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ABSTRACT

In human-human dialogues, face-to-face meetings are often preferred over phone con-
versations. One explanation is that non-verbal modalities such as gesture provide addi-
tional information, making communication more efficient and accurate. If so, computer
processing of natural language could improve by attending to non-verbal modalities
as well. We consider the problem of sentence segmentation, using hand-annotated
gesture features to improve recognition. We find that gesture features correlate well
with sentence boundaries, but that these features improve the overall performance of a
language-only system only marginally. This finding is in line with previous research
on this topic. We provide a regression analysis, revealing that for sentence bound-
ary detection, the gestural features are largely redundant with the language model and
pause features. This suggests that gestural features can still be useful when speech
recognition is inaccurate.
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1 INTRODUCTION

Gesture is frequently used with speech during face-to-face human communication [2].
Face-to-face meetings are typically preferred, and this may be due in part to additional
information presented via gestural cues. If so, it is natural to ask whether machine
understanding of human speech could also benefit by attending to gestural cues.

This paper explores the role of gesture in locating sentence unit (SU) boundaries.
Prosody has already been shown to be a useful feature, improving performance beyond
that achieved by language modeling alone [9, 14]. We describe a system that classifies
sentence boundaries based on gestural features, and then combines the gestural and
language models in a single sentence segmenter. We find that gestural cues do correlate
well with sentence segmentation, but that the information provided by gesture is also
highly correlated with features from the speech modality. A regression analysis reveals
that the gestureresidual– the unique information carried in the gesture track – is a weak
and noisy signal. This explains why we and others [1] have not seen large performance
improvements from gestural cues, and suggests that such cues might be more helpful
in the context of recognized – rather than transcribed – speech.

We begin by describing some related work in the field, then describe our approach,
including our corpus of multimodal data and the specific gesture features that we chose.
We describe the details of our implementation, then move on to the results. The ensu-
ing discussion section explores the reasons for the relatively poor performance of the
gesture feature. Finally we conclude by proposing future work and summarizing our
findings.

2 RELATED WORK

A series of papers have used small corpora to show relationships between linguistic
phenomena and gesture (e.g., [5, 13]), although they do not include automatic systems
for recognizing the linguistic phenomena based on gestural cues. We know of no im-
plemented system for any natural language problem where gestural features are shown
to produce a statistically significant improvement over a state-of-the-art non-gesture
system. Nonetheless, the prior research does imply that such improvement is possible,
and suggests which gestural features should be used.

Quek et al. describe the relationship between discourse structure and gestural cues
in [13]. They find that “catchments” (defined as the repetition of two or more gesture
features) are often indicators of topic shifts in the discourse structure. Esposito, McCul-
lough, and Quek describe the relationship between filled (e.g., “ummm”) and unfilled
(silent) speech pauses in [5], work that could eventually improve speech recognition
by using gestural cues to help detect filled pauses in speech.

Chen et al. [1] recently described an application of gesture features to sentence
segmentation. This system was based on a gestural corpus of three videos, that were
specifically chosen because they had a relatively low “hold” rate – in other words, the
speakers gestured frequently. Using a language model trained on the CTS dataset from
the Switchboard corpus [7], they trained a hidden-event language model, then tried
to show improvement using prosodic [14] and gestural features. A human-corrected
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computer vision system was used to obtain the gesture features semi-automatically,
and a decision tree model trained on these features performs betters than chance. Chen
et al. show a small improvement when adding the gesture cues to prosodic and verbal
models, but this improvement was not statistically significant.

We extend these results, using a larger corpus and a wider range of gesture mod-
eling and model combination techniques. More importantly, we use hand-annotated
gestures features, following the widely-used taxonomy defined by McNeill [12]. While
using hand-annotation is disadvantageous from the perspective of building an end-to-
end system, it gives us access to a much wider feature set than is presently possible
with automatic transcription. Even with these extensions, we still find that gesture af-
fords only a relatively modest improvement over language and prosody. We present a
regression analysis that explains this phenomenon and begins to quantify the limits of
the benefits offered by the gesture modality.

3 CORPORA

This section describes two corpora – a multimodal corpus gathered by the authors, and
our application of the CTS Switchboard corpus used only for training the language
model. All testing used the multimodal corpus.

