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Gesture Vision 
Generation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA__* System - 

Multimedia Interface 

kiosk Gems 
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Translator Gesture 
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Figure 1 : Gesture Recognition System. 

Virtual World n Interaction 

Figure 2: Gesture Recognition System Flaw 
Chart. 
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image zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAplane 
Sensor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[-]+qyl,,LdS Module 

image data 

I ldent ification 
Module 
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T 
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System 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3: Signal Flow Diagram of the Gesture 
Recognition System. 
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large zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAslow line zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI i a r l i 2 5 r c i e  I xmaxymin-xminymax 
large slow line zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
xy m i n - x m  

~~~ 

counter clockwise 
large SIUW circle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4: Example gestures, showed 
in two dimensions. 

stow 
large slow circle 

Y-POS 

medium: 
large fast circle 

fast: . I 
small fast circle 

Figure 5: Three Example 
Gestures. 
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c l o c k w i s e  large c l o c k w i s e  large c l o c k w i s e  sma l l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc lockwise  sma l l  
s l o w  c i rc le  fast circ le s low c i rc le  fast c i rc ie  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

. ~ -  ~~~, c c w  sma i l  fast 

S ' O ~ ~ . ~  ~~~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI' .I; 
x m ~ p ~  ~~~ i: ~~~ 

c c w  la rge c c w  large c c w  sma l l  
fast  c i rc le  s low circlc c i rc le  

large s low l i ne  large fast  l i ne  small s low l ine s m a l l  fast l ine 
x m  in -xymax  x m in - x y rn a'x x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArn in - x  y m ax 

sma l l  fast ine large fast l i ne  
large s l o w  l ine sma l l  s low l i ne  xrnaxym i n - x m i n y m a x  
x m  ax y m i n - x  m inyrn ax  a x y m i n - x  m i n y m a x x m  a x y m  in -xm in  y rn a x  

large s low y - l i ne  large fast y - l i ne  sma l l  slow y - l i n e  s m a l l  fast  y- l ine 

large slow x - I i ne  large fast x - l i ne  sma l l  s low x - l i n e  smal l  fast  x - l i ne  

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6: An Example 24 Gesture Lexicon. 
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Figure 7:  Slow Down Gesture. 

Figure 8: Prepare to Move Gesture. 
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Figure 9: Attention Gesture. 
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Figure 10: Stop Gesture. 

Figure 11 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: Right zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor Left Turn Gestures. 

Figure 12: "Okay" Gesture. 
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A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo m  dimension Oscmating zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x - l i i  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhuman gesture performed 
in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwo dimensional space. 

US 6,681,031 B2 

A time hislory of ths x-tine 
human created gesture. 

A two dknensional phase 
s p m  Ir4~301y cd ths 
human crea!ed x-line zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQesture. 

Figure 13: Freeze Gesture. 

Figure 14: Plats of a Human Created One 
Dimensional X-Line Oscillating Motion. 

I IX I I ”  
-pasition 

Figure 15: Possible Lines Associated with 
x(t,p)=pO+pf t and Their Equivalent 

Representation in the p Parameter Space. 
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Y 

X 

Figure 16: ParameterFitting: We Require a 
Rule for q to Bring the Error to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZero. 

Y Y e 

2 3 , e  
v 

X X 

Figure 17: Plots of Different (xi,yi) Data 
Points that Result in a Different Best Fitting q 

Line. 
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Figure 18: The Recursive Linear Least 
Squares Method for Updating q with Each 

Additional (xi,yi) Data Point. 

current state 

medium 

fast res 
error zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- 

' actual next state 
@., 
\ 

computed state from 
slow prediction bin 

1 computed state from 
medium prediction bin 

a 

computed state from 
- - fas t  prediction bin 

Figure 19: An Exaggerated Representation 
of the Residual Error Measurement. 



US.  Patent zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

does the model with lowest 
total residual error have small 
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"guess" appropriate 
models to match plots 

for each model, determine 
parameters for each 

gesture in lexicon 

test models using total 
residual error calculation 

Figure 20: An Algorithm for Determining the 
Specific Gesture Model. 
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worst residual zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
error ratio 

1.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.8 -- 

0.6 -- 

0.4 -- 

0.2 -- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Linear Van VanderPol Higher Velocity 

withoffset derPol withDrift Order Damping 
Component Component Terms 

Figure 21 : The Worst Case Residual Ratios 
for Each Gesture Model. The Lower the 

Ratio, the Better the Modet. 
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= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
r 

x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAposition 

x-axis portion of a gesture 

y position 

Y-axis portion of a gesture zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 

x position 

I 

Iportion’s position as a 
function of time. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
y position 

A plot zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu of the above iijm y- 

liine portion’s position as 
a function of time. 

i V 

!gesture’s individual x and y 
axis as a function of time. 

I x velocity 

The two didnsional phase 
space trajectory of x-lint 
gesture 

y velocity 

I 

-@+ y position 

The two didensionai phase 
space trajectory of y-line 

i The planar gesture shown as 
an out of phase combination of 
the x and v axis mot’ ion 

Figure 22: Two Perpendicular Oscillatory 
Line Motions Combined into a Circular 

Gesture. 
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Figure 23: Bounding Box Around Hand. 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA24: Descriptions from Bounding Box. 
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Slow: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
large slow zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcircle 

I I 

medium fast: 
large fast cirde small fast circle 

Figure 25: The Example Gestures. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ii 
Figure 26: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd Color Camera 

Schematic of the Hand Tracking 
System Hardware. 



US.  Patent Jan. 20,2004 Sheet 16 of 19 US 6,681,031 B2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Capture New Image 
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 

1 Display Image I 
I 

No zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I Find Difference Image 1 

Compute Moving Center 

I Display Target Center I 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA27: Flowchart of the CTS. 
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Box Row zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASize 

Figure 28: Graphical User Interface of the 
CIS. 
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Image 1 Image zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 Image 2 - Image 1 

DifF. Image & zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAColor Filter Target Center 

Figure 29: Target Center from Difference 
Image. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

lyh- EirI IdarSpaes 

Figure 30: Color Matching Technique. 

Dynamic 

Gestures 
Which Screen 

Gesture? Display 
Static , 

Gestures 

Figure 31: Identification Module. 
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from 

sensor 
module zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

min res and 
bin number 

min res end 
bin number 

threshold 
I I 

specific overall I 
gesture numbet 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA32: Simplified Diagram of the 
Dynamic Gesture Prediction Module. 
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GESTURE-CONTROLLED INTERFACES 
FOR SELF-SERVICE MACHINES AND 

OTHER APPLICATIONS 

REFERENCE TO RELATED APPLICATIONS 

Simple tests can then be used to determine what gestures are 
truly intuitive for any given application. 

For certain types of devices, gesture inputs are the more 
practical and intuitive choice. For example, when control- 

s ling a mobile robot, basic commands such as “come here”, 
“go there”, “increase speed”, “decrease speed” would be 

This application claims Priority of U S .  Provisional Patent most efficiently expressed in the form of gestures. Certain 
application Ser. No. 601096,126, filed 10, 1998, the environments gain a practical benefit from using gestures. 
entire contents of which are incorporated here by reference. F~~ certain military operations have situations 

where keyboards would be awkward to carry, or where 
silence is essential to mission success. In such situations, STATEMENT 

mis invention was made with Government support under gestures might be the most effective and safe form of input. 
contracts NAS9-98068 (awarded by NASA), DASW01-98 A system using gesture recognition would be ideal as 
M-0791 (awarded by the U.S. Amy), and F29601-98-C- input devices for self-service machines (SSMs) such as 
0096 (awarded by the U.S. &r Force). The Government has 1s public information kiosks and ticket dispensers. SSMs are 
certain rights in this invention. rugged and secure cases approximately the size of a phone 

booth that contain a number of computer peripheral tech- 
nologies to collect and dispense information and services. A 
typical SSM system includes a processor, input device(s) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

20 (including those listed above), and video display. Many 
SSMs also contain a magnetic card reader, imageidocument 
scanner, and printeriform dispenser. The SSM system may 
or may not be connected to a host system or even the 
Internet. 

The purpose of S S M ~  is to provide information without 
means, such as the keyboard, mouse, speech recognition, the traditional constraints of traveling to the source of 
and touch screen. The keyboard is a very open ended input information and being frustrated by limited manned office 
device and assumes that the user has at least a basic typing hours or to dispense objects, one SSM can host several 
Proficiency. The keyboard and mouse both contain moving different applications providing access to a number of 
Parts. Therefore, extended use Will lead to decreased Per- 30 informationiservice providers. Eventually, SSMs could be 
formance as the device wears down. The keyboard, mouse, the solution for providing access to the information con- 
and touch screen all need direct physical contact between the tained on the World Wide Web to the majority of a popu- 
user and the input device, which could cause the system lation which currently has no means of accessing the Inter- 
performance to degrade as these contacts are exposed to the net, 
environment. Furthermore, there is the potential for abuse 3s SSMs are based on p c  technology and have a great deal 
and damage from vandalism to any tactile interface which is of flexibility in gathering and providing information, In the 

next two years SSMs can be expected to follow the tech- exposed to the public. 

