products

The GEROS mission foresees the classical Level 0 to Level 2

data product generation chain. Level 2 products will be the

main products for the geophysical user community. Additional

products and higher level products (Level 3) are expected to

be derived by scientific institutions and national groups inter-

ested in the GEROS data. Table IV overviews the potential data

products.

The GEROS data products will be made available and

archived for the international scientific user community via

one or several specialized GEROS scientific data process-

ing and archiving centres. A broad scientific and interdisci-

plinary GEROS user community will be formed by regularly

data user workshops, by joint scientific investigations result-

ing in publications in leading international geoscience jour-

nals and by joint acquisition of third party funded research

projects to support the scientific exploitation of the GEROS

data.

GEROS products could contribute to the global database for

operational weather and oceanic forecast systems. A precondi-

tion for this purpose is a near-real-time provision of the data

products (e.g., 3 h after the measurement for meteorological

data), which requires additional specific mission infrastructure

elements. Since GEROS is an experimental and demonstration

mission, such full operational data product provision is not fore-

seen in the current mission state but is planned to be demon-

strated within dedicated experiments for near-real-time product

provision.

V. SCIENTIFIC STUDIES

Part of the preparation of the GEROS mission and the work of

the SAG are dedicated scientific studies and campaigns, which

are summarized here.

A. Baltic Flight Campaign

The interferometric GNSS-R approach suggested at this stage

of the GEROS mission was experimentally proven and reported

in [65] (ground-based experiment) and [35] (airborne experi-

ment). The technical feasibility and the altimetric performance

of such technique were both explored in these campaigns, but

using a simple single-beam high-gain antenna without any pos-

sibility to test the synoptic capabilities (wide swath) of the con-

cept. Given that the iGNSS-R technique cannot separate the

source of signal by code demodulation techniques, it must be

done by antenna footprint discrimination from different and si-

multaneous beams of the antenna. Hence, the receiving system

must enable simultaneous multiple beam-forming and pointing

capabilities. An iGNSS-R instrument of this type did not ex-

ist and it had to be developed for such testing exercise. The

Software PARIS Interferometric Receiver (SPIR) is a very high

rate data logger that includes two antenna arrays, one look-

ing upward and the other looking downward, of eight elements

each. The signals collected by each one of the sixteen an-

tenna elements are down-converted and their 1-bit quantized

in-phase and quadrature components sampled at 80 MHz. This

generates a stream of data of 2.5 Gbit/s (320 MBytes/s) sus-

tained during several hours, typical length of airborne experi-

ments. The signals from each antenna element are synchronized

through a common clock and time-tagged by a commercial

GNSS receiver chip. This recording approach enables to test

any processing strategy (iGNSS-R and others), from as many

simultaneous visible sources (elevation range given by the an-

tenna pattern of a single antenna element, of ∼7 dB directivity

each).

An airborne campaign was conducted in May 2015 over the

Baltic Sea, following a similar trajectory as in 2011 iGNSS-R

demonstration campaign [35]. Despite RF interferences gener-

ated by the prototyped instrument, the analysis of the data has

permitted to confirm (and slightly improve) the altimetric pre-

cision obtained in the simple single-beam instrument in 2011

experiment. Agreement was found in both the single obser-

vation precision (∼0.15 m in 10 s integration in 2015 versus

∼0.19 m in 2011), as well as the ratio between the clean-replica
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Fig. 23. Power spectral density of the recovered aircraft trajectory (black line),
and three iGNSS-R solutions from three GPS sources: (red) PRN30 at incidence
angles between 76◦–79◦, (blue) PRN07 at incidence angles between 55◦–61◦,
and (green) PRN05 between 47◦–49◦ incidence angles. The mean solution has
been removed before analyzing the PSD.

and interferometric approaches (1.4 to 1.7 in 2015, depending

on the GNSS source, versus 1.87 in 2011—one single GNSS

source). Problems to precisely retrieve the aircraft trajectory

(driven by the interferences generated by SPIR hardware) hin-

dered the obtention of a final absolute altimetric solution. How-

ever, as illustrated in Fig. 23, the power spectral density (PSD) of

the retrieved solutions are driven by the trajectory fluctuations in

those features longer than 10 s. Furthermore, there is agreement

between the PSD of the three altimetric solutions, and all present

lower noise levels than the trajectory at time scales shorter

than 10 s.