3.1 Multimodal Corpus

The multimodal corpus includes nine speakers – four women and five men, between
the ages of 22 and 28. Eight of the participants were right-handed; eight were native
English speakers. The participants ranged in age from 22 to 28. All had extensive com-
puter experience, but none had any special experience in the task domain of explaining
mechanical device behavior.

The participants were presented with three conditions, each of which involved de-
scribing the operation of a mechanical device after viewing a computer simulation.
The three conditions were shown in order of increasing complexity, as measured by
the number of moving parts: a latch box, a piston, and a pinball machine. In explaining
the devices, the participants were allowed – but not instructed – to refer to a predrawn
diagram that corresponded to the simulation. All simulations were two-dimensional,
and the devices were specifically chosen to be easy to describe in two dimensions.

The explanations were videotaped and manually transcribed by the first author.
Speech was transcribed with a unique timestamp for each word. Speech recognition
has not been applied to this corpus, as the signal quality of the recording is too low.
Gesture was transcribed using the feature set described in Section 5.

The monologues ranged from 15 to 90 seconds in length. A total of 574 gesture
phrases were transcribed; as many as 58 and as few as six gesture phrases were used in
a single explanation. The number of words used ranged from 25 to 270; the number of
sentence units (SUs) ranged from three to 29. SU annotation was performed according
to the Simple Metadata Annotation Specification [16].

An example transcript of the speech is shown below. Additional details and results
from this corpus can be found in [3].
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so there’s a force here and it pushes down um and then as this thing comes by it goes along this little incline

part here and pushes that out and that goes past it but then the spring brings it back so that this thing uh

manages to latch on and the box will not open

3.2 Lexical Segmentation Corpus

The SRILM toolkit [15] contains a variety of language modelling tools, including an
implementation of the lexical segmenter described in [14]. We would have liked to
have trained a segmenter using our own corpus for training data, but the size of our
corpus – 2698 words and 241 sentences – is too small for this purpose. The SRILM
distribution includes a trigram model of sentence segmentation data, trained from the
CTS Switchboard corpus, and this is used for lexical segmentation in this research.
Note that there are some important differences between the Switchboard corpus and
the test data drawn from the multimodal corpus. One of the most important differences
is that Switchboard contains phone dialogues while the multimodal corpus contains
monologues. Some of the keywords that frequently initiate sentences in the phone
dialogue setting are very rare in monologue setting: for example, question words like
“what” and “why.” Similarly, the sentence-initializing words in the monologue setting
may not serve the same role in dialogues. Consequently, the performance of the lexical
segmenter was significantly worse on our corpus than documented in other studies, as
described below.

4 FEATURES OF GESTURAL COMMUNICATION

This study investigates whether the presence of certain gestural features at candidate
sentence boundaries is an effective supplement to a purely lexical sentence segmenter.
Kendon describes a spectrum of gesturing behavior [8]. On one end are artificial and
highly structured gestural languages, such as ASL. In the middle, there are artificial
but culturally sharedemblems, such as the “thumbs-up” sign. At the far end isgestic-
ulation, gestures that naturally and unconsciously co-occur with speech. Gesticulation
is of particular interest since it is completely natural; speakers do not need to be taught
how to do it. However, gesticulation is challenging because of the potential for infinite
variety in gesturing behavior across speakers.

4.1 Hierarchy of Gesture Features

Verbal communication can be described in a hierarchy extending from high-level en-
tities that occur over relatively long periods of time (paragraphs and sentences), to
intermediate-scale entities (words), on down to highly specific short-duration entities
(i.e., morphemes, such as prefixes and suffixes that specify information such as verb
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Figure 1: A hierarchy of gesture components

tense, gender, and number). Kendon describes a similar hierarchy for gestures [8], a
portion of which is shown in Figure 1.

At the top level is thegesture unit, a period of activity demarcated by the return
of the hands to a rest position. Thegesture phraseis what is traditionally considered
to be a single “gesture” – for example, pointing at something while talking about it,
or tracing a path of motion. At the lowest level aremovement phrases: morphological
entities that combine to create each gesture phrase. Every gesture phrase must have a
stroke, which is considered to be the content-carrying part of the gesture. In addition,
there may also be apreparephase, which initiates the gesture, and possibly aretract
phase, bringing the hand back to rest position. Ahold refers to a static positioning of
the hand in gesture space, either before or after the stroke.

