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ABSTRACT
Gene expression array technology has made possible
the assay of expression levels of tens of thousands of
genes at a time; large databases of such measurements
are currently under construction. One important use of
such databases is the ability to search for experiments
that have similar gene expression levels as a query, po-
tentially identifying previously unsuspected relationships
among cellular states. Such searches depend crucially
on the metric used to assess the similarity between pairs
of experiments. The complex joint distribution of gene
expression levels, particularly their correlational structure
and non-normality, make simple similarity metrics such
as Euclidean distance or correlational similarity scores
suboptimal for use in this application. We present a
similarity metric for gene expression array experiments
that takes into account the complex joint distribution of
expression values. We provide a computationally tractable
approximation to this measure, and have implemented a
database search tool based on it. We discuss implemen-
tation issues and efficiency, and we compare our new
metric to other standard metrics.
Contact: larry.hunter@uchsc.edu

INTRODUCTION
The advent of high throughput gene expression assays
have made it possible to quantitatively assess the expres-
sion levels of tens of thousands of genes at a time. The
results of such assays are being accumulated in databases,
both public and private, and these databases are growing
quickly. Although publicly available gene expression
databases are still relatively small, there are plans to
generate very large collections of expression profiles,
see, e.g., (Abbott, 1999). When such databases become
available, algorithms for searching these databases will
grow in significance.

These databases embody information about the large

scale transcriptional response of a range of tissues from
different organisms to various growth conditions, genetic
perturbations, drug treatments, and other experimental
manipulations. The phenomenology of these transcrip-
tional responses is still largely unknown. One valuable
method for unraveling the significance of these measure-
ments is to determine the conditions under which similar
expression profiles are generated. As (Bassett et al., 1999)
observed, “expression profiles can be aligned with one
another to identify similar cellular responses.”

Gene expression is a complex process, and searching
databases of expression measurements to identify related
cellular states is a nontrivial task. In this paper, we
explore the importance of the similarity metric used for
gene expression database search and argue that traditional
metrics fail to address some important characteristics of
the data with respect to identifying cellular states. We
propose a novel similarity metric we believe to be better
suited to this task.

Searching gene expression databases
In the metaphor suggested in (Bassett et al., 1999), search-
ing expression databases can be compared to searching the
sequence databases. The goal is to find similarities that
are biologically significant. In comparing polypeptide se-
quences, not all differences are treated equally; we use
substitution cost matrices to identify differences which are
(or are not) likely to be biologically meaningful. It is en-
tirely possible for a database sequence to be more similar
to a query than another database sequence that actually has
more identical residues, because the differences in the first
sequence are more conservative than the differences in the
second. The substitution costs used to calculate these sim-
ilarities are derived from empirical estimates of the likeli-
hood of seeing particular substitutions in homologous pro-
teins. To carry the metaphor back to the gene expression
comparison, it would be desirable to find a similarity met-
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ric for gene expression data that reflected the biological
significance of the observed differences in a manner anal-
ogous to the substitution cost matrices in sequence search-
ing.

Although expression assay techniques vary signifi-
cantly, all generate quantitative information about large
numbers of genes. A database of such experiments can be
generally conceived of as a table of numbers with as many
rows as there are experiments, and as many columns as
there are genes. In that conception, the gene expression
search task is: given a particular row in the table, find other
rows that are “similar” to it. In order for such searches to
be useful in understanding the transcriptional responses
of tissues, the similarity metric over the transcript levels
must be biologically sound.

There are a variety of technical and methodological
challenges to ensuring that data gathered by different
laboratories is comparable at all, including sensitivity to
the exact probes used, the environment in which the probes
are applied, and particularly the control against which they
are compared. We do not address these issues here, other
than to note that it would be of great community value for
investigators using spotted arrays to publish the results of a
hybridization of their internal reference to some universal
reference, since such a result could be used to indirectly
compute the ratio of each gene on the array to the universal
reference.

