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Animated characters that move and gesticulate appropriately with spoken text are useful in a

wide range of applications. Unfortunately, this class of movement is very difficult to generate, even

more so when a unique, individual movement style is required. We present a system that, with a

focus on arm gestures, is capable of producing full-body gesture animation for given input text in

the style of a particular performer. Our process starts with video of a person whose gesturing style

we wish to animate. A tool-assisted annotation process is performed on the video, from which a

statistical model of the person’s particular gesturing style is built. Using this model and input

text tagged with theme, rheme and focus, our generation algorithm creates a gesture script. As

opposed to isolated singleton gestures, our gesture script specifies a stream of continuous gestures

coordinated with speech. This script is passed to an animation system, which enhances the gesture

description with additional detail. It then generates either kinematic or physically simulated

motion based on this description. The system is capable of generating gesture animations for

novel text that are consistent with a given performer’s style, as was successfully validated in an

empirical user study.

Categories and Subject Descriptors: I.3.7 [Computer Graphics]: Animation

Additional Key Words and Phrases: human modeling, gesture, character animation

1. INTRODUCTION

People are engaged by characters with interesting personalities. However, creating quality animation for generic

characters that correctly coordinates appropriate gestures with spoken text is already a challenging task. Generating

movement that reflects a particular personality significantly increases the challenge of the gesture animation task, yet

it is a goal towards which we must strive. This work describes one approach towards that goal. We present a system

that allows the gesturing pattern of specific individuals to be modelled and then generates animation for new text from

this model, complete with appropriate gestures and body movement that reflect the original subject. The movement
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Fig. 1. Preprocessing phase of the system
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Fig. 2. Automatic generation process.

focus is on standing characters performing arm gestures, but the approach is also applicable to the entire body.

The system operates in two phases: a preprocessing phase and a fully automatic generation phase. The preprocessing

stage is shown in Figure 1. Producing animation of a particular individual begins by collecting a video corpus for that

person. In our case, we used two talk show hosts as subjects, employing about ten minutes of film of each. During an

analysis step, the video is hand annotated in the tool ANVIL [Kipp 2001], and both gesture and more general animation

data are extracted. A statistical model called a Gesture Profile is built based on the annotated data. In addition, an

Animation Lexicon is constructed that contains data such as the normal hand orientation for each gesture that we

model. These two components provide the input for the gesture generation and animation stage. This tool-supported

analysis step allows us to generate a particularly wide range of gestures.

Once the initial analysis phase is complete, and any novel input text is tagged, the generation process is fully automatic,

as summarized in Figure 2. There are two paths in this pipeline. The bottom path shows re-creation. Here, the

annotated data from the video corpus is mapped directly to a gesture script, which is then animated. Re-creation can

be used to produce animations of any annotated segment in the corpus. This is useful for validating the annotation and

creating an animation of a specific performance. The second path in the pipeline generates animation for any novel

tagged text1, which need not be in the video corpus. The gesture script is generated from the statistical model for

1In addition to linguistic data, the text input must include timestamps for beginning and end of each word. This data is usually provided by the

text-to-speech (TTS) software.
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the individual specified by the user. This gesture script is passed to the Animation Engine, which further refines the

description of the motion, using data from the animation lexicon and a set of rules described below. The animation

engine produces final animated output either kinematically, or using dynamic simulation, at the user’s option.

Traditionally, modeling gesture production and gesture animation are handled by well separated systems. For instance,

the gesture specification system might only produce a gesture name, e.g. “beat”, that is then rendered by the animation

system by playing a pre-existing clip. In this work, we take a more tightly coupled approach that raises interesting

issues of data representation and flow: What data gets generated where? Some of the detailed information needed to

animate a gesture is best stored as part of the gesture model, i.e. on the generation side. This information can be related

to the model of a particular performer, the correlations within a stream of generated gestures, synchronization with

speech, or be definitional information for a particular gesture. Modeling this data as part of the generation process

allows greater control for the gesture generation system and reduces the burden of how much the animation system

needs to “know” and model. It frees the animation system from needing to access the gesture model. At the same

time, representing data on the generation side can be costly in terms of modeling effort as it requires sufficient video

footage, annotation work and the construction of statistical or rule based models. In keeping with principles of data

encapsulation, we also wish to minimize what the gesture system needs to know about the animation system. To

negotiate this trade off, our gesture generation system produces sparse data that captures the key definitional aspects

of a gesture and provides good control. The details of the motion are filled out by the animation system, which also

has additional information about the figure being modeled, gesture types and the controls available. Specifically, the

animation system will complete timing information, deal with spatial conflicts and add in a more rich description of

gesture form as it augments the sparse data it receives from the generation stage.

In comparing our system to a motion capture approach, as well as noting the greater control afforded the generation

engine in our approach, it is worth examining the range of gestures our system can produce. We currently model 28

different gestures in our animation lexicon, each of which can be generated with either or both hands in any of hundreds

of spatial locations and with an arbitrary number of after-strokes (Section 3). Thousands of different combinations

are possible and the animation lexicon can be easily extended. Developing an appropriate motion capture database

to cover this space would be a daunting, if not prohibitive, task. Another strength of our technique is that it can be

used on any subjects for whom there is adequate film of them gesturing. This means that it can potentially be used on

subjects that are no longer alive or who cannot otherwise be motion captured due to cost or availability.

Two talk shows hosts, JL (Jay Leno) and MR (Marcel Reich-Ranicki), are used as subjects in this paper. They have

different gesturing styles (e.g. Figure 3) and also speak different languages. This illustrates an important point: our

technique can be used to create gestural animation for text in languages different to that spoken by the subject. In

our animation system, we employ a skeleton model containing 89 degrees of freedom, including six degrees for world

space orientation and location and 21 degrees of freedom for each hand.

In our approach to gesture synthesis we bring together a number of features that have already been studied previously

but not received this level of attention:

— Determination of gesture phase structure.

— Precise timing for multiple strokes.

— Inclusion of the gesture’s spatial structure (location in space, curvature in space, hand and wrist shape, arm incli-

nation).

— Developing a broad range of gestures.

— Controller-based physical simulation of motion for gesturing.
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Truly novel contributions of this paper include:

— The selection and customization of gestures based on speaker-specific statistical models. The “recognizability” of

the generated speaker-specific styles was confirmed with a user study.

— The development of data models at an appropriate level-of-detail to encapsulate sufficient data for speaker-specific

re-creation and effectively divide the modeling task between gesture generation and animation components, while

minimizing the annotation task.

— The production of contiguous gesture sequences, so-called g-units, instead of singleton gestures.

— Joint space approaches for controlling motion curvature and generating progressives.

— The synchronization of dynamic character simulation with speech production.

2. BACKGROUND

To generate and animate gestures from an input of tagged text is a fairly recent endeavor, pursued in an interdisci-

plinary arena requiring competencies from computer animation, artificial intelligence and psychology. Cassell et al.

[1994] developed a rule-based system that generates audiovisual speech, intonation, facial expression, and gesture by

working on the input text’s information structure which is still common practice today. Another common practice

is to synchronize the gesture stroke to the accented syllable of the coexpressive word, although, as we will show,

it makes sense to sometimes synchronize the stroke with a different part of the sentence. Using the same agent as

Cassell et al., Noma et al. [2000] built the Virtual Presenter where gestures can be added to a text manually or with

keyword-triggered rules. Animated gestures are synchronized with the following word. While the number of possible

gestures is very small the focus was on how to implement meaningful rules from the literature on good public speak-

ing. The system takes into account posture and eye contact with the audience. A more complex generation system

is the Behavior Expression Animation Toolkit (BEAT) [Cassell et al. 2001]. It takes plain text as input and first runs

a linguistic analysis on it before generating intonation, facial animation, and gestures. Gestures are generated using

hand-made rules and are selected using priority values. While our system shares the overall goal of BEAT, to create

accompanying gestures for a given text, there are a number of differences. In BEAT, a gesture is basically a “black

box” that is triggered by a hand-made rule. In contrast, our system triggers gestures probabilistically and plans both the

gestures’ internal structure (phases, timing, shape) and macro-structure (by creating so-called gesture units [Kendon

2004]). Moreover, we produce a wide range of 28 different gestures2 while BEAT seems to focus on very few samples.

Most importantly, our approach produces not only natural-looking animations but a character-specific gesture style

that intends to capture the individual differences of human beings.

Stone et al. [Stone et al. 2004] also use a data-driven approach to re-create a specific person’s gesturing style. They

re-arrange pre-recorded chunks of audio and motion captured pieces of full-body movement. Possible sentences are

defined by a simple grammar. The corresponding utterance is assembled from those speech phrases and gestures that

match the communicative function and minimize the required amount of time warping and blending. However, the

range of both possible utterances and gestures is limited to what has been pre-recorded. In contrast, in our approach

we extract abstract models of behavior that are then used to create and animate gestural behaviour on totally new input.

Other relevant animation systems include EMOTE [Chi et al. 2000] which presents a kinematic system for expressive

variation of arm and torso movements that is based on the analysis of Laban. Hartmann et al. [2002] present a

kinematic animation system that realizes a gesture language that they have developed. Our gesture representation

2This does not even take into account the large variation that we achieve with different positions and varying phase structure, especially multiple

strokes.
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shares many features in common with theirs. We extend their representation in several ways: an additional spatial

dimension is modeled (swivel angle), both world space and local hand orientation constraints are supported, additional

movement features like posture, trajectory and tension changes are modeled, and a more complex representation for

after-strokes is developed. Hartmann et al. [2006] extend their system to add expressivity to their gesture synthesis by

varying activation, spatial and temporal extent, fluidity and repetition. [Noot and Ruttkay 2004] is also concerned with

gesturing style. A style consists of a dictionary of meaning-to-gesture mappings, motion characteristics, and modality

preferences. Combining style dictionaries yields mappings for new cultural groups or individuals. In contrast to

our approach, their styles are hand crafted and model the behaviour of stereotypic groups instead of real individuals.

In addition, the placement and frequency of gestures is fully determined by tags in the input text, and gestures are

modeled at a comparatively coarse level since the paper’s focus is a style description language, and it is not concerned

with animation issues.

Kopp et al. [004a; 004b] present a gesture animation system that makes use of neurophysiological research and

generates iconic gestures from object descriptions and site plans when talking about spatial domains, e.g. giving

directions. Iconic gestures resemble some semantic feature of an object referred to in the co-occurring speech. Recent

work on sign language generation by Henerfauth et al. [2007] has looked at similar issues of spatial mapping in order

to relate ASL expressions to locations in space. In contrast, in our approach the domains are mostly non-spatial. Many

iconics that occur in everyday conversation are either metaphoric and therefore standardized [McNeill 1992] or verge

on the emblematic (e.g. gestures for actions like drinking or counting) and thus also standardized. Therefore, Kopp et

al.’s approach and ours can be considered complementary. More in line with our approach is de Ruiter’s [2000] Sketch

Model where both gesture and speech originate in the same module called a conceptualizer. Gestures are processed in

data structures with unbound variables, so-called sketches, that can be filled according to context and using a gestuary

of concept-to-shape entries. A gesture planner fills the remaining parameters like body part (which hand(s)) and

spatial locations and builds a final motor program for the articulators. The model is not implemented but can predict

certain phenomena in gesture-speech synchronization. Our approach shares the processing of underspecified gesture

structures which we call gesture frames.