McNeill defines several types of gesture phrases [12]. In this corpus, three gesture
phrase types were found to particularly relevant: deictic gestures, where the hand refers
to a location in space; iconic gestures, where the form of the hand or motion depicts
the action being described; and beat gestures, which convey no semantics but serve a
pragmatic function, such as emphasizing certain points in the speech.

We included the pause duration feature because we are interested in the relationship
between gesture and prosody. Earlier studies of prosodic cues for sentence segmenta-
tion found pause duration to be the most informative feature [14], and it is easy to
implement. Our results include performance both with and without this feature, to
isolate the unique contribution of gestural cues.

4.2 Validity of Annotation Features

Although this taxonomy for annotating and describing gestures is widely used both in
the psycholinguistics literature and in multimodal user interfaces, there appears to be
little published work validating these categories through interrater agreement. In earlier
research, we found the agreement among naı̈ve raters on gesture phrase classification
was modest (κ = .45) but statistically significant (p � .01) [4].

Our experience with reliability of temporal segmentation of gestures into move-
ment phases is similarly mixed, although it is more difficult to quantify interrater agree-
ment on a temporal segmentation task. In the only known study of interrater agreement
on movement phase segmentation, Kita reports 76% raw agreement on “gross” tem-
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Name Value Description
Gesture Unit Boundary,

Non-boundary
A gesture unit start- or end-point occurs during the can-
didate sentence boundary.

Gesture Phrase Boundary,
Deictic, Iconic,
Beat

Describes the gesture phrase that overlaps the candidate
sentence boundary. If the value is “Boundary”, then a
gesture phrase begins or ends near the candidate sen-
tence boundary.

Movement Phase Boundary,
Prepare, Stroke,
Hold, Retract

Describes the movement phrase that overlaps the can-
didate sentence boundary. If the value is “Boundary”,
then a movement phrase begins or ends near the candi-
date sentence boundary.

Pause Duration Real Prosodic feature describing the duration of the candi-
date sentence boundary.

Table 1: Gestural and prosodic features used for sentence segmentation

poral segmentation, which falls to 72% when phase type is considered [10]. However,
since it is unclear how to compute the chance agreement, these numbers cannot be
converted into Kappa scores – the standard way of assessing interrater agreement on
classification tasks. By examining the movement phase labels on a frame-by-frame
basis, we were able to compute the probability of chance agreement. We found raw
agreement of 63% (κ = .45).

5 IMPLEMENTATION

There are three components to our implementation: the language model, the gesture
model, and model combination algorithm.

5.1 Language Model

As mentioned above, our language model is an identical replication of the HMM-based
lexical model described in [1, 14] and implemented in the SRILM toolkit [15], using
only lexical features. When pause features are included, they are handled by the same
model as the gesture features. As a baseline, we also measure the performance of the
language model and the pause duration without gesture features; in this case, a mixture
of Gaussians is used to model pause duration.

5.2 Gesture Model

For the gesture model, we treated every space between two words as a potential sen-
tence boundary, and built a feature vector of the gestural annotations present over this
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temporal interval. The gesture features that we considered are shown in Table 1. Di-
viding the data into test and training sets, we applied various supervised learning tech-
niques to learn gesture models. In earlier work on multimodal integration, decision
trees were chosen for both gestures [1] and prosody [9, 14]. We experimented with de-
cision trees, näıve Bayesian models, and AdaBoost [6]. Support vector machines and
log-linear models were found to be too time-inefficient for this problem. In all cases,
the Weka machine learning toolkit was used [17].

Since the number of positive instances – sentence boundaries – is greatly outnum-
bered by the number of negative instances, the decision tree and several other classifiers
will classify all instances as negative. To address this, the training set is “balanced” so
that the positive instances are weighted more heavily.

All classifiers performed significantly better when the posterior probability is com-
pared to a learned threshold, rather than using 0.5 as the default threshold. This ap-
plies to the baseline language model classifier as well, which performed 11% better
with thresholding. The ideal threshold was usually around .2, although this varied
widely depending on the error metric that was to be optimized; the number cited is for
the widely-used Slot Error Rate, described in the next section. Cross-validation was
also employed to find a margin around potential sentence boundaries in which gesture
events that occurred nearby but not exactly at the boundary would be included in the
feature vector. However, the results were not very sensitive to this feature and a margin
of zero was used.