B. Observation System Simulation Experiments

OSSEs have been widely used to evaluate potential impacts

of future observations [66], [67], in particular, those from new

satellite sensors in modeling and predicting environmental phe-

nomena. In OSSEs, the “truth” state is generated by a so-called

“nature run” or “nature simulation”using a comprehensive and

realistic model. Synthetic “observations” are acquired directly

from the “nature run” (or from a retrieval algorithm of a specific

measurement) using the sampling characteristics of the target

observing system. The corresponding measurement errors are

simulated and added to the synthetic observations. A different

model run (called the “control run”) is then performed with dif-

ferent initial conditions and/or model forcing/parameters so that

the model state is different from the “nature run.” The synthetic

observations are assimilated into the control run. The impact of

the synthetic observations is examined by assessing how well

the assimilation run reproduces the true state.

Several OSSE were conducted to investigate the potential of

the GEROS data to improve oceanographic forecast capability.

We briefly review the three studies, performed by GFZ, JPL,

and NERSC.

1) JPL: The OSSE studies from JPL have focused on the po-

tential of GNSS-R altimetry on detection and representation of

mesoscale ocean features, such as eddies, filaments, and fronts.

One study is to assess the impact of GNSS-R SSHs in the model

analysis and forecast of the shedding of a loop current eddy in

the Gulf of Mexico during 2011 using OSSEs. The shedding

of loop current eddies has major impacts in the physical, bi-

ological, and chemical conditions in the region. However, its

prediction remains a challenge.

At JPL, a variety of OSSEs have been conducted and ana-

lyzed, employing a multiscale 3-D variational data assimilation

system [68]–[70]. The measurement errors in SSHs are speci-

fied to have a Gaussian distribution and a mean error of 0.5 m

for normal incidence angle (the nadir point). The mean error is

specified conservatively and stems from a realistic assumption

for the GEROS antenna gain, and the preliminary knowledge

of the link budget. Since the delay, bending, and other errors

proportionally depend on the incidence angle, this dependence

is taken into account by a factor of 1/cosθ, where θ is the inci-

dence angle of the transmitter with respect to normal. Because

of the dependence on the incidence angle, only those observa-

tions with an incidence angle less than 60◦ are used. In this case,

the footprint size can be approximately specified as 10 km [71].

Synthetic SSH observations derived from the nature simulation

are assimilated every 12 h.

There was an eddy shedding event in November 2011. The

model simulation that is used as the true state realistically re-

produces the shedding event. The model with the assimilation

of the SSHs from the ISS receiver recovers the shedding event,

although the shedding eddy is weaker (0.3 m in amplitude)

than the one in the true state (0.5 m in amplitude, Fig. 24).

In contrast, the model without data assimilation (control run)

reproduces the shedding eddy event with 0.2 m in amplitude.

These OSSEs indicate the potential of enhancing the model

capability of representing the eddy shedding using the ISS

GNSS-R SSHs.

Recently, further analysis at JPL has shown that mesoscale

SSH fields can be mapped down to a scale of 100 km for two

days [71], assuming that there are six receivers on board of

six high-inclination satellites such as those of the COSMIC-2

(http://www.cosmic.ucar.edu/cosmic2). The assimilation of

SSHs from these six receivers accurately reproduces the eddy

shedding (see Fig. 24). This result highlights the potential of

increase in the impact of the ISS GNSS-R SSHs when they

are combined with other GNSS-R SSHs from possible future

missions.

Another important implication of these OSSEs is that the

modeling and data assimilation system is able to effectively di-

gest the GNSS-R SSHs, although the measurement errors range

from 0.5 to 1.0 m. Such measurement errors are two orders

of magnitude larger than the measurement error of the tradi-

tional nadir altimetry. The tolerance of a model and data as-

similation system to the large GNSS-R errors arises from its

high spatiotemporal density. The high observation density al-

lows the data assimilation process to smooth the measurement

error down.