Neff and Fiume [2005] present a system for modelling gesture-like movements using physical simulation, but do not

model a complicated range of gestures or combine them with speech. Physical simulation has been used for many

years to generate character motion with two main approaches emerging: optimization techniques that use physical

laws as constraints [Witkin and Kass 1988; Popovic and Witkin 1999] and simulation techniques that forward simulate

Newton’s laws to generate motion [Hodgins et al. 1995]. We take a simulation approach, and in particular, follow on

work in hand-tuned control [Hodgins et al. 1995; Faloutsos et al. 2001] where a proportional derivative (PD) controller

is used at each character Degree of Freedom (DOF) to generate the required torques to make it move. As we have an

underlying kinematic motion representation, our approach is also similar to the use of physical control to track motion

capture data presented by [Zordan and Hodgins 2002], and our hand model is similar to [Pollard and Zordan 2005].

To our knowledge, this is the first use of forward simulation on a character of this complexity that must synchronize

its movements with speech.

3. UNDERSTANDING GESTURE

A good way to approach a concept as diffuse and organic as gestures is to look at their temporal structure which can be

nicely described in terms of phases, phrases and units [McNeill 1992; Kita et al. 1998; Kendon 2004; McNeill 2005].

A single gesture can be described as consisting of a number of consecutive movement phases. This can be expressed

by the following rule3:

3Nonterminals are set in smallcaps, terminals in boldface, and optional elements are put in square brackets.
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GESTURE → [ preparation ] [ hold ] STROKE [ hold ] (1)

Only the stroke phase must occur in every gesture, all other phases are optional. The stroke is the “most energetic”

and “meaning-carrying” phase of the gesture while in the preparation phase the hands are moved to the stroke’s start

position. The hold phases before and after the stroke are optional pauses, usually interpreted as a means to correctly

synchronize the stroke with accompanying speech. The stroke can consist of multiple repeated movements which

would make it a multi-stroke4. Since the first stroke in a multi-stroke is often the most pronounced and the following

strokes have similar form but look weaker than the first, we call the first stroke the main stroke and all subsequent

strokes after-strokes:

STROKE → main stroke (after stroke)∗ (2)

After-strokes are almost like small gestures themselves, each with their own preparation-stroke-hold structure. This

becomes relevant in actual animation as elaborated in Section 6.5.

The complete GESTURE is also called a gesture phrase (g-phrase) in the literature. Opposing McNeill’s claim that

every gesture has a stroke, Kita et al. [1998] found that some gestures have a single meaningful still phase instead,

called an independent hold5. Imagine the prototypical “raised index finger” where the hand is raised, held still and

retracted: instead of an energetic stroke there is only a single hold phase, therefore called an independent hold. We

distinguish two principal gesture types, stroke gestures (S-GESTURE) and hold gestures (H-GESTURE), and expand

rule (1) to the following three rules:

GESTURE → { S-GESTURE | H-GESTURE } (3)

S-GESTURE → [ preparation ] [ hold ] STROKE [ hold ] (4)

H-GESTURE → [ preparation ] hold (5)

We call a rest position a pose where the hands either hang down at the side or are supported in some way: e.g., arms

lie on an arm rest, arms are folded, hands are in pockets or are locked behind one’s back. A gestural excursion always

starts from a rest position, can encompass one or more gestures and finally returns to a rest position. Such an excursion

is called a gesture unit (g-unit). For gesture generation, the g-unit is an important organizational entity as it groups

together multiple gestures in one continuous flow of movement. A unit always ends with a retraction movement to a

rest position.

UNIT → (GESTURE)+ retraction (6)

A unit can consist of a single gesture. McNeill [1992] actually found that his subjects frequently perform only one

gesture per unit (only 44% of the time would his subjects perform more than one gesture per unit). However, his

subjects consisted of people who were neither trained nor experienced in speaking in public or on TV. In contrast, our

data of professional TV performers shows a completely different picture. Table I shows how often the different g-unit

4Kita et al. calls them multiple strokes, Hartmann et al. [2005] calls them repeats.
5In his latest book, McNeill [2005] acknowledges the existence of independent hold but calls them stroke holds.
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sizes occured. Our speakers frequently combine multiple gestures to units: MR uses units with more than one gesture

66.7% of the time, JL 64.3% of the time. We believe that this is one reason why JL’s and MR’s gestures are enjoyable

to watch: the speakers produce a fluent stream of continuous gestures instead of isolated singleton gestures. One aim

of our project was to transfer this quality to synthetic agents. In follow-up work [Kipp et al. 2007], we have validated

our hypothesis, demonstrating that the the use of gesture units rather than singleton gestures is perceived to be more

natural, more friendly and more trustworthy. Consistent with this, the use of singleton gestures was perceived to show

greater nervousness.

1 2 3 4 5 6 >6 total number

of units

JL 35.7 % 15.7 % 17.1 % 5.7 % 11.4 % 5.7 % 8.6 % 70

MR 33.3 % 16.7 % 11.1 % 14.8 % 9.3 % 3.7 % 11.1 % 54

McNeill 56 % 14 % 8 % 8 % 4 % 2 % 8 % 254

Table I. Number of gestures per unit for our speakers JL and MR in comparison with McNeill’s subjects. The table shows that JL and MR use units

with more than one gesture much more often than McNeill’s subjects.

3.1 Gesture Lexicon and Lexemes

It follows from the encountered usage patterns that since we want to produce gesture behaviour that looks characteristic

for a certain person, we need to produce a broad spectrum of gestures. Previous work focussed on a limited range of

specific gestures in order to work out details, e.g., about the semantics-form relationship between speech and iconic

gesture [Kopp et al. 004b]. However, in our target domain, iconic gestures that need a deep understanding of semantics

and form rarely occur.

In everyday conversations, but also in talk shows and formal presentations, human speakers use mostly gestures where

no strong semantic function is visible. McNeill calls these gestures metaphorics since the relationship between the

gesture and what is said is only etablished through an abstract metaphor. For instance, in a progressive gesture the

speaker’s hands revolve around each other in circles. McNeill argues that the gesture refers to the abstract notion of a

forward rotating wheel which in turn refers to a co-occuring word in speech like, e.g., “going”, “developing” or even

“future”. These are the gestures we focus on. However, do these gestures share a common form or is their shape totally

arbitrary and invented on the fly?

While it is common knowledge that emblematic gestures (e.g. the victory sign or the thumbs-up gesture) are drawn

from a shared, though culture-specific, lexicon, it became clear only recently that this is also true for more abstract

gestures. Webb [1997] showed for a number of speakers that they use metaphoric gestures from a shared lexicon of

forms (see also [Kipp 2004]). Although each speaker applies slight variations and only uses a subset of these gestures,

there is basically one large reservoire of gestures that all speakers draw from6. In our approach to gesture generation

we exploit this insight to represent gestures as lexicon entries, so-called lexemes, which can be considered equivalence

classes with respect to form and function.

Kipp [2004] collected a lexicon of gestures for two German TV show hosts. To this work, we added a new speaker with

6Such common reservoires of gestures may be culture-specific. While intercultural differences are well explored for emblematic gestures (cf. [Axtell

1998], [Saitz and Cervenka 1972]), there is only sparse literature about this aspect for more abstract gestures like metaphorics (cf. [McNeill 2005],

[Calbris 1990]).
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a different language: the American talk show host JL. We assembled a gesture lexicon of 39 lexemes7 and annotated

a video corpus (Section 4). Of this gesture lexicon, MR uses a subset of 31 lexemes and JL uses 35. The large overlap

of 27 lexemes that both MR and JL use supports the hypothesis of a shared lexicon of gestures that all people use.

Figure 3 shows sample frames for the most frequently occurring gesture lexemes. Some gestures are depicted with

two frames, taken at the beginning and end of the stroke, others with a single frame of JL and MR each performing

the same lexeme.

JL MR

lexeme % lexeme %

Cup 24.4 Cup 6.9

PointingAbstract 8.9 RaisedIndexfinger 6.9

PointingPerson 6.7 FlingDown 5.8

HandClap 6.7 Wipe 5.8

Shrug 6.2 Beat 5.3

Progressive 4.4 Calm 5.3

Table II. The table shows the six most frequently used lexemes for each speaker and how often the particular lexemes are used (in %). Figure 3

illustrates all of these particular lexemes, except for PointingPerson, HandClap and Shrug which have self-explaining labels.

While the gesture lexicon represents what is shared between speakers, the specific subset that each speaker uses and

the frequency of each lexeme are significant aspects for modeling interpersonal differences. As Table II shows, the

speakers differ significantly in what lexemes they use and how often they perform a particular lexeme. As we will

show in the following section, we further model the variations of gesture form between each speaker and generate

particular lexemes in correlation with a speaker’s tendency to use those lexemes for a given speech segment.

4. ANALYSIS

To automatically generate and animate gestures in a speaker-specific style, a human speaker has first to be studied and

analyzed. Using a combination of manual labour and automatic data extraction, the key factors of speaker gesture

behaviour are then stored in machine-readable form for automatic gesture generation and animation.

Figure 4 gives a schematic overview of the analysis process. First, a video corpus for each speaker is annotated by

hand. Both speech8 and gestures are transcribed by human coders. This annotated corpus is used for three purposes.

First, all annotated gestures are stored in the GestureDB database, as templates for automatic generation. Second,

key properties for each gesture lexeme, especially the relationship between gesture and speech, are modeled with

statistical tables. Both the GestureDB and the statistical model are stored in speaker-specific gesture profiles. Third,

for animation, speaker-specific lexeme properties are modeled in the animation lexicon (Section 4.1.3).

4.1 Subject Annotation

The video annotation serves to translate essential concepts in the source video material into a machine-readable form.

A human coder annotates linguistic entities (e.g. words) and gestural entities, including temporal boundaries, on tracks

on an annotation board (Figure 5). In order to check how well the annotation captures what happened in the original

7Note that the animation engine currently only models a subset of 28 lexemes. This is partly due to rare lexemes that occur in the video corpus

but were never generated in our examples because of their low probability and partly due to gestures whose shape must be determined by semantic

knowledge not modeled by our system.
8Word and phoneme boundaries and timings are marked. At the minimum, phoneme information could be extracted automatically using current

tools, e.g. CMU Sphinx.
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Fig. 3. Examples of eight frequently occurring gesture lexemes (cf. Table II). They are usually depicted with two frames from the same speaker,

showing the beginning and end of the stroke (Beat, Calm, FlingDown, Progressive, Wipe). Cup, PointingAbstract and RaisedIndexfinger are

illustrated with a single frame of JL and MR each, performing the same lexeme.

video we can feed it directly to the animation system, doing what we call a re-creation of the original behaviour

(Figure 2). This is similar to what Frey [1999] called re-animation, and Martin et al. [2006] call copy-synthesis.

The manual annotation is a work-intensive process: 1 minute of video takes about 90 minutes of coding by a human

coder. However, coding can be done by anyone after a brief period of training; no special knowledge of animation or
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Fig. 4. Analysis pipeline.

linguistics is required. To support manual annotation, we use the video annotation tool ANVIL [Kipp 2001] and the

phonetic analysis tool PRAAT [Boersma and Weenink 2005].

Fig. 5. The ANVIL video annotation tool allows human coders to efficiently encode time-aligned information for digital video. During analysis, a

video corpus for each speaker is transcribed for statistical modeling of gesture behaviour. The bottom window contains the multi-track annotation

board where coding takes place.