Similarity metrics
Given the above characterization of the gene expression
database as a table, it is natural to think of the elements
of the database as points in k-dimensional space, where
k is the number of genes assayed in the experiments.
The similarity metric we need is then a function of two
k-dimensional vectors. Although many different vector
distance† metrics have been proposed (see, e.g., (Wilson &
Martinez, 1997)), most applications in continuous spaces
use either the Euclidean distance function or some type
of correlational similarity function (see Eq. 1 and Eq. 2,
below).

EuclideanDistance(X, Y ) =
√ ∑

g∈genes
(Xg − Yg)2 (1)

CorrelationSimilarity(X, Y ) =∑
g∈genes

[(Xg − Xg) · (Yg − Yg)]
√ ∑

g∈genes
(Xg − Xg)

2 ·
∑

g∈genes
(Yg − Yg)2

(2)

† Distance metrics can be trivially transformed into similarity metrics by
inversion.

where Xg is the mean of the gene expression values in
experiment X .

Previous work has generally compared pairs of genes us-
ing a set of experiments, rather than pairs of experiments
using a set of genes, but the issues are similar. For exam-
ple, (Eisen et al., 1998) rescale the log gene expression
ratios to mean 0 and variance 1 and use normalized dot
product as a similarity metric for pairs of genes over a set
of experiments, and then uses those distances as the basis
for a hierarchical clustering.

One variant metric takes the absolute value or square of
each element in the sum of the correlation (or dot product)
metric so that anticorrelated genes contribute positively
to similarity. Another variant, the Mahalanobis distance,
uses the covariance matrix to adjust the contributions of
differences for each gene based on the variance observed
for that gene. In most applications of the Mahalanobis
distance, the covariance matrix is assumed to be diagonal,
so that it effectively normalizes by the variance of each
gene independently.

Qualities of gene expression data
In order to assess the applicability of the above similarity
metrics to gene expression database searching, it is
important to understand some of the formal characteristics
of the data. Most important for this purpose are: variability
and noise, correlational structure, and the distributional
form of the expression data. These characteristics can in
part be deduced from existing understanding of biological
systems, and can also be estimated from the existing
expression data.

The following empirical calculations use a publicly
available collection of yeast expression data. Transcript
levels for 6024 genes are measured in a combined set of
92 experiments: 73 observations from (Spellman et al.,
1998), nine observations from (DeRisi et al., 1997) and
ten observations from (Chu et al., 1998).

Variation and Noise. One important quality of this data
is that it is noisy. Even identifying which gene expression
values genuinely vary at all in these experiments is non-
trivial. Many investigators identify the subset of genes that
appear to vary significantly in the experimental conditions
by setting some threshold, such as 2- or 3-fold change,
to define significance. However, the range of values (or
log ratio values) seen has a statistical distribution that de-
pends on the number of experiments. As the number of ex-
periments increases, the percentage of genes identified as
showing significant variation in expression using any fixed
threshold criterion will increase just due to chance. Alter-
natively, setting a very conservative threshold is likely to
exclude genes that are genuinely varying.

If we had an accurate estimate of the variance due to
measurement error, we could use it to determine which
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genes varied in a statistically significant manner. Ideally,
such a variance estimate would come from a measured
standard error based on replicate samples. Since such
information is not always available, it is worth considering
various alternative approaches. One such approach would
be to estimate that variance based on median variation
among genes that are expected to be invariant across a set
of measurements, i.e., housekeeping genes.

For the yeast data considered here, we have neither
replicate samples nor a set of known invariant house-
keeping genes. However, we did observe that the vast
majority of genes assayed did not vary in expression
very much among the samples. Under an assumption
that a reasonably low percentage of the genes are truly
differentially expressed across experiments, the median of
all of the gene variances should provide a robust estimate
of the experimental noise variance.