2) GFZ: The GFZ conducted an OSSE that studied and com-

pared the performance of different GNSS-R measurement con-

figurations [72]. The configurations differ in the assumptions

about the observations precision (code or phase precision) and

in assumptions about the usable range of reflection angles. The

latter assumption is closely linked to the expected spatiotempo-

ral density of the observations. Respective observations of SSH

are simulated for the ocean current system around the South

African coast. The noisy observations and their precisions are



4572 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 9, NO. 10, OCTOBER 2016

Fig. 24. Observing system simulation experiments (OSSEs) on the impact of GNSS-R SSHs on the eddy shedding in the Gulf of Mexico loop current. The maps
are snapshots of SSHs (in m) on October 28 and November 18, 2011. The true state (True) is from a simulation of an eddy shedding event in November 2011.
The regional ocean modeling system (ROMS) is used, and it has a horizontal resolution of 6 km. The ROMS model is initialized on October 15. The simulated
observations are assimilated into the model every 12 h after the initialization. The observation errors have a Gaussian distribution with a mean of 0.5 m. The result
from the OSSE for one receiver on board of ISS (ISS) is given, along with the result from six receivers following the COSMIC-2B constellation (COSMIC-2B)
for a comparison. The experiment without data assimilation (NO-DA) is given as a control simulation.

assimilated by 4-D-VAR into a regional ocean model [73]. The

performances of the different GNSS-R measurement configura-

tions are evaluated by the assimilation’s ability to recover the

original oceanographic processes which lead to the observed

SSH. The analysis is conduced scale-dependent to infer which

processes can be resolved by assimilating GNSS-R observa-

tions. As shown in Fig. 25, all studied scales improve by the

assimilation of SSH from GNSS-R. The most gain is found in

the mesoscale between 500 and 3000 km with the maximum

gain around 1000 km.

By comparing the RMS of different measurement configura-

tions, it is demonstrated that the observation’s precision is of

minor importance. The high spatiotemporal density achievable

by GNSS-R measurements is able to compensate the differences

between code and phase precision. Consequently, limitations in

the range of usable reflection angles and the connected reduc-

tion in observation density significantly impact the performance

of the assimilation.

Due to the key role of the Agulhas region in Earth’s climate

[74], one of the study’s main focus is the recovery of subsur-

face processes and transports, i.e., velocity, temperature, and

salinity distributions down to the sea floor. Fig. 26 shows the

temporal development of improvements that the assimilation of

GNSS-R observations induces in the models velocity, temper-

ature, and salinity. Although the GNSS-R-based SSH observa-

tions are only assimilated at 25% of the model domain’s surface
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Fig. 25. Scale-dependence of sea surface height RMS-errors in the study
region. Black dots: RMS-errors of the reference simulation. Red dots: RMS-
errors of the GNSS-R assimilation. Inset: RMS-improvement (relative to the
reference simulation) due to the assimilation of GNSS-R observations.

Fig. 26. Temporal development of RMS-improvements (3d-mean, relative to
the reference simulation) of not assimilated oceanographic properties.

area, the RMS of all subsurface properties improves substan-

tially throughout the domain.

In summary, the study provides a demonstration of the use-

fulness of GNSS-R observations to recover the true 3-D ocean

state and the connected oceanographic processes. Furthermore,

the study gives the recommendation that for oceanographic pur-

poses GNSS-R missions should prioritize the optimization of

FoV and reflection angle range over the optimization of preci-

sion.

3) NERSC: NERSC investigated the influence of simu-

lated observation data from three different GEROS constella-

tions against the present performance of state-of-the-art eddy-

resolving ocean data assimilation system. It is expected that the

reflectometer data can bring complementary data in the case

of severe storms, so a regional HYCOM model of the South

China Sea (SCS) was considered, equipped with an Ensemble

optimal interpolation assimilation system for traditional along-

track altimeter data and SST. The period of interest is July 2014

during which the SCS has been hit by the typhoon Ramasun. The

model and assimilation systems are described in [75] and the

simulated GEROS data, described in Section IV, are assimilated

in addition to the “present day” observing system, together with

their specified uncertainty properties. A “truth” run is gener-

ated by assimilation of (real) traditional altimeter and SST data,

then its initial conditions are perturbed by a shift of the initial

date tag and two runs are integrated without GEROS (stan-

dard observing system) and with GEROS data as would have

been obtained from three observing scenarios: GEROS onboard

the ISS, GEROS-FOV1 and FOV2 for two different FoVs (not

shown here).