4.1.1 Speech Annotation. The linguistic part of the annotation consists of coding words, discourse segments and

information structure. We use the PRAAT tool to perform a word-by-word orthographic transcription of the utterance,

including the words’ boundaries, which is imported to ANVIL. Words must be grouped into sentence-like units. We

use clauses as defined by Rhetorical Structure Theory (RST) [Mann and Thompson 1988]. However, any kind of

discourse segmentation works with our approach. Finally, information structure is annotated using the concepts of
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theme, rheme and focus [Steedman 2000]. The theme is the part of the utterance that links the utterance to the

previous discourse and specifies what the utterance is about, whereas the rheme relates to the theme and specifies

something novel or interesting about it. Following Steedman [2000] we also annotate the focus, which is the part of

the rheme or theme that distinguishes the rheme/theme from other alternatives the context makes available. We make

the simplifying assumption that the emphasized word or phrase is the rheme’s focus. For example:

During the battle [ rebel spies managed to steal secret plans to the Empire’s ultimate weapon the Death Star ]rheme

In the example the first three words refer to a battle that is introduced in the preceding sentence which makes it the

theme of the utterance. The bracketed part, the rheme, introduces the new information. And since “the Death Star” is

emphasized it is the focus of the rheme.

Fig. 6. Gesture annotation entities on three tracks.

4.1.2 Gesture Annotation. The gestural part of the annotation follows the hierarchical organization of gestures in

phases, phrases and units, as described by rules (3)-(6) in Section 3. The human coder transcribes gestures in the video

by adding annotation elements to three gesture annotation tracks in ANVIL. In the screenshot (Figure 5) these tracks

(phase, phrase and unit) can be found at the bottom of the lower window; a schematic view is given in Figure 6. For

each annotation element, the coder specifies begin and end times and then fills a number of attributes (attributes are

displayed in the top right window in Figure 5). In the top track, called phase, gesture phases are transcribed following

instructions by Kita et al. [1998]. The annotation elements contain one attribute for the phase type: preparation,

stroke, hold, etc. The coder has a second attribute to specify the number of strokes if the phase is a multi-stroke.

On the second track, called phrase, several consecutive phases are combined into a gesture (e.g. Frame, Cup and

Wipe in Figure 6). In Figure 5, the currently selected gesture, “Erruptive”, is highlighted by a blue frame, and all its

attributes are displayed in the top right window. Following instructions in Kipp [2004], we annotate the following

attributes for each gesture: lexeme, handedness, lexical affiliate and co-occurrence (Table IV). The lexeme denotes

the lexicon entry that the gesture corresponds to (e.g., Frame, Cup, Wipe). Handedness denotes the executing hand(s).

The lexical affiliate is the word or phrase that corresponds to the meaning or function of the gesture [Schegloff 1984]:

for instance, “he” or “this” for a pointing gesture or “driving” for a metaphoric progressive gesture. Since the lexical

affiliate and the gesture do not always co-occur [McNeill 2005], the coder also specifies the word that the gesture

co-occurs with. In Figure 5 the lexical affiliate to the current gesture is “airing out”, highlighted with a red frame in

the top track, while the co-occuring word “theater” is highlighted with a green frame in the top track.

We extended this scheme by adding information about the shape of the gesture (cf. [Kipp et al. 2006]). For each

gesture, the coder specifies the trajectory (curved or straight) and hand/arm positions at the beginning and end of the

stroke (s-gesture) or at the beginning of the independent hold (h-gesture).

Each hand/arm position is specified by a 4-vector p = (h,d,r,s) for height, hand-body distance, radial zone and arm

swivel angle. Each dimension of p has 5-7 discrete values (Table III and IV). For bihanded gestures, we additionally

specify the hand separation (see Figure 5). Although hand separation could be computed from the position data (radial

zone), the resulting range of values would be very small and it would be difficult to decide whether the hands touch.
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Height Distance Radial Orientation Elbow Inclination

above head far far out orthogonal

head normal out out

shoulder close side normal

chest touch front touch

abdomen inward

belt

below belt

Table III. Our three dimensions for hand position and one dimension for elbow inclination are divided into discrete intervals for annotation.

For hand separation annotation, we extended ANVIL: coders can edit 2D points on the video screen and store these

points in an annotation element. Hand separation is annotated with two points, located at the middle of each palm,

in the gesture phrase annotation element (middle layer in Figure 6). The shoulder width is also encoded and used to

normalize hand separation.

Since this data is expensive to annotate we devised a minimal coding scheme that is sufficient to re-create the original

gesture to a reasonable degree. More precise approaches to transcribing positional features (e.g. [Frey 1999] or [Martell

2004]) would increase the annotation effort by a factor of 2-10.

Note that we do not encode handshape and palm orientation in the manual annotation process. Palm orientation is

assumed to be equal for each lexeme and is thus encoded in the Animation Lexicon (Section 4.1.3). Handshape is

heuristically generated at runtime (Section 5.2.2) by selecting from a range of legal hand shapes which is pre-defined

for each lexeme.

Encoded property Encoding Description

lexeme {Cup, RaisedIndexfinger, Wipe,

Progressive, ...}
Name of the gesture in the shared lexicon of conversational gestures.

handedness {LH, RH, 2H} Hand which performed the gesture (LH/RH), or both (2H).

lexical affiliate link to word(s) in the speech track The word or phrase in speech that semantically corresponds to the gesture,

e.g. “you” for a deictic gesture to the addressee, or “going” for the gesture

“Progressive”.

co-occurrence link to word(s) in the speech track The words that temporally co-occur with the stroke of the gesture.

trajectory {straight, curved} Whether the gesture trajectory is straight or curved.

location 1 4-vector (height, hand-body dis-

tance, radial zone, arm swivel)

Location of the hand(s) at the beginning of the stroke or independent hold.

location 2 4-vector (height, hand-body dis-

tance, radial zone, arm swivel)

Location of the hand(s) at the end of the stroke. Only for s-gestures.

shoulder width screen distance Width of the shoulders in the current frame (used for normalizing hand sep-

aration). Only for 2H gestures.

hand separation 1 screen distance Hand separation at the beginning of the stroke or independent hold. Only

for 2H gestures. Empty if view angle unsuitable.

hand separation 2 screen distance Hand separation at the end of the stroke. Only for 2H s-gestures. Empty if

h-gesture or view angle unsuitable.

Table IV. The human coder specifies a number of properties for every gesture in the video. The g-phrase annotation element captures the gesture’s

semantic and temporal relation to speech and its form and development in space.

On the third annotation track, the coder groups together contiguous gestures, i.e. they are not interrupted by a full

retraction, to a single unit. Every unit thus ends with a full retraction unless the video ends in mid-gesture. The unit

element also stores the retraction position of the unit’s last gesture (e.g., hands at side or hands clasped).
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speaker duration #phases #gestures #units

JL 9:04 574 229 70

MR 8:31 496 192 54

Table V. The size of the annotated corpus for speakers JL and MR.

Data Description Frequency of Use

Hand Orientation Constraints on wrist angles and/or forearm rotation expressed in either the

local or chest frame. Can be specified for the start and end of a pose.

100%

Posture Parameters Curvature to the spine or offset to the collarbones based on the parameteriza-

tion presented in [Neff and Fiume 2006]. Balance and pelvic tilt adjustments

may also be included.

17% collar, 20% spine

Progressive Controls the scale of forearm and wrist rotation during a progressive. Only used with progres-

sives and regressives.

Tension Changes Change tension to high, medium or low for a given joint either at the start or

during a stroke.

not currently used

Transition warps Warps the timing of the transition from the start pose to end pose of a stroke. 10%

Multi-stroke form Can be specified for a stroke or prep and stroke phase. Data includes a

vertical and horizontal offset to hand position, change to hand and forearm

rotation and an offset in elbow bend.

43%

Multi-stroke timing Percentage of time that should be used for a stroke and for a hold in a prep-

stroke-hold afterstroke.

13%

Table VI. Parameters that can be defined as part of the animation lexicon. The frequency field indicates what portion of lexicon entries include each

type of data for the corpus used in this paper.

In Table V we show the size and contents of the annotated corpus for the two speakers JL and MR. Both corpora are

of similar size. It is also interesting that both speakers seem to have a similar gesture frequency, since speakers can

differ noticeably in that respect [Kipp 2004].

4.1.3 Producing an Animation Lexicon. The animation lexicon is created as part of the annotation process and

records additional information for each gesture lexeme. Whereas the previous annotations recorded data for each

gesture sample in the corpus, only one entry is made in the animation lexicon for each gesture lexeme, irregardless

of how many times a lexeme occurs in the corpus. This reduces the total annotation effort required. The data that is

included in the lexicon is summarized in Table VI and will be described in more detail below. As can be noted from

the table, data items are only added when needed and for most lexemes only a partial set of data is required.

The animation lexicon contains three main types of data: hand orientation, torso posture and data for after-strokes.

Hand orientation is specified by rotation around the forearm and two rotational degrees of freedom in the wrist. These

values can be specified either as joint angles or as constraints to be met in either world space or the character’s

chest space (the latter moves with the character and often proves more natural than a world space constraint). This

information is definitional for almost all gestures and was recorded for every lexeme. As an example, a “cup” or a

“shrug” will always have the palm facing up whereas a “dismiss” will have the palm facing down and end with a bent

wrist.

Posture data includes spine and collar bone movements that are either definitional for the gesture or characteristic of the

particular character. For instance, the chest will normally be opened (backward movement of the collar bones) during

a “wipe”. JL breaks with normal convention and in our data does not raise his shoulders during a “shrug”. We use a

reduced DOF posture parameterization based on [Neff and Fiume 2006] to represent this data. Specifically, the shape

and intensity of spinal curvature in the coronal and sagittal planes can be specified, along with the amount of axial
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rotation; spinal rotation can be specified; collar bones can be moved up or down and forward or back, either in parallel

or opposition; weight shifts, moving the arm out from the character’s side and pelvic twists are also possible. Thirty

percent of our lexemes included some posture data and in cases such as a “wipe”, it can be very important. Multiple

possible posture changes can be specified for a given lexeme. At runtime, one of these will be chosen randomly without

reference to other data defining the specific lexeme. Modeling correlations between posture changes and particular

instances of a lexeme would likely be a beneficial addition in some cases, but would also increase the annotation

overhead.

Recall that after-strokes are the small stroke repetitions following the main one in a multi-stroke. They carry similar

meaning, but may differ in form and extent from the main stroke. They are generally smaller in amplitude and confined

more to wrist and forearm movement. The prep and stroke data for these movements consists of forearm rotation, hand

rotation, vertical or horizontal positional offsets, and elbow bend offsets. One prep and stroke are optionally specified

to define each after-stroke and they are then repeated for each repetition.

The lexicon also includes additional data that can be definitional for certain gestures, such as warps to transition curves

to change the timing profile, and amplitude values for progressives. As an example of such a change, a wipe gesture

in which the hands are moved from the centre out to the side will generally feature an acceleration throughout the

movement and will not look correct with an ease-in ease-out transition. Such changes to the transition can be achieved

by specifying in the animation lexicon either a warping of the interpolation curve or a change in joint tension.

Authoring of the animation lexicon begins with images of each lexeme that serve as reference material. These images

are automatically generated by the ANVIL annotation tool as shown in Figure 4. For gestures with straight trajectories,

these images show the start and end pose of the stroke. For curved trajectory gestures, two internal frames are also

generated. The annotation process is straighforward: the annotator simply examines the images for features that

should be recorded in the animation lexicon (palm orientation, posture changes etc.) and then adds the corresponding

data. If there are significant differences in multiple lexeme examples, it is possible to specify multiple versions of a

lexeme with weights and one will be chosen randomly at runtime. In practice, this is only done when some example

lexemes have a strong posture change that would become noticeable if it was repeated identically each time the lexeme

was triggered. No particular training is required to perform the annotation, but a good ability to observe movement

variation is an asset. In our experience it takes about a minute to a few minutes to annotate one gesture.