It is reasonable to assume an approximately normal
distribution for the observed log ratios in genes that
are not differentially expressed, that is, that are subject
to experimental noise variation only. We can therefore
base an objective method of identifying genes exhibiting
statistically significant variation across experiments on
the χ -square distribution. Specifically, if there are N
experiments, σ 2 is the variance for a particular gene, and
median(σ 2) is the median over all of the gene variances,
then we treat the quantity W = (N −1)σ 2/median(σ 2) as
approximately χ -square with N − 1 degrees of freedom.
This is because the distribution nS2/σ 2 is χ -squared with
n − 1 degrees of freedom when S2 is the sample variance
of n normal random variables identically distributed
with mean m and variance σ 2 [(Hogg & Craig, 1978),
p.175]. We set the probability that a gene is selected as
significantly variable due to chance at 1%, and then any
gene for which the quantity W exceeds the upper 1% χ -
square percentage point (with N − 1 degrees of freedom)
is designated as showing significant variation. Using this
measure, 1889 genes show variation that is significant at
the 1% level over 92 experiments. We use only these genes
in the multimodal calculations in the sections below.

Correlational Structure. Another important aspect
of large scale gene expression data is that the values
observed for different genes are correlated with each
other in complex ways. Transcriptional control within a
cell produces gene products to meet the current needs of
the cell. For example, many metabolic needs are met by
complex pathways of enzymatic reactions. The genes for
enzymes that catalyze a set of reactions along a pathway
are likely to be coregulated, since they all are involved
in accomplishing the same biological function. Shared
transcription regulatory mechanisms also suggest that
the observed expression levels of different genes will be
correlated with each other. The complexity and variability

of specific and general expression controls suggest that
the correlational structure of expression levels will be
quite rich, that is, of high order and time varying.

The expression levels of a particular pair of genes may
be correlated with each other at all times (pairwise cor-
relation), or only when the expression of other genes are
in particular states (higher order correlations). Calculat-
ing all possible high order correlations is computation-
ally intractable for assays involving tens of thousands of
genes or more, and would require large numbers of ex-
periments in order to be adequately sensitive. However,
we can make estimates about the extent of that correla-
tion without making the complete calculation. Figure 1
shows a histogram of statistically significant pairwise cor-
relations between the set of significantly varying genes.
Every gene in the data set is statistically significantly cor-
related with at least one other gene. For comparison, Fig-
ure 1 also shows the amount of correlation at that level
which would be expected by chance in such a large num-
ber of pairs, calculated by permuting the yeast data to form
a data set with the same overall distributional characteris-
tics but only random correlations. The comparison shows
that there is substantially more pairwise correlation among
genes than would be expected by chance.

Another way to estimate the degree of correlation
among the genes is to use principle components analysis
(PCA). If the genes were completely independent of each
other, then no dimensionality reduction would be possible
beyond that resulting from the fact that the data lie on a 92
dimensional subspace. If all of the genes were completely
correlated, then a single component could be used to
account for all of the observed variance. Doing PCA on
the 2622 genes in the data set with no missing values over
92 experiments, it takes only 41 components to account
for 90% of the variance, 56 components to account for
95% of the variance, and 77 components to account for
99% of the variance. This evidence strongly confirms the
biological intuition that expression levels of various genes
are correlated.

The rich correlational structure among the expression
levels of many genes makes good distance calculations
difficult. In order to use Mahalanobis distance appro-
priately in this situation, one must calculate the entire
covariance matrix, not just the diagonal. This requirement
is computationally demanding, and making reliable
estimates of all these covariances requires a large amount
of data. Euclidean and correlational distance measures,
which both make assumptions about the independence of
the dimensions, are distorted by the correlational structure
of the genes. When calculating similarity between exper-
iments, groups of genes that are highly correlated with
each other will be weighed more strongly than genes that
are not correlated with others. A simplified example of
this phenomenon is shown in Figure 2. Previous efforts,
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Fig. 1. Histograms of correlation coefficients of all pairwise
correlations among genes that are statistically significant at the p <

0.01 level. The true yeast data (black bars) show substantially more
significant pairwise correlation than a randomized control (white
bars) generated from the same data.

e.g. (Khan et al., 1998) and (Raychaudhuri et al., 2000)
have used PCA to address related issues. One could
transform the expression data using PCA, and then use
pairwise correlation between the projected components.
If the projection used captures most of the variance in the
data, this is an approximation of Mahalanobis distance.
In principle, however, there are several problems with
this approach. First, computing the principle components
or Mahalanobis distance requires that there be no data
missing from any of the experiments; this is a rarely
observed situation. Data values can be imputed, but there
is no ideal imputation scheme for this application. Sec-
ond, this approach only takes into account the pairwise
correlations, ignoring higher order correlations. Such
high order correlations are likely to be significant, since
many biological phenomena depend on interactions of
more than two biomolecules. Finally, this approach still
assumes that the data have Gaussian structure; the validity
of this assumption is addressed in the next section.

