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Gershgorin Theory

for the Generalized Eigenvalue Problem Ax — \Bx

By G. W. Stewart*

Abstract.   A generalization of Gershgorin's theorem is developed for the eigenvalue

problem Ax = XBx and is applied to obtain perturbation bounds for multiple eigen-

values.   The results are interpreted in terms of the chordal metric on the Riemann

sphere, which is especially convenient for treating infinite eigenvalues.

1. Introduction. The object of this paper is to develop a perturbation theory for

the generalized eigenvalue problem Ax = ï\Bx that parallels the perturbation theory

developed by Wilkinson [4, Chapter 2] for the ordinary eigenvalue problem. The theory

rests on a generalization of the Gershgorin theorem, whose results are interpreted in

terms of the chordal metric in the Riemann sphere.  This approach has the advantage

that it deals readily with multiple and infinite eigenvalues.

Throughout this paper, we shall identify the (possibly infinite) eigenvalue X = a/ß

with the point in the projective complex line defined by

[a,0] = {(M)#(O,O):a/0 = X}.

We shall equip the projective complex line with the metric x defined by

,r    „,   r , „m, \aß'-a'ß\_
X([a,j3], [tt,gl)= —

vV+l/3|2vVl2+l|3'l2

The number x([a» ß] » [°\ ß']) is the chordal distance between the two points X = a/ß

and X' = a ¡ß' when they are projected in the usual way onto the Riemann sphere. By

abuse of notation, we shall let x(a, X') denote this distance, so that in this context x is

the chordal metric for the set of complex numbers [1, p. 81].

The justification of the use of the chordal metric lies in the simplicity of the final

results, in particular in the uniform treatment of large and small eigenvalues. To illustrate

this, we shall begin with an application to first-order perturbation theory for a simple

eigenvalue.

Let A, B, E, and F be square n x n matrices with complex elements and let X be
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THE GENERALIZED EIGENVALUE PROBLEM Ax = \Bx 601

a simple eigenvalue of the problem Ax = \Bx with eigenvector x normalized so that

\\x\\2 = 1.  Let y be the left eigenvector corresponding to X, again normalized so that

¡lyll2 = 1.   Let

a = yHAx,     ß = yHBx,

so that the point [a, ß] is identified with X.  It has been shown by the author [3] that,

for sufficiently small E, and F, there is an eigenvalue X' satisfying (A +E)x = X'(B+F)x'

that can be identified with [a + yHEx, ß + yHFx], except for terms of order \\E\\2 and

||F||2.  Thus, in our approach, the sensitivity of X to perturbations in A and B will be

measured by

X(A, X') = X([a, ß], [a + yHEx, ß + yHFx] )

\ayHFx - ßyHEx\

Vial2 + \ß\2 Vi« +yHEx\2 + \ß+yHFx\2

To obtain meaningful approximate perturbation bounds, let

ö = tan"1|X|,      i> = vW + \ß\2,

and

e = \/\yHEx\2 + |y"Fx|2.

Then a/v = sin 9 and ß/v = cos 9.  Hence we have the approximate bound

H n                                       ,        cos 9\y"Ex\ + sin 9\yHFx\K X(A, X')<-,

which is accurate up to terms of order e2.

In the terminology of numerical analysis, the bound (1.1) says that v~l is a con-

dition number for the eigenvalue X in the sense that it measures how perturbations in

A and B will affect X.  If v is small compared with E and F, then one can expect large

changes in X.  It should be noted that ill-conditioned eigenvalues need not be large,

and conversely a large eigenvalue need not be ill-conditioned.   For example, the bound

(1.1) can be quite small even when ß = 0 and hence X = °°, which illustrates the utility

of the chordal metric in dealing with this problem.

The factors cos 0 and sin 9 appearing in (1.1) are a little unusual, but they make

sense.  For example, when 0=0, the eigenvalue X is zero and the matrix A is singular.

The disappearance of the term sin 9\yHFx\ in (1.1) then says that perturbations in

B cannot affect the singularity of A.

Although the above bound is quite satisfactory for practical work, it is interesting

to relate v to the condition number for the ordinary eigenvalue problem.  This may be

done as follows.  Suppose Bx ¥= 0 (if Bx = 0, use Ax in what follows).  Define
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602 G. W. STEWART

k = \\Bx\\2l\ß\ = sec ^iy,Bx)

and

p = vWn! + 115x111.

