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GESPAR: Efficient Phase Retrieval of Sparse Signals
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Abstract—We consider the problem of phase retrieval, namely,
recovery of a signal from the magnitude of its Fourier transform,

or of any other linear transform. Due to the loss of Fourier phase

information, this problem is ill-posed. Therefore, prior informa-
tion on the signal is needed in order to enable its recovery. In this

workwe consider the case in which the signal is known to be sparse,

i.e., it consists of a small number of nonzero elements in an appro-
priate basis. We propose a fast local search method for recovering

a sparse signal from measurements of its Fourier transform (or

other linear transform) magnitude which we refer to as GESPAR:
GrEedy Sparse PhAse Retrieval. Our algorithm does not require

matrix lifting, unlike previous approaches, and therefore is poten-

tially suitable for large scale problems such as images. Simulation
results indicate that GESPAR is fast and more accurate than ex-

isting techniques in a variety of settings.

Index Terms— Non-convex optimization, phase retrieval, sparse

signal processing.

I. INTRODUCTION

R ECOVERY of a signal from the magnitude of its Fourier

transform, also known as phase retrieval, is of great in-

terest in applications such as optical imaging [1], crystallog-

raphy [2], and more [3]. Due to the loss of Fourier phase infor-

mation, the problem (in 1D) is generally ill-posed. A common

approach to overcome this ill-posedeness is to exploit prior in-

formation on the signal. A variety of methods have been devel-

oped that use such prior information, which may be the signal’s

support (region in which the signal is nonzero), non-negativity,

or the signal’s magnitude [4], [5].

A popular class of algorithms is based on the use of alternate

projections between the different constraints. In order to increase

the probability of correct recovery, these methods require the

prior information to be very precise, for example, exact/or “al-

most” exact knowledge of the support set. Since the projections

are generally onto non-convex sets, convergence to a correct

recovery is not guaranteed [6]. A more recent approach is to use
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matrix-lifting of the problem which allows to recast phase re-

trieval as a semi-definite programming (SDP) problem [7]. The

algorithm developed in [7] does not require prior information

about the signal but instead uses multiple signal measurements

(e.g., using different illumination settings, in an optical setup).

In order to obtain more robust recovery without requiring

multiple measurements, we develop a method that exploits

signal sparsity. Existing approaches aimed at recovering sparse

signals from their Fourier magnitude belong to two main

categories: SDP-based techniques [8]–[11] and algorithms that

use alternate projections (Fienup-type methods) [12]. Phase

retrieval of sparse signals can be viewed as a special case of

the more general quadratic compressed sensing (QCS) problem

considered in [8]. Specifically, QCS treats recovery of sparse

vectors from quadratic measurements of the form ,

, where is the unknown sparse vector to be re-

covered, are the measurements, and are known matrices.

In (discrete) phase retrieval, where is the th

row of the discrete Fourier transform (DFT) matrix. QCS is

encountered, for example, when imaging a sparse object using

partially spatially-incoherent illumination [8].

A general approach to QCS was developed in [8] based on

matrix lifting. More specifically, the quadratic constraints where

lifted to a higher dimension by defining a matrix variable

. The problem was then recast as an SDP involving mini-

mization of the rank of the lifted matrix subject to the recovery

constraints as well as row sparsity constraints on . An itera-

tive thresholding algorithm based on a sequence of SDPs was

then proposed to recover a sparse solution. Similar SDP-type

ideas were recently used in the context of phase retrieval [9],

[10]. However, due to the increase in dimension created by the

matrix lifting procedure, the SDP approach is not suitable for

large-scale problems.

Another approach for phase retrieval of sparse signals is

adding a sparsity constraint to the well-known iterative error

reduction algorithm of Fienup [12]. In general, Fienup-type

approaches are known to suffer from convergence issues and

often do not lead to correct recovery especially in 1D problems;

simulation results show that even with the additional informa-

tion that the input is sparse, convergence is still problematic

and the algorithm often recovers erroneous solutions.

In this paper we propose an efficient method for phase

retrieval which also leads to good recovery performance. Our

approach is based on a fast 2-opt local search method (see [13]

for an excellent introduction to such techniques) applied to

a sparsity constrained non-linear optimization formulation of

the problem. We refer to the resulting algorithm as GESPAR:

GrEedy Sparse PhAse Retrieval. Sparsity constrained nonlinear

optimization problems have been considered recently in [14];

the method derived in this paper is motivated—although dif-

ferent in many aspects—by the local search-type techniques of
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[14]. In essence, GESPAR is a local-search method, where the

support of the sought signal is updated iteratively, according to

selection rules described in detail in Section III. A local min-

imum of the objective function is then found given the current

support using the damped Gauss Newton algorithm. Theorem

1 establishes convergence of the iterations to a stationary point

of the objective under suitable conditions.