Distributional Form. Another important aspect of the
data is its distribution. For example, Mahalanobis distance
only makes sense when the data is normally distributed.
Even Euclidean distance measures can be counterintuitive
in spaces where the data is distributed in skewed or
multimodal ways.

Consider the hypothetical distribution of the expression
values of a single gene in Figure 3.

This gene is highly multimodal, with many observations

Query

Match 2

Match 1

.

.

.

G
en

e 
1

G
en

e 
2

G
en

e 
3

G
en

e 
N

. . .

Fig. 2. An illustration of the influence of correlational structure on
similarity. Each row represents an experiment in a database, and
the greyscale indicates the expression level for all N gene columns.
Note that genes 3 through N are all perfectly correlated. A similarity
metric that gave all genes equal weight would rate the experiment
labeled “Match2” as most similar to the query, since the value of
the correlated genes are identical with the query. However, a metric
that reduced the weight of the correlated genes to that of a single
gene would rate the experiment labeled “Match 1” as more similar
because of the identity of the values for genes 1 and 2 with the
query.’
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Fig. 3. A hypothetical multimodal density function for a single gene.
Note that the Euclidean distance (indicated by the double arrows)
between points A and B is the same as the distance between points
C and D, but the pairs differ in the probability density (shaded area)
between them.
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near two particular values, and a smaller number of obser-
vations far from those modes. Consider the distance be-
tween points A and B, versus the distance between points
C and D. Since expression values C and D occur in dif-
ferent modes, it is reasonable to assume that the biolog-
ical activities associated with those expression levels are
different. On the other hand, since the expression values
of A and B are both in a rarely observed region, those
values might be inferred to represent a biologically sim-
ilar state, even if the Euclidean distance between A and
B were larger than that between C and D. Our measure
approximates the difference in the probability density be-
tween the two observations, making the distance between
A and B smaller than the difference between C and D.
(This does not directly assess whether the observations are
in the same distributional mode.) It is important to note
that the reason that A and B seem more similar than C
and D cannot be captured in any summary measurement
of the distribution (such as standard deviation). If the den-
sity function is significantly multimodal or skewed, cap-
turing this intuition in a similarity metric requires use of
the density function itself, or at least an estimate of it.

The empirical gene expression levels observed thus far
suggest that many of these distributions are far from
normal. Of the 1889 genes whose expression levels show
a significant amount of variation in our data set, 181 (9%)
are multimodal by the DIP test (Hartigan & Hartigan,
1985), and 727 (38%) fail the Kolmogorov-Smirnov test
of normality at the 0.01 significance level; 679 (36%)
of them are skewed. Several illustrative empirical density
estimates are shown in Figure 4.

METHODS
We desire a similarity metric over experiments that takes
into account both the correlational structure among the
genes and the complex distributional qualities of the in-
dividual gene density functions. The joint probability den-
sity function over all the genes contains the information
we need to calculate such a similarity metric.

A Bayesian similarity metric
We view the problem as trying to answer the following
question about two experiments: how can we decide if the
experiments are two measurements of the same cellular
state, versus measurements of two different cellular states?

This approach is somewhat akin to Bayesian methods
in macromolecular sequence comparison, where one
attempts to integrate over all possible sequences that
could have been common ancestors of the two observed
sequences. The main difference between comparing
expression vectors and comparing sequences is that the
model over possible expression states is more complex,
so dynamic programming solutions do not apply.

Fig. 4. Density plots of six representative multimodal gene expres-
sion log ratio distributions, from the yeast data set. The horizonta,l
axis is the log ratio of the expression, and the vertical axis is the
observed density; the changes in the expression level are statisti-
cally significant for each. YHR014W is a meiosis specific sporula-
tion protein, YPL021W is homologous to Srd1p which is involved in
processing pre-mRNA, YOR049C is similar to Rta1p which confers
resistance to 7-amino cholesterol, YHR189W is a putative peptidyl-
tRNA hydrolase, and YHL037C and YCRX07W are hypothetical
proteins of unknown function.