Animation lexicons are character specific, but we found for our two characters that most of the data from one lexicon

can be used directly in the second. Posture variations appear to be the data most related to one of our subjects, and

hence are more likely to be customized. The difference may be influenced by the fact that one subject is seated, but

this alone does not seem sufficient to account for the variations observed.

4.2 Building a Gesture Profile

The annotated corpus is used to build a profile for the speaker’s gesture behaviour. The profile consists of the sample

database, GestureDB, a statistical model and average values. For the GestureDB, the annotated information for each

gesture in the corpus is stored as a reproducible “gesture sample” of the specific speaker. These samples can be seen

as high-level movement patterns that can be easily modified in a meaningful way.

The statistical model is automatically computed from the annotations. It models estimated probabilities and is used

in generation to trigger gestures, to predict where they are placed relative to speech, and to determine parameters like

handedness and frequency. To build the model, the speech transcription needs a two-step preprocessing. In a first step,

morphological analysis maps words to their lemma (e.g. striking→strike, won→win).

In a second step, phrases, consisting of lemmas and/or words, are mapped to semantic tags. These tags abstract away
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from the speech surface structure and partially capture aspects of semantics and communicative function. In generation

they are responsible for triggering gesture candidates, based on the assumption that similar gestural forms can express

the meaning of the subsumed words. We use a total set of 87 semantic tags. A subset of 28 frequent semantic tags

together with samples from the corpus is shown in Table VII. In our approach we employ look-up tables both for

morphological analysis and semantic tagging. However, both tasks could be automated using off-the-shelf software9

or semi-automatic approaches10.

For gesture generation we want to know how frequently the modeled speaker uses a particular gesture lexeme in con-

junction with a particular semantic tag. We take the lexical affiliate annotations to estimate the conditional probability

of gesture lexeme l occurring with semantic tag s over our corpus C=(G, S) consisting of all occurring gestures G and

semantic tags S by

P̂(l|s) =
#{g ∈ G : lexeme(g) = l ∧ lexaffil(g) = s}

#S

These values define a probabilistic mapping from semantic tags to lexemes: For each semantic tag s we obtain many

rules s → li with a “confidence value” P̂(li|s) ∈ [0,1]. Since the semantic tags are language-independent the resulting

gesture profiles can be used for any target language; we use them for German and English. We also store bigram

models P(li|li−1) for lexeme sequences, i.e. the probability that lexeme li follows lexeme li−1. To model a speaker’s

preferred handedness and handedness shift patterns we utilize the unigram probability estimation P̂(h), the bigram

estimation P̂(hi|hi−1) and lexeme-relative handedness P̂(h|l), where h ∈ {LH,RH,2H}. Observation showed that the

way multiple strokes (i.e. repeated strokes) are used or not used can be very characteristic for a speaker. We therefore

store the average number of strokes µstrokes per lexeme. To model the timing offset between gesture and speech we

also record the average time difference ∆Tend between end of word and end of stroke (for hold gestures we record the

start time difference ∆Tstart ). Finally, on a higher level we record gesture rate which is the number of gestures per

minute because the amount of gesture activity also seems to be quite characteristic for a given speaker.

5. GESTURE GENERATION

Once a speaker profile was created, our system can process any text input and produce an animation with accompa-

nying gestures. This “runtime” system consists of two components: the NOVA11 gesture generator, described in this

section, and the animation engine, described in Section 6. NOVA processes the input text and produces a gesture script

for the animation engine (Figure 7).

The input text must contain some additional information. For each word, the beginning and end time must be specified

which is usually delivered by the text-to-speech (TTS) software. The text must also be segmented into utterances and

contain information about the theme, rheme and focus of each utterance (Section 4.1.1). For gesture generation, the

input is transformed to a graph structure which is then processed in four stages:

(1) Gesture creation

(2) Gesture selection

(3) Unit creation

(4) Unit planning

9For instance, MORPHIX for lemmatization [Finkler and Neumann 1988].
10For instance, WordNet [Miller et al. 1990] for semantic modeling as used in BEAT [Cassell et al. 2001].
11NOnVerbal Action Generator
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Semantic tag Words from the corpus Semantic tag Words from the corpus

ADDRESSEE ’you’ NUMBER ’six’ ’first’ ’second’ ’third’

AFTER ’after’ PERS NAME ’President Bush’ ’Zorro’ ’Michael

Jackson’ ’Princess Leia’

AGGRESSION ’attack’ ’crack down’ ’civil war’

’strike’ ’battle’ ’weapon’

PERS PRONOUN OTHER ’they’ ’he’ ’she’

AGREEMENT ’yes’ PERS PRONOUN SELF ’I’

BEFORE ’last’ ’ago’ POSSESSIVE OTHER ’their’ ’her’

CONJ SEQ ’and’ POS AFFECT ’encourage’ ’win’

DEIC HERE ’here’ ’today’ ’now’ PROCESS ’open’ ’air out’ ’send’ ’practise’

’drink’ ’create’ ’manage’ ’pursue’

’restore’

DEIC THERE ’there’ QUEST PART ’why’

DEMONSTRATIVE ’those’ ’that’ ’this’ QUEST PART PERS ’who’

DESTRUCT ’cancel’ ’destroy’ REL PRONOUN ’what’

DISTANCE ’long’ ’far’ THERE IS ’there is’

LOCOMOTION ’come’ ’get in’ ’go’ ’go up’ ’race’ TIME POINT ’Tuesday’ ’Monday’ ’Wednesday’

NEGATION ’dont’ ’not’ ’no’ TITLE ’Star Wars’ ’Revenge of the Sith’

’American Idol’ ’galactic empire’

’Death Star’

NEG EVAL ’wrong’ ’horrible’ ’sinister’ TOTALITY ’all’ ’all you people’ ’whole’ ’en-

tire’

Table VII. This table shows a subset of the semantic tags used and the corresponding words from the corpus (only the English ones). Lemmatized

words are mapped onto these language-independent tags to achieve a semantic abstraction from the surface words.

Text

Theme/Rheme

Focus

Discourse

Info

Gesture
Script

Gesture
Type Data

Mappings

Context
Word−SemanticGesture

Profiles

Data

NOVA

Input

Output

Fig. 7. The NOVA gesture script generator.

The output is written to a gesture script which contains character-specific gestures, organized in units, with locational

and timing parameters for animation.

5.1 Gesture Frames and Generation Graph

To generate, select and plan the gestures we use a graph structure to represent both speech and gestures (Figure 8).

Generated gestures are inserted as arcs in the graph and represented as feature structures, so-called gesture frames.
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The underspecified frames become gradually enriched during generation using the speaker’s profile and contextual

constraints.

Fig. 8. Multimodal generation graph containing input text with theme/rheme/focus tags (lower arcs). Upper arcs represent generated gesture frames.

The input text is used to construct the initial graph. For each word, a node representing the begin time is created. While

nodes represent time points, arcs represent concepts with a temporal duration: words, utterances, theme/rheme/focus.

Words are mapped to lemmas that are added as arcs. Likewise, lemmas are mapped to semantic tags and added to the

graph. Not every word has a semantic tag. With our current mapping we find semantic tags for 39% of the words.

5.2 Gesture Generation Algorithm

5.2.1 Gesture Creation. In the first step we produce many candidate gestures for the given text by adding gesture

arcs to the graph. For this, we use the concept-to-gesture mapping from the speaker’s gesture profile (Section 4.2). For

each rheme ρ , for each semantic tag s in ρ , we produce an underspecified gesture frame of lexeme l iff P̂(l|s) > 0.1.

Additionally, we place a copy of this frame on the nearest focus within ρ . This simulates the phenomenon that gestures

sometimes do not synchronize with their lexical affiliate like in “destroy an [entire planet]” where a Wipe gesture is

performed on the bracketed part, although “destroy” is the lexical affiliate. The added gesture frame is represented by

an arc that stretches across s, indicating the gesture’s temporal position.

5.2.2 Gesture Selection. In the next step, we select candidates and specify handedness and handshape. A path of

non-overlapping gestures is selected using the gesture rate to determine the desired number of gestures N. We then

select the most likely sequence of gestures (g0, . . . ,gN−1) [Jurafsky and Martin 2003], i.e. the sequence that maximizes
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N−1

∏
i=0

(

0.6 P̂(gi|s)+0.4 P̂(gi|gi−1)
)

We model the sequence of gestures because of our observation that some speakers use idiosyncratic combinations

of gestures. Reproducing these combinations is desirable. However, since our training data is sparse we reduce the

bigram’s weight. This might change with larger corpora. The next step determines the handedness of the gestures

using a linear combination of estimated probabilities

P(hi|hi−1) = 0.5P̂(hi|gi)+0.2P̂(hi)+0.3P̂(hi|hi−1)

where the weights were empirically determined and the handedness is found by maximizing the probability of the

handedness sequence (h0, . . . ,hN−1). This model captures the observation that speakers differ with respect to which

hand(s) they prefer (LH, RH or 2H) and how often they change their “handedness mode”. Figure 9 illustrates the

handedness model. The area of the circles indicates the absolute (unigram) probability of a gesture being performed

in this mode, while the arrows and numbers indicate the probability (in %) of switching from one mode into the other

when going from one gesture to the next.

Fig. 9. Handedness transition diagrams for JL and MR show preferences which hand(s) are used for gesturing and how often this mode is switched.

Circle area indicates unigram probability, size of the arrows and number indicate transition probability between gestures. The diagrams show that

MR uses 2H more often than JL. Moreover, JL stays in one mode more often than MR, as the high probabilities on the 2H→2H, LH→LH, and

RH→RH arcs show. A switch from RH to LH and vice versa is rarely done by either speaker.

Handshape is determined by consulting a lexicon where legal handshapes for each gesture are specified (e.g. pointing

can be done with the index finger or the open hand). Handshape selection now follows the rule of economy: if the

handshape of the previous gesture is a legal handshape for the current one, then keep it. Otherwise change handshape

to a suitable one.

After this stage of generation we have a sequence of gesture frames where lexeme, handedness and handshape have

been specified.

5.2.3 Creating Gesture Units. The gesture hierarchy of phases, phrases and units is hypothesized to correspond to

levels of speech phrase organisation. For instance, Kendon [Kendon 2004; 1980] suggested a correlation between

intonation units and g-units. Such concepts go back to the hypothesis that speech and gesture originate from a single

source, called growth point [McNeill 1992] or idea unit [Kendon 1980]. In our algorithm we try to approximate these

concepts. We produce g-units by gradually merging gestures according to certain criteria. First, we take the first and

the last gesture within a discourse segment and merge them with all in-between gestures to form a unit, i.e. adding a

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



Gesture Modeling and Animation Based on a Probabilistic Recreation of Speaker Style · 19

g-unit edge to the graph. Then, we cluster neighboring g-units by merging all units whose distance in seconds is below

a threshold θunit . We found θunit = 1.5 seconds to be a good value. The threshold could be made speaker-dependent:

a high value produces large units with many gestures, a low value produces more isolated gestures.

5.2.4 Planning a Gesture Unit. For determining phase structure, positions and timing, we string together suitable

samples from the GestureDB and let emerging constraints guide the determination of phases.

The phase structure (prep, stroke, hold etc.) of a gesture Gi depends on the temporal constraints of neighbouring

gestures Gi−1 and Gi+1. If there is enough space up front to perform a preparatory motion (> .5 s) the gesture is

assigned a preparation phase (which is always the case for the first gesture in a unit). If a gesture has a preparation,

the positions of the gesture are unconstrained so we select a random sample of the respective lexeme from GestureDB.