Tactile interfaces can also lead hygiene problems, in that nology and price trends of p ~ ’ ~ ,  processors become 
the system may become unsanitary Or unattractive to users, faster and storage becomes cheaper, the capabilities of SSMs 
or performance may suffer. These effects would greatly 40 will also increase, 
diminish the usefulness of systems designed to target a wide currently S S M ~  are being used by corporations, 

public. This cleanliness issue is very important for the touch purposes, such as displaying advertising (e,g, previews for a 
screen, where the input device and the display are the same new movie), selling products (e,g, movie tickets and 
device. Therefore, when the input device is soiled, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA45 refreshments), and providing in-store directories. SSMs are 
effectiveness Of the hut and decreases. Speech deployed performing a variety of functions for federal, state, 
recognition is very limited in a noisy environment, such as and municipal governments, These include providing motor 

recognition is also of limited use in situations where silence near-real time traffic data, information about available 
is crucial, such as certain military missions or library card 50 services, and tourism~specia~ event information, colleges 

use SSMs to display information about courses and campus catalog rooms. 
Gesture recognition systems do not suffer from the prob- life, including maps of the campus, 

SUMMARY OF THE INVENTION 
lems listed above. There are no moving parts, so device wear 
is not an issue. Cameras, used to detect features for gesture 
recognition, can easily be built to withstand the elements and 5s 
stress, and can also be made very small and used in a wider ods and apparatus. In the preferred embodiment, a gesture 
variety of locations. In a gesture system, there is no direct 
contact between the user and the device, so there is no 

FIELD OF THE INVENTION 

This invention relates to person-machine interfaces and, 
in particular, to gesture-controlled interfaces for self-service 
machines and other applications. 

BACKGROUND OF THE INVENTION 

Gesture recognition has many advantages over other input 2s 

range Of users, such as advertising kiosks Open to the general governments, and colleges. Corporations use them for many 

sports arenas, convention halls, or even city streets. Speech vehicle registration, gift registries, employment information, 

The subject invention resides in gesture recognition meth- 

recognition system according to the invention is engineered 
for device control, and not as a human communication 

hygiene problem. The gesture system requires no sound to language. That is, the apparatus preferably recognizes com- 
be made or detected, so background noise level is not a 60 mands for the expressed purpose of controlling a device 
factor. Agesture recognition system can control a number of such as a self-service machine, regardless of whether the 
devices through the implementation of a set of intuitive gestures originated from a live or inanimate source. The 
gestures. The gestures recognized by the system would be system preferably not only recognizes static symbols, but 
designed to be those that seem natural to users, thereby dynamic gestures as well, since motion gestures are typi- 
decreasing the learning time required. The system can also 6s cally able to convey more information. 
provide users with symbol pictures of useful gestures similar In terms of apparatus, a system according to the invention 
to those normally used in American Sign Language books. is preferably modular, and includes a gesture generator, 



US zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6,681,031 B2 
3 

sensing system, modules for identification and transforma- 
tion in to a command, and a device response unit. At a high 
level, the flow of the system is as follows. Within the field 
of view of one or more standard video cameras, a gesture is 
made by a person or device. During the gesture making 
process, a video image is captured, producing image data 
along with timing information. As the image data is 
produced, a feature-tracking algorithm is implemented 
which outputs position and time information. This position 
information is processed by static and dynamic gesture 
recognition algorithms. When the gesture is recognized, a 
command message corresponding to that gesture type is sent 
to the device to be controlled, which then performs the 
appropriate response. 

The system only searches for static gestures when the 
motion is very slow (i.e. the norm of the x and y-and 
z-velocities is below a threshold amount). When this 
occurs, the system continually identifies a static gesture or 
outputs that no gesture was found. Static gestures are 
represented as geometric templates for commonly used 
commands such as Halt, Leftmight Turn, “OK,” and Freeze. 
Language gestures, such as the American Sign Language, 
can also be recognized. A file of recognized gestures, which 
lists named gestures along with their vector descriptions, is 
loaded in the initialization of the system. Static gesture 
recognition is then performed by identifying each new 
description. A simple nearest neighbor metric is preferably 
used to choose an identification. In recognizing static human 
hand gestures, the image of the hand is preferably localized 
from the rest of the image to permit identification and 
classification. The edges of the image are preferably found 
with a Sobel operator. A box which tightly encloses the hand 
is also located to assist in the identification. 

Dynamic (circular and skew) gestures are preferably 
treated as one-dimensional oscillatory motions. Recognition 
of higher-dimensional motions is achieved by independently 
recognizing multiple, simultaneously created one- 
dimensional motions. A circle, for example, is created by 
combining repeating motions in two dimensions that have 
the same magnitude and frequency of oscillation, but 
wherein the individual motions ninety degrees out of phase. 
A diagonal line is another example. Distinct circular ges- 
tures are defined in terms of their frequency rate; that is, 
slow, medium, and fast. 

Additional dynamic gestures are derived by varying phase 
relationships. During the analysis of a particular gesture, the 
x and y minimum and maximum image plane positions are 
computed. Z position is computed if the system is set up for 
three dimensions. If the x and y motions are out of phase, as 
in a circle, then when x or y is minimum or maximum, the 
velocity along the other is large. The direct ion 
(clockwiseness in two dimensions) of the motion is deter- 
mined by looking at the sign of this velocity component. 
Similarly, if the x and y motion are in phase, then at these 
extremum points both velocities are small. Using clockwise 
and counter-clockwise circles, diagonal lines, one- 
dimensional lines, and small and large circles and lines, a 
twenty-four gesture lexicon was developed and described 
herein. A similar method is used when the gesture is per- 
formed in three dimensions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

An important aspect of the invention is the use of param- 
eterization and predictor bins to determine a gesture’s future 
position and velocity based upon its current state. The bin 
predictions are compared to the next position and velocity of 
each gesture, and the difference between the bin’s prediction 
and the next gesture state is defined as the residual error. 
According to the invention, a bin predicting the future state 

4 
of a gesture it represents will exhibit a smaller residual error 
than a bin predicting the future state of a gesture that it does 
not represent. For simple dynamic gestures applications, a 
linear-with-offset-component model is preferably used to 

s discriminate between gestures. For more complex gestures, 
a variation of a velocity damping model is used. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a drawing of a gesture recognition system 

FIG. 2 is a gesture recognition system flow chart; 
FIG. 3 is a signal flow diagram of a gesture recognition 

FIG. 4 is a drawing which shows example gestures in two 

FIG. 5 shows three example gestures; 
FIG. 6 is an example of a 24-gesture lexicon according to 

FIG. 7 depicts a Slow-Down gesture; 
FIG. 8 depicts a Move gesture; 
FIG. 9 depicts an Attention gesture; 
FIG. 10 depicts a Stop gesture; 
FIG. 11 shows RightiLeft Turn gestures; 
FIG. 12 shows an “Okay” gesture; 
FIG. 13 shows a Freeze gesture; 
FIG. 14 provides three plots of a human created one zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

30 dimensional X-Line oscillating motion; 
FIG. 15 shows possible lines associated with x(t,p)=pO+ 

p l t  and their equivalent representation in the p-parameter 
space; 

FIG. 16 illustrates parameter fitting wherein a rule is used 

FIG. 17 plots different (xi,yi) data points resulting in a 

FIG. 18 depicts a recursive linear least squares method for 
40 updating q with subsequent (xi,yi) data points; 

FIG. 19 illustrates an algorithm for determining a specific 
gesture model according to the invention; 

FIG. 20 is an exaggerated representation of a residual 
error measurement; 

FIG. 21 is a plot which shows worst case residual ratios 
for each gesture model, wherein the lower the ratio, the 
better the model; 

FIG. 22 illustrates how two perpendicular oscillatory line 

FIG. 23 shows how a bounding box may be placed around 

FIG. 24 provides descriptions from the bounding box of 

FIG. 25 shows example gestures; 
FIG. 26 is a schematic of hand-tracking system hardware 

FIG. 27 is a flowchart of a color tracking system (CTS) 

FIG. 28 depicts a preferred graphical user interface of the 

FIG. 29 illustrates the application of target center from 

FIG. 30 illustrates a color matching technique; 
FIG. 31 is a representation of an identification module; 

lo according to the invention; 

system according to the invention; 

dimensions; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA15 

the invention; 
20 

2s 

3s for q to bring the error to zero; 

different best fitting q line; 

4s 

so motions may be combined into a circular gesture; 

a hand associated with a gesture; 

FIG. 23; 
5s 

according to the invention; 

according to the invention; 

CTS; 

difference image techniques; 

60 

65 

and 
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FIG. 32 is a simplified diagram of a dynamic gesture neously in two or three dimensions. A circle is such a 
motion, created by combining repeating motions in two 
dimensions that have the same magnitude and frequency of 
oscillation, but with the individual motions ninety degrees zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5 out of phase. A “diagonal” line is another such motion. We 
have defined three distinct circular gestures in terms of their 
frequency rates: slow, medium, and fast. An example set of 
such gestures is shown in FIG. 4. These gestures can also be 

prediction module according to the invention. 