We demonstrate through numerical simulations that GESPAR

is both efficient and more accurate than current techniques. Sev-

eral other aspects of the algorithm are explored via simulations

such as robustness to noise, and scalability for larger dimen-

sions. In the simulations performed we found that the number of

measurements needed for reliable recovery from Fourier mag-

nitudes seems to scale like , where is the sparsity level.

GESPAR is applicable to recovery of a sparse vector from

general quadratic measurements, and is not restricted to Fourier

magnitude measurements. Nonetheless, when the measure-

ments are obtained in the Fourier domain, the algorithm can

be implemented efficiently by exploiting the fast Fourier trans-

form, as we discuss in Section IV.

The remainder of the paper is organized as follows. We for-

mulate the problem in Section II. Section III describes our pro-

posed algorithm in detail and establishes convergence of the

local iterations. Implementation details for Fourier-based prob-

lems are provided in Section IV. Extensive numerical exper-

iments illustrating the empirical performance of GESPAR are

presented in Section V.

II. PROBLEM FORMULATION

A. Sparse Phase Retrieval: Fourier Measurements

We are given a vector of measurements , that corre-

sponds to the magnitude-squared of an point DFT of a vector

, i.e.:

(1)

Here is constructed by zero padding of a vector

with elements , . Denoting by

the DFT matrix with elements , we can

express as , where denotes the element-wise

absolute-squared value. The vector is known to be -sparse,

that is, it contains at most nonzero elements. Our goal is to re-

cover , or , given the measurements and the sparsity level .

The mathematical formulation of the problem that we con-

sider consists of minimizing the sum of squared errors subject

to the sparsity constraint:

(2)

where is the th row of the DFT matrix , and stands

for the zero-"norm", that is, the number of nonzero elements.

Note that the unknown vector can only be found up to trivial

degeneracies that are the result of the loss of Fourier phase in-

formation: circular shift, global phase, and signal “mirroring”.

Support Information: To aid in solving the phase retrieval

problem, we can rely on the fact that the autocorrelation se-

quence of (the first components of ) may be determined

from if . Specifically, let

(3)

denote the correlation sequence of length . If we choose

, then can be obtained by taking the inverse

DFT of .

Determining requires oversampling, or zero-padding of .

While this additional information improves the recovery perfor-

mance, as demonstrated in the simulation section, it is not actu-

ally needed for GESPAR towork. Nevertheless, when this infor-

mation is available, GESPAR exploits it, in the following way.

First, we assume that no support cancelations occur in ,

namely, if and for some , then .

When the values of are random, this is true with probability

1. This fact can be used in GESPAR in order to obtain initial

information on the support of , which we capture by two sets

and .

Denote by the set of indices known in advance to be in

the support. To derive the set , note that due to the existing

degree of freedom relating to shift-invariance of , the index

1 can be assumed to be in the support, thereby removing this

degree of freedom. Consequently, the index corresponding to

the last nonzero element in the autocorrelation sequence is also

in the support, i.e.

Therefore, .

Next, we denote by the set of indices that are can-

didates for being in the support, meaning the indices that

are not known in advance to be in the off-support (the

complement of the support). Specifically, contains the

set of all indices such that .

Obviously, since we assume that for , we

have . As a concrete example, con-

sider the signal . The corre-

sponding 11 point autocorrelation function is given by

. The set

is therefore . Next, by examining the zeros

of , and using our assumption of no support-cancelations,

we deduce that there are no two non-zero elements

and such that , 4. Therefore, forcing the

first element in to be non-zero, which removes the shift-in-

variance degeneracy, immediately implies that .

In this way is determined as . Defining

, problem (2)

along with the support information can be written as

(4)

which will be the formulation to be studied.
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Note that even with knowledge of the exact support of

there is no guarantee for uniqueness beyond the aforementioned

trivial degeneracies. Consider for example the two vectors

and . Both of

these vectors are sparse, and they have the same autocor-

relation function . This ambi-

guity therefore cannot be resolved using any method that uses

sparsity (even exact support information) and autocorrelation

(or Fourier magnitude) measurements alone.