If a gesture has no preparation we find a sample whose start location best matches the end location of Gi−1. The

chosen sample is used to specify positions, trajectory and type (s-gesture or h-gesture). To create multi-strokes for an

s-gesture we consult the average number of multi-strokes, µstrokes, for gesture Gi. If µstrokes exceeds a threshold we

generate a random number of after-strokes using the mean value and standard deviation. If there is not enough space

between the gestures and µstrokes exceeds a yet higher threshold, then gesture Gi+1 is either moved back in time, where

the speech-gesture offset’s standard deviation is an upper bound on how far it can be moved, or eliminated in favor of

Gi’s multi-strokes. For all other cases where there is space between Gi and Gi+1 we generate a hold between them.

Now the main stroke of Gi can be precisely timed with speech by aligning the end time of the stroke with the end time

of the gesture’s arc in the graph, which corresponds to the end time of the word(s) that triggered this gesture. From this

time point we subtract the speaker’s average offset ∆Tend for this lexeme. We hypothesized that it is more important

that gesture and speech end synchronously than that they start synchronously. To compute the timing of after-strokes

we align all after-stroke end times with word end times enforcing a minimum duration for each after-stroke. This

proved to be an efficient way of achieving after-stroke synchronization. For hold gestures we use a similar method but

align start times of word and hold. Looking at the resulting animations with a virtual character we found that although

the timing was similar to the original speakers’ timing the gestures always seemed a little too late. Human speakers

can supposedly vary the timing of their gestures with great flexibility because movements of the whole body, and

especially the face, all contribute to gesture-speech synchronization. Since our virtual character has a comparatively

limited expressiveness we make our gesture timing more conservative by subtracting a general offset of 0.3 seconds

for main strokes and 0.12 seconds for after-strokes.

Using this algorithm we generate the following types of gestures: stroke, prep-stroke, prep-hold, prep-stroke-hold and

stroke-hold, where all the strokes can be multiple strokes. As the g-unit’s last gesture must by definition have a retract

phase we have to determine to which rest position the hands return to. Observing the video material we determined

three different rest positions: hands “at side”, “in pockets”, and “clasped”. While the retraction after a unit could be

modeled probabilistically we resorted to simple rules that work on the temporal distance to the following g-unit: if

small, retract to “clasped”; if medium distance retract to “at side”; if far retract to “in pockets”.

5.3 Body Movement and Gesture Script

Head and body rotations were generated to make the character look more alive. The generation is rule-driven rather

than data-driven. The rules can fire on any kind of arc in the graph, in combination with keywords that occur in the

range of the arc. For instance, we could write a rule that looks for an utterance arc U that contains the keyword “you”

or “yours”. If the rules fire, a rotation arc with a target direction (left/right) is added to the graph at the same position as

U , meaning: the body rotates in the given direction when the arcs starts and rotates back to the default frontal position

when the arc ends. This was inspired by findings that changes in body postures occur most often at boundaries of

discourse units ([Cassell et al. 2001] and [Scheflen 1964]).
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Body rotation rules were crafted from our observations of the subjects JL and MR. JL’s monologue routine follows a

clear pattern. It consists of a series of jokes, each taking about 10 seconds. Before a joke he turns right (JLs viewpoint),

probably to read the teleprompter, and before and after the punchline he often turns left to address the band-leader.

These special monologue units (joke opening, punchline and others) were specifically annotated in the JL data. Since

MR is participating in a discussion, he rather turns to the person he addresses and stays there for a while. For MR, we

use the utterance segment and keywords like “you” and “your” to trigger body rotations toward an invisible addressee

to the left or right of MR. For our demo, we used the MR rules for text input coming from neither the JL or MR

domain.

Head rotations are generated based on the generated body rotations. Both subjects anticipate their body rotations by

turning their head a little earlier. JL also follows a gaze pattern in trying to distribute his gaze uniformly across the

audience. Therefore, our algorithm inserts anticipating head rotations before body rotations and fills in random head

rotations in-between body rotations.

The final graph is written to a linearized gesture script containing the following data: head rotations, body rotations

and gesture units which contain one or more gestures and have a retract position specified. For each gesture the script

specifies: lexeme, handedness, handshape, type (e.g. prep+stroke+hold or prep+hold), stroke/hold start time, multi-

stroke start times, overall duration, number of strokes, gesture start location, gesture end location (only for s-type).

The Appendix includes a sample snippet of a gesture script. It begins with a preamble that defines the head and

body rotations for the entire sequence. This is followed by a sequence of gesture units which are produced from the

linearized graph. Each gesture unit consists of a sequence of gestures which contain the data listed above. Multi-stroke

timing information is also specified as part of a gesture. The retraction pose is specified at the end of each gesture unit.

6. ANIMATION

The role of the animation system is to take the gesture script as input and produce a final character animation sequence.

It does this by augmenting the data provided by the gesture script, mapping this completed set of data to a form that

can be animated, and then producing an either kinematic or dynamically simulated animation.

The animation system used is an extended version of the one described in Neff and Fiume [2005], which is built on

top of the DANCE framework [Shapiro et al. 2005]. Significant additions to the system include the use of offset layers

and a set of augmentation processes that produce detailed animation specifications from the gesture script. The focus

of this section will be on the new aspects of the system and how they are applied to the gesture animation task. The

reader is referred to [Neff and Fiume 2005] and [Neff 2005] for other details on the system.

The system also generates facial animation for lip sync [Cohen and Massaro 1993] that takes into account coarticu-

lation (i.e. the influence of surrounding speech segments on the vocal tract shape of a phoneme). Additional speech-

related facial movement such as eyebrow raises on stressed phonemes is added based on universal rules [Albrecht

et al. 2002]. Modeled variations between speakers are at the moment restricted to amplitude and frequency of eyebrow

movement (very pronounced in JL, less salient in MR), but could easily be extended to include, for example, speaker

dependent facial expressions for questions.

6.1 Underlying Representation

The prep-stroke-hold structure of gestures maps naturally to animation keyframes. Our underlying movement repre-

sentation, therefore, is analogous to a keyframe system. Every DOF in the character’s body has its own track, partial

body poses are stored at particular points in time and transition functions (cubic Hermite curves embedded in space

and time) control interpolation between these poses.
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Our representation extends a traditional keyframe system in two ways. First, we support offset layers and second, we

support non-DOF tracks that can be used to adjust real time processes. For any DOF, the desired value is determined

by summing the main track with the data on any associated offset layers. While offset layers are a familiar tool

for making low-frequency edits to motion capture data that preserve the high frequencies of the motion [Witkin and

Popovic 1995], we employ them differently. We use them to add high frequency detail to our motion and also to layer

different motion specifications together. The other novel type of track does not contain DOF values, but is used to

control more complicated realtime processes in the system. For example, some parts of the body are controlled by

real-time processes for gaze-tracking and balance control. The desired constraints for these processes are specified on

these separate tracks in the underlying representation using the same key and interpolation function primitives as with

other tracks, which supports continuous variation.

6.2 Data Augmentation

The gesture model needs sufficient control to correctly align gestures with speech and to reflect the key idiosyncrasies

of a speaker’s gesturing style. Gesture data is divided between the gesture model and animation engine in an effort to

strike a balance between (A) the need for the gesture model to control the motion, (B) the desire to minimize the work

required to annotate video for building the gesture model, and (C) the desire to allow the animation engine, which

contains the relevant domain knowledge, to control the low-level aspects of motion production. The gesture script

(Section 5.3) presents a minimal description of the required movements that captures the key definitional aspects that

must be controlled by the gesture model. The animation system must augment this sparse representation, filling in

more detailed data and adding important nuance. The process is one of refinement, continually adding more detail

to improve the gesture rendering. Such an approach also allows for workload management as the animation can be

generated after minimal augmentation, but adding more data to the animation lexicon will improve the quality of the

animation.

The animation system performs a range of operations during data augmentation. It will:

— complete timing information

— deal with spatial conflicts due to the sparcity of spatial sampling

— add necessary definitional information for different gesture types

— add character specific variation.

These items will be detailed below. Character specific data includes global character properties [Neff and Fiume 2005],

such as a default posture or tendency to start movements quickly, as well as variations on how a particular gesture is

performed. Two global character properties were modeled for our subjects: default postures and a slight forward

succession to the movements. Significant use of two techniques is made to augment the initial motion framework:

keyframe infilling and the addition of micro-keys. Micro-keys are parameters that define partial body poses and can

be layered on top of existing keyframes. Keyframe infilling is a process by which new keyframes are generated at

locations in between the existing keyframes. These can be micro-keys (partial specifications) as well.

6.2.1 Completion of Timing Data. The gesture script specifies end times and durations for strokes as well as hold

durations and start times for body rotations. The rest of the required timing data is determined by the animation

planner, which can complete the data and also adjust for dynamic effects. The start time for prep movements is

defined as:

prepStart = max(strokeStartTime−de f aultPrepTime, lastStrokeEndTime) (7)
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where de f aultPrepTime is currently 0.4 s for preps within a gesture unit and 0.8 s for preps following a rest pose as

these will have a longer distance to travel. A similar rule is used to determine the duration of the transition to rest

poses where the time between the end of the last hold phase and the next stroke must accommodate both the transition

to the rest pose and the subsequent prep phase. If there is enough time, 0.8 s is allowed for each. Otherwise, the time

is split between the two movements, which is normally sufficient. Head movements are given a duration uniformly

distributed between 0.2 and 0.3 s or until the start time of the next head movement if it is sooner. Body rotations are

given a duration between 0.5 and 0.6 s.

6.2.2 Spatial Augmentation. To ease the annotation task, a relatively coarse spatial discretization is used to record

gesture locations (Table III). This can lead to two problems: hand collisions and lost information for small movements.

When generating animation, the system will place the hands at the middle of the spatial buckets corresponding to their

discrete location tags from the annotation, which is generally sufficient, but can lead to conflicts. A small number of

gestures, such as a two-handed wipe (Figure 3), feature the hands crossing over each other. When both hands cross,

they may be annotated with the same discrete tags and a small two handed separation distance that will cause them

to be placed in the same location when the data is used for animation. A slightly more common occurrence is for

subsequent gestures to be given the same spatial location when there should actually be a small movement between

them (even though both might still be in the same spatial bucket). Both of these cases are automatically detected and

offsets are applied to the hands to correct them. A vertical offset is used to separate overlapping hands and a downbeat

is applied to sequential gestures with identical locations.

6.2.3 Additional Gesture Data. In order to produce the final animation specification, the gesture description provided

in the gesture script must be augmented with the additional data from the animation lexicon (Section 4.1.3). For each

lexeme in the gesture script, the corresponding data is retrieved from the animation lexicon and added to the animation

specification. Recall from Section 4.1.3 that this information includes palm orientation, posture changes and multi-

stroke data. Most of this data is added to the animation specification using micro-keys - augmentations to existing

keyframes at the stroke boundaries to specify specific DOF values such as wrist orientation, spinal bend, etc. Some

changes such as warps to the transition curves are controlled using edits as described in [Neff and Fiume 2005].

Maintaining separate animation lexicons for each character allows character idiosyncracies to be modeled, such as

specific posture changes for a given gesture.

The system automatically varies collar bone angles based on the gesture height. The form of after-strokes, which

follow the main stroke, is also defined in the animation lexicon and added as part of the augmentation process. Both

of these issues will be discussed below, in Sections 6.3 and 6.5 respectively.