DETAILED DESCRIPTION OF THE 
INVENTION 

FIG, 1 presents a system overview of a gesture controlled 
self service machine system according to the invention. FIG. 
2 shows a flow chart representation of how a vision system 

gesture recognition module, translated into a response, and i o  motions can be identified by this system’ 
then used to control a SSM, including the display of data, a 
virtual environment, and devices. The gesture recognition 

(two or three dimensional space coordinates, plus a time 
stamp) as the input as quickly as vision system can output is 
the data and outputs what gesture (if any) was recognized, 

The specific components of the gesture recognition sys- 
tem are detailed in FIG. 3, and these include five modules: 

Gesture Generation 
S: Sensing (vision) 
I: Identification Module 
T Transformation 
R: Response 
At a high level2 the flow Of the system is as follOws. 

Within the field of view of one or more standard video 

is views the gesture created, with the image data sent to the performed in three dimensions, and more 

The dynamic gestures are represented by a second Order 
equation, one for each axis: 

system takes the feature positions of the moving body parts k,=x, 

k,=8,X1+8, 

More second-order are used to recognize 

has no “size” parameter. O1 is a frequency measure, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO 2  
is a drift component, The gestures were named ‘‘large,,, 
‘‘small”, ‘‘fast,,, and ‘‘slow,, due to the human motions used 

2o to determine the parameters (see FIG. 5).  Afast small circle 
is used to represent a fast oscillation because humans can not 
make fast oscillations using large circles. 

For example, a total of twenty four gestures are possible 
when the following are distinct gestures: clockwise and 

25 counter-clockwise circles, diagonal lines, one dimensional 
lines, and small and large circles and lines. Geometric 
constraints are required to expand the lexicon, because 

again at the Same rate as the vision system outputs data, more gestures (discussed later). This gesture 

cameras, a gesture is made by a person Or device. During the different gestures can result in the Same parameters. FIG. 6 
gesture making Process, a video capture card is capturing shows motions that would cause an identifier to produce the 
images, Producing image data along with timing informa- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA30 same frequency measure and drift components as it would 
tion. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs the image data is Produced, they are through a produce when identifying a slow large circle. When x and y 
feature tracking algorithm which outputs position and time oscillating motions are 90 degrees out of phase, a clockwise 
information. This position information is processed by static circle is produced,  ti^^^ that are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA270 degrees out of phase 
and dynamic gesture recognition algorithms. When the result in a counter-clockwise circle. In-phase motions pro- 
gesture is recognized, a command message corresponding to 35 duce a line with a positive slope. When the motions are 180 
that gesture type is sent to the device to be controlled, which degrees out of phase, a line with a negative slope is 
then Performs and appropriate response. The five modules produced. We can create additional gestures from the fast 

small circle in the same manner. are detailed below. 
Gesture Creator As with the previous gestures, additional gestures can be 

In the Gesture Creator module, a human or device creates 40 created from these two gestures by varying the phase 
a spatial motion to be recognized by the sensor module. If relationships, FIG, 6 shows a representation of the 24 
one camera is used, then the motion generated is two gestures in possible lexicon. Even more gestures are pos- 
dimensional and parallel to the image plane of the monocu- sible when the third dimension is used, 
lar vision system. For three dimensional tracking (as is also Phase relationships are determined as fo~~ows,  ~~~i~~ the 
done with this system), stereo vision using two Or more 45 gesture, the x’s and y’s (and z’s, if the system is set up for 
cameras are used. three dimensions) minimum and maximum image plane 

The subject gesture recognition system is designed to positions are computed. If the x and y motions are out of 
recognize consistent yet non-perfect motion gestures and phase, as in a circle, then when or is minimum or 
non-moving static gestures. Therefore, a human can create maximum, the other axis’s velocity is large, ne direction 
such gestures, as well as an actuated mechanism which 50 (clockwiseness in two dimensions) of the motion is deter- 

more difficult to recognize due to the wide range of motions motion are in phase, then at these 
that humans recognize as the same gesture. We designed our 
gesture recognition system to recognize simple Lissagous Example dynamic gestures used for real world situations 
gesture motions (repeating circles and lines), repeated corn- 5s were derived from a standard Army Training Manual. A 
plex motions (such as “come here” and ‘‘go away quickly” “slow Down” gesture is a small x-line created to one side of 
back and forth hand motions which we define as “skew” the body (FIG, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7, left side), A U D ~ ~  M ~ ~ ~ > >  gesture is a 
gestures), and static hand (such as “thumbs-up”). counterclockwise large slow circle (FIG. 8, left side). The 

With regards to human generated gestures used for com- ‘‘Attention” gesture is a large y-line overhead motion (FIG, 
munication Or device we chose gestures to be 60 9). These three gestures are representative of the motion 
identified based on the following: gestures used throughout the Army manual. 

Static gestures are represented as geometric templates. 
Four gestures are shown and are representative of the static 
gestures which can be represented and identified by this 

65 gesture recognition system. Additionally, language gestures, 
such as American Sign Language gestures, can also be 
recognized. 

could repeatedly create Perfect gestures. Human gestures are mined by looking at the sign of this velocity component. 
similarly, if the 
extremum points both velocities are small, 

and 

Humans should be able to make the gestures easily. 
The gestures should be easily represented mathematically. 
The lexicon should match useful gestures found in real 

For the dynamic (circular and skew) gestures, these 
consist of one-dimensional oscillations, performed simulta- 

world environments. 
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The example static gestures are: 
Halt-stop hand above head (FIG. l&left side of 

Left and Right turn-fingers together, palm out, facing 

Message Acknowledge (OK)-thumb up (FIG. 12). 
Freeze-Fist at head level (FIG. 13). 

We can make the number of classifications (the “feature 
space” dimension) finite by restricting the form of the 
representations. Instead of representing gestures as x(t), the 
representation might be constrained through the use of a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

s parameter vector, resulting in x(t,p). The feature space 
dimension is then equivalent to the number of parameters we 
store. For example, when: 

figure). 

left or right (FIG. 11-left side of figure). 

Identifying Moving Gestures Represented as a Dynamic 
System zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx(t,P)=Po+Plt, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt>O, 

The gesture recognition system identifies a moving ges- 10 the only possible gestures that we can represent are lines 
ture by its dynamics-that is, the structure of its positions in 
space over time. The system translates the motion informa- 
tion into parameters which are used to develop commands 
for controlling data outputs and actuated mechanisms. For 
example, the speed at which a a robot away 
might directly affect a robot arm,s velocity or a mobile 
robot’s speed, order for recognition to occur, a represen- 
tation for human gestures is required, from which a 
putational method for determining and recognizing specific 
gestures can be derived. 

dimensions, the explanation now detailed is described sim- 
ply dimension as a basic one-dimensional gesture as a 
simple example to clarify the distinction between the 
“shape” and the “dynamics” of a gesture. The techniques for 

oscillatory motions occurring in two and three dimensions. 

determined, both the model for representing the oscillatory 
gestures and parameter determination scheme was devel- 
oped. For this system a Linear Least Squares method was an 30 manner, 
on-line computationally efficient technique which allowed 
us to use a linear-in-parameters gesture model. 

The representative planar gesture used throughout this 
section to exemplify our method consists of a family of 
oscillating motions which form a (roughly) horizontal line 35 
segment (“x-line motion”). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs discussed earlier, a human is 
incapable of reliably generating a perfect sinusoidal motion. A dynamic system is a mathematical model describing the 
FIG. 14 illustrates the imperfections of a human created evolution of all possible states in Some state space as a 
x - h e  motion viewed in three Plots. The Plots represent the function of time. The set of all possible states is a state space. 
position of the gesture over time, x(t). Viewing position with Given an initial state, the set of all subsequent states as it 
respect to time in contrast to position and velocity over time 40 evolves Over tirne is a yrajectory” or  motion", F~~ any 
provides insight into how we propose to represent gestures. initial condition, the future evolution of the states in a 

described by the two parameters slope, pl, and intercept 
(see FIG. 15). 

Even with a finite dimensional representation, each 
unique motion is represented by its own distinct parameters. 
However, our intuition about human gestures tells us that 
certain distinct motions should have the same classification. 
Consider the x-line oscillating gesture discussed earlier. 
Whether the gesture starts at the left side of the line or the 
right side (for example, x(O)=-1 or x(O)=+l), the resulting 

Although we make these gestures in two and three 2o motions would still be identified by a human as the same 
gesture. Therefore, another type of representation seems 
desirable. 