Finally, when themeasurements are noisy, the autocorrelation

information is not very useful for support estimation, since very

small (noise level) values in the autocorrelation sequence cannot

be treated as zero. For this reason, the autocorrelation-derived

support information is not used in GESPAR at all in the noisy

case. Formally, ignoring this information is equivalent to setting

and .

B. Sparse Phase Retrieval: General Measurements

Although the problem formulation above assumes Fourier

measurements and sparsity of , we show below that our ap-

proach applies to arbitrary quadratic measurements of . This

includes the case in which is sparse in a basis other than the

identity basis. In fact, in this general case, the formulation given

in (4) remains the same, with the only change being the defini-

tion of the matrices .

Consider the phase retrieval problem with respect to arbitrary

linear measurements, so that

(5)

for a set of measurement vectors , . The

corresponding phase retrieval problem can be written as in (4)

with . Similarly, suppose that , where

is some basis in which is sparse, and is a sparse

vector. In this case . Thus, our formulation

can accommodate arbitrary sparsity bases and general quadratic

measurements.

In the next section, we propose GESPAR—an iterative local-

search based algorithm for solving (4). We note that although

in the context of phase retrieval the parameters have

special properties (e.g., is positive semidefinite of at most

rank 2, ), we will not use these properties in GESPAR.

Therefore, our approach is capable of handling general instances

of (4) with the sole assumption that is symmetric for any

. In the Fourier case, the algorithm can be im-

plemented more efficiently, as we discuss in Section IV.

III. GREEDY SPARSE PHASE RETRIEVAL (GESPAR)

A. The Damped Gauss-Newton Method

Before describing our algorithm, we begin by presenting a

variant of the damped Gauss-Newton (DGN) method [15], [16]

that is in fact the core step of our approach. The DGN method

is invoked in order to solve the problem of minimizing the

objective function over a given support

:

(6)

where is the matrix consisting of the columns of

the identity matrix corresponding to the index set . With

this notation, (6) can be explicitly written as

(7)

The minimization in (7) is a nonlinear least-squares problem.

A natural approach for tackling it is via the DGN method. This

algorithm begins with an arbitrary vector . In our simula-

tions, we choose it as a white random Gaussian vector with zero

mean and unit variance. At each iteration, all the terms inside

the squares in are linearized around the previous guess.

Namely, we write from (7) as:

(8)

with , and . At each step

we replace by its linear approximation around :

(9)

We then choose to be the solution of the problem

(10)

Problem (10) can be written as a linear least-squares problem

(11)

with the th row of being

, and the th component of given by

for . The solution is

equal to . We then

define a direction vector . This direction is used

to update the solution with an appropriate stepsize designed

to guarantee the convergence of the method to a stationary

point of . The stepsize is chosen via a simple backtracking

procedure. Algorithm 1 describes the DGN method in detail.

In our implementation the stopping parameters were chosen as

and .

The following theorem establishes the rate of convergence of

the norm of the gradient of the objective function to zero, and

consequently proves that the limit points of the sequence are

stationary points.

Theorem 1: Let be the sequence generated by the DGN

method. Assume that and that there exists

such that for all

Then as and there exists a constant

such that

(12)
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Moreover, each limit point of the sequence is a stationary point

of .

Proof: See Appendix A.

Note that the proof requires to have full column rank,

and in fact that the minimum eigenvalues of are

uniformly bounded below. In the vast majority of our runs this

assumption held true; however, we did encounter in our numer-

ical experiments a few cases in which this condition was not

valid. In these situations, our implementation chose one of the

optimal solutions of the corresponding least-squares problem.

We noticed that these cases had negligible effect on the results.

Algorithm 1 DGN for solving (7)

Input: .

, —symmetric matrices.

, .

—index set.

—stopping criteria parameter.

—maximum allowed iterations.

Output: —an optimal (or suboptimal) solution of (7).

Initialization: Set , , a random

vector.

General Step : Given the iterate , the next

iterate is determined as follows:

1. Gauss-Newton Direction: Let be the solution of the

linear least-squares problem (11), given by:

with the th row of being , and the

th component of given by . The

Gauss-Newton direction is

2. Stepsize Selection via Backtracking: set

. Choose a stepsize as

, where is the minimal nonnegative

integer for which

with given by (7).