5.3 Model Combination

In their research on combining prosodic features with language models, Shriberg et al.
discuss three possible methods for combining models [14].Interpolated combination
simply adds together the output of each model, scaled by a weighting parameter that is
estimated from cross-validation.Joint-classifier combinationuses the language model
posterior as a feature in a higher-level classifier that also considers the non-verbal fea-
tures.Direct modelingintegrates all features into a single HMM, where the non-verbal
features are treated as emissions from the states, and the state transitions are given by
the language model.

From the literature, there is no clear winner among these choices. For example,
Shriberg et al. find that direct modeling outperforms interpolated combination when
transcribed words are used, but that the reverse is true when the corpus consists of
recognized words [14]. Kim et al. evaluate all three techniques, and find that the winner
varies depending on the what is being recognized [9]. In all cases, the differences were
quite small. We have implemented interpolated and joint-classifier combination.

6 EVALUATION

Evaluation was based on the Slot Error Rate (SER) metric. SER is defined by the sum
of the false positives and false negatives, divided by the number of actual sentence
boundaries in the document (given by the sum of true positives and false negatives).
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Figure 2: Performance of multimodal sentence unit boundary detection. Error bars are
95% confidence intervals.

SER =
FP + FN

TP + FN
(1)

Note that this metric can exceed 1, as the number of potential false positives is
bounded only by the number of words. All results are based on randomly selecting
20% of the monologues to be held out as a test set, and iterating this procedure 100
times. We hold out entire monologues rather than parts of monologues to ensure that
the test and training set are truly independent. We believe this is preferable to the
evaluation performed in [1], where 10-fold cross-validation is performed across only
three different documents, meaning that data from at least one document is shared be-
tween the test and training sets. A still more stringent evaluation would be to require
that nospeakeris present in both the test and training sets, eliminating the possibil-
ity of speaker-specific adaptations. In future work, we will explore this possibility to
determine the extent to which speaker-specific adaptations are present.

The results are shown in Figure 2. The chart on the left shows performance without
the pause duration feature. The solid line across each chart is the baseline performance,
without considering gesture features. The dotted lines are the 95% confidence intervals
for the baseline. The gesture models improve performance in many cases, but never by
a statistically significant margin.

6.1 Model Combination

The interpolation feature combination method outperforms the joint-classifier combi-
nation method almost every time. This difference is statistically significant with at least
p < .05 (t(198) = 2.04) in all three cases when the pause feature is absent; with the
pause feature present, the difference is again significant for the Bayesian classifier at
p < 1 ∗ 10−10(t(198) = 7.08). The difference is not significant for AdaBoost with
the pause feature, and the joint-classifier technique actually performs slightly better
than the interpolated classifier technique with decision trees when pause features are
present.
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6.2 Gesture Model

The picture revealed by our data is somewhat less clear on the choice of gesture models.
Without the pause feature, the Bayesian model performs a little worse than the other
two classifiers; with the gesture model it outperforms them. None of these differences
were statistically significant at evenp < .1. The fact that there was no clear winner
even after averaging over 100 trials suggests that the choice of gesture model will not
significantly impact performance, and that the choice of classifier should be made on
other criteria. The Bayesian classifier ran slightly faster than the decision tree and a
good deal faster than AdaBoost, but the decision tree can claim an advantage in human
readability.

6.3 Features

In the absence of a gesture model, the pause feature significantly improved perfor-
mance over lexical features alone (p < .01, t(198) = 2.68). The pause feature also
significantly improved performance over the LM+Gesture model combination with
the Bayesian classifier (p < .001, t(198) = 3.59), and trended towards improved
performance with the decision tree (p = .058, t(198) = 1.91) and AdaBoost (p =
.18, t(198) = 1.34).

While gesture features show a trend towards improved performance, the gains were
not statistically significant. Without pause features, the decision tree was the best ges-
ture model classifier, but the 1.2% difference in SER was not statistically significant
(p = .245, t(198) = 1.17). With pause features, the Bayesian gesture model offered
a raw difference of 1.5% SER, compared to a combination of the language model
and a Gaussian model of the pause duration, but this was not statistically significant
(p = .167, t(198) = 1.39). These results mirror the findings in [1], where the gesture
model afforded only a small improvement, within the margin of error.