Since a human hand forms a gesture, we could imagine a 
representation in terms of the force exerted by the person’s 

the gesture as a function of the nerve impulses that travel 
First, a gesture is from the brain to the arm’s muscles. However, quite clearly, 

most of the countless types of such “internal” represents- 
tions are presently impossible to quantify in any useful 

Four hundred years ago, Newton developed a parsimoni- 
ous representation of physical motions based on their 
dynamic properties2 

k(t)=.f(x) 

identifying this basic gesture may be used to identify similar 25 arm muscles, Alternatively, we might imagine representing 

Plot A (leftmost) shows the Planar motion in X-Position and trajectory remains within that trajectory (the trajectory is an 
y-position coordinates, with the gesture’s motion con- invariant set), Thus, all that is required to describe a par- 
strained to the x-axis. Thus, the “shape” of the motion ticular spatial motion is the differential equation represen- 
conveys relatively little information. Plot B (center) shows 45 tation and its initial conditions, we use a deterministic 

sizing the oscillatory behavior we wish to capture. Plot C (at believe these osci~~atory motions are best represented by 

x-position over time. We will find it most convenient to teristics based on statistical properties, 
represent this motion as it evolves over time in this position 

the Same gesture in x-position plotted against time, 

right) represents the record Of x-velocity plotted against 

representation, as opposed to a stochastic one, because we 

sine waves or a sum of exponentials as opposed to charac- 

As with the geometric representation, there are an infinite 
space, which is the “phase plane”. Of 

course, when a human creates a gesture, the motion 
does not Or a 
perfect circle of plot C. Instead, there is a natural range of 
variation that we would nevertheless like to associate with 55 

achievable in phase space. 
For this dynamic gesture recognition module, a compu- 

tationally effective mathematical representation for the ges- 

for time functions might take the form 

number of gesture c~assifications of the form i(t)=f(x), 
However, as before, we can choose a vector of tunable 
parameters to make the number of gesture c~assifications 
finite, Such representation has the form: 

into the perfect sinusoid Of Plot 

the same gesture. This association we find most naturally k(t)=.f(x,0) 

where 0 represents the tunable parameters. Fixing the value 
Of e in a given representation yields a unique set Of motions, 

Motivated by the way humans interpret gestures, we asso- 
ciate an entire set of motions with one specific gesture. Thus, 
choosing different values of 0 in a given representation 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA“?” would be replaced with some structure based on results in a “family” of trajectories sets-a “gesture family.” 
measurable features which are used to classify the gesture. 65 For example, consider a oscillatory line gesture, the motion 
Of course, there are an infinite number of possible measur- of which is constrained to the x-axis. This gesture can be 
able features. represented in the following two-dimensional state space: 

ture plotted in FIG, 14 is required, A general representation 60 with different initial conditions, described by $t>=f(x,e>. 

x(t)=?, 
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k,=x, 

k,=O,xl 

wish to match with the ‘‘true” parameter values, 8. If these 
values match, then the error between the true states x and the 
observed states x will go to zero. 

where x1 represents the position of the gesture, x2 is its Our choice of a model and Parameter determination 
velocity, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAel is a specified negative parameter, F~~ any zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 scheme was based on an exploration of the following issues: 
constant 8>0, all trajectories satisfy -8,xl2+xZ2=const as 
can be seen by direct differentiation. 

A specific gesture may be considered as a family of sets 
of trajectories. A human can start the gesture at any point 
(initial condition) in its trajectory, and the gesture should i o  
still be identified as the same oscillating line. 
We represent a given family of gestures (family of sets of 
trajectories) by a mathematical model which contains a finite 
number of tunable parameters. A mathematical model 
described by differential equations, as above, allows the is 
development of a computational scheme that will determine 
which parameters, the values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABi’s, correspond to a specific 
gesture. The set of all valid parameters is the parameter 
space. The parameter space defines the family of gestures 
which can be represented by the model. In order to catego- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20 

rize a finite number of gestures in this family and to permit 
further variability in the exact motions associated with a 
particular gesture within this family, we partition the param- 
eter space into a finite number of cells-the “lexicon”-and 
associate all the parameter values in the same cell with one zs 
gesture. 

We have derived certain differential equations, composed 
of state variables and parameters, which intuition suggests 
may represent human gestures. Such differential equation 
models can be divided into two types: non-linear-in- 30 

parameters (NLIP) and linear-in-parameters (LIP). The two 
models can be further subdivided into linear-in-state (LIS) 
and non-linear-in-state (NLIS). It is advantageous to use a 
NLIP (with NLIS) model because it covers, by definition, a 
much broader range of systems than an LIP model. 35 

However, for reasons to be discussed below, we find it 
expedient to use a LIP model for our gesture representation. 

We have chosen to represent planar oscillatory gestures as 
a second-order svstem believing that a model based on the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 
acceleration behavior (physical dynamics) of a system is 40 

sufficient to characterize the oscillatory gestures in which we scheme as follows. First, we decided to de-emphasize off- 
are interested. This system’s states are position and velocity. line batch techniques in favor of on-line ones for reasons 
However, the vision system we use to sense gestures yields already discussed above. The on-line method needs to be 
only position information. Since velocity is not directly chosen carefully, because there are relatively few cases 
measured, then either the parameter identification method 45 where it can be guaranteed that the estimated parameters 
could be combined with a technique for observing the will be equivalent to those resulting from off-line techniques 
velocity, or the velocity could be determined through posi- applied to the entire data set as a whole. 
tion differences. In the following section we show tech- Next, in an attempt to use only position data, we examined 
niques for determining gesture parameters both when the a Series-Parallel Observer, which provides an estimate of the 
velocity state is observed, and when it is obtained through SO other unknown state for purely LIS and LIP systems. We 
position differences. By examining the utility of each were disappointed by this observer because it did not 
technique, we develop an appropriate form of the gesture adequately estimate parameters of non-perfect human ges- 
model and parameter identification method. tures. Specifically, it was problematic to extend the method 

A difficulty with using human created gestures is that the to NLIS systems. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn on-line gradient descent method was 
underlying true physical model is unknown. Also, because ss examined, but for presently available methods applicable to 
people cannot precisely recreate even a simple circular NLIP systems, there is no guarantee that the parameters will 
gesture, multiple sets of parameters could represent the same converge towards their optimal values. Also, the parameters 
gesture. Simulations are used both to determine a viable computed via this method are dependent on the order the 
gesture model and to determine if it is possible to discover data is presented. A Linear Least Squares method (LLS) was 
appropriate parameters for each gesture despite variations in 60 examined next, which makes use of all the data independent 
motion. of ordering. The resulting recursive LLS technique work for 

We chose to represent motion gestures using dynamic NLIP models, and, therefore, allow us to examine more 
systems. We next determined a model and a method for flexible and useful gesture models. 
computing the model’s parameters such that the model’s The Recursive Linear Least Squares incrementally incor- 
parameters will best match an observed gesture motion. FIG. 65 porates new data for determining the parameters which will 
16 illustrates how the gesture’s position is used as an input, best fit a set of data points to a given linear model. The 
with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 representing the unknown parameter values that we recursive LLS method uses a tuning rule for updating the 

v 

Off-line batch techniques versus on-line sequential tech- 
niques. We desire our gesture recognition system to 
identify gestures as they are generated, which requires 
an on-line technique. Also, the measure of how well a 
motion matches a gesture’s parameters needs to be 
updated “on-line”. 

State availability. Using a vision system to sense gestures 
results in image plane position information. However, 
we are using a second order system to describe ges- 
tures. Therefore, we need both positions and velocities 
for our residual error measurements (see below). Veloc- 
ity can be obtained through the use of an estimator or 
by taking a difference of position measurements. 
Unfortunately, using differences adds noise to the data, 
which could make parameter identification difficult. 

Data order dependent versus independent (for on-line 
techniques). Certain on-line techniques will produce 
different parameter values based on the order the ges- 
ture data is presented. Because we define a gesture as 
a family of trajectories, with each trajectory in the same 
family equally valid, our method should be data order 
independent. In particular, different excursions through 
the same data set should result in the same parameters 
at the end of the data acquisition phase. 

Linear versus Non-Linear. A model is a combination of 
linear and non-linear states and parameters. Although 
perfect (non human created) circular oscillatory 
motions can be described by a linear-in-parameters and 
linear-in-states model, a human created gesture may 
require a more complex model. Furthermore, our sys- 
tem can recognize more complex oscillatory motions. 
Therefore, a method for identifying parameters in a 
richer non-linear model is needed, because non-linear 
models can represent a much broader range of motions. 

We chose our gesture model and aarameter determination 
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parameter vector e without inverting a matrix, creating a 
more computationally efficient LLS algorithm. A tuning rule 
is required, because each block of data will result in a 
different set of parameters, as illustrated in FIG. 17. The 
separate graphs show that each pair of (xi,yl) data points 
results in a different best fitting e line. A method of incre- 
mentally updating the parameter e is described below. The 
concept is illustrated in FIG. 18. After the first two data 
points determine the best fit line, each additional data point 
slightly adjusts the line to a new best fit. Each new data point 
will shift the line less and less due to the weighting auxiliary 
equation in the recursive LLS method. The formulation 
below describes how the weighting function operates. 