The results in Fig. 27 indicate that the GEROS data can im-

prove the rendering of mesoscale features in the SCS over the

satellite constellation that was active in July 2014. Statistics

over the whole month of July 2014 indicate that the GEROS can

reduce the RMS errors of sea level anomalies by 13%, which

is a significant improvement in an operational ocean forecast-

ing system, whereas the GEROS-FoV1 and FoV2 achieve even

greater reductions by 20% and 29%, respectively.

C. GNSS-R for Land Applications

The low frequency band exploited by the navigation systems

(i.e., typically L-band) is suitable for land applications, such

as soil moisture and vegetation biomass monitoring, due to the

reduced atmosphere attenuation, and especially the good pene-

tration capability.

The ESA Living Planet Programme foresees, among oth-

ers, a better understanding of the hydrological cycle throughout

a mapping of the soil moisture at global scale, and the im-

provements of weather and flood forecasts by assimilating soil

moisture observations into models. Vegetation constitutes the

link between water cycle and carbon cycle, since moisture dy-

namics impacts vegetation structure and growth and, in turn, the

soil–plant–atmosphere system. Forests, in particular, can store

large amount of CO2, and therefore are involved in the car-

bon cycle, which influences greenhouse effect, global and local

climatic change. Theoretical and experimental works have in-

vestigated the potential of GNSS-R for land applications. For

instance, interference patterns between direct and reflected sig-

nals are exploited on ground to derive soil moisture and snow

parameters. Although the sensitivity of the GNSS-R signal to

the target land parameters has been proved, it has not been

demonstrated the feasibility to exploit it from satellite in an op-

erational way, yet. The application of GNSS-R over land was

not included in the original GEROS proposal, but is regarded by

the GEROS-SAG as an additional and important mission objec-

tive. In this respect, many functionalities foreseen for GEROS

primary applications over ocean can be exploited for land as

well. In particular, the highly flexible antenna operating in both

circular polarizations shall provide independent pieces of in-

formation for land parameter retrieval, and its high gain will

enable to sense a wide signal dynamic range, especially over

dense vegetated targets (e.g., forests) with high attenuation.

ESA funded some exploratory studies to investigate these

issues. In the frame of the “Land Monitoring with Navigation

Signals” project a GNSS-R receiver, developed by Starlab

Barcelona, was installed on a crane and registered the signal

reflected from an agricultural area near Florence (Italy). An

entire crop growing season was covered, with high variability

of field moisture and roughness [76]. Electromagnetic models

were implemented as a unique software package (i.e., SAVERS)

able to predict the contribution of the coherent and incoherent

scattering mechanisms to the waveforms and DDM’s collected
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Fig. 27. Daily SLA maps of “Truth” (left), standard (middle), and GEROS-ISS runs (right) from 16 to 19 July, 2014 (unit: cm). The contour interval is 4 cm,
and the green line indicates the Ramasun typhoon track during the 24 h of the daily average map. The symbols of “TD, TS, STS, T, ST, SUPER T” are related
with the Tropical Cyclone Classification considering the maximum wind near the centre (km/h): TD: Tropical Depression (< 63); TS: Tropical Storm (63–87);
STS: Severe Tropical Storm (88–117); T: Typhoon (118–149); ST: Severe Typhoon (150–184); SuperT: Super Typhoon (≥185).

Fig. 28. Left: Sample ground-tracks of up to 4 simultaneous GNSS-R reflections after take-off Melbourne (Australia) collected with the LARGO instrument, and
Right: sample ground-tracks showing the variability of the scattering coefficient over terrain and water bodies. The color scale represents the forward scattering
coefficient (blue: high, red: low). The largest scattering is produced over water bodies, either the ocean (left image) or over water channels (right image). Over
the ocean there is also variability due to different sea states (left). Over land (right plot), lower/higher scattering (red/blue) is associated with lower/higher soil
moisture conditions (dry/moist soil). Surface roughness, vegetation, and topography effects also play a role in the magnitude of the scattering coefficient.
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over bare and vegetated targets [77]. The simulator was further

validated using data collected during the “GNSS Reflectometry

Analysis for Biomass Monitoring” airborne experiment [78].