3. Update: set .

4. Stopping rule: STOP if either or .

B. The 2-opt Local Search Method

The GESPARmethod consists of repeatedly invoking a local-

search method on an initial random support set. In this section

we describe the local search procedure. At the beginning, the

support is chosen to be a set of random indices chosen to sat-

isfy the support constraints . Then, at each it-

eration a swap between a support and an off-support index is

performed such that the resulting solution via the DGN method

improves the objective function. Since at each iteration only two

elements are changed (one in the support and one in the off-sup-

port), this is a so-called “2-opt” method (see [13]). The swaps

are always chosen to be between the index corresponding to

components in the current iterate with the smallest abso-

lute value and the off-support index corresponding to the com-

ponent of with

the largest absolute value. This process continues as long as the

objective function decreases and stops when no improvement

can be made. A detailed description of the method is given in

Algorithm 2.

Algorithm 2 2-opt

Input: .

, —symmetric matrices.

, .

Output: —a suggested solution for problem (4).

—total number of required swaps.

1) Initialization:

a) Set .

b) Generate a random index set satisfying

the support constraints .

c) Invoke the DGN method with parameters

and obtain an output . Set

.

2) General Step :

a) Let be the index from corresponding

to the component of with the smallest

absolute value. Let be the index from

corresponding to the component of with

the highest absolute value.

b) Set , and make a swap between the indices

and

Invoke DGN with input and

obtain an output . Set . Advance :

.

If , then set , ,

advance and goto 2.a.

c) If none of the swaps resulted with a better objective

function value, then STOP. The output is

and .

C. The GESPAR Algorithm

The 2-opt method can have the tendency to get stuck at local

optima points. Therefore, our final algorithm, which we call

GESPAR, is a restarted version of 2-opt. The 2-opt method is re-

peatedly invoked with different initial random support sets until
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the resulting objective function value is smaller than a certain

threshold (success) or the number of maximum allowed total

number of swaps was passed (failure). A detailed description of

the method is given in Algorithm 3. One element of our spe-

cific implementation that is not described in Algorithm 3 is the

incorporation of random weights added to the objective func-

tion, giving randomly different weights to the different measure-

ments. Namely, the objective function used is actually chosen as

with or 2 with equal

probability. The random generation of weights is done each time

the DGN procedure is invoked. We observed that this modifica-

tion reduced the probability of the 2-opt procedure to get stuck

in non-optimal points.

Algorithm 3 GESPAR

Input: .

, —symmetric matrices.

, .

—threshold parameter.

ITER—Maximum allowed total number of swaps.

Output: —an optimal (or suboptimal) solution of (4).

Initialization. Set , .

� Repeat

Invoke the 2-opt method with input and obtain

an output and . Set , and advance

: .

Until or .

� The output is where .

IV. FOURIER IMPLEMENTATION DETAILS

In principle, GESPAR may be used to find sparse solutions to

any system of quadratic equations, i.e. problems of the form:

(13)

However, when the matrices correspond to transforms that

can be implemented efficiently, GESPAR takes on a particularly

simple form.

For example, consider the case in which represent

Fourier measurements. In this case, the creation and storing of

the matrices defined in Section II, can be avoided in the

implementation, by using the FFT. Specifically, to calculate the

weighted objective function, we note that

(14)

where is the th DFT component of , which can be com-

puted via the FFT. Clearly, , which is used in the DGN

procedure (Algorithm 1) can also be computed efficiently since

only involves a small number of columns

of the Fourier matrix .

The FFT can also be used in the calculation of the gradient

, used in the 2-opt stage 2:

(15)

Consequently, in no step of the algorithm is it necessary to cal-

culate the set of matrices explicitly.

This fact is even more important in the 2D Fourier phase re-

trieval problem, as the relevant vector sizes become very large.

Since a major advantage of GESPAR over other methods (e.g.

SDP based) is its low computational cost, GESPARmay be used

to find a sparse solution to the 2D Fourier phase retrieval—or

phase retrieval of images. The only adjustments needed in the

algorithm are in the implementation, for example, using FFT2

instead of storing the large matrices .

Fig. 1 shows a recovery example of a sparse 195 195

pixel image, comprised of circles at random locations

and random values on a grid containing 225 points, recovered

from its 38,025 2D-Fourier magnitude measurements, using

GESPAR. The dictionary used in this example contains 225

elements consisting of non-overlapping circles located on a 15

15 point cartesian grid, each with a 13 pixel diameter. The

solution took 80 seconds. Solving the same problem using the

sparse Fienup algorithm did not yield a successful reconstruc-

tion, and using the SDP method is not practical due to the large

matrix sizes.