6.3 Pose Calculation

The system uses a combination of keyframe and continuous motion generation techniques: discrete pose calculation

with interpolation is used for gesture generation, and continuous IK for balance control and gaze tracking. During a

preprocessing phase, the animation system maps the motion specification into the underlying representation that will

be used to generate the motion. The poses for the start and end of each gesture phrase are calculated and stored in the

DOF tracks. Body twists and certain posture changes are stored on the offset tracks. Curves specifying the desired

gaze direction and balance point are stored on separate tracks. At each time step during playback, realtime processes

will use the IK routines to update the lower body DOFs to meet the balance constraint. A second process will have the

character look at the specified target by solving for the axial rotation of the head and neck, and the tilt of the head. A

gain factor, set to .5, controls how far the head moves between staring straight ahead and staring at the look-at target.

The remaining DOFs of the body will be determined from the other tracks.
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Constraint Height Base Offset (deg)

above-head -5

head -3

shoulder -1

chest 2

abdomen 3

belt 5

below-belt 7

Table VIII. Base offset angles applied to the collar bones. These are multiplied by a character specific scale factor.

6.3.1 IK and Pose Determination. Rather than a monolithic IK system that solves for an entire posture, we use a set

of simple, analytic IK routines that are each responsible for a portion of the body. Lower body movement, including

knee bends, pelvic rotation and balance control, is based on an analytic lower body IK routine and feedback based

balance adjuster. To avoid stability problems in dynamic simulation, springs are used to hold the character’s feet in

position and prevent him from falling. Analytic routines are used for arm positioning, and aesthetic constraints are

blended together to determine the torso pose. The pose solver is described in [Neff and Fiume 2006], except that

we disable the optimization routine described there as we are not using spatial constraints to deform the character’s

posture in this work. We also augment that system with automatic collar bone adjustments and add local IK routines

to achieve hand and wrist orientation constraints.

The process for calculating each pose in a gesture phrase is as follows:

(1) Calculate the posture of the spine and collar bones. This requires blending constraints for the character’s default

posture with posture constraints from the animation lexicon. Automatic collar bone offsets are also introduced

here.

(2) The arms are positioned to meet the wrist constraints specified in the gesture description.

(3) The arm swivel angle is rotated to meet the inclination constraint.

(4) Constraints on palm orientation are solved.

The automatic collar bone adjustment offsets the shoulders up or down based on the location of the reach constraint.

The base offset for each of the constraint heights is shown in Table VIII. These base offsets are multiplied by a

character specific gain value, which is 1 by default. Collar bone adjustment is important for increasing the naturalness

of arm movement. This adjustment reflects the biological construction of the shoulder as the upper arm and clavicles

are not independent joints (for a discussion of models of the shoulder complex, see [Badler et al. 1992].)

The gesture targets used when positioning the arms are defined to be relative to the current orientation of the body (cf.

Table III), but are not defined in the frame of a particular joint. For example, a shoulder height target will remain at

shoulder height as the character hunches over. Each height target, such as “shoulder”, “chest” or “abdomen”, has a

defined height within a particular limb in the skeleton, which can be used to determine a world space height constraint.

The radial distance from the character’s centre and the distance in front of the character’s body both lie on the world

space horizontal plane with the given height value. The distances from the character’s body (“touch”, “close” etc.) are

defined relative to the body part the gesture is in front of. The radial inclination, however, is defined relative to the

chest. This means that a “front” radial inclination will be in front of the chest even if it is at belt height and the torso

is rotated. These definitions perform well with the annotator’s expectations of the markup scheme.

6.3.2 Specifying Body Rotations. Body rotation is discretized into three directions (left, right, front) and gaze direc-

tion is discretized into five locations (left, left-front, front, right-front, right). The exact values of these locations are
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(a) Straight Trajectory (b) Curved Trajectory

Fig. 10. Comparison of a straight and curved trajectory for the same cup gesture.

specified for each character based on the video corpus, with JL having larger rotations. Body rotations are accom-

plished by a combination of a pelvic rotation with opposing knee bend and a rotation of the abdomen and chest spinal

joints. Each of these rotations are offset in time by ten percent of the rotation’s duration to give a more natural flow to

the motion. These rotations are specified on offset layers and blend with other posture deformations.

6.4 Keyframe Refinement

In addition to the layering of micro-keys on top of existing keys, as described in Section 6.2.3, some gesture attributes

require the creation of additional keys, as detailed here.

6.4.1 Path-in-Space. Whether a movement follows a straight or curved path in space is an important expressive

property. In our previous work, we did not model this property [Neff and Fiume 2005]. Chi et al. [2000] in the EMOTE

model represent it by varying the trajectory of the arm end-effector and also provide three different interpolation

spaces: interpolating joint angles, end effector position or elbow position. Similarly, Kopp and Wachsmuth [004c] use

guiding strokes in space that allow the curvature of a motion to be controlled. Unlike the previous approaches, we

achieve satisfying curved motions by working in joint space using offset curves, rather than working in world space.

This approach is simple and avoids the need to determine and orient world space trajectories to try to provide a natural

path for the motion.

There are two main types of curvature we need for our gesture lexicon: point-to-point curvature, where a single stroke

follows a curved path, and continuous circular movements for gestures like progressives. The latter case will be

discussed below. By default, movements between two points in our system will produce a basically straight path12. A

curve can be added to the motion by introducing an offset perpendicular to the path of the movement that starts at zero,

peaks near the middle of the movement, and returns to zero. We normally apply these offset keys to the elbow and

larger amplitude offsets will produce a higher curvature motion. For example, a “cup” movement that has the hand up

and a largely horizontal trajectory, can be curved by adding an offset to the elbow bend as shown in Figure 10.

6.4.2 Progressives. A progressive is a cyclical movement in which the forearm and hand are moved in a circular loop

in front of the chest, first coming towards the body and up, then out from the body and down (Figure 3). There may

also be a translational component as the centre of rotation is moved through space. Regressives consist of the same

motion rotating in the opposite direction. A progressive (or regressive) is specified by indicating in the gesture script

12Within the limits of basic quaternion interpolation of the shoulder, which can introduce some warping to the path.
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y

start

x

end

Fig. 11. The wrist will trace a circular path during a progressive (ignoring the translatory motion). Keyframes are located at the coloured crosses.

The movement travels between the two small circles, along the arc of the large circle.

where in space it starts and stops, the number of rotations, and which hand(s) are used. Multiple partial keyframes

(keyframe infilling) are then used to generate the motion. To our knowledge, previous embodied conversational agent

systems have not modeled gestures with such complicated spatial trajectories.

The basic idea of how the curvature of the motion is created can be understood by considering a 2-DOF pendulum.

Applying ninety degree out of phase sine waves to the pendulum will cause its end to trace out a circular path.

We apply this idea to the character’s forearm and also apply similar rotations to the wrist. Instead of using sinusoidal

interpolation functions, a key is placed at every 180 degrees in the sinusoid and connected with ease-in ease-out curves,

effectively approximating a sinusoid. Since there is also translational movement during the progressive, the overall

movement is decomposed into two components: one that determines the rotational movement with the approximated

sinusoids and one that specifies the translation in space. The overall process is as follows:

(1) Determine the amplitude of the circular movement

(2) Determine the time that each infilled keyframe must occur at

For each infilled keyframe

(3) Determine the x rotation and corresponding hand rotation

- OR -

(4) Determine the y rotation and corresponding hand rotation

(5) Add the keyframe to the system

(6) Add an offset curve to account for elbow translation

It is important that the scale of the rotation be proportional to the range of the translational movement as one loop

of tight rotation stretched over a long distance tends not to have the look of a progressive. Consider the circle in

Figure 11 as representing only the rotational component of the movement. The circle has a particular size, determined

by the magnitude of the input sine waves, so covers a certain area in space. The challenge is to relate this spatial size

created by the rotation to the overall spatial coverage determined by the start and end constraints. More intuitively, it

appears from our samples that there exists a correlation between larger rotations and larger translational components

during a progressive gesture and vice versa. To relate the two quantities, we determine the amount of rotation (i.e. the

magnitude of the sine wave) that would generate a circle just large enough to span the two end constraints. A new

quantity is defined, maximal rotational amplitude, a, which is the amplitude that must be applied to the forearm to
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achieve this size of rotational circle. This maximal rotation is then divided by the number of cycles of the progressive,

n, and a character weighting factor, m, to determine the magnitude of rotation, α , for each loop of the progressive (step

1):

α = max(MIN AMPLITUDE, m
a

n
) (8)

where MIN AMPLITUDE is a minimum rotation that is provided to still create a progressive if the end constraints are

the same. The character specific multiplier, m, is 1 by default.

In the final representation, the keyframes for the x DOF and corresponding hand movement will be placed at the green

extrema in Figure 11 and the y keyframes at the red extrema. By default, progressives start at the position marked

“start”, 5/6π for counter-clockwise rotation, and end at the location marked “end”, −1/2π for counter-clockwise

rotation. The time of the keyframes is determined by considering the total duration of the movement and the number

of cycles of the progressive and then calculating the appropriate keyframe spacing (step 2).

Steps 3 and 4 determine the desired angles at each keyframe (note that each keyframe has data for either x or y, but

not both). Different angle representations require different approaches. With Euler angles, as we use at the elbow, the

values are simply ±α as appropriate. The shoulders are more complicated as they are represented with quaternions

and hence do not have a separate component corresponding to the axial upper arm rotation. In determining these keys,

we combine the rotational component of the progressive and the overall translatory aspect of the movement that will

be achieved by x rotation13. We first update the orientation of the upper arm that is used to move the hand between the

end constraints:

qi = slerp(q0,q1, p) (9)

where q0 is the quaternion satisfying the initial constraint, q1 for the final constraint, qi is the infill quaternion we

are calculating and p ∈ [0,1] is a progress variable indicating how far we are between the beginning and end of the

progressive. This calculation corresponds to the translatory portion of the progressive. The rotational component is

achieved by rotating qi around a vector aligned with the axis of the upper arm by ±α as appropriate.

In step 5, these keyframes are added to the underlying representation. The translatory component of the elbow move-

ment has not been accounted for yet. This is done by adding a linear offset curve for this DOF (y) that spans the

translation (step 6).

An example of a fairly large progressive is shown in Figure 12. Notice that there is a diagonal translatory component

to the motion of the gesture as well as the core circular movement of the progressive. A trace of the hand’s path shows

a circle stretched in time.

6.5 After-Strokes

A multi-stroke consists of the main stroke phase followed by a number of smaller repetitions we call after-strokes.

Consider a “dismiss” in which the character raises his arms and hands (prep), and then flings his hands down, letting

the wrists go limp (stroke), followed by two small repetitions in which the character raises his hands slightly and tilts

his palms back up towards the audience before moving the hands back down and dropping the wrists once again. These

repetitions are after-strokes.

There are at least two categories of after-strokes. The first consists of essentially continuous, rhythmic hand waving

at the end of the stroke. MR frequently uses such gestures. The second has the same prep-stroke-hold structure as

13These two components correspond to a sinusoid in x and a linear ramp in x that are summed to provide the final value.
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Fig. 12. The path of a hand during a large progressive with a diagonal translatory component. The colour gradation is used to show the progress of

time.

the main gesture as in the “dismiss” example above. The hold period in these after-strokes is particularly important.

When the dismiss is repeated without a hold phase after the stroke, it disintegrates (disappears) into hand waving. The

hand appears to bounce up from the end of the motion and the definitional downward aspect of the movement is lost

without the necessary pause at the stroke end. It should be noted that these “prep” and “hold” phases mentioned here

are not explicitly modeled in the grammar rules of Section 3, but are contained in the notion of an after-stroke.