Assume that we know the joint probability distribution
function, f (g1, g2, . . . , gn), which we will also write as
f (G). This is the distribution of the true expression levels
(or log ratios) of the genes g1 . . . gn that the tissue can
generate. Assume further that we also know the function
for experimental error, that is a function e(O, G) which
defines the probability density of observing the values
o1 . . . on in an experiment given that the true expression
levels were g1 . . . gn .

Consider two experimental observations, X and Y . If X
and Y are observations of the same cellular state, that is,
they represent the same true expression level Z , then the
likelihood of the observed data is∫

Z
(e(X, Z)e(Y, Z) f (Z))d Z . (3)

Now consider two observations X and Y which are from
independent cellular states; that is, where the expression
levels are independent samples from the joint distribution.
In that case, the likelihood of the observed data is

∫
Z
(e(X, Z) f (Z))d Z ·

∫
Z
(e(Y, Z) f (Z))d Z . (4)

The ratio between Eq. 3 and Eq 4

∫
Z (e(X, Z)e(Y, Z) f (Z))d Z∫

Z (e(X, Z) f (Z))d Z · ∫Z (e(Y, Z) f (Z))d Z
(5)
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is the Bayes factor for distinguishing between the hypoth-
esis that the two experimental observations are two in-
stances of the same cellular state versus the hypothesis
that they represent independent draws from the universe
of possible gene expression states. When this score ex-
ceeds unity, then the odds are that the observations are
instances of the same cellular state. Even when the odds
of two observations being instances of the same state are
quite small, the values take into account the correlational
and distributional nature of the database, and can be used
to generate rank orders. We therefore propose this ratio as
a good similarity metric for expression array experiments.

The error function e represents the experimental error.
We can reasonably assume that it is multivariate normal,
and that the measurement errors for each gene are inde-
pendent. This is largely an assumption of convenience.
However, it is reasonable to expect symmetry in the er-
rors, so the Gaussian model seems prima face reasonable.
In contrast, we know from the above discussion that the
distributional function f is clearly neither normal nor in-
dependent across the genes. Furthermore, since the num-
ber of genes in Z is very large (thousands at least), com-
puting this integral directly is intractable.

An empirical estimate of the similarity metric
There are various plausible ways to estimate f (Z). One
could assume the genes were independent, and use empir-
ical density estimation methods for each gene. Califano
et al. (2000) propose a related approach for measuring the
distance between individual genes. However, as the above
arguments suggest, that independence assumption is un-
likely to hold, and hence this is not an attractive method.
A more reasonable approach is to use principle compo-
nents analysis to transform the data so that the components
are independent, and to work in that space. This would
be appropriate if the correlational structure were all pair-
wise, and the distributions Gaussian - which is not the case
here. A further possibility would be to approximate f (Z)

by a mixture of multivariate normals, e.g. using k-means
clustering. Not only are there difficult modeling issues in-
volved, such as selecting the number of components in the
mixture, but such models are notoriously difficult to de-
convolute even in one dimension, let alone in the current
case of thousands of dimensions.

Our approach is to use the database of already observed
experiments as an estimate of the true distribution func-
tion. Our estimator of f (Z) is simply the probability mass
function based on the empirical distribution function. It
is a consistent estimator and has a long history of use in
statistics. It is the estimator which is the basis of bootstrap
methods. Although this assumption is somewhat question-
able now, as the number of experiments in the database
grows, using it as an estimate of the true distribution be-
comes more plausible.