The recursive (incremental) Linear Least Squares tuning 
method proceeds as follows. The tuning rule has the form: 

~,+l=g(~,*ms,,~,) 

Suppose we have the output data x and state data x up to time 
m, and from this data we have already determined the best 
parameters e for the set. t rom [Cohen 961 we know that at 
the next time step, with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,+, and ”,+,: 

Define 

m t l  

&+I = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhTh zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
k=O 

Then: 

which implies: 

R,-l=R,-f,Tff, 

Therefore: 

This is an update law for the R,,, and e,,, terms. We still 
have to find the inverse of R,,, at each time step. 
Fortunately, the matrix inversion lemma yields: 

(R,+f,~f,)~l=R,~1-R,~lf,T(f_p,~lf,~+l)~lf_p,~1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Therefore: 

The above equation is a recursive formula for R,+,-’ that is 
not based on taking the inverse of a matrix. The initial value 
of R, is chosen as the identity matrix. If more importance is 
attached to recent data than to data received in the remote 
past, then we can choose zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8, to minimize: 

where h is termed the forgetting factor and is chosen with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Oehel. This results in: 

~,+l=~,+~,+l~lf,+lT(~,+l-f,+lem) 

1 1  
R;k1 = -R-‘ rn - -R-‘ rn f r n ( f r n R i l f L  +h)-’frnRil 

The above recursive equation is the identifier in our 
gesture recognition system. This identifier allows us to 
represent gestures using a NLIP model, with the parameters 
identified using an on-line computationally efficient data 
order independent technique. We now determine the specific 
model used to represent oscillatory motion gestures. 

Given that we modeled gestures using an LIPiNLIS 
representation, the following process was used to determine 
the appropriate model. For the first step, we created phase- 
plane plots of the gestures to be modeled, as illustrated in the 
last plot in FIG. 14. A term in a differential equation model 
was composed of a parameter associated with combinations 
of multiplied state variables of various powers, that is, of the 
form B1x~xZk. An example model (of a one dimensional 
motion is): 

kl=x, 

k,=BIXl+B, 

Intuition was used to “guess” appropriate models that would 
best match the phase plane motions. Because we believed an 
acceleration model will sufficiently characterize the gestures 
in which we are interested, the x2 equation is the one 
modified with additional terms and parameters. For each 
model, the specific parameters for each gesture in the 
lexicon were computed using the LLS method. 

The models were tested in simulation by measuring how 
well each tuned parameter model can predict the future 
states of its associated gesture (i.e., by computing a total 
residual error). The model which best discriminates between 
gestures was the chosen. If none of the models clearly 
discriminate between different gestures in a lexicon, then 
new models were tested. The heuristic we used was to add 
or delete specific terms, and determine if there was a 
significant change (good or bad) in the model’s ability to 
discriminate gestures. 

Adding two specific terms to the above equation, that is, 
using the new model 

kl=x, 

k,=B1x1+B,x,+B,x,x1~+8, 

results in a model that is better able to discriminate between 
gestures. 
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The results of the process of modeling oscillating circles 
and lines are detailed in the remaining parts of this section. 
This process is also applicable to the determination of an 
appropriate model to classify certain non-linear gestures. 

A variety of linear-in-parameter models for good circle 
and line gesture representations were tested. As before, each 
model represented only one dimension of motion, which 
was expanded to two or three for actually gesture recogni- 
tion (i.e. an oscillating circle or line is formed when two or 
three of these decoupled models are present, one for each 
planar motion dimension). Again, x1 is the position state, 
and x2 is the velocity state. Five of these models are shown 
below. The determination of such models illustrates how a 
new (and more comprehensive model) could be determined 
when required for more complex dynamic motions. 

To use the models described here on a digital computer, 
a fourth-order Runge-Kutta integration method was used. 
Simulations showed that a sampling rate of 10 Hz is suffi- 
ciently small to allow the use of this method. The linear- 
with-offset component model is the most basic second order 
linear system. The offset component allows the model to 
represent gestures that are offset from the center of the image 
plane. It contains two parameters and is of the form: 

k,=x, 

k,=B,X,+B, 

The Van der Pol equation is a slightly non-linear system, 
containing three parameters. The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO 2  and O3 parameters are 
attached to damping terms. This system is of the form: 

k,=x, 

k,=B,x,+B,X,+B,x~w,Z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
An offset component is added to the Van der Pol equation in 
this system. This system has four parameters and is of the 
form: 

k,=x, 

k,=B,x,+B,x,+B3x~l~+B4 

Amore non-linear system than the Van der Pol equations, the 
higher-order terms system contains additional spring-like 
components. This system has six parameters and is of the 
form: 

k,=x, 

k,=B,X,+B,X,~+B3X,3+B4xz+B~xzxl~+B~ 

The Velocity Damping Terms system has additional damp- 
ing terms. It contains eight parameters and is of the form: 

k,=x, 

k , = B , X , + B , X , ~ + B ~ X , 3 + B 4 x , + B ~ , x 1 ~ + B ~ ~ + B ~ x 1 ~ x 2 ~ + B ~  

The use of simulations to determine the best gesture 
model for representing oscillating circles and lines is now 
detailed. We first detail the residual measure calculation. 
Next the use of the residual measure to determine the best 
gesture model is described. 

A predictor bin is composed of a model with parameters 
tuned to represent a specific gesture. The role of a bin is to 
determine a gesture’s future position and velocity based on 
its current state. To measure the accuracy of the bin’s 
prediction, we compared it to the next position and velocity 
of the gesture. The difference between the bin’s prediction 
and the next gesture state is called the residual error. A bin 
predicting the future state of a gesture it represents will have 

a smaller residual error than a bin predicting the future state 
of a gesture it does not represent. 

The computation for the residual error is based on equa- 
tion: 

kk=Fk* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 

Recall that f(x) is a two-dimensional vector representing the 
gesture’s position and velocity. Therefore zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxk is the gesture’s 
velocity and acceleration at sample k. We compute x, from 

lo the gesture’s current and previous position and velocity. The 
parameter vector O is used to seed the predictor bin. Then: 

ik zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfkTe 

1s 
The residual error is then defined as the normalized differ- 
ence between the actual value of x&, and the calculated 
value of 

FIG. 20 illustrates this concept. Consider the gesture at a 
given velocity and acceleration, sample k. At sample k+l ,  
the predictions from each bin and the actual velocity and 
acceleration values are shown. The difference between a 
bin’s predicted values and the gesture’s actual values 
(according to equation above) is the residual error for that 
particular bin. 

The total residual error is the res-err summed for all data 
samples. The following section presents the residual calcu- 
lation for each gesture with respect to each of the computed 
parameters. 

We now detail how we determined which parameteriza- 
tion model for the predictor bin would best differentiate 
gestures. A data set of position and velocities of gestures is 
required to test each model. Using a vision system data was 
recorded for a slow, medium, and fast circular gesture. The 

40 data is the x and y position and velocity measurements from 
the image plane of the vision system, although for these 
simulations only one of the dimensions is used. There is a 
small transition time when a human begins a gesture. This 
transient is usually less than a second long, but the residual 

45 error measurement has no meaning during this time. 
Therefore, gestures that last at least five seconds are used. 
The data recorded from a human gesture is termed “real 
gesture data.” 

The total residual error was calculated by subjecting each 
predictor bin to each gesture type. A measure of a model’s 
usefulness is determined by examining the ratio of the 
lowest residual error to the next lowest residual error in each 
column. The worst “residual error ratio” is the smallest ratio 
from all the columns because it is easier to classify a gesture 
when the ratio is large. 

2s 

30 

3s 

so 

5s 

gesture input 

slow medium fast 

slow bin 1.31 1.20 1.37 
Medium bin 14.1 0.24 1.01 
fast bin 424 23.1 0.23 

60 

65 The residual error results of the Linear with Offset Compo- 
nent are shown in the table above. The residual errors for the 
slow and medium gestures, with respect to their associated 
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bins, are an order of magnitude lower than the other errors 
in their columns. The residual error of the fast gesture, with 
respect to the fast gesture bin, is one-forth the size of the 
closest residual error in its column (the medium gesture bin). 
Therefore, the Linear with Offset Component system is a 
good candidate for a gesture model. 

gesture input 

slow medium fast 

slow bin 1.34 1.26 1.38 
medium bin 9.8 0.56 1.17 
fast bin 36 1.79 0.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

As seen above, the Van der Pol model is only a fair candidate 
for gesture discrimination. The residual error of the medium 
gesture with respect to its gesture bin is only two-fifths 
smaller than the residual error with respect to the slow 
gesture bin. Also, the residual errors in the slow gesture 
column are not an order of magnitude apart. 

gesture input 

slow medium fast 

slow bin 1.3 1.21 1.37 
medium bin 14.5 0.22 0.98 
fast bin 464 25.7 0.11 

The Van der Pol with Offset Component model is better at 
discriminating gestures than the model without the offset 
term (see table above). The residual errors in the medium 
gesture’s column are now an order of magnitude apart. 