Further investigation of the algorithm’s performance in

the 2D case is presented in Section V. An implementation

of GESPAR in the 1D and 2D Fourier cases can be found

online [17].

V. NUMERICAL SIMULATIONS

In order to demonstrate the performance of GESPAR,we con-

duct several numerical simulations. The algorithm is compared

to other existing methods, and is evaluated in terms of signal-re-

covery accuracy, computational efficiency, and robustness to

noise.

A. Signal-Recovery Accuracy

In this subsection we examine the recovery success rate of

GESPAR as a function of the number of non-zero elements in

the signal. A runtime comparison of the tested methods is also

performed.

We choose as a random vector of length . The vector con-

tains uniformly distributed values in the range

in randomly chosen elements. The point DFT of the signal

is calculated, and its magnitude-square is taken as , the vector

of measurements. The point correlation is also calcu-

lated. In order to recover the unknown vector , the GESPAR

algorithm is used with and . We

also test two other algorithms for comparison purposes: An SDP

based algorithm (Algorithm 2, [9]), and an iterative Fienup algo-

rithm with a sparsity constraint [12]. In our simulation

and . The Sparse-Fienup algorithm is run using 100
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Fig. 1. 2D Fourier phase retrieval example. (a) True 195 195 sparse circle image ( circles). (b) Measured 2D Fourier magnitude (38,025 measurements,

log scale). (c) True and recovered coefficient vectors, corresponding to circle amplitudes at each of the 225 grid points.

TABLE I

RUNTIME COMPARISON

Fig. 2. Recovery probability versus sparsity (s)

random initial points, out of which the chosen solution is the

one that best matches the measurements. Namely, is selected

as the sparse output of the Sparse-Fienup algorithm with the

minimal cost out of the 100 runs.

Signal recovery results of the numerical simulation are shown

in Fig. 2, where the probability of successful recovery is plotted

for different sparsity levels. The success probability is defined

as the ratio of correctly recovered signals out of 100 simula-

tions. In each simulation both the support and the signal values

are randomly selected. The three algorithms (GESPAR, SDP

and Sparse-Fienup) are compared. The results clearly show that

GESPAR outperforms the other methods in terms of probability

of successful recovery—over 90% successful recovery up to

, vs. and in the other two techniques.

Average runtime comparison of the three algorithms is shown

in Table I for and . The runtime is averaged

over all successful recoveries. The computer used has an intel

i5 CPU and 4 GB of RAM. As seen in the table, the SDP based

algorithm is significantly slower than the other two methods.

Fienup iterations are slightly slower than GESPAR and lead to a

much lower success rate. In these simulations, GESPAR is both

fast and more accurate than its competitors.

B. Sensitivity to Exact Sparsity Knowledge

Since the exact value of the signal’s sparsity may not be

known, the performance of GESPAR is examined when only an

upper limit on is given. To this end we run GESPAR twice:

Once with known exactly at each realization, and once with

only an upper limit on . The upper limit is taken as 25. The

other simulation settings are the same as in Section V-A.
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Fig. 3. Effect of unknown exact sparsity level on recovery probability.

Fig. 4. Effect of number of swaps on recovery probability.

Fig. 3 shows the probability for successful recovery of the

two simulations. The rather loose upper limit on does not

seem to affect the results significantly—in fact, the performance

is somewhat improved when allowing more nonzero elements

during the iterations.

C. Effect of the Number of Allowed Swaps

One of the stopping criteria for the GESPAR algorithm is

when the total number of swaps exceeds a predefined param-

eter (the input parameter in Algorithm 3). Naturally, in-

creasing the allowed number of index swaps will increase the

probability of finding a correct solution, but at the cost of in-

creased computation time. It is therefore important to quantify

this effect, which is the purpose of the current simulation.

We run GESPAR with the same parameters as in Section V-A

several times, where in each simulation a different value for

the parameter is used, in the range [100,25600]. Fig. 4

shows the results. As expected, increasing the number of pos-

sible swaps increases the recovery probability. Note that in-

creasing the value of above 6400 demonstrated no im-

provement in the recovery results—for the unsuccessful recov-

eries, increasing the number of swaps even up to

did not help. This means that for these simulation values

(e.g. , ), using a value of larger than

6400 only increases computation time without improving the

results.