Most data associated with after-strokes is local as they are normally rapid movements that are confined to the wrists

and forearms. The animation lexicon (Section 4.1.3) accepts any subset of the following data to define an after-stroke

pose: offset to vertical or horizontal wrist positions, forearm rotation, wrist rotation (2 possible DOFs) and an offset to

the elbow bend. This data is defined separately for each of the two movements making up an after-stroke (nominally,

prep and stroke). It is only defined for one arm and mirrored to the other.

After-strokes are created by keyframe infilling. Copies of the stroke keyframe from the end of the main stroke are

made and used as the basis for both the prep and stroke poses of each after-stroke. This is done as we wish to add

small, local variation to the end position of the main stroke, rather than copying the often larger spatial movement of

the main stroke. Additional attributes are then added to these copies based on the data in the animation lexicon.

The timing of these keyframes is illustrated in Figure 13 and calculated as follows. The duration available for the

complete after-stroke is d = ei − e(i−1) and must contain the prep and stroke associated with the after-stroke, plus the

hold from the previous stroke. This is because the time constraints ei and e(i−1) from the generation algorithm specify

the end time of strokes. The animation lexicon defines the percentage of time that should be spent on each of the prep,

stroke and hold phases. In the case of holds, the previous duration, ei−1 − e(i−2), is used to calculate the hold time as

the hold corresponds to the stroke from that duration. If there is more time in d than is required by the hold, the hold

is expanded to fill the available time. If there is less time, the actual hold is set to be the average of the calculated time

and the time available. The prep and stroke phases then have their duration decreased to fit each phase within d.

After-stroke durations may vary widely and we wish to reuse a single definition for each after-stroke of a given lexeme.

To avoid unnatural movements when after-strokes are very short, limits are placed on the average spatial and angular

velocity of after-strokes for kinematic animation (these limits are unnecessary in the dynamic case). If these limits

will be exceeded, the spatial or angular range is reduced so that the average velocity is not exceeded.
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siipi−1h

ei−1 ei

ihsi−1 i+1p

Fig. 13. The end times ei−1 and ei are constraints specified by the gesture generation module. The remaining timing of the after-strokes must be

calculated to fit into these intervals. Here h indicates a hold, p a prep and s a stroke.

6.6 Physical Simulation

Physical simulation can improve the realism of the resulting gestural animation in several ways. First, it will smooth the

motion in a natural way. Second, there is very little basis in the collected data for providing small torso deformations

that are often caused by arm movement during gesturing. Simulation allows the transfer of force from rapid arm

movements into the torso which can cause these deformations and improve the realism of the motion. Third, the

damping in the model will limit the speed of any movements with unreasonably high velocities. Finally, simulation

can add small end-effects to the motion, such as pendular arm sway when a character brings his arms to his side or

passive movements of the fingers.

When computing physically simulated animation, we use a controller based approach whereby an actuator is placed

at each DOF which calculates the torque required to move the character towards the desired configuration. We use

an antagonistic formulation of proportional-derivative control, following [Neff and Fiume 2002]. The control law is

written as

τ = kL(θL −θ)+ kH(θH −θ)− kd θ̇ , (10)

where τ is the torque generated, θ is the current angle of the DOF and θ̇ is its current velocity. θL and θH are the low

(L) and high (H) spring set points which serve as joint limits, kL and kH are the corresponding spring gains, and kd

is the gain on the damping term. The tension T or stiffness of the joint is taken as the sum of the two spring gains:

T = kL + kH .

Consider the stroke phase of a “cup” gesture (Figure 3). When this phase begins, the spring gains for the current pose

and the gains needed for the desired pose at the end of the stroke are computed for each DOF used in the motion.

The movement is generated at each time step by interpolating between these gain values, determining the torque that

the current gain values will generate given the current state of the character, and then using the equations of motion

to determine accelerations that are twice integrated to update the position of the character. The torques generated by

gravity at the start and end pose are calculated using the current state of the character and an estimate of the end state.

The gain values are computed to compensate for these torques (this process is represented by the function C below).

This allows joint tension to be varied during a movement while still ensuring joint positioning that is accurate, at least

at steady state.

In our system, offset tracks are summed with the main track to produce final control values. In kinematic simulation,

each track contains angle data that can be directly added. In physical simulation, we add the gains. Consequently,

gains must be calculated across tracks such that the they will add to the correct values to produce the desired angles. A

function C can be defined which takes a desired angle θ and computes the opposing spring gains (i.e. (kH ,kL) =C(θ))
that will balance the forces acting on the limb such that the equilibrium angle of the limb is θ . This function must

perform gravity compensation. Given C, the rules summarized in the table below can be used to compute gains on

each track:

Main Track Offset Track

Initial Gains (kH ,kL) = C(θ −θo f f set) (kH ,kL) = C(θ)−C(θ −θo f f set)
End Gains (kH ,kL) = C(θmain) (kH ,kL) = C(θo f f set2 +θmain)−C(θmain)
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These rules follow from Equation 10. θ is the current angle for the DOF at the start of the movement and θo f f set is the

current offset angle. For the end point gains, θmain is the desired value on the main track at the end of the transition

and θo f f set2 is the desired offset value at the end of the transition. These values are estimated based on the transition

curves associated with the DOF and offset tracks. The tension is kept the same for each component during a transition,

but the start and end times of the main and offset curves do not need to be the same.

Aside from the balance problem which we mitigate by using springs to hold the feet in position, one of the main

difficulties encountered with controller based simulation is setting the gain values appropriately to generate the desired

visual appearance. The inertia weighting technique presented by Zordan and Hodgins [2002] provides a good initial

estimate for joint gains. We augmented this by an automatic sampling procedure that takes repetitions of a prototypical

movement and computes gain and damping values that would yield a specified overshoot for a given DOF (e.g. a two

degree overshoot in elbow angle at the end of the transition). This yields tables of tension and damping values that are

useful for fine tuning the parameters when required. This tuning process is done once per character and then used to

generate all animations. During retraction phases, we relax the character’s hands. The gains used for this are calculated

based on the approach described in [Neff and Seidel 2006].

The rapid, time synchronized movements in gestural animation are a challenge to model using a proportional derivative

control approach due to the damping needed to stabilize the system. The actuators include damping, which is important

for producing realistic motion. However, as we wish to operate at relatively low-tension levels that will enable the

movement to be enhanced by many of the benefits of physical simulation listed above, the damping in the system will

introduce lag. This is particularly significant when dealing with short duration, high velocity movements with precise

timing. The lag causes two problems: first, it means that the movements will be slightly slower and so will be behind

their desired time constraints. Second, if the kinematic trajectories are used as the basis of the PD-control, the extent

of the movement will be reduced in many cases as the movement will not have time to reach the desired end-point

before the control trajectory changes direction. We must compensate for both of these effects.

To ensure that simulated movements satisfy the script timing, we moved the start time of all poses earlier in dynamic

simulation. Empirical tests showed -0.12 s to be an appropriate offset. With this offset, the initial time of transitions

corresponded well to that seen in the kinematic motions. There are two potential ways to maintain the extent of the

specified motion: the desired trajectory curves could have their extent increased, pulling the motion closer to the

actual target, or the duration of the movements could be shortened and pauses inserted, allowing the actual movement

to “catch-up” with the desired trajectory. For most cases, we use the latter approach. The pauses allow time for

the motion to complete before a direction change begins. The update rule for the duration of strokes, ds, is: ds =
min(ds, max(.15, ds− .3)) and the update rule for the duration of preps, dp, is: dp = min(dp, max(.1, ds− .15)) where

the basic intuition is to reduce the duration of the motion to allow completion while still maintaining some minimal

transition time. The offsets were determined on test motions, with a shorter offset being used for preparations as they

normally have shorter base durations.

In the case of progressives, the continuous timing of the motion is particularly important, so we increase the extent of

the transition curves rather than shortening the duration of the movement components. This is achieved by multiplying

the angular span of the movement α by a factor of 1.6.

A variable time step Rosenbrock integrator [Press et al. 1992] is used to compute the motion using simulation code

from SD/Fast [Hollars et al. 1994]. A 58 s MR sequence computed in 14 minutes and a JL generated sequence of the

same length took 10.5 minutes on a 3 GHz Pentium 4.
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Fig. 14. Frames of MR gesturing from the video corpus and frames of the same movement from animations recreated from the corpus. Note: In the

fourth pair, MR is making a RH gesture and his left arm is at rest.

7. RESULTS

A video was produced for this work that includes three pairs of example animations produced by our system for the two

subjects. In the first example, we show for each subject a re-creation of a particular sequence of their video corpus. The

gesture scripts for these sequences are created directly from the video annotation (Figure 2), and kinematic animation

is used. These sequences validate both the fidelity of the annotation process and the ability of the animation system to

generate the specified movement in the gesture script. A comparison for several gestures of a recreation of MR data

to the original corpus is shown in Figure 14.

The second examples use the same audio tracks as the first, but generate new gestures based on each speaker’s re-

spective gesture profile. Since this input was also part of the training data we subtracted the statistical data for these

particular samples from the profiles before generating the new gesture scripts. These sequences were dynamically

simulated. Although the generated gestures generally differ from the original (or the recreation) the animations dis-

tinctly reflect the gesticulation patterns of the modeled individuals. The resulting animations present effective gesture

timing, synchronized with the original audio, and gesture forms that are consistent with the modelled subjects. This

offers validation for the generation model.

The final pair of examples show gesture sequences generated by each of the subject models and dynamically animated

for a new passage of synthesized English text that is not contained in either video corpus. This demonstrates that

our system can operate on novel text and is language-independent, since MR’s gesture profile was built on German

training data. The video also illustrates the role movement plays in creating the overall impression of an utterance.

Even though the timing of the speech is unlike that of either subject, the resulting animations are characteristic of each

speaker.

A side by side comparison of kinematic and dynamic animations reveals small differences in timing, but the overall

synchronization remains intact. A comparison of the strengths of each approach to animation is included in Table IX.

The strengths of the kinematic approach relate to computational cost and ease of use. The strengths of the dynamic

approach, meanwhile, relate to the addition of subtle movement details that are lacking in the kinematic animation.

Although subtle, we feel these effects help give the character a sense of “aliveness” that is less strong in the kinematic

animation. This further validates the use of physical models and shows their relevance to synchronized gestural anima-

tion, where they have not previously been used. At the same time, as better tuning and control methods are developed,

we postulate that the contribution of physical models to movement quality will become even more substantial.

A side by side video comparison of the two models used on the same text sequence nicely shows the style differences
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Advantages of Kinematic Animation

Easier to precisely control timing.

Takes less time to compute, so is more suitable for real time applications.

No tuning is required.

Advantages of Dynamic Animation

Small oscillations/overshoot at the end of movements reflect momentum. Fast movements will cause small oscillation in the final position

at the end of the movement that will not occur for more controlled, slow movements and are absent in the kinematic animation. This

effect is most obvious when a character drops his arm to his side, producing pendular motion, but also occurs at the end of strokes and

other gesture phases.

Gravity will vary the relaxed hand-shape based on the orientation of the palm whereas kinematic hands remain stiff.

Arm movements cause some force transference into the torso that generates slight deformations to the torso adding realism.

Secondary movement is included. For instance, when a character rotates, there is a slight swinging of the arms that is lacking in the

kinematic version.

Better modeling of interrupted movement. For example, in one sequence JL drops his hand towards his side, but then begins another

movement just before his hand reaches his side. The dynamic model nicely captures the transition from passive to actively controlled

movement.