Instead of integrating, we will sum over all of the entries
in the database. Let N be the number of experiments in
the database, let K be the number of genes assayed in
the experiments, and let σ be an estimate of the average
measurement error. Let Di j be the value of the j th gene in
the i th experiment in the database, and let X j and Y j be the
j th gene in the two experiments that are being compared.
We can define the similarity score for our Bayesian-based
Gene Expression Search Tool (GEST) as

1
N−2

N−2∑
i=1

K∏
j=1

φ(
X j − Di j

σ
) · φ(

Y j − Di j

σ
)

1
N−2

N−2∑
i=1

K∏
j=1

φ(
X j − Di j

σ
) · 1

N−2

N−2∑
i=1

K∏
j=1

φ(
Y j − Di j

σ
)

(6)

where φ(n) = 1√
2π

· e− n2
2 and the summation over

experiments disregards X and Y , thus the sum goes to
N − 2 rather than N . If they were included, they would
dominate the metric, which would then be approximately
proportional to the antilog of the Euclidean distance.

Computational issues
To make this scoring practical for database searches, sev-
eral computational issues must be dealt with. First, all of
the expression values in the database must be commensu-
rate with the query. For example, if the expression values
are expressed as ratios, the ratios must all be calculated
relative to the same internal control. Also, the calculation
assumes that all experiments have the same set of genes
and there are no missing values. Standard techniques (e.g.
using only the shared subset of genes, imputing missing
values, etc.) can be used to bring real data into confor-
mance with this latter assumption.

The computational complexity of this metric for com-
paring two experiments is clearly proportional to the prod-
uct of the number of genes with the number of experiments
in the database. Fortunately, the computational complex-
ity of comparing a query experiment to every other ex-
periment in the database is the same, since we can cache
the comparison of each member of the database with each
other and with the query. Calculating the individual scores
is an additional linear factor in the number of experiments.
Furthermore, if the database is relatively stable compared
to the queries, we can precalculate the components of the
equation that depend only on the database and save them.

RESULTS
To gain some practical sense of the biological signif-
icance of the use of different distance measures for
searching databases of expression array results, we did
an all-against-all comparison of the 92 yeast expression

S120



GEST

experiments described above using three metrics: our
Bayesian metric (GEST), Euclidean distance (ED) and
correlational similarity (CS).

For the GEST metric, we used 0.25 as an estimate of
the experimental error (σ ). Of the 6024 genes appearing
anywhere in the yeast data set, only 2622 appear in all
92 experiments with no missing values. However, an
additional 2408 genes are present in at least 95% of the
experiments. Since these values are likely to be missing at
random, we can integrate over all possible values of the
missing data. In this case, the integral simply results in 1,
and removes the missing gene from equation 6. For the ED
and CS metrics, we did the comparisons using the genes
in common in each particular case. For the GEST metric,
we did the same, subject to the additional constraint that
each such gene must be present in 95% of all experiments.

The total running time for the GEST comparisons was
20901 seconds (a bit under 6 hours) on one processor of an
SGI Origin 2000 server. The precalculation takes nearly all
of that time, and once completed, a query can be searched
against the full database in 235 seconds on the same
machine. The calculation is straightforward to parallelize,
and scales linearly with the number of experiments in the
database.

Differences among similarity metrics
We compared every experiment in the yeast database to
every other experiment using the Bayesian metric (GEST),
Euclidean distance (ED) and correlational similarity (CS).

As a simple metric comparison, we looked at the best
match (highest scoring non-identical experiment) for each
of the 92 experiments in the database for all three metrics.
For 16 experiments (17%), all three metrics agreed about
the best match. In 8 experiments (9%) the GEST metric
gave the same best match as the ED metric but that differed
from the best match by the CS metric. The GEST best
match was the same as the CS but not the ED in 4
experiments (4%). In 28 of the experiments (30%), the ED
and the CS metrics agreed with each other, but disagreed
with the GEST best match. In 32 experiments (35%), the
metrics all gave different best matches.

We then tried a true statistical measure, comparing our
results to the best objective standard we could find for the
data set. As a “gold standard” for the true distance between
pairs of cell cycle experiments, we made an estimate of
the position in the cell cycle relative to the M/G1 to G1
boundary using the data from Spellman et al. (1998).
Phases of the cell-cycle genes are delineated according
to the color-coded overbar of Figure 1 in Spellman et al.
(1998). Each time point can be assigned a number between
0 and 1 which represents the proportion of the cell-cycle
completed, starting from the M/G1 to G1 boundary. For
time series that span multiple cell cycles, the period of the
cycle is adjusted to the length of the cycle in minutes as

given in Spellman et al. (1998). For a data point at time t
in a cell cycle of period T , with an M/G1 to G1 boundary
at time t0, the proportion assigned to the data point is given
by [(t − t0) mod T ]/T . The underlying assumption here
is that the closer two experiments are in the cell cycle, the
more similar will be (the less distance between) their gene
expression patterns.