Fig. 5. Effect of oversampling and support information from the autocorrela-

tion sequence .

D. Effect of Oversampling and Support Information

Here we examine the effect of oversampling and of autocorre-

lation-derived support information. GESPAR is run on random

vectors of length , with a varying amount of noiseless

Fourier magnitude measurements, obtained by the point DFT

of with , 128, 256. In these cases, no support infor-

mation was used—i.e. and . In ad-

dition, in order to investigate the effect of support information,

we run GESPAR with , (i.e. oversampling by

a factor of 2), and use the support information derived from the

autocorrelation sequence. The results, shown in Fig. 5, clearly

show that both oversampling and support information improve

performance.

E. Robustness to Noise

We now evaluate GESPAR as a function of SNR, and com-

pare it with sparse Fienup [12]. The SDP based method pre-

sented in [9] is not designed to deal with noise and therefore

we did not apply it here. The SDP approach of [10] considers

random measurements, and does not produce comparable re-

sults from direct Fourier measurements.

As in Section V-A, we choose as a vector of length , with

randomly chosen elements containing uniformly distributed

values, and evaluate its point Fourier magnitude-square.

White-gaussian noise is added to the measurements, at

different SNR values, defined as: . In order

to recover the unknown vector , the GESPAR algorithm is

used with and , as well as the

sparse-Fienup algorithm, for comparison purposes. In our

simulation and . The sparse-Fienup algorithm

is run with a maximum of 1000 iterations, and with 100 random

initial points.

Note that evenwith little noise, the information on the support

obtained by the zeros of the autocorrelation is no longer avail-

able. This is due to the fact that in the presence of noise, there

will be no true zeros in the measured (or calculated) autocorrela-

tion. In this case, one might try to threshold the autocorrelation

values, rendering small autocorrelation values as zeros. How-

ever, this might result in zeroing of small (yet non-zero) values

of the true autocorrelation function. Therefore, in the noisy case,

we do not use support information obtained by the autocorrela-

tion function in GESPAR, namely .
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Fig. 6. Normalized MSE versus sparsity level. The performance is plotted for several SNR values for GESPAR (full lines) and Sparse-Fienup (S.F.—dashed

lines).

Fig. 6 shows the normalized mean squared reconstruction

error (NMSE), defined as , as a function

of sparsity, for different SNR values. Each point represents an

average over 100 different random realizations. The perfor-

mance under different SNR values is plotted for GESPAR (full

lines), and for sparse-Fienup (dashed-lines). The performance

of GESPAR naturally improves as SNR increases, and it clearly

outperforms sparse-Fienup in terms of noise-robustness.

F. Scalability

As one of the main advantages of GESPAR over SDP based

methods is its ability to solve large problems efficiently, we now

examine its performance for different vector sizes.

We simulate GESPAR for various values of .

In all cases . The other simulation parameters are as

in Section V-A. The recovery probability vs. sparsity for dif-

ferent vector lengths is shown in Fig. 7. The maximal sparsity

allowing successful recovery is shown to increase with vector

length , and seems to scale like , which is consistent with

the same scaling observation presented in [9]. The mean re-

construction time for a signal with , from

measurements, allowing replace-

ments, is 33.5 seconds. For comparison, a corresponding plot

representing the scalability of the sparse-Fienup algorithm is

presented in Fig. 8. Plotting a similar scalability plot for the SDP

based method is not possible due to the high computational cost

which under our simulation conditions limits the application of

this method to around .

G. Computation Time

The most time consuming part of GESPAR is the matrix in-

version process in the DGN segment of the algorithm. There-

fore, computation time scales approximately linearly with the

number of swaps—as each swap corresponds to a single DGN

iteration. The approximately linear dependence of runtime in

the number of swaps is displayed in Fig. 9. Each point in the

plot represents the mean time it took GESPAR to run it-

Fig. 7. 1D-Scalability—GESPAR recovery probability as a function of signal

sparsity , for various vector lengths , and with oversampling,

i.e. . White corresponds to high recovery probability.

Fig. 8. Sparse Fienup scalability—recovery probability as a function of signal

sparsity , for various vector lengths , and with oversampling,

i.e. . White corresponds to high recovery probability.

erations, averaged over 50 random input signals with ,

, .