Major findings were the quantification of the sensitivity of the

surface equivalent reflectivity to soil moisture and roughness,

whose combined effects can been disjoined by exploiting polari-

metric observations. Moreover, SAVERS correctly predicted the

observed attenuation of the coherent signal reflected by the soil

surface, which is directly linked to the above ground biomass of

forests. Finally, new prospects can be opened up by combining

the quasispecular observation of the GEROS reflectometer with

backscatter data collected by radar systems overpassing the

same area (e.g., Sentinel 1A or 1B). For instance, the increase of

backscatter and decrease of specular reflectivity with soil rough-

ness may help discriminating soil moisture from roughness

variations using such a multistatic approach. GNSS-R applica-

tions over land have also been explored by other experiments:

1) two stratospheric balloon experiments (BEXUS-17/19)

over boreal forests (Sweden and Finland) using the UPC

PYCARO instrument (dual-frequency L1 + L2, dual

polarization RHCP+LHCP, and multiconstellation: GPS,

GLONASS, and Galileo),

2) two airborne experiments in Victoria (Australia) and

Zamora (Spain) using the UPC LARGO (L1, C/A code,

and LHCP only), and

3) using data from the U.K. TDS-1 (L1, C/A code, and LHCP

only).

The BEXUS experiments showed a non-negligible coherent

scattering component, with a power nearly constant with the

platform height [12], a multimodal scattering behavior, show-

ing different scattering mechanisms in the soil surface and veg-

etation [12], and a polarimetric ratio ranging from −2 down

to −16 dB over different types of surfaces [79]. The airborne

experiments demonstrated the sensitivity to soil moisture, wa-

ter, but to vegetation and surface slopes as well [see Fig. 28(b),

[80]]. Topography and variations of the local incidence angle

have to be corrected, and it was found that a combined use

of a water/vegetation index with GNSS-R reflectivity and land

surface temperature significantly improves the soil moisture es-

timation [81]. Finally, the analysis of the TDS-1 dataset, col-

located with SMOS level 3 soil moisture data, and MODIS

NDVI data, found a significant sensitivity for nearly bare soils

∼38 dB/(m3 /m3), with a high Pearson correlation parameter R =
0.63, although vegetation effects [37] were clearly noticeable, as

well as topography effects, whose correction will require further

analysis due to the larger footprint than in airborne experiments.

We briefly mention here also the high potential of GNSS-R

for snow surface monitoring (see, e.g., [82], [83]), which is not a

main driver of the mission. This application was not investigated

in detail during the recent GEROS preparation phase, but is

expected to be focussed more during the course of the mission.

VI. SUMMARY AND OUTLOOK

This paper gave a description and status overview of ESA’s

ISS experiment, GEROS, which seeks to exploit signals of op-

portunity from GNSS for ocean, atmosphere, and land cover

remote sensing. GEROS represents the first dedicated experi-

ment to assess the usefulness of spaceborne GNSS-R to detect

and map ocean surface height at the mesoscale (10–100 km or

longer scale) under all-weather conditions. The GEROS mea-

surements of SSH will complement SSH data from the multi-

satellite constellation of traditional radar altimeters, leading to

better monitoring of the ocean mesoscale variability at a finer

spatial scale closer to 10 km, which is not achievable by cur-

rent nadir altimeters. A major advance afforded by the GEROS

dataset will be to determine the value of GNSS-R as a means

of providing long-term sustained observations of eddies and

their variability. Moreover, GEROS will not only demonstrate

GNSS-R for sea surface altimetry and confirm its performance,

it will also allow to consolidate the required technology, provide

data to mature science and develop data-processing techniques.

To this end, GEROS will make use of the unique ISS platform

to generate an unprecedented dataset to advance the exploita-

tion of GNSS-based Earth observation techniques to provide

climate-relevant measurements, which represent the forerunner

of potential future operational missions capable of delivering

a long-term climate record of the Earth. After successful com-

pletion of Phase A, the feasibility phase, GEROS is now ready

to enter the implementation phases with an eventual launch in

2020.
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Diderot, Paris, in 1999.