Then, for each of the 73 of the 92 experiments assigned
a cell cycle position, we compared the rank orderings
of the matches produced by the sorted scores of the
GEST and ED metrics and of the match rank ordering
produced by the “true” distance given by our cell cycle
distance “gold standard”. This comparison was done via
calculation of the appropriate Spearman and Kendall rank
correlation coefficients. The basic reasoning: the closer a
metric produced a match ordering to that produced by the
“gold standard” of the cell cycle distance calculation, the
better the metric. We tried this using all matches, and for
the best N matches, for varying values of N (the idea being
that the lower-scoring matches might be overwhelming
the orderings with experimental noise). Unfortunately, the
results were ambiguous across the set of 73 experiments.
No statistically significant advantage could be detected for
the Bayesian metric over Euclidean distance.

DISCUSSION
In the all-against-all comparison with the yeast database,
we did not find robust statistically significant differences
overall between our GEST metric and the ED and CS
metrics. The problem here might lie with the data set.
The scores in the rank orderings being compared were
frequently very close. Comparing expression profiles
for different mammalian tissue samples would provide
a potentially more relevant basis for comparison. As
the number of expression profiles in various databases
grows larger and the estimate of the joint distribution of
expression values becomes better, and as experimental
measurements become more precise, the difference
between the measures may grow to be significant.

Approximations for speedup
A key weakness of the approach is its computation time.
Large databases are necessary for good estimates of the
distributions of the expression values, but large databases
mean large precalculation times. We have devised an
shortcut that may be useful, but more testing of the current
algorithm (itself an approximation) is needed before we
move to a further approximation of the theoretical basis.

Identifying similar cellular states with respect to
subsets of genes
If this method for searching a gene expression database
is comparable to finding global sequence alignments, it
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is also natural to consider analogs to local sequence
alignments. Since proximity is not an issue for gene
expression, the question becomes one of identifying
significant subsets of genes that can be used to determine
that a pair of experiments appear to be in similar states.
We can adopt our metric to this task by just considering
the subsets of genes that contribute positively to the
score. However, there are open questions in attempting
to determine the significance of scores calculated in that
fashion. In the extreme, consider a pair of experiments that
have only a single gene with a high score; although that
one gene is a subset that makes the experiments appear
to be similar, intuitively the subset is too small to be
meaningful.

A useful extension to the method is to allow users to
define a subset of genes of interest (e.g. those involved
in cell cycle, or in apoptosis), and search for experiments
that represent a similar cellular state with respect to those
genes. It is also possible to allow users to select subsets
of the experiments in a database to use for the density
estimate. For example, one might be interested in finding
experiments that are similar with respect to the joint
density of expression of genes in a particular tissue, rather
than over all possible cellular states.

Conclusions
We have demonstrated that gene expression data has a
complex distributional form, involving multimodality,
non-normality and complex correlational structure. These
factors mitigate against doing database search using simi-
larity metrics such as correlation coefficient or Euclidean
distance. We introduced a similarity metric based on
the Bayes ratio of the odds that a pair of experiments
are two samples of the same cellular state versus being
independent samples over the distribution of cellular
states. That metric is impractical to calculate, so we
provided a tractable approximation that uses a database
of expression experiments as an estimate of the true
joint distribution. We implemented this approximation
in a Perl-based Gene Expression Search Tool (GEST).
Using GEST, we compared this metric against Euclidean
distance and correlational metrics on real data from yeast,
and found differences among all of the metrics, but no
statistically significant advantage for our new metric.
More testing is required on better data sets (with a more
accurate objective “gold standard”) to find out how much
of the theoretical advantage of the Bayesian approach
described here can be implemented in practice.
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