Then v-1 = n/p. When B = I, the number k is the secant of the angle between the

left and right eigenvectors corresponding to X, which is the condition number for the

ordinary eigenvalue problem [4, Chapter 2].  The number p measures how nearly x is

an approximate null vector of both A and B (when Ax = Bx = 0, det(4 - XÄ) = 0

and any number X is an eigenvalue). When B = I and |X| < 1, p < \¡2 and the bound

becomes essentially the bound for the ordinary eigenvalue problem.  If |X| ~> 1, then the

bound (1.1) deviates from the usual bound because of the distorting effects of the

chordal metric outside the unit circle.

The above theory has two drawbacks.  First, although the bound is asymptotically

accurate, the theory does not provide a bound on the remainder.  Second, the theory is

not applicable to multiple eigenvalues.  It is the object of the next two sections of this

paper to remedy these defects.  In Section 2 we shall develop a generalization of

Gershgorin's theorem and in Section 3 apply it to develop a perturbation theory for

multiple eigenvalues.

Throughout the paper, we shall use Householder's notational conventions [2]. We

shall use the symbols || • ||    (p = 1, 2, °°) to denote the usual Holder vector norms.

2. Gershgorin Theory.  Let A and B be matrices of order n.   Set

a"= («in. * * ' . «,,,-_!, %i+l, • • • , ain);

that is, a? is the vector formed from the ith row of A by deleting its ith component.

Define the vectors b¡ similarly. The following theorem generalizes the Gershgorin ex-

clusion theorem [2, pp. 65ff].

Theorem 2.1. Let X be an eigenvalue of the problem Ax = XBx.   Then X lies

in the union of the regions G¡ defined by

Gi = {[«« + «f % ßu + b?*] : llxIL < 1},      (/ = 1, 2, • • • , «).

Proof.   Let Ax = Xßx and suppose that the ith component of x is largest in

absolute value.  Since x ¥= 0, we may assume without loss of generality that %( = 1.

Form x from jc by deleting its ith component. Then ||3r IL < 1 and

aii+a?x=\ißii + b?x),

which says that À G G,-.    □

In stating Theorem 2.1  we have used the usual identification of the complex pro-

jective line with the Riemann sphere.  The proof of the theorem in addition exhibits

the region in which X must lie; namely the region corresponding to a maximal compo-
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THE GENERALIZED EIGENVALUE PROBLEM Ax = \Bx 603

nent of the eigenvector. When B = I, the regions G,- become the disks in the complex

plane defined by

G," {X: IX-«,.,•!< Ha,-II,},

which are the usual Gershgorin disks.

As they are defined, the sets G¡ are not convenient to work with.  Instead we

shall work with neighborhoods, defined in terms of the chordal metric, that are generally

larger.  Specifically, we have

x([ota,ßu],K+af3c,ßtl+b»3ti])

=_M"*-iV,"*i_
A-/12 + Iß/ VK + afx\2 + |ß,,. + b?x\2

y/fr,(\2 + \ßti\2 y/ctf + ß%

= P¡,

where

«;,. = max{0, \aü\ - \\ai\\.}

and

ß'u = max{0, lft#| - llô.-IUl.

Hence if we set

G; = {X: x(Vft. X> < "i>»

the eigenvalues of Ax = Xffcc lie in the union of the G\.  Note that if B = I and the

elements of ,4 are less than unity, then the G\ give a fair approximation of the usual

Gershgorin disks.

The utility of the Gershgorin theorem in its applications to the eigenvalue problem

is enhanced by the fact that we can often localize a specific number of eigenvalues in a

union of some of the G¡.  The same is true of our generalization.

Theorem 2.2. // the union of k of the Gershgorin regions is disjoint from the

remaining regions and is not the entire sphere, then exactly k eigenvalues lie in the

union.

Proof. Suppose, without loss of generality, that the regions in question are G,,

G2,--',Gk. Write A = A. + A2 where A. = diag(au, a22, • • • , ann) and, simi-

larly, write B = B. + B2 where B. = diag(j3j,, ß22, • • • , ßnn). For 0 < e < 1, set

Aie) = A1+eA2    and    5(e) = Bt 4- eB2,
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604 G. W. STEWART

and let G,(e) be the corresponding Gershgorin regions, which of course satisfy Gt(e)CG¡.

Now the hypotheses of the theorem insure that the characteristic polynomial

pe(X) = det(4(e) - XÄ(e)) cannot vanish identically; for otherwise any number X would

be an eigenvalue and  \J"=1G¡ would be the entire sphere.  This means that the eigen-

values of A(e)x = XBie)x must vary continuously in the sphere, or, what is equivalent,

there are continuous functions X((e)  (i = 1,2, • • • , n) such that Xj(e), X2(e), • • • ,

X„(e) comprise all the eigenvalues of Aie)x = XB(e)x. We may choose X,(0) = au/ßu.