Table IX. Comparison of strengths of kinematic and dynamic approaches to animation generation.

12.33 s 19.27 s 25.77 s 31.53 s 36.4 s

Fig. 15. A matter of style: Different gestures were generated for contemporaneous frames of the “Star Wars” animations for JL (top row) and MR

(bottom row).

between the two models (JL vs. MR). Frames from this are shown in Figure 15. Worth noting, not only does the

system produce different gestures for each speaker, it also generates very different, yet still effective, timing patterns.

For instance, the last pair of frames in the figure show a case where a gesture is generated for the JL model but not the

MR model.

Overall, the animations show a high variation in gesture shape, good synchronization with speech and a nice overall

flow of movement. High variation stems from using positional data from the GestureDB and from creating multiple

strokes. The good synchronization validates our algorithms for aligning main stroke and after-strokes, using Steed-

man’s concept of focus as an important gesture placement indicator. Finally, the overall flow is due to our introduction

of the gesture unit as an organizational higher-level entity.
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7.1 Validation

An evaluation study of our system was conducted that shows that the gestures produced by the system are recognizable

as having the style of the specific performer modeled14. For this study, 26 independent reviewers were recruited, aged

24 to 46; 6 female and 20 male, all non-expert in the field of gesture modeling and/or animation. In a learning phase

they were shown video clips of the original performers, JL and MR. Two clips of each performer were used, about 5

minutes in total. These clips were outside the training corpus used for our statistical models. The order of the clips

was varied across subjects to avoid order effects.

In the first test (Test 1) we showed them one video clip of generated gestures and asked “Whose gesturing style is

imitated in the first animation?”. The JL model was used for half of the subjects and the MR model for the other half.

The animations for the novel text were used in the experiment (these are the last two clips discussed above) which are

obviously outside our training corpus. Afterwards, in the second test (Test 2) we showed a side-by-side clip of both

variants of the novel text clips (modeled on JL + modeled on MR) and asked subjects to “Please indicate which clip is

animated more in the style of Jay Leno (JL, American) and which more in the style of Marcel Reich-Ranicki (MRR,

German).”.

The result of Test 1 was that subjects selected the correct original performer 69 % of the time, which is significantly

above chance (t(25) = 2.083; p < .05). The result of Test 2 was that subjects correctly assigned the original performer

to the side-by-side characters in 88 % of the cases which is also significantly above chance (t(25) = 6.019; p < .001).
In Test 1, there was no significant difference in recognizing JL compared to recognizing MR (t(24) = .5708; p =
.57). For both tests, there was no noticeable dependency of subject performance on gender, age, familiarity with

English / German or with either performer.

We did not formally evaluate how subjects identified speakers, but based on post survey discussions, it appears that

different subjects used different clues. Some relied on a few distinctive gestures that they thought were typical for

the performer, while others paid more attention to rest pose and others focused on their overall impression of the

sequences.

The evaluation clearly shows that the produced animation reflects the style of a specific performer. This worked

equally well for both performers. When putting the animations side by side, the discrimination task is even easier, as

reflected by the higher scores. It should be noted that the selected clips were generated on synthetic text for which

we did not model the timing and speaking pattern of either speaker. This makes the recognition task harder as these

important aspects of personal style were absent in the stimuli, providing less information than would be present in a

clip of either speaker.

7.2 Expertise Required to Use the System

Our approach requires manual work that can be performed by non-experts with some training. For a more specific

estimate we have to distinguish between the labour-intensive analysis phase and the runtime system.

In the analysis phase, for the coding of words, theme/rheme and discourse segments a linguistic background is helpful.

The coding of gesture phases and their spatial properties requires no special prior knowledge. For encoding the lexical

affiliate, some knowledge of the gesture literature, especially on gesture inventories and abstract/metaphoric gestures

[McNeill 1992], must be acquired in training. Creating the animation lexicon requires good observation skills as the

annotation is based on categorizing what the performer is doing in still images. The annotator must also be familiar

14This experiment was done using a slightly earlier version of the system. The quality of the animations has subsequently been improved.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



Gesture Modeling and Animation Based on a Probabilistic Recreation of Speaker Style · 33

with the meaning of the parameters in the system so that he can represent what he observes. In all, we estimate a

training period of 1–2 weeks for the analysis phase.

In the runtime system the manual labour consists of preparing the input data, i.e. adding theme, rheme, focus and

utterance segmentation, and extending the semantic tag look-up table by adding unknown words that fit into one of

the categories. For both tasks a linguistic background is helpful. We estimate a training period of less than a week.

However, note that automated approaches for reconstructing these data from plain text exist, e.g. in BEAT [Cassell

et al. 2001], and could be added to our (runtime) system to make it run without manual work.

7.3 Data-specificity of the Approach

While our approach strives to model individual style in gesture behaviour, it is at the same time quite general. The

animation can handle a very wide range of possible gestures and the style-specific data is encapsulated in character-

specific gesture profiles, separate from a general gesture generation algorithm. In this section, we discuss the limits of

the system in terms of domain, range of gestures and cultural dependency.

Our use of semantic tags make the approach independent of both language (German/English) and conversational

domain. Looking at the table of semantic tags (Table VII) one can imagine that they are applicable to many domains.

In fact, the data for our two speakers comes from quite different domains (book review vs. comedy). In our demo, we

explicitly chose input text from a totally new domain, the prologue from the Star Wars episode IV movie, to show that

our approach transfers to other domains.

While the semantic tags themselves are quite domain-independent the concrete look-up table must be extended for

each new text. Therefore, the lookup table should be replaced by an automated approach. The animation lexicon must

be extended each time a speaker is added; if the hypothesis is true that all people from the same cultural group draw

from a single repertoire of gestures (excluding iconics), then this work becomes less with a growing set of profiles.

Even for our two speakers, we found a considerable overlap in gesture lexemes. However, the lexicon of gestures may

be culture-specific. This means that adding a person from a culture different to the corpus may entail more work on

the animation lexicon as opposed to adding people from the same group.

As discussed previously, the parameters in the animation lexicon most related to the particular individual performing

the gesture are those related to posture changes. After-strokes might also show individual varation, but there is not

enough data to verify this. It appears that palm orientation is defined more by the lexeme with limited variation across

individuals.

Although the range of produced gestures is quite large, our approach misses out on iconic gestures that illustrate

complex spatial content (e.g. the trajectories of two colliding cars) or make deictic reference to present objects (e.g.

pointing to a moving object). However, such gestures could be added on top of our approach by a “deep” generation

engine.

8. CONCLUSION AND DISCUSSION

This work presents a system for generating believable gesture animations for novel text that reflect the gesturing

style of particular individuals. It moves beyond previous approaches by creating a statistical model of particular

individuals; modeling gestures at a high level of detail; modeling complex gestures, including highly variable after-

strokes and progressives; building gesture units that flow well and synchronize effectively with speech; and using

physical simulation to enhance the final animation. Gesture units are a particularly effective construct. We generate

stretches of gestures and infer timing parameters from the interdependence of the gestures contained in one unit. This

makes gesture flow much more natural as the gestures are connected by holds or directly succeed each other while
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positional parameters are fitted depending on the preceding gesture. We found the alignment of end times between

gesture strokes and speech correlates performed well. Finally, we exploit Steedman’s concept of focus to synchronize

gestures not with the directly related part of the utterance (lexical affiliate) but with the focus. The successful timing

this produces breaks the myth common in the literature of a gesture having to occur slightly before its semantic

correlate.

It is worth highlighting the effective division of data between the gesture generation process and the animation process.

The gesture generation system contains the data necessary to both synchronize gestures with speech and to capture

the spatial gesturing pattern of particular individuals. The animation system supports the reuse of labour through the

animation lexicon, hides many details of animation production from the gesture generation process and effectively

augments the generation data to produce convincing gestural animation.

Automatically creating animations of talking characters that reflect a specific subject’s style and will satisfy a human

observer is a very challenging task, and much work remains to be done. First, although the annotation scheme is

simple, elegant and effective, the process is currently labour intensive. We see significant opportunity for automation

in the process. Research has already been published on tracking JL’s face and hands [Tan and Davis 2004], which can

likely be extended for use in our workflow. Second, certain movements were avoided. For instance, handrub motions

require a high quality collision model; iconic gestures need a deeper model of semantics. As well, the system should

be extended to model non-hand based gestures such as head points and shoulder shrugs without accompanying hand

movement. Better models for torso engagement while gesturing are also worthwhile. Another interesting avenue for

future research is to directly model variations in expressivity. For instance, the amount of posture variation present in

the performance of a lexeme is likely correlated with the amount of emphasis, excitement, anger or other intentional

parameters related to how the subject is expressing the idea. Finally, we conjecture that better use of physical models

can further improve the quality of the animations. People continuously modulate the tension in their bodies while

moving, in a much more complex way than modeled here. Despite this, it is worth noting that this work demonstrates

that physical simulation can add subtle details to the animation of gesturing characters. Using physical simulation for

motion generation offers the potential to unify skeletal character animation with secondary effects like cloth modeling,

all within the physical simulation realm. This will help ensure that character motions exert reasonable forces on these

secondary models and offers the potential to create a continuous representation from limb movement, to muscle and

skin deformation, to cloth and hair.
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Appendix: Gesture Script Example

A section of a gesture script is included below. See Section 5.3 for a discussion of the gesture script.
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BEGIN_BODY_ROTATIONS

ROTATE_BODY right 10.073230361

...

END_BODY_ROTATIONS

BEGIN_HEAD_ROTATIONS

ROTATE_HEAD right 9.673230361

ROTATE_HEAD front 17.305170822

...

END_HEAD_ROTATIONS

#---------------------------------------------------------

BEGIN_G_UNIT

BEGIN_GESTURE

# start time = 8,704

# Triggered by: "civil war" AGGRESSION 10,473 - 11,188

lexeme=Fist # from sample 32 (random)

handedness=2H

handshape=fist

type=prep+stroke+hold

# total stroke duration = 1,685

stroke.trajectory=straight # from sample 32

hold.time.duration=0.4880431763966211

stroke.time.duration=0.6936347179353073 # ran. offset 0,289

stroke.time.end=9.897439842000004 # offset -1,291

stroke.number=3

mstroke.0.time.end=10.485929679

mstroke.1.time.end=10.88846035

stroke.position.start.2h_distance=0.6537408296950502

stroke.position.start.height=shoulder

stroke.position.start.distance=close

stroke.position.start.radial=front

stroke.position.start.inclination=normal

stroke.position.end.2h_distance=0.8116517219742472

stroke.position.end.height=chest

stroke.position.end.distance=close

stroke.position.end.radial=front

stroke.position.end.inclination=normal

# end time = 11,377

END_GESTURE

BEGIN_GESTURE

# start time = 11,377

# Triggered by: "galactic empire" TITLE 16,944 - 18,005 [init]

# sync’d with Init words "rebel space"

lexeme=Umbrella # from sample 77 (random)

handedness=LH

handshape=open-rlx

type=prep+stroke

stroke.trajectory=straight # from sample 77

stroke.time.duration=0.2074158836033774 # ran. offset -0,013
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stroke.time.end=12.08391941 # offset -0,535

stroke.number=1

stroke.position.start.height=belly

stroke.position.start.distance=normal

stroke.position.start.radial=out

stroke.position.start.inclination=normal

stroke.position.end.height=belly

stroke.position.end.distance=normal

stroke.position.end.radial=out

stroke.position.end.inclination=normal

# end time = 12,084

END_GESTURE

... # more gestures

RETRACT_GESTURE pose=at-side

END_G_UNIT

... # more gesture units
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