Although the residual errors in the fast gesture’s column are 
not, the discrimination is still slightly better than in the 
Linear with Offset Component model. 

gesture input 

slow medium fast 

slow bin 1.29 1.24 1.37 
medium bin 14.6 0.18 1.03 
fast bin 249 20.0 0.11 

The table above shows the residual errors associated with 
the Higher Order model. This model is an improvement over 
the Van der Pol with Offset Component model, as the 
residual errors in the fast gesture’s column are now almost 
an order of magnitude apart. 

gesture input 

slow medium fast 

slow bin 1.28 136 23.3 
medium bin 13.8 0.17 1 
fast bin 8770 35.9 0.09 

The table above lists the residuals errors for the Velocity 
Damping model. This is the best model for discriminating 
between gestures, as the residual errors for each gesture with 
respect to their tuned bins are all at least an order of 
magnitude below the other residual errors in their columns. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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16 
A comparison of the worst “residual error ratio” of each 

model we considered is summarized in FIG. 21, and sug- 
gests that the Velocity Damping model is the best choice for 
our application. However, the technique described here 
shows how more models could be derived and tested. For 
simple dynamic gesture applications, the Linear with Offset 
Component model would be used. For more complex 
gestures, a variation of the Velocity Damping model would 
be used. 
Combining One-Dimensional Motions to Form Higher- 
Dimensional Gestures 

We have shown how predictors can be used to recognize 
one-dimensional oscillatory motions. Recognition of higher 
dimensional motions is achieved by independently recog- 
nizing multiple, simultaneously created one dimensional 
motions. For example, the combination of two oscillatory 
line motions performed in perpendicular axis can give rise to 
circular planar gestures, as shown in FIG. 22. 

Humans have the ability to create these planar motions. 
However, they can also make these motions in all three 
dimensions (for example, circles generated around different 
axis). To recognize these planar gestures performed in 
three-dimensional space, a vision system must be able to 
track a gesture’s position through all three physical dimen- 
sions. A binocular vision system has this capability, as does 
a monocular system with an attached laser range finder. Any 
of these such vision systems can be used with our gesture 
recognition system to identify three dimensional gestures. 
Development of a System to Recognize Static Gestures 

Recognizing static hand gestures can be divided into 
localizing the hand from the rest of the image, describing the 
hand, and identifying that description. The module to rec- 
ognize static hand gestures is to be both accurate and 
efficient. A time intensive process of evaluating hand ges- 
tures would prevent the system from updating and following 
motions which occur in real time. The system is intended to 
interact with people at a natural pace. Another important 
consideration is that the background may be cluttered with 
irrelevant objects. The algorithm should start at the hand and 
localize the hand from the surroundings. 

In order to meet these demands, the edges of the image are 
found with a Sobel operator. This is a very fast linear 
operation which finds approximations to the vertical and 
horizontal derivatives. In order to use only a single image, 
the greater of the horizontal and vertical component is kept 
as the value for each pixel. Besides being quick to calculate, 
an edge image avoids problems arising from attempting to 
define a region by locating consistent intensity values or 
even consistent changes in intensity. These values can vary 
dramatically in one hand and can be very hard to distinguish 
from the background as well. 
In order to describe the hand, a box which tightly encloses 
the hand is first found. This allows a consistent description 
which is tolerant to changes in scale. To locate this box, we 
assume a point within the hand is given as a starting point. 
This is reasonable because the hand will be the principal 
moving object in the scene. Moving objects may be easily 
separated and the center of the largest moving area will be 
in the hand. From this starting point, a prospective box edge 
is drawn. If this box edge intersects an existing line, it must 
be expanded. Each side is tested in a spiral pattern of 
increasing radius from the initial center point. Once three 
sides have ceased expanding the last side is halted as well. 
Otherwise, the last side would often crawl up the length of 
the arm. The bounding box is shown in FIG. 23. 

Once the hand has been isolated with a bounding box, the 
hand is described (FIG. 24). This description is meant to be 
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scale invariant as the size of the hand can vary in each 
camera image. At regular intervals along each edge the 
distance from the bounding edge to the hand’s outline is 
measured. This provides a consistent description which may 
be rapidly calculated. A description is a vector of the 
measured distances, allowing a very concise representation. 

The last task of the static gesture recognition is to identify 
the new description. A simple nearest neighbor metric is 
used to choose an identification. A file of recognized ges- 
tures is loaded in the initialization of the program. This file 
consists of a list of named gestures and their vector descrip- 
tions. 
Considerations 

The primary obstacle in static gesture recognition is 
locating and separating the hand from the surroundings. 
Using sophisticated models of the hand or human body to 
identify with an image are computationally expensive. If 
orientation and scale are not very constrained, this cannot be 
done in real time. Our system makes descriptions quickly 
and can compare them to predefined models quickly. 

The limitations of the current system are a result of being 
dependent on the fast edge finding techniques. If lighting is 
highly directional, parts of the hand may be placed in 
shadow. This can cause odd, irregular lines to be found and 
defeat the normal description. If the background immedi- 
ately surrounding the hand is cluttered with strongly con- 
trasting areas, these unrelated lines may be grouped with the 
hand. This also causes unpredictable and unreliable descrip- 
tions. Such a background is very difficult to separate without 
making assumptions about the hand color or the size of the 
hand. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn upper and lower bound are placed on the size of the 
hand in the image, but these permit a wide range of distances 
to the camera and are needed to assure that enough of the 
hand exists on image to make a reasonable description. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

As long as the hand is within the size bounds (more than 
a speck of three pixels and less than the entire field of view) 
and the immediate surroundings are fairly uniform, any hand 
gesture may be quickly and reliably recognized. 

Multiple camera views can be used to further refine the 
identification of static gestures. The best overall match from 
both views would be used to define and identify the static 
gestures. Furthermore, the system works not just for “hand” 
gestures, but for any static type of gestures, including foot, 
limb, and full body gestures. 

The Overall Gesture Recognition System 

In this section, based on the discussed functional and 
representational issues, we detail the specific components of 
a dynamic gesture recognition system according to the 
invention from an architectural and implementational view- 
point. In the preferred embodiment, the system is composed 
of five modules. FIG. 3 illustrates the signal flow of the 
gestural recognition and control system, from gesture 
creation, sensing, identification, and transformation into a 
system response. 
Gesture Creator 

In the Gesture Creator module, a human or device creates 
a spatial motion to be recognized by the sensor module. Our 
gesture recognition system was designed to recognize con- 
sistent yet non-perfect motion gestures and non-moving 
static gestures. Therefore, a human as well as a device can 
creates the gestures which can be recognizable by the 
system. Human gestures are more difficult to recognize due 
to the wide range of motions that humans recognize as the 
same gesture. We designed our gesture recognition system to 
recognize simple Lissagous gesture motions (repeating 
circles and lines), advanced motions such as “come here” 
and “go there”, and static hand symbols (such as “thumbs- 
up”). 

18 
Dynamic Gesture Lexicon 

A gesture lexicon is a set of gestures used for communi- 
cation or device control. We chose gestures for our lexicon 
based on the following: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5 Humans should be able to make the gestures easily 
Device gestures in the form of repeated motions should be 

The gestures should be easily represented as a dynamic 

The lexicon should match useful gestures found in real 

The dynamic gestures used in this system are preferably 
based upon three one-dimensional oscillations, performed 

1~ simultaneously in three dimensions (or two oscillations 
performed in two dimensions). A circle is such a motion, 
created by combining repeating motions in two dimensions 
that have the same magnitude and frequency of oscillation, 
but with the individual motions ninety degrees out of phase. 

2o A “diagonal” line is another such motion. To illustrate this, 
we define three distinct circular gestures in terms of their 
frequency rates: slow, medium, and fast. Humans create 
gestures that we define as slow large circles (slow), fast large 
circles (medium), and fast small circles (fast). More com- 

25 plex gestures can be generated and recognized, but these 
simple ones are used for illustrative purposes. 
Main Three Gestures 

Using the simpler Linear with Offset model (whose 
parameters are easier to understand than the more complex zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

30 models), we represented a circle by two second order 
equations, one for each axis: 

modeled the same as human gestures. 

system. 

world environments. 

k,=x, 

k,=8,X1+8, 
3s 

and 

%=Yz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
k,=~lY,+y, 

40 

The preferred gesture model has no “size” parameter. O1 is 
a frequency measure, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO 2  is a drift component. The 
gestures were named “large”, “small”, “fast”, and “slow” 
due to the human motions used to determine the parameters 

45 (see FIG. 25). A fast small circle is used to represent a fast 
oscillation because humans can not make fast oscillations 
using large circles. Models with higher order terms would 
have parameters with different representations. 