A major factor that determines the computation time is the

number of index swaps required to find a solution. The mean



936 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 4, FEBRUARY 15, 2014

Fig. 9. Time vs. number of swaps .

Fig. 10. Number of swaps as a function of and . The colorbar is in

scale, e.g. swaps.

number of swaps as a function of is shown in Fig. 10. Be-

yond the successful recovery region (the white region in Fig. 7),

the maximal number of swaps (6400) is used, without yielding

a correct solution.

H. Two-Dimensional Fourier Phase Retrieval

In this section we apply GESPAR to 2D Fourier phase re-

trieval problems, showing its ability to solve large scale prob-

lems efficiently.

We generate random -sparse 2D signals of sizes ,

with varying values for and , in the ranges and

. Each signal is recovered from the noise-

less magnitude of its 2D DFT, with no oversampling, using

GESPAR. Similarly to the 1D noisy simulation, no autocorrela-

tion-derived support information was used here. The parameter

is taken as 6400. The recovery probability vs. sparsity

for different vector lengths is shown in Fig. 11. Similarly to

the 1D case, the maximal sparsity allowing successful recovery

increases with . For comparison, Fig. 12 shows the result of a

sparse-Fienup scalability simulation for the 2D case, under the

same conditions, with 200 initial points per signal (increasing

this parameter did not affect the results significantly). GESPAR

is shown to outperform the sparse-Fienup method in the 2D case

as well. As in the 1D case, a comparison to SDP based methods

is not included here, since applying the SDP based method on

the 2D case is very difficult due to memory limitations.

Fig. 11. GESPAR 2D-Scalability—recovery probability as a function of signal

sparsity for various image sizes ( , 1024, 2304, 4096, 6400).

Fig. 12. Sparse-Fienup 2D-Scalability—recovery probability as a function of

signal sparsity for various image sizes ( , 1024, 2304, 4096, 6400).

Fig. 13. Runtime comparison—average computation time for a succesful 2D

recovery, for GESPAR and for sparse-Fienup, as a function of .

A comparison between GESPAR and the sparse-Fienup

method is shown in Fig. 13. The comparison shows the av-

erage time a successful recovery in the simulation took, as a

function of vector size . Sparse-Fienup is seen to be faster,

however comparing Fig. 11 to Fig. 12 shows that GESPAR

can recover signals up with a higher value of : For example,

when , GESPAR recovers with very high probability

signals up to sparsity , while sparse Fienup only recovers

up to .
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VI. CONCLUSION

We proposed and demonstrated GESPAR—a fast algorithm

for recovering a sparse vector from its Fourier magnitude, or

more generally, from quadratic measurements. We showed via

simulations that GESPAR outperforms alternative approaches

suggested for this problem in terms of complexity and success

probability. The algorithm does not require matrix-lifting, and

therefore is potentially suitable for large scale problems such

as 2D images. The simulations demonstrated robustness of

GESPAR to noise and other inexact knowledge, as well as its

ability to successfully treat a variety of phase retrieval problems

in one and two dimensions.

APPENDIX

Define the vector-valued function by

with With this notation, the vector can

be written as

and the solution of the least-squares problem is

(16)

Finally,

(17)

From (16) it follows that is a descent direction since

(18)

We now show that the sequence generated by the DGN

method is bounded. Indeed, since is a descent direction,

where the second inequality is due to Cauchy-Schwarz and the

last inequality is a result of the fact that and

. Therefore,

proving that .

Since is twice continuously differentiable, and is con-

tinuous, it follows that there exists and such

that and for

any . In addition, since is continuous over

, there exist such that for all

. Therefore, by (17) it follows that

(19)

The fact that for all im-

plies that is Lipschitz continuous over with pa-

rameter . Hence, by the descent lemma [15],

(20)

for any .

From and , it follows that

whenever . Therefore, we

can plug and into (20) to obtain

Using (17),

which yields

Therefore, if , then

(21)

By the way the backtracking procedure is defined, we have

that either or and hence

. Together with (21) this results in the in-

equality

Since

we conclude that

(22)

where . Noting that is a

bounded below and nonincreasing sequence, it follows that it

converges. The left-hand side of (22) therefore converges to

zero and we obtain the result that converges to zero as
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tends to infinity. This fact also readily implies that all accu-

mulation points of the sequence are stationary. Summing the

inequality (22) over we obtain that

and consequently, (also using the fact that ),

from which the inequality (12) follows.
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