Since 1999, he has been with the European Space
Research and Technology Centre, European Space
Agency, Noordwijk, The Netherlands, where he is
heading the Wave Interaction and Propagation Sec-
tion. His research interests include signal processing
and electromagnetic modeling applied to microwave

interaction with natural media.

Giuseppe Foti received the M.Eng. degree in elec-
tronics engineering from the University of Catania,
Catania, Italy, in 2000, and the M.Sc. degree in
oceanography from the University of Southampton,
Southampton, U.K., in 2013.

In 2001, he joined the Communication Systems
section of the European Space Agency, Noordwijk,
The Netherlands, where he conducted research in the
field of spread-spectrum techniques for packet access
in broadband satellite systems. From 2003 to 2010 he
served at the European Patent Office, Rijswijk, The

Netherlands, as Patent Examiner in the principal directorate of Telecommuni-
cations. In 2013, he joined the Satellite Oceanography section of the National
Oceanography Centre, Southampton, where he currently works as a Research
Scientist. His current research interests include remote sensing of the oceans,
with special emphasis on techniques using signals of opportunity (GNSS-R).

Christine Gommenginger received the Diplome
d’Etudes Approfondies degree in electromagnetics,
telecommunications, and remote sensing from the
University of Toulon, La Garde, France–University
of Nice Sophia Antipolis, Nice, France, and the
Ph.D. degree from the University of Southampton,
Southampton, U.K., on microwave radar remote sens-
ing of the ocean at low grazing angles.

She has worked at the National Oceanography
Centre for over 20 years. Her research interests in-
clude active and passive microwave remote sensing

of the ocean, understanding interactions of microwave signals with the ocean
surface, remote sensing of ocean wind and waves, and developing new Earth Ob-
servation technologies and applications. Her work includes research in altimetry
for sea state, along-track interferometric SAR for currents, global navigation
satellite systems reflectometry for surface winds and sea state, SAR altimetry,
salinity from space with SMOS, and wide-swath ocean altimetry.

Jason Hatton received the Ph.D. degree in Biology from the Universite Louis
Pasteur Strasbourg, Strasbourg, France.

He is the Head of the Biology and Environmental Monitoring Unit in the
Directorate of Human Spaceflight, European Space Agency, Paris, France. Since
2005, he has been responsible for the overall definition and coordination of
biology and astrobiology science within the ESA ELIPS program, which are
implemented on a variety of ground and flight research platforms, including
the International Space Station. Furthermore, he is responsible for the overall
coordination of the ESA ISS Experiments relevant to climate change, which
includes the GEROS experiment. He also coordinated the joint ESA-NASA
airborne observation campaign for the first ESA Automated Transfer Vehicle
(ATV-1) re-entry in 2008. Prior to joining ESA he worked as a Researcher at the
VA Medical Center/UCSF, San Francisco, CA, USA, from 2001 to 2005. He has
performed research on immune cell early signal transduction under microgravity
conditions, including a series of experiments using the ESA Biorack facility on
Shuttle during the 1990s.

Per Høeg received the M.S. and Ph.D. degrees in geo-
physics and physics from the University of Copen-
hagen, Copenhagen, Denmark, in 1981 and 1987,
respectively.

He has been a Researcher at the Danish Space
Research Institute (1981–1986), the Max-Planck In-
stitute for Aeronomy, Germany (1982–1985), and a
Senior Researcher and the Head of Research at the
Danish Meteorological Institute (1986–2004). His
previous positions are external Associate Professor
at the Niels Bohr Institute, University of Copenhagen

(1994–2000), and a Professor at Aalborg University (2004–2009). Since 2009,
he has been working as a Professor with the Technical University of Denmark
(DTU), Kgs. Lyngby, Denmark, in satellite navigation, space technology, and
atmosphere physics. His research interests include global navigation satellite
systems (GNSS) satellite navigation, GNSS ocean reflections, ionosphere and
atmosphere radio occultations, electromagnetic wave propagation, multipath
phenomena, and turbulence.
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