Expanded Lexicon-Geometric Constraints 

A total of twenty-four gestures are possible from this 
example representation when the following are distinct 
gestures: clockwise and counter-clockwise circles, diagonal 
lines, one dimensional lines, and small and large circles and 
lines. Geometric constraints are required to expand the 

ss lexicon, because different gestures can result in the same 
parameters. FIG. 4 shows motions that would cause an 
identifier to produce the same frequency measure and drift 
components as it would produce when identifying a slow 
large circle. When x and y oscillating motions are 90 degrees 

60 out of phase, a clockwise circle is produced. Motions that are 
270 degrees out of phase result in a counter clockwise circle. 
In phase motions produce a line with a positive slope. When 
the motions are 180 degrees out of phase, a line with a 
negative slope is produced. We can create additional ges- 

65 tures from the fast small circle in the same manner. 
Given the various combinations of slow, fast, small, and 

large circles, the only one not used as a gesture is the slow 

SO 



US zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6,681,031 B2 
19 20 

small circle. Since the slow small circle has the same Once the user clicks on the target in the image, we 
oscillation frequency (medium) as the fast large circle, we compute the average color of a small region around this 
need another geometric feature, the circle’s size, to differ- point in the image. This will be the color of the target region 
entiate between these two gestures. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs with the previous being tracked in the Scene until it is reinitialized, Once 
gestures, additional gestures can be created from these two s tracking begins, we compute the position of the target region 
gestures by varying the Phase relationships. FIG. 6 shows a in the image using two methods. The first method tracks the 
representation of the 24 gestures in this example lexicon. target when there is sufficient motion of the target in the 

Phase relationships are determined as follows. During the image, The second method will take Over when there is no 
gesture, the x’s and y’s minimum and maximum image motion of the target in the scene, 

Before choosing the methods for finding the target in the plane positions are computed. If the x and y motions are out 
of phase, as in a circle, then when x or y is minimum or 

of the motion is determined by looking at the sign of current or estimated target position using a motion detecting 
this velocity component, Similarly, if the and motion are function. This function computes the difference between the 

small, A similar method is used when the gesture is per- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIS memory. If motion has occurred there will be sufficient 
formed in three dimensions. change in the intensities in the region. This will indicate 
Sensor Module motion. The motion detection function will trigger if a 

Unmodified Cohu solid-state CCD cameras are used as sufficient number of pixels change intensity by a certain 
the sensor devices. No filters were used and the background threshold value. 
was not modified. A Matrox Meteor capture card was used zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20 If the motion detection function detects motion, the next 
to scale a captured image to any size without missing any step is to locate the target. This is done using the difference 
frames. It will capture and transfer full-resolution, full-frame image and the target color. When an object moves between 
NTSC (640x480) or PAL(768x576) video input in real-time frames in a relatively stationary background, the color of the 
(30 Hz). pixels changes between frames near the target (unless the 

The color tracking system (CTS) uses the color of the zs target and the background are of the same color). We 
hand and its motion to localize the hand in the scene, as compute the color change between frames for pixels near the 
shown schematically in FIG. 26. The hardware of the CTS target location. The pixels whose color changes beyond a 
system consists of a color camera, a frame grabber, and an threshold make up the difference image. Note that the 
IBM-PC compatible computer. The software consists of the difference image will have areas, which are complementary. 
image grabbing software and the tracking algorithm. Once 30 The pixels where the object used to be will complement 
the CTS is running, the graphical user interface displays the those pixels where the object is at now. If we separate these 
live image from the color camera on the computer monitor. pixels using the color of the target, we can compute the new 
The operator can then use the mouse to click on the hand in location of the target. The set of pixels in the difference 
the image to select a target for tracking. The system will then image, which has the color of the target in the new image, 
keep track of the moving target in the scene in real-time. 3s will correspond to the leading edge of the target in the new 

The color tracking system is developed on a BSD 4.0 image. If we assume that the target approximates an ellipse 
UNIX operating system. The hardware involved consists of of known dimensions, we can compute the position of the 
a color camera, an image capture board and an IBM PC center of the target (ellipse) from this difference image (see 
compatible. The software for the CTS is written in C and FIG. 29). 
uses Motif for its graphical user interface. The color of a pixel in a color image is determined by the 

The present HTS system consists of a COHU 1322 color values of the Red, Green and Blue bytes corresponding to 
camera with a resolution of 494x768 pixels. The camera is the pixel in the image buffer. This color value will form a 
connected to a Meteor image capturing board situated inside point in the three-dimensional RGB color space (see FIG. 
a Pentium-I1 450MHz IBM-PC compatible computer. The 30). For our tracking system, when we compute the average 
Meteor board is capable of capturing color video images at 4s color of the target, we assume that the target is fairly evenly 
30 frames per second. It is also able to capture these images colored and the illumination stays relatively the same. The 
at any resolution below the resolution of the camera. average color of the target is then the average RGB values 

The graphical user interface for the CTS displays a live of a sample set of pixels constituting the target. When the 
color image from the camera on the computer screen. The target moves and the illumination changes the color of the 
user can then identify the target in the scene and click on it SO target is likely to change. The color matching function 
using the mouse. The CTS will then track the target in allows us to compute whether a pixel color matches the 
real-time. The flow chart of the tracking algorithm is shown target color within limits. When the illumination on the 
in FIG. 27. target changes, the intensity of the color will change. This 

We capture the image using functions from the Meteor will appear as a movement along the RGB color vector as 
driver. To provide real-time operation, we setup the board to ss shown in FIG. 30. In order to account for slight variations in 
signal the program using a system interrupt (SIGUSR2). the color, we further allow the point in color space to lie 
Every time a new frame is ready, the Meteor alerts the within a small-truncated cone as shown in the figure. Two 
program with an interrupt on this signal. The image capture thresholds will decide the shape of the cone. One for the 
function responds to the interrupt by transferring the current angle of the cone and one for the minimum length of the 
camera image to a buffer and processing it to find the target. 60 color vector. Thus, any pixel whose color lies within the 
The signal mechanism and its handling are what enable the truncated cone in color space will be considered as having 
system to operate in real-time. the same color as the target. 

The graphical user interface of CTS displays the live When the motion detection function fails to detect sig- 
camera image on the screen. The user can start tracking by nificant motion in the scene, we use a static target matching 
clicking the mouse on the target. This starts the tracking 65 function to compute its location. The function searches a 
algorithm. The graphical user interface of the CTS is shown small area about the current location of the target to find the 
in FIG. 28. best fit in the image for the target. The search will find the 

i o  

maximum, the other axis’s velocity is large, The scene, the system checks for motion in a region the 

in phase, then at these extremum points both velocities are current image and the previous image, which is stored in 

40 
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location of the target with the highest matching value. We 
assume that the object is approximately elliptical. The 
elliptical target is hypothesized at each point in the search 
space and the matching metric is computed. This matching 
metric function uses a combination of edge and interior zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 
color matching algorithms to get a single matching number. 

a 480x640-pixel color image at 30 frames per second. 
Processing such a large image will slow down the program. 

three example basic gestures into the recursive linear least 
squares. The values for each bin are summarized in the 
following Table: 

The image capture board is capable of providing us with Parameter Values 

x-theta-l x-theta-2 y-theta-l y-theta-2 

Fortunately, the nature of the tracking task is such that, only siow bin -0.72 149 -0.73 103 
a fraction of the image is of interest. This region called the lo medium bin -16.2 3467 -16.3 2348 
window of interest lies around the estimated position of the fast bin -99.3 20384 -97.1 12970 
target in the new image. We can compute the location of the 
target in the new image from the location of the target in the 
previous image and its velocity. This simple method is able 
to keep track of the target even when the target 
rapidly, we have found that the window of interest is 
typically zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1,lOoth the area of the original image, This speeds 

A computer with a higher processing speed could process zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
20 new gesture descriptions to a configuration file. Each gesture 

is described by a name tag, width, height, x location, y interest. 

location, base side, and three vectors (in this example, each Identification Module 

Identification Module. This module uses the position and B~~~~~~ profiles may be significantly different due to vary- 
velocity information Provided by the Sensor ~ o d u l e  to ing tilts of the hand, multiple descriptions of fundamentally 
identify the gesture. The module, shown in FIG. 31, corn- 25 the same gesture may be desired. The initial or last line may 
prises of three components-the Dynamic Gesture Predic- also be less reliable due to missing the contours of the hand 
tion module, the Static Gesture Identification module, and edge image. 
the Overall Determination module (Which Gesture?). The Example parameter files are depicted in the following 
output of the Overall Determination module is sent to a table: 
screen display and to the SSM which produces an output 30 
based on the gesture command received. 
The Dynamic Gesture Prediction Module 

The Static Gesture Identification 
The Static Gesture Identification module only searches for 

static gestures when the hand motion is very slow (i.e. the 
norm of the x and y velocities is below a threshold amount). 

gesture Or Outputs that no gesture was found. 

15 

up the computation of the new target location considerably, 

the entire image without resorting to creating a region of 

When this happens, the module continually identifies a static 

expanded by writing The static gestures may be 

The gesture recognition are located in the consisting of 15 integers) describing the profile of the hand. 