Then since X,.(0) G U*=iG/0)  (/ = 1, 2, • • • , k) and   \Jk=1G¡(e) n \Jn=k+.Gfe)=0,

we must have X,.(l) G U*_, G/l) for (i = 1, 2, • • • , jfc) and X,.(l) £ U"=*+i G/l) for

(i = k + 1, • • • ,n).    O

3. Perturbation Theory.  In [4], Wilkinson has applied the Gershgorin theorem to

produce a perturbation theory for the eigenvalue problem.  The heart of his theory is a

technique in which off diagonal elements of order e are reduced to order e2 by diagonal

similarity transformations.  In this section, we shall show that the same technique can

be applied to the generalized eigenvalue problem.  Since it is the technique rather than

its specific applications that is of chief interest, we shall confine ourselves to one of the

several cases treated by Wilkinson, the case where the problem has a complete set of

eigenvectors.

Specifically, we shall be concerned with the case where there are nonsingular

matrices X and Y such that

YHAX = diag(a,, a2, • • • , an)    and    YHBX = diagfj^ , ß2, • • • , ßn).

For definiteness we shall take X and Y to have columns of 2-norm unity.  Of course

the eigenvalues of Ax = \Bx are Xf = ajßi  (i = 1, 2, • • • , n). We shall suppose that

the first p eigenvalues are equal and distinct from the remaining q = n - p eigenvalues,

and we shall apply the Gershgorin theory of the last section to obtain perturbation

bounds for this set of multiple eigenvalues.

Let E and F be matrices of order n and let e be an upper bound on the elements

of the matrices YHEX and YHFX.  Then YH(A + E)X and YH(B + F)X have the

generic forms (n = 5)

(cvj + e e              e          e             e

e a2 + e         e           e             e

e e o¡3 + e       e             e

e e              e a4 + e       e

e e               e           e a5 + e

If e is small enough, the first p Gershgorin regions will be disjoint from the others, and

their union will contain exactly p eigenvalues which are necessarily near \.. However,

we can obtain an even better result.

Let T # 0 be given. The eigenvalues in question will be unchanged if the last

q columns of YH(A + E)X and YH(B + F)X aie multiplied by r.   If this is done, the

0A+e
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THE GENERALIZED EIGENVALUE PROBLEM Ax = XBx 605

new matrix YH(A + E)X has the form (n = 5, p = 2)

re

re

re

T(a4 + e) Te

re re t(as + e)/

and YH(B + F)X has a similar form. We shall attempt to choose r < 1 so that the

first p Gershgorin regions are disjoint from the others.

Let

6 = min {x(X,-, X;): i = 1, 2, • • • , p;j = p + 1, • • • , n}.

Let

and

v, = VV/I2 + \ßi\2       (i= 1,2, ••• ,n)

v = min {v¡: i = 1, 2, • ■ • , n}.

Then the first p Gershgorin regions are contained in the disk whose center is X. and

whose chordal radius is

!<*,■! +Iff,-1      (p + Tg)e V2(p + rf?)e

' vi - y/2(p + Tq)e       v - sj~2ip + rq)e

Likewise the remaining q regions will be contained in disks whose centers are X(- and

whose chordal radius is \/2(p + Tq)ejijv — \¡2(p 4 rq)e).  Thus,if we can find t satis-

fying 0 < T < 1 such that \/2(p + Tq)e/in> - \/2(/7 + Tf7)e) < 5/2, the appropriate

Gershgorin regions will be disjoint.  This will surely be true if

s/2 ne (2 + Ô)

Thus we have shown that if (3.1) is satisfied, there are exactly p eigenvalues in

the region defined by

X(X!, X) < y/2(p + rq)el(y - ^2(p + rq)e),

where v = min {v¡: i = 1, 2, • • • , p}.  For small e, this radius is asymptotic to \j2pe/v,

which shows that \¡2p[v is a condition number for the multiple eigenvalue Xj.

When X, is simple and (3.1) is satisfied, then the perturbed eigenvalue must lie in the

disk defined by

/a. 4y"Ex.    \     ^ j\a.\ 4 \ß.\ 4 2e)Tqe

X\ßi+yHFxl'    I     ' ul[vl-y/2il4Tq)e]'

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



606 G. W. STEWART

This bound approaches zero quadratically with e, which makes rigorous the observations

of Section 1.

The treatment sketched above, of course, does not exhaust all possible cases. Various

defective cases can be treated by applying the Gershgorin theorem to canonical forms, as

has been done by Wilkinson for the ordinary eigenvalue problem. Alternatively one can

use the techniques of [3] to split off a set of multiple eigenvalues and treat these separately

by means of the Gershgorin theorem. With either approach, the generalized Gershgorin

theorem is required to deal with multiple eigenvalues, and the use of the chordal metric

simplifies the final results.
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