7 DISCUSSION

The error rates reported here are somewhat higher than those given in [1]. In both
studies, the Switchboard CTS corpus is used to train the language model, but where
Chen et al. use dialogues in their test set, we have monologues. As discussed above,
there are important differences between these types of speech, and it is not surprising
that using incompatible test and training sets diminishes performance of the language
model.

Gesture patterns also differ significantly between monologues and dialogues [3].
In a monologue, there is a greater prevalence of semantic gestures such as iconics
and deictics; discourse-moderating beat gestures that control turn-taking and provide
backchannel feedback are less common. It is possible that these gestures are more
relevant to sentence segmentation, reducing the performance of the gesture model on
monologues.

Table 2 shows a Bayesian gesture model that was learned from a subset of our cor-
pus. Without the help of a language model, this model classifies sentence boundaries
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Feature Value p(.|Sboundary) p(.|¬Sboundary)

Gesture Unit Boundary TRUE .039 .0069
Gesture Phrase BOUNDARY .21 .088

DEICTIC .30 .43
ICONIC .46 .46
BEAT .031 .028

Movement Phase BOUNDARY .27 .13
PREPARE .066 .057
STROKE .31 .46
HOLD .26 .30
RETRACT .090 .052

Table 2: Bayesian model of gesture data

correctly with an F-measure of .28. Due to a very large number of insertion errors,
the SER of this model alone is 1.81, but its performance is still significantly better
than chance. Note the differences in the conditional probabilities of the gesture fea-
tures based on the sentence boundary status. Several of the gesture features appear to
correlate well with the sentence segmentation information.

If the gestural features are contributing unique information, then the fault probably
lies with our model combination techniques, and we should look there to improve
performance. However, there is also the possibility that the gestural cues are better
correlated with the LM posteriors than with the sentence boundaries themselves. This
view has a basis in the psycholinguistics literature – Krauss argues that the gesture
modality is not an independent channel for the expression of semantics, but rather, is
derivative of the speech channel and cannot provide any new information about the
underlying semantics [11]. If this is the case, there is no model combination technique
or gesture model classifier that could substantially improve performance.

7.1 Regression Analysis

To assess the level of interdependency between the gesture, pause, and language mod-
els, we performed a multivariate linear regression. The results of this analysis are
shown in Table 3. The first column of this table shows the linear correlation between
each model and the true sentence boundaries. While each correlation is statistically sig-
nificant, the lexical features are the most informative; a linear transformation of these
features can be used to explain.422 = 18% of the variance of the sentence boundaries.

We then performed a multivariate regression to extract the residual of each model
with respect to the other two models. The residual is the variance in each model that
is not explained by a linear combination of the other two models. This captures the
ability of each model to make auniquecontribution to the sentence segmentation. The
second column shows the correlation between the residual of each model and the true
boundaries. Note that not only is the lexical model most informative, but it carries the
highest proportion of unique information. 74% of the information carried by this model
remains in the residual – as opposed to 34% for the pause data and only 9% for the ges-
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Feature rmodel rresidual r2
residual/r2

model

Lexical .42 .36 .74
Pause .29 .16 .34
Gesture .17 .05 .087

Table 3: Regression analysis of each feature type

ture model. The residual of the gesture model now explains only 0.25% of the variance
in the sentence boundaries. This relationship is still statistically significant since the
sample size is very large(p < .03, df = 2103), but unlikely to improve sentence seg-
mentation in all but a very few cases. From this analysis, it is unsurprising that gestural
cues did not improve sentence segmentation performance – they reinforced information
conveyed by other models but contributed almost no information of their own.

8 CONCLUSIONS

The results presented in this paper show that although gesture contains information
relevant to sentence segmentation, that information is largely redundant with other
modalities. This phenomenon appears to be robust to the choice of gesture modeling
technique, and also to the model combination algorithm.

In the presence of noisy speech or prosody data, it is still possible that gesture could
improve sentence segmentation performance significantly. Another potential area of
future research is whether gesture can improve the recognition of sentence-internal
metadata, such as disfluencies, filled pauses, and repetitions. We have also gathered a
new corpus of 90 dialogues across fifteen pairs of speakers. Using this corpus, we can
investigate the differences in gesture and speech between monologues and dialogues.
Finally, a study to establish whether gestural cues affect the sentence segmentation
decisions of human raters would help us to better set our expectations for the role of
gesture in automatic sentence segmentation.
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