Parameters for Halt 

name: halt arm: 14 width: 32 height: 47 xloc: -1 yloc: -1 

9 8 8 7 4 3 3 3 2 2 1 1 1 1 2  
17 17 16 12 11 10 10 9 8 1 1 2 4 6 9 
Parameters for Turn Right 

name: go-right arm: 11 width: 47 height: 31 xloc: -1 yloc: 0 
47 27 26 23 8 5 1 1 1 23 4 19 12 14 21 

31 14 10 10 6 5 4 3 2 3 2 11  1 2  
Parameters for Acknowledge 

name: acknowledge arm: 11 width: 38 height: 46 xloc: 0 yloc: 0 
38 6 6 8 11 12 10 3 2 1 3  3 9 6 12 

46 17 11 2 11  2 2 7 3 3 3 4 7 7 
Parameters for Freeze (fist) 

name: freeze arm: 14 width: 27 height: 29 xloc: -1 yloc: -1 
0 0 0 4 6 6 3 2 2 2 3 6 7 0 8  

27 14 14 13 13 13 4 2 2 2 3 3 1 2  3 

The Dynamic Gesture Prediction module contains a bank 

a dynamic system model with parameters preset to a specific 35 

of predictor bins (see FIG. 32). Each predictor bin contains 

gesture. We assumed that the motions of human circular 
gestures are decoupled in x and y. Therefore, there are 

4 4 o o o o o o o o o o 6 8 IO 

separate predictor bins for the x and y axes. In this example 
of three basic two dimensional gestures, a total of six 

mation from the sensor module is fed directly into each bin. 40 

predictor bins are required. The position and velocity infor- 

The idea for seeding each bin with different parameters 
was inspired by Narendra and Balakrishnan’s work on 

In this work, they create a bank of indirect controllers which 

different initial estimates of the plant parameters. When the 
plant is identified, the bin that best matches that identifica- 

Each bin’s model, which has parameters that tune it to a 

velocity of the motion. This prediction is made by feeding 

31 11 9 7 i o  i o  9 i o  s 2 1 s 8 i o  13 

improving the transient response of adaptive control system. 

are tuned on line but whose identification models have 45 46 23 20 3 1 4 7 2 13 16 17 19 21 22 24 

tion supplies a required control strategy for the system. 

specific gesture, is used to predict the future position and 50 

the current state of the motion into the gesture model. This 
prediction is compared to the next position and velocity, and 
a residual error is computed. The bin, for each axis, with the 

27 12 12 4 4 3 3 3 2 2 2 1 1 1 1 

In each the name string is followed by an arm side, width, 
height, location and location, The arm parameter is 

least error is the best gesture match. If the best 5s simply an integer corresponding to above, below, right, or 
gesture match is not (which is left. The width and height are measured in pixels. The x and 
a measure of how much variation from a specific gesture is location are 0 if the location is not important or +1 or -1 
allowed), then the result is ignored; no gesture is identified. to restrict recognition of a gesture to one particular quadrant. 
Otherwise, geometric information is used to constrain the The following three vectors are the extreme side (the end of 
gesture further. A single gesture identification number, the hand) then the top or left side followed by the bottom or 
which represents the combination of the best x bin, the best 6o right side. The determination of which side is being repre- 
y bin, and the geometric information, is outputted to the sented is determined by the arm side parameter. For 
transformation module. This number (or NULL if no gesture example, if the base side is from below (as in the Halt 
is identified) is outputted immediately upon the initiation of gesture below) the first line is from above, then from the left, 
the gesture and is continually updated. then from the right. Right and left refer to the overall 
Determining Parameter Values 

The parameters used to initially seed each predictor bin Another method used for this part is to parameterize each 
were calculated by feeding the data of each axis from the part of the hand (palm, digits, and wrist) as a set of 

a predefined 

65 image-not the facing of the imaged person. 
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connected “blobs”, that is, three dimensional shapes which 
are connected together geometrically. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs before, a configu- 
ration file would be used to defile how these blobs are 
connected, with the vision system identifying the blobs 
which this module sticks together. 
The Overall Determination Module 

This “Which Gesture?” module takes input from both the 
Static and Dynamic Gesture modules. When the velocity is 
small, then a static gesture is observed. When the velocity is 
greater than a threshold value, then a dynamic gesture is 
observed. The gesture identified is continuously outputted, 
and can therefore change value over time (the output can 
even be that no gesture was identified). The gesture identi- 
fied is sent to the transformation module. 
Transformation Module 

The transformation module take a gesture type as its input 
and determines what to do with it. In the case of this system, 
the gesture is converted to parameters which represent the 
static or dynamic gesture, which is sent to the system which 
uses this information to produce a response. 
System Response 

purposes. These include: 
The gesture command can be used for a wide variety of 

Commands into a virtual reality simulator, to control and 
interact with the environment. 

Commands for a self service machine (SSM), such as a 
public information kiosk or Automated Teller 
Machines. 

Commands to control an actuated mechanism, such as a 
robot arm or mobile robot. 

Commands to control any device (such as a home 
appliance). 

It is important to note that these devices can be controlled 
using static gestures, dynamic gestures, or a combination of 
the two. Thus, there is more information available to these 
system from the gesture input device, thereby allowing for 
a greater ability for humans to command and control them. 

The key features of our architecture are the prediction 
modules and the signal flow from gesture creation to system 
response. The other modules could be replaced with func- 
tionally equivalent systems without changing the structure 
of our architecture. For example, instead of a human, a robot 
could create the gesture. Alternatively, one could create the 
gesture using a stylus, with a graphics tablet replacing the 
vision system in sensor module S. The graphics tablet would 
output the x and y coordinates to the identification module 
I. Similarly, module R could be a robot, one as complex as 
a six degree of freedom robot arm or as simple as a stepper 
motor based camera platform. The former mechanism 
requires a more complex transformation scheme in module 
T, while the latter system needs only a simple high level 
command generator. 

As discussed earlier, the static and dynamic identification 
modules contains the majority of the required processing. 
Compared to most of the systems developed for gesture 
recognition, this system requires relatively little processing 
time and memory to identify one gesture feature. This makes 
it possible to create a system with the ability to identify 
multiple features in parallel. A sophisticated module could 
then examine the parallel gesture features and infer some 
higher level motion or command. 

We claim: 
1. A method of dynamic gesture recognition, comprising 

the steps of  
storing a dynamic motion model composed of a set of 

differential unions, each differential equation describ- 
ing a particular dynamic gesture to be recognized of the 
form: 

i=f(x,0) 

24 
where x is vector describing position and velocity 

components, and 0 is a tunable parameter; 

capturing the motion to be recognized along with the 
tunable parameters associated with a gesture-making 
target; 

extracting the position and velocity components of the 
captured motion; and 

identifying the dynamic gesture by determining which 
differential equation is solved using the extracted com- 
ponents and the tunable parameters. 

2. The method of claim 1, wherein the target is a human 
hand, human head, full body, any body part, or any object in 
the motion capturing device’s field of view. 

3. The method of claim 2, further including the step of 
generating a bounding box around the object. 

4. The method of claim 1, further including the step of 
using an operator to find the edges of the target. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5 .  The method of claim 1, further including the step of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
20 treating a dynamic gesture as one or more one or multi- 

dimensional oscillation. 
6. The method of claim 5, further including the step of 

creating a circular motion as a combination of repeating 
motions in one, two, or three dimensions having the same 

7. The method of claim 5, further including the step of 
deriving complex dynamic gestures by varying phase and 
magnitude relationships. 

8. The method of claim 5, further including the step of 
3o deriving a multi-gesture lexicon based upon clockwise and 

counter-clockwise large and small circles done-dimensional 
lines. 

9. The method of claim 5, further including the step of 
comparing to the next position and velocity of each gesture 
to one or more predictor bins to determine a gesture’s future 

10. The method of claim 9, further including the use of a 
velocity damping model to discriminate among non-circular 
dynamic gestures. 

11. The method of claim 5, further including e use of 
40 dynamic system representation to discriminate among 

12. A gesture-controlled interface for self-service 

a sensor module for capturing and analyzing a gesture 
made by a human or machine, and outputting gesture 
descriptive data including position and velocity infor- 
mation associated with the gesture; 

an identification module operative to identify the gesture 
based upon sensor data output by the sensor module; 
and 

a transformation module operative to generate a command 
based upon the gesture identified by the identification 
module. 

13. The interface of claim 12, further including a system 
response module operative to apply to the command from 
the transformation module to the device or software program 
to be controlled. 

14. The interface of claim 13, wherein the device is a 
virtual-reality simulator or game. 

15. The interface of claim 13, wherein the device is a 
self-service machine. 

16. The interface of claim 13, wherein the device forms 
part of a robot. 

17. The interface of claim 13, wherein the device forms 

i o  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
15 

zs magnitude and frequency of oscillation. 

35 position and velocity. 

dynamic motion gestures. 

machines and other applications, comprising: 

45 

55 

6o 

65 part of a commercial appliance. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
* * * * *  
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